SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

loading

How it works

For Business

Join Mind Tools

Article • 8 min read

Critical Thinking

Developing the right mindset and skills.

By the Mind Tools Content Team

We make hundreds of decisions every day and, whether we realize it or not, we're all critical thinkers.

We use critical thinking each time we weigh up our options, prioritize our responsibilities, or think about the likely effects of our actions. It's a crucial skill that helps us to cut out misinformation and make wise decisions. The trouble is, we're not always very good at it!

In this article, we'll explore the key skills that you need to develop your critical thinking skills, and how to adopt a critical thinking mindset, so that you can make well-informed decisions.

What Is Critical Thinking?

Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well.

Collecting, analyzing and evaluating information is an important skill in life, and a highly valued asset in the workplace. People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1]

Key Critical Thinking Skills

Critical thinkers possess a set of key characteristics which help them to question information and their own thinking. Focus on the following areas to develop your critical thinking skills:

Being willing and able to explore alternative approaches and experimental ideas is crucial. Can you think through "what if" scenarios, create plausible options, and test out your theories? If not, you'll tend to write off ideas and options too soon, so you may miss the best answer to your situation.

To nurture your curiosity, stay up to date with facts and trends. You'll overlook important information if you allow yourself to become "blinkered," so always be open to new information.

But don't stop there! Look for opposing views or evidence to challenge your information, and seek clarification when things are unclear. This will help you to reassess your beliefs and make a well-informed decision later. Read our article, Opening Closed Minds , for more ways to stay receptive.

Logical Thinking

You must be skilled at reasoning and extending logic to come up with plausible options or outcomes.

It's also important to emphasize logic over emotion. Emotion can be motivating but it can also lead you to take hasty and unwise action, so control your emotions and be cautious in your judgments. Know when a conclusion is "fact" and when it is not. "Could-be-true" conclusions are based on assumptions and must be tested further. Read our article, Logical Fallacies , for help with this.

Use creative problem solving to balance cold logic. By thinking outside of the box you can identify new possible outcomes by using pieces of information that you already have.

Self-Awareness

Many of the decisions we make in life are subtly informed by our values and beliefs. These influences are called cognitive biases and it can be difficult to identify them in ourselves because they're often subconscious.

Practicing self-awareness will allow you to reflect on the beliefs you have and the choices you make. You'll then be better equipped to challenge your own thinking and make improved, unbiased decisions.

One particularly useful tool for critical thinking is the Ladder of Inference . It allows you to test and validate your thinking process, rather than jumping to poorly supported conclusions.

Developing a Critical Thinking Mindset

Combine the above skills with the right mindset so that you can make better decisions and adopt more effective courses of action. You can develop your critical thinking mindset by following this process:

Gather Information

First, collect data, opinions and facts on the issue that you need to solve. Draw on what you already know, and turn to new sources of information to help inform your understanding. Consider what gaps there are in your knowledge and seek to fill them. And look for information that challenges your assumptions and beliefs.

Be sure to verify the authority and authenticity of your sources. Not everything you read is true! Use this checklist to ensure that your information is valid:

  • Are your information sources trustworthy ? (For example, well-respected authors, trusted colleagues or peers, recognized industry publications, websites, blogs, etc.)
  • Is the information you have gathered up to date ?
  • Has the information received any direct criticism ?
  • Does the information have any errors or inaccuracies ?
  • Is there any evidence to support or corroborate the information you have gathered?
  • Is the information you have gathered subjective or biased in any way? (For example, is it based on opinion, rather than fact? Is any of the information you have gathered designed to promote a particular service or organization?)

If any information appears to be irrelevant or invalid, don't include it in your decision making. But don't omit information just because you disagree with it, or your final decision will be flawed and bias.

Now observe the information you have gathered, and interpret it. What are the key findings and main takeaways? What does the evidence point to? Start to build one or two possible arguments based on what you have found.

You'll need to look for the details within the mass of information, so use your powers of observation to identify any patterns or similarities. You can then analyze and extend these trends to make sensible predictions about the future.

To help you to sift through the multiple ideas and theories, it can be useful to group and order items according to their characteristics. From here, you can compare and contrast the different items. And once you've determined how similar or different things are from one another, Paired Comparison Analysis can help you to analyze them.

The final step involves challenging the information and rationalizing its arguments.

Apply the laws of reason (induction, deduction, analogy) to judge an argument and determine its merits. To do this, it's essential that you can determine the significance and validity of an argument to put it in the correct perspective. Take a look at our article, Rational Thinking , for more information about how to do this.

Once you have considered all of the arguments and options rationally, you can finally make an informed decision.

Afterward, take time to reflect on what you have learned and what you found challenging. Step back from the detail of your decision or problem, and look at the bigger picture. Record what you've learned from your observations and experience.

Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life.

You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when your beliefs could affect your decisions or actions.

You can demonstrate a high level of critical thinking by validating your information, analyzing its meaning, and finally evaluating the argument.

Critical Thinking Infographic

See Critical Thinking represented in our infographic: An Elementary Guide to Critical Thinking .

tools of argument in critical thinking

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

How to write a business case.

Getting Approval and Funding for Your Project

How to Reboot Your Career Video

Video Transcript

Add comment

Comments (1)

priyanka ghogare

tools of argument in critical thinking

Try Mind Tools for FREE

Get unlimited access to all our career-boosting content and member benefits with our 7-day free trial.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article acd2ru2

Team Briefings

Article a4vbznx

Onboarding With STEPS

Mind Tools Store

About Mind Tools Content

Discover something new today

New pain points podcast - perfectionism.

Why Am I Such a Perfectionist?

Pain Points Podcast - Building Trust

Developing and Strengthening Trust at Work

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Communicate like a leader.

Dianna Booher

Expert Interviews

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Library Home

Arguing Using Critical Thinking

(2 reviews)

tools of argument in critical thinking

Jim Marteney, Los Angeles Valley College

Copyright Year: 2020

Publisher: Academic Senate for California Community Colleges

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial-ShareAlike

Learn more about reviews.

Reviewed by Steve Gimbel, Professor, Gettysburg College on 9/29/22

There are separate sections on how to formulate an argument, how to evaluate an argument, the burdens adopted by those engaging in critical discourse, rhetorical strategies for effectively convincing an interlocutor, and errors in reasoning. In... read more

Comprehensiveness rating: 4 see less

There are separate sections on how to formulate an argument, how to evaluate an argument, the burdens adopted by those engaging in critical discourse, rhetorical strategies for effectively convincing an interlocutor, and errors in reasoning. In terms of the breadth of topics one generally wants covered in a critical thinking class, the book does a fine job at hitting them all.

Content Accuracy rating: 2

It is an admirable attempt to develop a post-modern, post-truth approach to critical discourse. "Truth is a word best avoided entirely in argumentation," the book tells students, "except when placed in quotes or with careful qualification." Invoking Wittgenstein and Sapir-Whorf in the introductory sections, the book seeks to develop a relational, psychological, rhetorical approach instead of one focused on informal logic. In doing so, it entirely removes the point of argumentation -- rational belief. Some things are true -- smoking DOES cause cancer, human activity is causing global warming, the Founders of the U.S. did want a separation between Church and State. These are true. There is a series of TED talks cited for inspirational rhetorical value, but in a world in which conspiracy theories are endangering democracy, we need to understand that replacing truth with the truthiness that emerges from this sort of post-modernism is playing directly into those who are undermining our discourse. It exacerbates the problem, it does not solve it.

Relevance/Longevity rating: 3

Since the book hinges less on logic and more on social science, there are elements that will be altered over time. Sapir-Whorf, as mentioned above, has not taken seriously by linguists for decades, yet is used as a foundation. The book seeks to speak to students using, in places, contemporary references that will become dated over time, but these are easily updated.

Clarity rating: 1

There are some very good sections in the book. The distinction it draws between matters of fact, value, and policy is very well done. As is the catalogue it gives of different sorts of evidence. The clarity with which it sets out the difference in burdens between the pro and anti sides of a debate is wonderful.

In terms of accessibility, the book is written engagingly in a way that first year students should not be lost. It intentionally uses a new set of technical terms modeled on standard usage -- claim, evidence, issues, contentions, cases,... and does well to define them in accessible (at times loosey-goosey) ways.

However, there are problems for those trying to teach critical thinking as informal logic. You will not find the words "conclusion" or "premise" anywhere in the book. This is clearly intentional as it seeks to eliminate the idea of arguments as providing good reason to believe something is true. Again, truth is not to be discussed. Instead, it sort of tries to use a sort of sliding scale, but it is never at all clear what the scale is actually measuring. The book uses the term validity (much more on that below), but that term is used in a stunningly ambiguous way.

Consistency rating: 2

The central notion in the book is validity. This is not unexpected as that is a standard term in logic. As logicians use the word, an argument is valid if and only, assuming the truth of the premises for the sake of argument, the conclusion is at least likely true, that is, the truth of the conclusion is imp;lied by the truth of the premises. Validity is a matter relating to the internal structure of an argument, connecting the posited truth of the premises to the consequential necessary or probable truth of the conclusion. Yet the book says something quite different, "Critical thinkers need to remember that there is no necessary or inherent connection between Truth and validity." Ummmmm? Validity is DEFINED in terms of a relation between premises and conclusion and how that relation determines or does not determine truth. There could not be a MORE inherent connection between truth and validity.

It is clear that by "capital T Truth," the book is looking to encourage students not to be absolutists, to be able to question deeply held convictions and this is, indeed, a necessary function of any critical thinking class, but with its post-truth orientation, the book uses the term "validity" as a replacement for it in several completely different and inconsistent ways. At times, it is uses validity as a replacement for the truth concept. In this way, sentences are more or less valid, that is, truer or less true. This is the "sliding bead" model that is repeatedly alluded to throughout the text.

At other times, however, the usual meaning of validity is used, where it is not sentences, but arguments that can be valid or invalid according to whether or not the conclusion (claim) is properly connected to the premises (evidence). There is a loose, hand-waving section on what this sense of validity means. In most texts, this is the HEART of critical thinking. How to tell valid from invalid arguments.

At yet other times, there is a third use of the term validity. A viewpoint is more or less valid based upon the support it receives from arguments in favor of it. Unlike the traditional sense of validity, this is not a particular argument that is evaluated as successful in terms of its inner-structure, and it is not the likely truth or falsity of the conclusion of a particular argument, but a more general sense of the degree to which a perspective has arguments to bolster it.

This sort of slipperiness in the central notion of the entire course is problematic. The point of good reasoning is clarity and rigor. But that is exactly what this book tries to eliminate.

Modularity rating: 3

There are parts of this text that are fantastic and which I could absolutely see wanting to use in my critical thinking class. However, because of the intentional avoidance of standard logical terminology and the unusual reinterpretations of the standard terms it does use, it would be difficult to use sections of this book in conjunctions with sections of other critical thinking texts.

Organization/Structure/Flow rating: 5

If one were to use this text as the centerpiece of a course on critical thinking, there is a clear and logical flow to the way the pieces build on themselves. There is motivation up front, tools in the middle, applications and concerns about misusing the tools in the end. The structural is well-thought out and well-executed. The one complaint in terms of organization is that it is two-thirds the way through the text before certain central notions are defined.

Interface rating: 5

It is a clean and effective design with images that brighten up the text without distracting. Easy to read and aesthetically well-laid out. There are a couple of line breaks that add a couple of blank lines where they don't need to be here and there, but that is nitpicky stuff. Overall, it looks great.

Grammatical Errors rating: 5

It is a clean and effective design with images that brighten up the text without distracting. Easy to read and aesthetically well-laid out. There are a couple of line breaks that add a couple of blank lines where they don't need to be here and there, but that is nitpicky stuff. Overall, it reads and looks great.

Cultural Relevance rating: 2

The text is not culturally insensitive, indeed, the problem with it is exactly the opposite. It is clear that part of the goal of this text is to change how we think about critical thinking, moving from a logical model in which we strive for truth, to a rhetorical model in which we engage in open dialogue across varied perspectives. This is a noble goal. However, in trying to create discourse communities where voices that are often underrepresented or silenced have a place, the book does away with the point of that discourse. We want multiple perspectives because they provide insights that lead to truths we may have otherwise missed. They are correctives that undermine problematic presuppositions we did not even realize we were making that leads us away from truth. They allow us to see other ways of valuing things that we would not have values under our initial set of meanings. Eliminating the centrality of truth as a goal in discourse does not create room for other voices, it eliminates the point of needing those other voices. Indeed, the unintentional consequence of this approach to critical thinking is the devaluing of rationality, of truth, of scientific findings. We need to take action to reverse climate change. This can only be done if we have a robust notion of truth and its importance.

Logic is an activity you learn by doing. The lack of exercises or active engagement projects in the text is something that would place a load on the instructor to develop if this were to be an effective book in use.

Reviewed by Marion Hernandez, Adjunct Instructor English Department/DCE, Bunker Hill Community College on 12/27/20, updated 1/6/21

The book does name, identify and define key terms of argument and the basis for effective argument. read more

The book does name, identify and define key terms of argument and the basis for effective argument.

Content Accuracy rating: 4

This text has no grammatical errors and is unbiased in the definitions and the various contexts in which arguments occur.

Relevance and longevity do not really apply to the subject and context of this text. The book is very general and the time and place do not play a role.

Clarity rating: 2

The definitions and graphs/charts (only 2 or 3 have been added) are very basic, almost to the point of being counter productive. The Inductive and deductive chart has no value in the design or in the side notes accompanying the graph. No enough detail or design features were added to this one graph.

Consistency is not a feature to discuss because every chapter has a different main idea from types of arguments to resolving arguments to types of behavior commonly seen during arguments. There is no sequencing of material from beginning to end in term of moving from basic through intermediate and advanced level of thinking.

The book clearly defines the title of each section, but again, all taken together, no advancement in theory is developed throughout.

Organization/Structure/Flow rating: 2

The chapters do not appear in any type of order. The book moves from arguing to argument and behaviors commonly found during arguments. The last chapters talk about reasoning skills such as inductive and deductive thinking.

Interface rating: 1

The graphic and pictures do nothing to promote thinking or understanding and are therefore superfluous.

Grammatical Errors rating: 2

This critique here is not so much grammar but but point of view. The book really reads like a self help book or guide for a very basic reader. But the point of view shifts from 'you" as is what "you" should do to the the third person "they". This is very poor writing and leads to the next point which is its lack of value as a high school or college text. It is difficult to understand what student and in what circumstances would benefit or be inspired to read it.

Cultural Relevance rating: 5

There is no politically incorrect content.

As briefly mentioned, the causal, offhand, self help nature of this book is not designed in any way to be used as a text. Because each chapter is separate with no sequencing, it would be impossible to develop any in depth assignments, No exercises are added so nothing would materialize in the way of theory, practice, analysis or discussion.

Table of Contents

  • 1: Standing Up For Your Point Of View
  • 2: Communicating An Argument
  • 5: Building Your Case With Issues, Analysis And Contentions
  • 6: Evidence
  • 7: Reasoning
  • 8: Validity Or Truth
  • 9: Changing Beliefs, Attitudes and Behavior
  • 10: Decision Making - Judging an Argument
  • 11: Discovering, Examining and Improving Our Reality
  • 12: The Foundations of Critical Thinking

Ancillary Material

About the book.

There is a quote that has been passed down many years and is most recently accounted to P.T. Barnum, “There is a sucker born every minute.” Are you that sucker? If you were, would you like to be “reborn?” The goal of this book is to help you through that “birthing” process. Critical thinking and standing up for your ideas and making decisions are important in both your personal and professional life. How good are we at making the decision to marry? According to the Centers for Disease Control, there is one divorce in America every 36 seconds. That is nearly 2,400 every day. And professionally, the Wall Street Journal predicts the average person will have 7 careers in their lifetime. Critical thinking skills are crucial.

Critical thinking is a series learned skills. In each chapter of this book you will find a variety of skills that will help you improve your thinking and argumentative ability. As you improve, you will grow into a more confident person being more in charge of your world and the decisions you make.

About the Contributors

Jim Marteney , Professor Emeritus (Communication Studies) at Los Angeles Valley College

Contribute to this Page

Pursuing Truth: A Guide to Critical Thinking

Chapter 14 inductive arguments.

The goal of an inductive argument is not to guarantee the truth of the conclusion, but to show that the conclusion is probably true. Three important kinds of inductive arguments are

  • Inductive generalizations,
  • Arguments from analogy, and
  • Inferences to the best explanation.

14.1 Inductive Generalizations

Sometimes, we want to know something about some group, but we don’t have access to the entire group. This may be because the group is too large, we can’t reach some members of the group, etc. So, we instead study a subset of that group. Then, we infer that the entire group is probably like the subset. The group we are interested in is called the population, and the observed subset of the population is called the sample.

Imagine that I wanted to know the level of current student satisfaction with access to administration at the university. I would probably survey students to get this information. The population would be students currently enrolled at the university, and the sample would be students who were surveyed. The sample is guaranteed to be a subset of the population, since, even if I give every student a chance to take the survey, we know that not all students will participate. Some students will return the survey, giving me an answer for the sample. I then conclude that the answer for the population is about what it is for the sample.

There are some terms that are important to know when dealing with data values. The mean is the mathematical average. To find the mean, add up all the values of the data points and divide by the number of data points. For example, the mean of 1, 2, 3, 5, 9 is 4. The median is the value that is in the center, such that half of the numbers are less than it and have are greater. In this case, the median is 3. The mode is the value that occurs most often. The mode of 1, 2, 4, 2, 7, 2 is 2.

Another thing that is important to keep in mind is how spread out the values are. The average annual temperature in Oklahoma City is about the same as the average annual temperature in San Diego, leading one to conclude that the two cities have about the same comfort level. The difference is that the average monthly highs and lows range from 45 to 76 in San Diego and 29 to 94 in Oklahoma City. Three ways to talk about data dispersal are

  • Range: the distance between the greatest and the smallest value,
  • Percentile rank: the percentage of values that fall below some value, and
  • Standard deviation: how closely things are grouped the mean.

14.1.1 Random Samples

In an inductive generalization, the premises will be claims about the sample, and the conclusion will be a claim about the population. Although such arguments are not valid, they can be inductively strong if the sample is good. Good samples are first, not too small, and second, not biased. The ideal sample is representative, which means that it matches the population in every respect. Of course, reasoning from a representative sample to a population would always be perfect, since they would be, except for size, mirror images of each other. Unfortunately, there is no way to guarantee that a sample is representative, nor is there any way, presumably, to know that a sample is representative. To know that our sample was representative, we would already have to know everything about the population. If that were the case, what’s the use taking a sample?

Since we can’t do anything to guarantee a representative sample, our best way to ensure our sample is not biased is for it to be random. A random sample is one such that every member of the population had an equal chance of being included in the sample. Randomness is very difficult to achieve in practice. For example, if I send out an email invitation to participate in the university survey, it looks like every student has an equal chance of being included in the sample. Actually, though, there are several groups that are guaranteed to not be included: students who have forgotten their email password, students who don’t check email, students who don’t really care, etc. Even if I have a truly random sample, it is still possible for it to be a biased sample. This is called random sampling error. Random samples, though, are less likely to be biased than non-random samples.

14.1.2 Margins of Error

The other feature of a good sample is that it needs to be big enough. How big is big enough? It often depends on what we want to know and the result that we get from the sample. This is because of something called the margin of error. Let’s assume that I have a random sample from a population. I get a value from the population, and I can be pretty confident that the value in the population is within the margin of error from the value in the sample. How confident? It depends on how big the margin of error is.

Does this sound confusing? It’s really not. Imagine that a friend is coming to visit you at your home on Monday. You, wanting to be prepared, asked her when she would arrive. Here are some possible responses that she might give:

  • “Exactly 9:00”
  • “About 9:00”
  • “Sometime Monday morning”
  • “Sometime on Monday”

Now, which of these can you be most confident is true? It’s easy to see that the first is the one in which we should be the least confident, and the fourth is one in which we should be the most confident. The first is very precise, and then the answers become increasingly more vague, and thus more likely to be true. Margins of error function the same way. The greater the margin of error, the more vague the claim. The more vague the claim, the greater the likelihood of being true.

There is a trade-off, though. Your friend could tell you that she will be there sometime this year. That’s very likely to be true, but not very helpful, because it’s so imprecise. The trade-off is between precision and likelihood. The more precise the claim, the less likely it is to be true. What we need to find is the best balance between the two.

For inductive generalizations, precision is a function of the margin of error. Likelihood is expressed by something called the confidence level. The confidence level of a study is a measure of how confident we can be that the right answer in the population is within the margin of error of the value in the sample. Here is a chart with confidence levels and their respective margins of error, expressed in standard deviations (SD).

So, if my margin of error is \(\pm 1\) standard deviation, then I can be 67% confident that the value in the population is within that margin of error. If I increase the margin of error by another standard deviation, my confidence level leaps a whole 32% from 67% to 95%. Increasing it by another margin of error only gives me an additional 4% confidence level. So, the best balance between likelihood and precision seems to be at the 95% confidence level, and most, if not almost all, studies are done at the 95% confidence level.

The margin of error is a function of the sample size. As the sample size gets larger, the margin of error gets smaller. Statisticians use complicated formulas to calculate standard deviations and margins of error. If the population is very large, though, we can estimate them fairly simply: \(1 SD = \frac{1}{2 \times \sqrt{N}}\) , where \(N\) is the sample size. So, at the 95% confidence level, the margin of error is $. This gives us the following margins of error for a few, easy to calculate, sample sizes:

Remember when I said that how large a sample needs to be depended on what we wanted to know and the result we got from the sample? Now, that should make more sense. Let’s say you were conducting a survey to determine which of two candidates were going to win an upcoming election. You somehow managed to get a random sample of 100, 70% of whom were going to vote for candidate A. So, you conclude that between 60% and 80% of the population were going to vote for candidate A. Since your range does not overlap the 50% mark, you rightfully conclude that candidate A will win. Now, had 55% of your sample intended to vote for candidate A, you could only infer that between 45% and 65% of the population intended to vote for that candidate. To conclude something definite, you will need to shrink the margin of error, which means that you’ll need to increase your sample size.

14.1.3 Bad Samples

Since a good sample is unbiased and large enough, there are two ways for samples to be bad. Generalizing from sample that is too small is called committing the fallacy of hasty generalization. Here are some examples of hasty generalizations:

  • I’ve been to two restaurants in this city and they were both bad. There’s nowhere good to eat here.
  • Who says smoking is bad for you? My grandfather smoked a pack a day and live to be 100!

Cases like the second example are often called fallacies of anecdotal evidence. This happens when evidence is rejected because of a few first-hand examples. (I know someone who had a friend who…)

We’re often not very aware of the need for large enough samples. For example, consider this question:

A city has two hospitals, one large and one small. On average, 6 babies are born a day in the small hospital, while 45 are born a day in the large hospital. Which hospital is likely to have more days per year when over 70% of the babies born are boys?

  • The large hospital
  • The small hospital
  • Neither, they would be about the same.

The answer is “the small hospital.” Think of this as a sampling problem. Overall, in the world, the number of boys born and girls born is roughly the same. 9 A larger sample is more likely to be close to the actual value than a smaller sample, so the small hospital is more likely to have more days when the births are skewed one way or another.

We’ll call drawing a conclusion from a biased sample the fallacy of biased generalization. 10 Imagine a study in which 1,000 different households were randomly chosen to be called and asked about the importance of regular church attendance. The result was that only 15% of the families surveyed said that regular church attendance was important. On the surface, it seems that a study like this would be good — it’s certainly large enough and the families were chose randomly. Let’s imagine that the phone calls were made between 11:00 and 12:00 on Sunday morning? Would that make a difference?

The classic example is the 1936 U.S. presidential election, in which Alfred Landon, the Republican governor of Kansas, ran against the incumbent, Franklin D. Roosevelt. The Literary Digest conducted one of the largest and most expensive pools ever done. They used every telephone directory in the country, lists of magazine subscribers, and membership rosters of clubs and associations to create a mailing list of 10 million names. Everyone on the list was sent a mock ballot that they were asked to complete and return to the magazine. The editors of the magazine expressed great confidence that they would get accurate results, saying, in their August 22 issue,

Once again, [we are] asking more than ten million voters – one out of four, representing every county in the United States – to settle November’s election in October.
Next week, the first answers from these ten million will begin the incoming tide of marked ballots, to be triple-checked, verified, five-times cross-classified and totaled. When the last figure has been totted and checked, if past experience is a criterion, the country will know to within a fraction of 1 percent the actual popular vote of forty million [voters].

2.4 million people returned the survey and the magazine predicted that Landon would get 57% of the vote to Roosevelt’s 43%.

The election was a landslide victory for Roosevelt. He got 62% of the vote Landon’s 38%. What went wrong?

The problem wasn’t the size of the sample, although only 24% of the surveys were returned, 2.4 million is certainly large enough for an accurate result. There were two problems. The first was that 1936 was the end of the Great Depression. Telephones, magazine subscriptions, and club memberships, were all luxuries. So, the list that the magazine generated was biased to upper and middle-class voters.

The second problem was that the survey was self-selected. In a self-selected survey, it is the respondents who decide if they will be included in the sample. Only those who care enough to respond are included. Local news stations often do self-selected surveys. They will ask a question during the broadcast, then have two numbers to dial, one for “Yes” and another for “No.” There’s never a number for “Don’t really care,” because those people wouldn’t bother calling in anyway. The 1936 survey failed to include people who didn’t care enough to respond to the survey, but they very well might have cared enough to vote.

14.1.4 Bad Polls

Good surveys are notoriously difficult to construct. There are a number of ways that surveys can be self selected — think of what you do when you see someone standing in the mall holding a clipboard. Caller ID now makes telephone surveys self-selected. If your caller ID read, “ABC Survey Company,” would you answer the phone?

Today, telephone surveys are almost guaranteed to be biased. Most telephone surveys are conducted by calling traditional “landline” phones, not mobile phones. More and more, though, people are rejecting such phones in favor of only having mobile phones. So, by having a telephone survey, pollsters are limiting their responses to mostly older generations.

Another example of a bad poll is the push-poll. Here, the goal is not to pull information from the sample, but to push information to the people in the sample. A few years ago, I received a call from the National Rifle Association today. A recorded message from the NRA Executive Vice-President concerning the U.N. Small Arms Treaty was followed by the following single question survey:

Do you think it’s OK for the U.N. to be on our soil attacking our gun rights?

I was instructed to press “1” if I did not think was OK for the U.N. to be on our soil attacking our gun rights. That was followed by a repeat instruction to press “1” if I did not think it was OK. I was then instructed to press “2” if I did think was OK for the U.N. to attack our gun rights. (Note that I was only given that instruction once.)

This survey was a classic example of a push-poll. It was designed simply to push a message out to the population. This is evident from the question. What useful information do we expect to gain from asking people if they think it’s OK for the U.N to attack our gun rights. Do we really not know how people will answer that question? It’s no different from my polling my students to find out if they would like to get out of class early. As far as information gathering goes, it’s a complete waste of time and money. For propaganda pushing, on the other hand, it’s very effective.

This is also a good example of a slanted question. When I looked up the purpose of the U.N. Small Arms Treaty, it’s stated purpose was to keep firearms out of the hands of terrorists. If the question had been, “Do you think it’s OK that the U.N. negotiate a treaty designed to prevent guns from falling into the hands of terrorists?” I would expect a very different result.

One reason it is very difficult to construct good surveys is because of order effects. The order that questions appear in affects how people will respond to them. A study conducted a survey that included these two questions:

  • Should U.S. allow reporters from a fundamentalist country like Iraq come here and send back reports of the news as they see it to their country?
  • Should an Islamic Fundamentalist country like Iraq let US news reporters come in and send back reports of the news as they see it to the US?

When question 1 was asked first, 55% of respondents said yes. When question 1 was asked second, however, 75% of the respondents answered yes. What seems to happen here is a basic commitment to fairness. Once I have already said that other countries should let in our reporters, then there’s no fair reason for me not to allow their reporters into my country.

To summarize, here is a list of bad polls:

  • Self-selected
  • Ignore order effects
  • slanted questions
  • loaded questions

14.2 Arguments from Analogy

Another common type of inductive argument is the argument from analogy. Let’s say that you are shopping for a car, so that you can have transportation to school, work, and so on. Since it’s important that you get to the places on time, you need to buy a reliable car. You find a good deal on a 2013 Honda Civic, but how do you know that it will be reliable? One way to judge reliability is to look at reliability reports from owners of other 2013 Honda Civics. The more cases in which they reported that their cars were reliable, the more you can conclude that yours will be also.

With inductive generalizations, we were reasoning from a sample to a population. Arguments from analogy reason from a sample to another individual member of the population, called the target. The members of the sample have a number of properties in common; they are all Honda Civics made in 2013. They also have another property in common that we will call the property in question, in this case, reliability. Our target has all of the other properties, so it probably also have the property in question. The more similar our target is to the sample in some respects, the more similiar it is likely to be in other respects. Here is the basic structure:

  • members of s have properties \(P₁… Pₙ\) and \(P_Q\) .
  • The target has \(P₁… Pₙ\) .
  • The target probably also has \(P_Q\)

These arguments are weak when

  • The similarities stated aren’t relevant to the property in question. (In our example, the color of the car would not be relevant to its reliability.)
  • There are relevant dissimilarities. (If all the members of the sample had excellent maintenance records, but our target had very poor maintenance, then we wouldn’t expect the target to be reliable just because the members of the sample were.)
  • There are instances of the sample that do not have the property in question. (The more 2013 Honda Civics we find that are unreliable, the weaker the argument becomes.)

So, the arguments are stronger when there are

  • More relevant similarities,
  • Fewer relevant dissimilarities, and
  • Fewer known instances of things that have the shared properties but lack the property in question.

14.3 Inferences to the Best Explanation

Our final type of inductive argument to discuss in this chapter is the inference to the best explanation, also called abductive reasoning. Very simply, this is used when we have a situation that needs explanation. You consider the possible explanations, and it’s rational for you to believe the best one.

How do we decide which explanation is best, though? Here are some critiera:

  • It must explain the data, that is, tell us why the data is true.
  • Of the good explanations, be the best.

There are slightly more boys born than girls. Worldwide, the ratio of boys to girls is 107:100. This is partially explained by sex-selective abortion in countries where sons are more desired than daughters. If we eliminate those cases, the ration is still 105:100. ↩︎

There is no general agreement on this. Sometime “hasty generalization” is used for both. I think it’s useful to have two terms to distinguish the two different errors. ↩︎

Logo for The University of Regina OEP Program

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Nearly all scholarly writing makes an argument. That’s because its purpose is to create and share new knowledge so it can be debated to confirm, disprove, or improve it. That arguing takes place mostly in journals and scholarly books and at conferences. It’s called the scholarly conversation, and it’s that conversation that moves forward what we humans learn and know.

Your scholarly writing for classes should do the same—make an argument—just like your professors’ journal article, scholarly book, and conference presentation writing does. You may not have realized that the writing you’re required to do mirrors what scholars in universities, the country, and all over the world must do to create new knowledge and debate it. Most arguments put forth a new theory, hypothesis, or new view of a current or ongoing issue. Of course, you’re probably a beginner at constructing arguments in writing, while most professors have been at it for some time. And your audience, for now, also may be more limited than your professors. But the process is much the same. As you complete your research assignments, you, too, are entering the scholarly conversation.

Making an argument means trying to convince others that you are correct as you describe a thing, situation, relationship, or phenomenon and to persuade them to take a particular action. This skill is important not just in college, but also for nearly every professional job you hold after college. So learning how to make an argument is good job preparation, even if you do not choose a scholarly career.

If you realize that your final product for your research project is to make an argument, you will have a significant head start. By keeping this in mind you will know that the resources you’re going to need are those that support the components of an argument for are writing your audience.

Happily (and not coincidentally), most of those components coincide with the information needs we’ll be talking about. We will be discussing meeting information needs by using a variety of resources that will enable you to write the corresponding argument component in your final product.

Critical Thinking in Academic Research Copyright © 2022 by Cindy Gruwell and Robin Ewing is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • The Key is Being Metacognitive
  • The Big Picture
  • Learning Outcomes
  • Test your Existing Knowledge
  • Definitions of Critical Thinking
  • Learning How to Think Critically
  • Self Reflection Activity
  • End of Module Survey
  • Test Your Existing Knowledge
  • Interpreting Information Methodically
  • Using the SEE-I Method
  • Interpreting Information Critically
  • Argument Analysis
  • Learning Activities
  • Argument Mapping
  • Summary of Anlyzing Arguments
  • Fallacious Reasoning
  • Statistical Misrepresentation
  • Biased Reasoning
  • Common Cognitive Biases
  • Poor Research Methods - The Wakefield Study
  • Summary of How Reasoning Fails
  • Misinformation and Disinformation
  • Media and Digital Literacy
  • Information Trustworthiness
  • Summary of How Misinformation is Spread

Critical Thinking Tutorial: Argument Mapping

The purpose of argument mapping.

Before we conclude, let's take a look at argument mapping , notably one of the most useful tools to help you become a better critical thinker. Remember that arguments are not always neatly packaged in ways that are easy to understand. Simple arguments contain one or two premises, but complex arguments contain multiple premises that can function independently or co-dependently . Analyzing an argument from the raw text alone can be challenging, but creating an argument map can help you locate the evidence in support of the claim and see the connections between them.

By definition, an argument map is a visual representation of a complex or multi-layer argument that makes it easier to see the connections between the premises and the conclusion they support. By using an argument map, you should be able to determine whether the connections are logical, and if the argument is valid, sound, strong or weak.

tools of argument in critical thinking

Source: Studies in Critical Thinking by Martin Davies; Ashley Barnett; and Tim van Gelder , licensed under a Creative Commons Attribution 4.0 International License

Argument Mapping in Action

It takes a great deal of practice to accurately reconstruct multi-layer arguments from a passage of raw text. Thankfully, it's much easier to think critically about a text if you're aware of how to analyze an argument using its component parts. This short video from thinkeranalytix.org uses a free online mapping tool called Mindmup to demonstrate how argument mapping works.

Source: Map an Argument with MindMup by ThinkerAnalytix on YouTube

Dig a Little Deeper

Argument mapping can be quite involved and depends on a good working knowledge of the components of an argumen and the interplay between those components. For more information and step-by-step instructions, see Chapter 10 of Studies in Critical Thinking , an open textbook provided by eCampusOntario. Scroll down to the bottom of the chapter, or use 'cntrl F' to find : 'A procedural approach to argument m apping' and follow steps 1 - 8.

  • << Previous: Learning Activities
  • Next: Summary of Anlyzing Arguments >>
  • Library A to Z
  • Follow on Facebook
  • Follow on Twitter
  • Follow on YouTube
  • Follow on Instagram

The University of Saskatchewan's main campus is situated on  Treaty 6 Territory and the Homeland of the Métis.

© University of Saskatchewan Disclaimer | Privacy

  • Last Updated: Dec 14, 2023 3:51 PM
  • URL: https://libguides.usask.ca/CriticalThinkingTutorial

Logo for OPEN OKSTATE

Unit 1: What Is Philosophy?

LOGOS: Critical Thinking, Arguments, and Fallacies

Heather Wilburn, Ph.D

Critical Thinking:

With respect to critical thinking, it seems that everyone uses this phrase. Yet, there is a fear that this is becoming a buzz-word (i.e. a word or phrase you use because it’s popular or enticing in some way). Ultimately, this means that we may be using the phrase without a clear sense of what we even mean by it. So, here we are going to think about what this phrase might mean and look at some examples. As a former colleague of mine, Henry Imler, explains:

By critical thinking, we refer to thinking that is recursive in nature. Any time we encounter new information or new ideas, we double back and rethink our prior conclusions on the subject to see if any other conclusions are better suited. Critical thinking can be contrasted with Authoritarian thinking. This type of thinking seeks to preserve the original conclusion. Here, thinking and conclusions are policed, as to question the system is to threaten the system. And threats to the system demand a defensive response. Critical thinking is short-circuited in authoritarian systems so that the conclusions are conserved instead of being open for revision. [1]

A condition for being recursive is to be open and not arrogant. If we come to a point where we think we have a handle on what is True, we are no longer open to consider, discuss, or accept information that might challenge our Truth. One becomes closed off and rejects everything that is different or strange–out of sync with one’s own Truth. To be open and recursive entails a sense of thinking about your beliefs in a critical and reflective way, so that you have a chance to either strengthen your belief system or revise it if needed. I have been teaching philosophy and humanities classes for nearly 20 years; critical thinking is the single most important skill you can develop. In close but second place is communication, In my view, communication skills follow as a natural result of critical thinking because you are attempting to think through and articulate stronger and rationally justified views. At the risk of sounding cliche, education isn’t about instilling content; it is about learning how to think.

In your philosophy classes your own ideas and beliefs will very likely be challenged. This does not mean that you will be asked to abandon your beliefs, but it does mean that you might be asked to defend them. Additionally, your mind will probably be twisted and turned about, which can be an uncomfortable experience. Yet, if at all possible, you should cherish these experiences and allow them to help you grow as a thinker. To be challenged and perplexed is difficult; however, it is worthwhile because it compels deeper thinking and more significant levels of understanding. In turn, thinking itself can transform us not only in thought, but in our beliefs, and our actions. Hannah Arendt, a social and political philosopher that came to the United States in exile during WWII, relates the transformative elements of philosophical thinking to Socrates. She writes:

Socrates…who is commonly said to have believed in the teachability of virtue, seems to have held that talking and thinking about piety, justice, courage, and the rest were liable to make men more pious, more just, more courageous, even though they were not given definitions or “values” to direct their further conduct. [2]

Thinking and communication are transformative insofar as these activities have the potential to alter our perspectives and, thus, change our behavior. In fact, Arendt connects the ability to think critically and reflectively to morality. As she notes above, morality does not have to give a predetermined set of rules to affect our behavior. Instead, morality can also be related to the open and sometimes perplexing conversations we have with others (and ourselves) about moral issues and moral character traits. Theodor W. Adorno, another philosopher that came to the United States in exile during WWII, argues that autonomous thinking (i.e. thinking for oneself) is crucial if we want to prevent the occurrence of another event like Auschwitz, a concentration camp where over 1 million individuals died during the Holocaust. [3] To think autonomously entails reflective and critical thinking—a type of thinking rooted in philosophical activity and a type of thinking that questions and challenges social norms and the status quo. In this sense thinking is critical of what is, allowing us to think beyond what is and to think about what ought to be, or what ought not be. This is one of the transformative elements of philosophical activity and one that is useful in promoting justice and ethical living.

With respect to the meaning of education, the German philosopher Hegel uses the term bildung, which means education or upbringing, to indicate the differences between the traditional type of education that focuses on facts and memorization, and education as transformative. Allen Wood explains how Hegel uses the term bildung: it is “a process of self-transformation and an acquisition of the power to grasp and articulate the reasons for what one believes or knows.” [4] If we think back through all of our years of schooling, particularly those subject matters that involve the teacher passing on information that is to be memorized and repeated, most of us would be hard pressed to recall anything substantial. However, if the focus of education is on how to think and the development of skills include analyzing, synthesizing, and communicating ideas and problems, most of us will use those skills whether we are in the field of philosophy, politics, business, nursing, computer programming, or education. In this sense, philosophy can help you develop a strong foundational skill set that will be marketable for your individual paths. While philosophy is not the only subject that will foster these skills, its method is one that heavily focuses on the types of activities that will help you develop such skills.

Let’s turn to discuss arguments. Arguments consist of a set of statements, which are claims that something is or is not the case, or is either true or false. The conclusion of your argument is a statement that is being argued for, or the point of view being argued for. The other statements serve as evidence or support for your conclusion; we refer to these statements as premises. It’s important to keep in mind that a statement is either true or false, so questions, commands, or exclamations are not statements. If we are thinking critically we will not accept a statement as true or false without good reason(s), so our premises are important here. Keep in mind the idea that supporting statements are called premises and the statement that is being supported is called the conclusion. Here are a couple of examples:

Example 1: Capital punishment is morally justifiable since it restores some sense of

balance to victims or victims’ families.

Let’s break it down so it’s easier to see in what we might call a typical argument form:

Premise: Capital punishment restores some sense of balance to victims or victims’ families.

Conclusion: Capital punishment is morally justifiable.

Example 2 : Because innocent people are sometimes found guilty and potentially

executed, capital punishment is not morally justifiable.

Premise: Innocent people are sometimes found guilty and potentially executed.

Conclusion: Capital punishment is not morally justifiable.

It is worth noting the use of the terms “since” and “because” in these arguments. Terms or phrases like these often serve as signifiers that we are looking at evidence, or a premise.

Check out another example:

Example 3 : All human beings are mortal. Heather is a human being. Therefore,

Heather is mortal.

Premise 1: All human beings are mortal.

Premise 2: Heather is a human being.

Conclusion: Heather is mortal.

In this example, there are a couple of things worth noting: First, there can be more than one premise. In fact, you could have a rather complex argument with several premises. If you’ve written an argumentative paper you may have encountered arguments that are rather complex. Second, just as the arguments prior had signifiers to show that we are looking at evidence, this argument has a signifier (i.e. therefore) to demonstrate the argument’s conclusion.

So many arguments!!! Are they all equally good?

No, arguments are not equally good; there are many ways to make a faulty argument. In fact, there are a lot of different types of arguments and, to some extent, the type of argument can help us figure out if the argument is a good one. For a full elaboration of arguments, take a logic class! Here’s a brief version:

Deductive Arguments: in a deductive argument the conclusion necessarily follows the premises. Take argument Example 3 above. It is absolutely necessary that Heather is a mortal, if she is a human being and if mortality is a specific condition for being human. We know that all humans die, so that’s tight evidence. This argument would be a very good argument; it is valid (i.e the conclusion necessarily follows the premises) and it is sound (i.e. all the premises are true).

Inductive Arguments : in an inductive argument the conclusion likely (at best) follows the premises. Let’s have an example:

Example 4 : 98.9% of all TCC students like pizza. You are a TCC student. Thus, you like pizza.

Premise 1: 98.9% of all TCC students like pizza

Premise 2: You are a TCC student.

Conclusion: You like pizza. (*Thus is a conclusion indicator)

In this example, the conclusion doesn’t necessarily follow; it likely follows. But you might be part of that 1.1% for whatever reason. Inductive arguments are good arguments if they are strong. So, instead of saying an inductive argument is valid, we say it is strong. You can also use the term sound to describe the truth of the premises, if they are true. Let’s suppose they are true and you absolutely love Hideaway pizza. Let’s also assume you are a TCC student. So, the argument is really strong and it is sound.

There are many types of inductive argument, including: causal arguments, arguments based on probabilities or statistics, arguments that are supported by analogies, and arguments that are based on some type of authority figure. So, when you encounter an argument based on one of these types, think about how strong the argument is. If you want to see examples of the different types, a web search (or a logic class!) will get you where you need to go.

Some arguments are faulty, not necessarily because of the truth or falsity of the premises, but because they rely on psychological and emotional ploys. These are bad arguments because people shouldn’t accept your conclusion if you are using scare tactics or distracting and manipulating reasoning. Arguments that have this issue are called fallacies. There are a lot of fallacies, so, again, if you want to know more a web search will be useful. We are going to look at several that seem to be the most relevant for our day-to-day experiences.

  • Inappropriate Appeal to Authority : We are definitely going to use authority figures in our lives (e.g. doctors, lawyers, mechanics, financial advisors, etc.), but we need to make sure that the authority figure is a reliable one.

Things to look for here might include: reputation in the field, not holding widely controversial views, experience, education, and the like. So, if we take an authority figure’s word and they’re not legit, we’ve committed the fallacy of appeal to authority.

Example 5 : I think I am going to take my investments to Voya. After all, Steven Adams advocates for Voya in an advertisement I recently saw.

If we look at the criteria for evaluating arguments that appeal to authority figures, it is pretty easy to see that Adams is not an expert in the finance field. Thus, this is an inappropropriate appeal to authority.

  • Slippery Slope Arguments : Slippery slope arguments are found everywhere it seems. The essential characteristic of a slippery slope argument is that it uses problematic premises to argue that doing ‘x’ will ultimately lead to other actions that are extreme, unlikely, and disastrous. You can think of this type of argument as a faulty chain of events or domino effect type of argument.

Example 6 : If you don’t study for your philosophy exam you will not do well on the exam. This will lead to you failing the class. The next thing you know you will have lost your scholarship, dropped out of school, and will be living on the streets without any chance of getting a job.

While you should certainly study for your philosophy exam, if you don’t it is unlikely that this will lead to your full economic demise.

One challenge to evaluating slippery slope arguments is that they are predictions, so we cannot be certain about what will or will not actually happen. But this chain of events type of argument should be assessed in terms of whether the outcome will likely follow if action ‘x” is pursued.

  • Faulty Analogy : We often make arguments based on analogy and these can be good arguments. But we often use faulty reasoning with analogies and this is what we want to learn how to avoid.

When evaluating an argument that is based on an analogy here are a few things to keep in mind: you want to look at the relevant similarities and the relevant differences between the things that are being compared. As a general rule, if there are more differences than similarities the argument is likely weak.

Example 7 : Alcohol is legal. Therefore, we should legalize marijuana too.

So, the first step here is to identify the two things being compared, which are alcohol and marijuana. Next, note relevant similarities and differences. These might include effects on health, community safety, economic factors, criminal justice factors, and the like.

This is probably not the best argument in support for marijuana legalization. It would seem that one could just as easily conclude that since marijuana is illegal, alcohol should be too. In fact, one might find that alcohol is an often abused and highly problematic drug for many people, so it is too risky to legalize marijuana if it is similar to alcohol.

  • Appeal to Emotion : Arguments should be based on reason and evidence, not emotional tactics. When we use an emotional tactic, we are essentially trying to manipulate someone into accepting our position by evoking pity or fear, when our positions should actually be backed by reasonable and justifiable evidence.

Example 8 : Officer please don’t give me a speeding ticket. My girlfriend broke up with me last night, my alarm didn’t go off this morning, and I’m late for class.

While this is a really horrible start to one’s day, being broken up with and an alarm malfunctioning is not a justifiable reason for speeding.

Example 9 : Professor, I’d like you to remember that my mother is a dean here at TCC. I’m sure that she will be very disappointed if I don’t receive an A in your class.

This is a scare tactic and is not a good way to make an argument. Scare tactics can come in the form of psychological or physical threats; both forms are to be avoided.

  • Appeal to Ignorance : This fallacy occurs when our argument relies on lack of evidence when evidence is actually needed to support a position.

Example 10 : No one has proven that sasquatch doesn’t exist; therefore it does exist.

Example 11 : No one has proven God exists; therefore God doesn’t exist.

The key here is that lack of evidence against something cannot be an argument for something. Lack of evidence can only show that we are ignorant of the facts.

  • Straw Man : A straw man argument is a specific type of argument that is intended to weaken an opponent’s position so that it is easier to refute. So, we create a weaker version of the original argument (i.e. a straw man argument), so when we present it everyone will agree with us and denounce the original position.

Example 12 : Women are crazy arguing for equal treatment. No one wants women hanging around men’s locker rooms or saunas.

This is a misrepresentation of arguments for equal treatment. Women (and others arguing for equal treatment) are not trying to obtain equal access to men’s locker rooms or saunas.

The best way to avoid this fallacy is to make sure that you are not oversimplifying or misrepresenting others’ positions. Even if we don’t agree with a position, we want to make the strongest case against it and this can only be accomplished if we can refute the actual argument, not a weakened version of it. So, let’s all bring the strongest arguments we have to the table!

  • Red Herring : A red herring is a distraction or a change in subject matter. Sometimes this is subtle, but if you find yourself feeling lost in the argument, take a close look and make sure there is not an attempt to distract you.

Example 13 : Can you believe that so many people are concerned with global warming? The real threat to our country is terrorism.

It could be the case that both global warming and terrorism are concerns for us. But the red herring fallacy is committed when someone tries to distract you from the argument at hand by bringing up another issue or side-stepping a question. Politicians are masters at this, by the way.

  • Appeal to the Person : This fallacy is also referred to as the ad hominem fallacy. We commit this fallacy when we dismiss someone’s argument or position by attacking them instead of refuting the premises or support for their argument.

Example 14 : I am not going to listen to what Professor ‘X’ has to say about the history of religion. He told one of his previous classes he wasn’t religious.

The problem here is that the student is dismissing course material based on the professor’s religious views and not evaluating the course content on its own ground.

To avoid this fallacy, make sure that you target the argument or their claims and not the person making the argument in your rebuttal.

  • Hasty Generalization : We make and use generalizations on a regular basis and in all types of decisions. We rely on generalizations when trying to decide which schools to apply to, which phone is the best for us, which neighborhood we want to live in, what type of job we want, and so on. Generalizations can be strong and reliable, but they can also be fallacious. There are three main ways in which a generalization can commit a fallacy: your sample size is too small, your sample size is not representative of the group you are making a generalization about, or your data could be outdated.

Example 15 : I had horrible customer service at the last Starbucks I was at. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization is that the claim made about all Starbucks is based on one experience. While it is tempting to not spend your money where people are rude to their customers, this is only one employee and presumably doesn’t reflect all employees or the company as a whole. So, to make this a stronger generalization we would want to have a larger sample size (multiple horrible experiences) to support the claim. Let’s look at a second hasty generalization:

Example 16 : I had horrible customer service at the Starbucks on 81st street. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization mirrors the previous problem in that the claim is based on only one experience. But there’s an additional issue here as well, which is that the claim is based off of an experience at one location. To make a claim about the whole company, our sample group needs to be larger than one and it needs to come from a variety of locations.

  • Begging the Question : An argument begs the question when the argument’s premises assume the conclusion, instead of providing support for the conclusion. One common form of begging the question is referred to as circular reasoning.

Example 17 : Of course, everyone wants to see the new Marvel movie is because it is the most popular movie right now!

The conclusion here is that everyone wants to see the new Marvel movie, but the premise simply assumes that is the case by claiming it is the most popular movie. Remember the premise should give reasons for the conclusion, not merely assume it to be true.

  • Equivocation : In the English language there are many words that have different meanings (e.g. bank, good, right, steal, etc.). When we use the same word but shift the meaning without explaining this move to your audience, we equivocate the word and this is a fallacy. So, if you must use the same word more than once and with more than one meaning you need to explain that you’re shifting the meaning you intend. Although, most of the time it is just easier to use a different word.

Example 18 : Yes, philosophy helps people argue better, but should we really encourage people to argue? There is enough hostility in the world.

Here, argue is used in two different senses. The meaning of the first refers to the philosophical meaning of argument (i.e. premises and a conclusion), whereas the second sense is in line with the common use of argument (i.e. yelling between two or more people, etc.).

  • Henry Imler, ed., Phronesis An Ethics Primer with Readings, (2018). 7-8. ↵
  • Arendt, Hannah, “Thinking and Moral Considerations,” Social Research, 38:3 (1971: Autumn): 431. ↵
  • Theodor W. Adorno, “Education After Auschwitz,” in Can One Live After Auschwitz, ed. by Rolf Tiedemann, trans. by Rodney Livingstone (Stanford: Stanford University Press, 2003): 23. ↵
  • Allen W. Wood, “Hegel on Education,” in Philosophers on Education: New Historical Perspectives, ed. Amelie O. Rorty (London: Routledge 1998): 302. ↵

LOGOS: Critical Thinking, Arguments, and Fallacies Copyright © 2020 by Heather Wilburn, Ph.D is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

4.1: Making an Argument

  • Last updated
  • Save as PDF
  • Page ID 168235
  • Ohio State University Libraries

Nearly all scholarly writing makes an argument. That’s because its purpose is to create and share new knowledge so it can be debated to confirm, disprove, or improve it. That arguing takes place mostly in journals and scholarly books and at conferences. It’s called the scholarly conversation, and it’s that conversation that moves forward what we humans learn and know.

Your scholarly writing for classes should do the same—make an argument—just like your professors’ journal article, scholarly book, and conference presentation writing does. You may not have realized that the writing you’re required to do mirrors what scholars in universities, the country, and all over the world must do to create new knowledge and debate it. Most arguments put forth a new theory, hypothesis, or new view of a current or ongoing issue. Of course, you’re probably a beginner at constructing arguments in writing, while most professors have been at it for some time. And your audience, for now, also may be more limited than your professors. But the process is much the same. As you complete your research assignments, you, too, are entering the scholarly conversation.

Making an argument means trying to convince others that you are correct as you describe a thing, situation, relationship, or phenomenon and to persuade them to take a particular action. This skill is important not just in college, but also for nearly every professional job you hold after college. So learning how to make an argument is good job preparation, even if you do not choose a scholarly career.

If you realize that your final product for your research project is to make an argument, you will have a significant head start. By keeping this in mind you will know that the resources you’re going to need are those that support the components of an argument for are writing your audience.

Happily (and not coincidentally), most of those components coincide with the information needs we’ll be talking about. We will be discussing meeting information needs by using a variety of resources that will enable you to write the corresponding argument component in your final product.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Kinds of Arguments

Contemporary Western philosophy treats arguments as coming in two main types, deductive and inductive. The basic distinction and difference will be mentioned here.

Deductive arguments are arguments in which the premises (if true) guarantee the truth of the conclusion. The conclusion of a successful deductive argument cannot possibly be false, assuming its premises are true. This is what it means to label an argument as “valid” in logic. The form or structure of a deductive argument is the essential aspect to consider. Somewhat counter-intuitively, the premises do not need to be true for the conclusion to be true.

Arguments are a linguistic representation of an inference. So, using slightly different terminology, we can define deductive inferences . In a successful deductive inference, the premises and the denial of the conclusion constitute an inconsistent set of statements. An alternative way to describe the same relation: in a successful deductive inference, the truth of the premises makes the falsity of the conclusion logically impossible. A successful deductive inference is valid .

Deductive Example

1) All dogs are mammals.

2) All mammals breathe air.

_______________________________________________

SO: All dogs breathe air.

Inductive arguments are arguments with premises which make it likely that the conclusion is true but don’t absolutely guarantee its truth . Inductive arguments are by far the most common type of argument we see in our daily lives. We can assess inductive arguments along a spectrum of successful (stronger) to unsuccessful (weaker). The more successful (stronger) argument suggests that the premises mean the conclusion is probably true, with a high degree of likelihood. It is important to remember that inductive arguments can never fully guarantee the truth of the conclusion.

Using slightly different terminology, we can consider inductive inferences, referring to the actual thinking process in someone’s mind. In a successful inductive inference, the truth of the premises makes the falsity of the conclusion possible, but unlikely. Inductive inferences can be evaluated as “stronger” or “weaker” depending on the probability.

Inductive Example

1) The Interstate Bridge is regularly inspected by qualified engineers.

2) Vehicles have been driving over it for years.

SO: It will be safe to drive over it tomorrow.

One thing that makes applying the distinction between deductive and inductive arguments a bit tricky is this: we can’t look only at the premises OR only at the conclusion. Instead, we need to focus on the relationship between the premise(s) and the conclusion to tell what kind of argument we have.

A further contributor to trickiness: we can’t be distracted by the question of whether the statements are true or false. To classify an argument as deductive or inductive, we need to grant that the premises are true in a hypothetical way. We have to ask the question, “If those premises were true, would it be IMPOSSIBLE for the conclusion to be false?” If so, it is a deductive argument. Or “If those premises were true, would it be UNLIKELY, but still possible, that the conclusion is false? If so, it is an inductive argument.

As an example, consider this valid deductive argument:

1) All clouds are made out of spun sugar.

2) Anything made out of spun sugar is high in calories.

SO: All clouds are high in calories.

This argument is deductively successful because the truth of the premises would make the falsity of the conclusion impossible. Odd, isn’t it?

Some arguments are presented with premises missing. In those cases, the determination of deductive or inductive will depend on how that premise is filled in.

For example: I had an apple for lunch, so I had something healthy!

Exercise: Deductive or Inductive?

Determine if the following arguments are deductive or inductive. It is a good idea to put the arguments in standard form first, so you are clear about the relation between premises and conclusion.

Critical Thinking in Academic Research Copyright © 2022 by Cindy Gruwell and Robin Ewing is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Christopher Dwyer Ph.D.

Improving Critical Thinking Through Argument Mapping

Dual-coding, gestalt grouping, and hierarchical organization..

Posted November 9, 2018

As you may have figured out from the focus of my ongoing blog, my book and my previous research, critical thinking (CT) is my specialty area of research. However, perhaps something that I don’t mention enough within this blog is that CT wasn’t the primary focus of my Ph.D. research—rather, it was The Evaluation of Argument Mapping as a Learning Tool ; that is, argument mapping’s effects on a series of educational outcomes, including memory and CT. To clarify, an argument map is a visual representation of a logically structured network of reasoning, in which the argument is made unambiguous and explicit via a ‘box and arrow’ design, in which the boxes represent propositions (i.e. the central claim, reasons, objections, and rebuttals) and the ‘arrows’ among propositions indicate the inferential relationships linking the propositions together (Dwyer, 2011; van Gelder, 2002). As part of my Ph.D., three large-scale experimental studies were conducted with the main results indicating that argument mapping (AM) can significantly facilitate memory performance beyond that of more traditional study methods and that the provision of AM-infused CT training can significantly enhance CT performance (Dwyer, 2011). Given these observed benefits, I think it worthwhile to share a little bit about AM here and the rationale for why it works, especially for those who wish to enhance their own or even others’ CT.

(Dwyer, 2011; van Gelder, 2007)

Notably, though other forms of argument diagramming exist, such as concept mapping and mind-mapping , they differ substantially from AM based on the manner in which they are organized and the way in which each ‘proposition’ is presented. The problem with many concept mapping techniques is that they do not present an argument per se. Instead, they present a graphical structure that acts as a representation of a separate text, which might be used to diagram: the links among concepts, decision-making schemes, a set of plans or instructions, or at best, act as an argument overview – which does not represent the argument in full. Thus, because the text of the argument and the diagram may often be separate entities, concept mapping may become more cognitively demanding by adding the necessity of switching attention from text to diagram and vice versa (e.g. Chandler & Sweller, 1991; Pollock, Chandler & Sweller, 2002; Tindall-Ford, Chandler & Sweller, 1997). In addition, if the reader of a concept map is not familiar with the information from the text that the map is derived, then the map itself becomes meaningless. Neither sentences nor any inferential structures to facilitate comprehension are requisite. In this context, concept mapping strategies may not necessarily be useful pedagogical aids that are open to analysis by everyone.

Although AMs have been in existence for almost 200 years (Buckingham-Shum, 2003; see Whately, 1826), their construction was a slow, tedious task completed through pen and paper; and thus, not widely used as a learning tool, despite potential advantages over standard prose as a medium for presenting reasoning. With the advent of various user-friendly AM software programs, the time required to construct an AM has been substantially reduced. Perhaps as a result of the relatively recent advancements in AM software, little research has been conducted to test its effects on learning. However, the little research that has examined AM’s effects on CT has revealed beneficial effects (Alvarez-Ortiz, 2007; Butchart et al., 2009; Dwyer, Hogan & Stewart, 2011; Dwyer, Hogan & Stewart, 2012; van Gelder, 2001; van Gelder, Bissett & Cumming, 2004). The rationale for why AM has a beneficial effect on CT consists of reasoning pertaining to the former’s diagrammatic, dual-coding nature, Gestalt grouping principles and hierarchical organization.

First, unlike standard text, AMs represent arguments through dual modalities (visual-spatial/diagrammatic and verbal/propositional), thus facilitating the latent information processing capacity of individual learners. Dual-coding theory (Paivio, 1971; 1986), Mayer’s (1997) conceptualisation and empirical analysis of multimedia learning, as well as Sweller and colleagues’ research on cognitive load (Sweller, 2010) suggest that learning can be enhanced and cognitive load decreased by the presentation of information in a visual-verbal dual-modality, provided that both visual and verbal forms of representation are adequately integrated (i.e. to avoid attention-switching demands). Given that AM supports dual-coding of information in working memory via integration of text into a diagrammatic representation, cognitive resources previously devoted to translating prose-based arguments into a coherent, organised and integrated representation are ‘freed up’ and can be used to facilitate deeper encoding of arguments within AMs, which in turn facilitates later recall (e.g. Craik & Watkins, 1973), as well as subsequent, higher-order thinking processes, such as CT (Halpern, 2014; Maybery, Bain and Halford, 1986). Furthermore, previous research on using diagrammatic learning tools, like AM, has shown positive effects on learning outcomes (Berkowitz, 1986; Larkin & Simon, 1987; Oliver 2009; Robinson & Kiewra, 1995) and offers advantages over traditional text-based presentation of information because the indexing and structuring of information can potentially support essential computational processes necessary for CT.

Second, AMs utilize Gestalt grouping principles (e.g. similar color-coding and close proximity) that facilitate the organization of information in working memory and long-term memory , which in turn facilitates CT. For example, color can be used in an AM to distinguish evidence for a claim (i.e. green) from evidence against a claim (i.e. red); thus, all reasons are similarly color-coded, as are objections. More generally, a good AM is designed in such a way that if one proposition is evidence for another, the two will be appropriately juxtaposed and the link explained via a relational cue, such as because , but and however (van Gelder, 2001).

With respect to proximity, modern AM allows single propositions or entire branches of the argument to be removed or transferred from one location to another (and edited in the process) in order to facilitate reconstruction. The manner in which propositions and chains of reasoning can be manipulated within an AM may encourage deeper analysis and evaluation of the argument, as well as further refinements of its inferential structure. Similar propositions can be grouped together, which eases their assimilation and removes the need to switch attention as in text-based information (e.g. from one paragraph, or even one page, to another and back and forth). Such grouping also makes the search for specific, relevant information more efficient, which in turn supports perceptual inferences.

Finally, the third potential reason for why AM has a beneficial effect on CT is that AMs present information in a hierarchical manner, which also facilitates the organization of information for promoting CT. When arguing from a central claim, one may present any number of argument levels which need to be adequately represented for the argument to be properly conveyed. For example, an argument that provides a (1) support for a (2) support for a (3) support for a (4) claim has four levels in its hierarchical structure. More complex or ‘deeper’ arguments (e.g. with three or more argument levels beneath a central claim) are difficult to represent in text due to its linear nature; and yet it is essential that these complex argument structures are understood by a student if their goal is to analyze and evaluate the argument, to infer their own conclusions. The hierarchical nature of AM allows the reader to choose and follow a specific branch of the argument in which each individual proposition is integrated with other relevant propositions in terms of their inferential relationship.

Moreover, asking students to produce AMs can provide educators with valuable insights into a student’s ‘mental model of the argument in question’ (Butchart et al., 2009). Such information can be used to support teachers in offering feedback to students or scaffolding student learning from simple to complex levels of argument comprehension, analysis, and evaluation. Logically, as expertise in AM grows, so does the ability to present a well-structured argument, which allows for improvement in writing ability as well.

Alvarez-Ortiz, C. (2007). Does Philosophy Improve Critical Thinking Skills? Master’s Thesis. University of Melbourne, Australia.

Berkowitz, S.J. (1986). Effects of instruction in text organization on sixth-grade students’ memory for expository reading. Reading Research Quarterly, 21, 2, 161-178.

Buckingham-Shum, S.J. (2003). The roots of computer supported argument visualization. In P. A. Kirschner, S. Buckingham-Shum, & C. Carr (Eds.), Visualizing argumentation: Software tools for collaborative and educational sense-making, 3-24. London: Springer-Verlag.

Butchart, S., Bigelow, J., Oppy, G., Korb, K., & Gold, I. (2009). Improving critical thinking using web-based argument mapping exercises with automated feedback. Australasian Journal of Educational Technology, 25, 2, 268-291.

Chandler, P., & J. Sweller, J. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8, 4, 351-362.

Craik, F. I. M., & Watkins, M.J. (1973). The role of rehearsal in short-term memory. Journal of Verbal Learning and Verbal Behaviour, 12, 6, 599-607.

Dwyer, C.P. (2011). The evaluation of argument mapping as a learning tool. Doctoral Thesis. National University of Ireland, Galway.

Dwyer, C.P., Hogan, M.J., & Stewart, I. (2011). The promotion of critical thinking skills through argument mapping. In C.P. Horvart & J.M. Forte (Eds.), Critical Thinking, 97-122. Nova Science Publishers, New York.

Dwyer, C.P., Hogan, M.J., & Stewart, I. (2012). An evaluation of argument mapping as a method of enhancing critical thinking performance in e-learning environments. Metacognition and Learning, 7, 219-244.

Halpern, D.F. (2014). Thought & knowledge: An introduction to critical thinking (5th Ed.). UK: Psychology Press.

Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

Maybery, M.T., Bain, J.D., & Halford, G.S. (1986). Information-processing demands of transitive inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 4, 600-613.

Mayer, R.E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32, 1, 1-19.

Oliver, K. (2009). An investigation of concept mapping to improve the reading comprehension of science texts. Journal of Science Education and Technology, 18, 5, 402-414.

Paivio, A. (1971). Imagery and verbal processes. Hillsdale, N.J.: Erlbaum.

Paivio, A. (1986). Mental representations: A dual-coding approach. New York: Oxford University Press.

Pollock, E., Chandler, P., & Sweller, J. (2002) Assimilating complex information. Learning & Instruction, 12, 61-86.

Robinson, D. H., & Kiewra, K. A. (1995). Visual argument: Graphic organizers are superior to outlines in improving learning from text. Journal of Educational Psychology, 87, 3, 455–467.

Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. In J.L. Plass, R. Moreno & R. Brünken (Eds.), Cognitive Load Theory, 29-47. New York: Cambridge University Press.

Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3, 4, 257 -287.

van Gelder, T. J. (2001). How to improve critical thinking using educational technology. In G. Kennedy, M. Keppell, C. McNaught & T. Petrovic (Eds.), Meeting at the Crossroads: Proceedings of the 18th Annual Conference of the Australian Society for Computers in Learning in Tertiary Education, 539–548. Melbourne: Biomedical Multimedia Unit, University of Melbourne.

van Gelder, T.J. (2002). Argument mapping with Reason!Able. APA Newsletter:Philosophy & Computers, 2, 1, 85-90.

van Gelder, T.J. (2007). The rationale for RationaleTM. Law, Probability & Risk, 6, 23-42.

van Gelder, T.J., Bissett, M., & Cumming, G. (2004). Enhancing expertise in informalreasoning. Canadian Journal of Experimental Psychology 58, 142-52.

Whately, R. (1826). Elements of Logic. London: Fellowes.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Using Computer-Aided Argument Mapping to Teach Reasoning

Martin davies; ashley barnett; and tim van gelder, introduction [1] , [2].

Argument mapping is a way of diagram m ing the l ogical structure of an argument to explicitly and concisely represent reasoning. (See F igure 1, for a n example.) The use of argument mapping in critical thinking instruction has increased dramatically in recent decades. A brief history of argument mapping is provided at the end of this p a per.

P re- and post-test studies have demonstrate d t he pedagogi cal ben e fit of argument mapping using cohorts of university students and i n telligence analysts as subjects, and by comparing argument map ping intervention s with data from comparison groups or benchmarks from other meta-analytic reviews . It has been found that intensive practice mapping argume n ts with the aid of software has a strong positive e f fect on the critical thinking ability of students . Meta-analys i s has shown that high-intensity argument mapping courses improve critical thinking scores by around 0.8 of a standard deviation — more than twice the typical effect size for standard c ritical thinking courses (van Gelder, 2015) . This strongly suggests that argument mapping is a very effective way to teach critical thinking.

The process of making an argument map is beneficial because it encourages students to construct (or reconstruct) their arguments with a level of clarity and rigor that, when divorced from prose, often goes unnoticed. The shortcomings of a badly-constructed map are plain to see. This is not the case with dense blocks of written prose, which can give an impressionisti c sense of rigor to the reader.

image

Figure 1. A short argument showing the main conventions used in argument mapping. The main conclusion is placed at the top of the map. The reasons for the main conclusion are identified by green shaded areas connected by lines to the main conclusion. The main conclusion in this example has two reasons, 1A and 1B. Inside the green shaded areas white claim boxes are used to display individual premises. Premises are placed in separate premise boxes because each premise needs its own justification. The surrounding green reason envelope effectively groups together linked premises working together to form a reason for the conclusion. Argument maps clearly show which premises of a reason are supported by further reasoning. For example, 1A-a is a premise, which is itself supported by a reason, 2A-a. As claim 1A-a is both a premise in one inference and a conclusion in another it sometimes called an ‘intermediate conclusion’ or lemma. Objections to claims are identified by a red shaded area. In the map above, there is only one objection, 2C-a. NB: When colour cannot be used the labels to the right of the shading helps to designate reasons and objections (i.e., the words ‘supports’, ‘opposes’).

Argument maps can also help students evaluate reasoning because they can easily focus on eva luating each inferential step of an arg u ment. These inferential steps are indicated by the green and red co n necting lines in the example provided. Students using argument ma p ping software can easily see how their evaluation of each step affects the conclusion. For example, i n the argument in figure 1 , suppose the objection in red is strong enough that we can no longer accept claim 1B-a in the reason above it. That would mean that the second reason given for the contention (formed by claims 1B-a and 1B-b ) no longer offers any support for the con clusion . However, the first reason (formed by claims 1A-a and 1A-b ) is unaffected by the objection and may still be strong enough to establish the conclusion. A map makes this very intuitive. It is much harder to see the implications of chan g ing premises using prose alone and without the visual markers pr o vided by mapping software.

One of the main pitfalls when using argument mapping in teaching is that student s may find the level of rigor and clarity encouraged by the tec hnique to be onerous. However, u sing interesting examples that increase the demands of the argument mapping course gradually and incrementally allow s students to have fun exploring how different argument s work . In most argument mapping software students can freely move the parts of an argument around and experiment with d ifferent logical structures. This ability to “play around” with an a r gument allows students , over time, to gain a deep and practiced u n derstanding of the structure of arguments —an important aim of any critical thinking course . Anecdotally, i t also helps with student e n gagement: by manipulating parts of a map using a software, partic i pants more actively engage with critical thinking tasks than they would do otherwise (i.e., if maps were not being used) .

From an instructor’s point of view, adapting a classroom to teach critical thinking using argument mapping requires flexibility, and a willingness to experiment and try out new methodologies and princ i ples. Some of these are covered in this paper. Fortunately , a variety of s oftware and the exercises needed to run an argument mapping course are available for free online. We return to these later.

Computer-aided argument m apping

Computer-aided argument mapping (CAAM) uses software programs specifically designed to allow students to quickly represent reasoning using box and line diagrams. This can, in principle, be done without software (Harrell, 2008) , but the software makes it much easier. Bo x es are used to contain claims and line s are used to show which claims are reasons for other s . The software does no t itself analyze argume n t ative text s , or ch eck the validity of the argument s , but by making argument maps students can, with practic e, get better at argument analysis and evaluation .

In terms of entry-level skills required to use CAAM, little more is needed other than a solid understanding of the target language, basic computer skills, a broad familiarity with the importance of critical thinking, and a willingness to experiment with argument mapping software. In terms of achieving expertise in using CAAM, however, a rigorous approach to text analysis is involved, along with adoption of a number of CAAM methodical principles, and of course, the help of a dedicated and experienced instructor. Lots of argument mapping practice (LAMP) is also recommended (Rider & Thomason, 2008) .

The theoretical basis for argument mapping improving critical thinking skills is based on two principles:

  • It takes for granted the well-established notion of dual coding as it is understood in cognitive science. Human information processing is enhanced by the use of a number of sensory modalities. Diagrams and words allow better cognitive processing of complex information than words alone.
  • It assumes the not unreasonable point that cognitive processing capacity in humans is limited, and that understanding complex arguments is enhanced by “off-loading” information as visual displays (in other words, it’s easier to remember and understand information if one can draw a diagram).

Argument mapping is similar to other mapping tools such as mind mapping and concept mapping. All attempt to represent complex rel a tionships. However, there are also important differences. Unlike mind mapping, which is concerned with associational relationships between ideas, and concept mapping, which is concerned with relational co n nections between statements and events, argument mapping is princ i pally concerned with inferential or logical relationships between claims (Davies, 2011) . There is a difference between argument ma p ping and various diagrammatic representations in formal logic too. Argument mapping is concerned with representing informal, i.e., “r e al world”, or natural language argumentation. It thus contrasts with the use of diagrammatic techniques such as Venn diagrams as used in formal logic. In an important sense, argument maps should make i n telligible what is going on in arguments as they are (imperfectly) e x pressed in prose.

As noted, a rgument mapping software provides several benefits in the classroom. The software makes building argument maps easy, so teachers can provide their students with many practical exercises to work on. Because the software allows the students to edit their maps freely, they can engage in sel f-directed exploratory learning as they try out different argument structures to see what works best.

Argument maps also show the anatomy of an argument more clea r ly than can be done in prose . By seeing models of well- constructed map s, students can appreciate how all arguments are made up of claims and how some of these work together as co-premises. They can see at a glance how claims belong to separate line s of reasoning, and can see why some claims are necessary for an argument to su c ceed and why some are not.

For example, o ften when students are presented with a range of re a sons for a conclusion in prose , they will focus on counting the mi s takes and erroneously think that the side of the debate that made the most number of outrageous mistakes must be wrong about the co n clusion. But by presenting the argument in the form of a map illu s trate s the point that these bad reasons neither increase or decrease the reliability of a conclusion, and hence are irrel evant to our final eval u ation. Instead, attention needs to be focused on the strongest reasons, not the number. It i s possible that the side of an argument that pr e sented the worst reasons for a given conclusion also provided the most conclusive reason (s ee figure 2).

Argument maps can make discussing complicated arguments in a classroom much easier too. The number of reasons or objections to a contention can be easily “read-off” an argument map (this is difficult to do with a prose equivalent). Example arguments can be displayed on the projector and the teacher can point precisely to the part of the argument that he or she want to discuss. When debating issues in a classroom using argument maps can help externalize and depersona l ize the debate so that the students are no longer arguing with one a n other in a competitive way but are collaborating on mapping an a r gument together in an attempt to construct the best argument for or against the conclusion. This promotes a sense of involvement in a joint scholarly enterprise.

image

Figure 2. Argument maps clearly distinguish between separate reasons, so it easier to focus on the logical implications of the good reasons and not get distracted by the bad reasons that should just be ignored when it comes to evaluating the conclusion.

An additional benefit is this: Maps also make assessing student’s reasoning skills much easier in assignments, because the teacher can clearly see what his or her students had in mind without the confounding variables to be found in an argumentative essay (Davies, 2009). Also, asking the students to make an argument map prior to writing an argumentative essay can also help ensure that the basic structure of the argument is adequate before they start writing. For a number of reasons, this can assist in the process of essay writing.

Teaching using computer-aided argument mapping

Let us now look at how to teach critical th inking using argument mapping . Some of these point s apply to any informal logic or critical thinking class, but they are particularly relevant to any class intending to use argument mapping as a teaching tool .

The parts of an argument

In teaching students about argument mapping it is helpful to first di s t inguish the following component parts of an argument and to provide examples of each:

  • contention/conclusion (a singular claim being argued for);
  • reasons (a set of claims working together to support a conclusion or sub-conclusion)
  • objections (a claim, or set of claims working together to oppose or undermine a conclusion, another reason, or an inference);
  • inference (a logical move or progression from reasons to contention).
  • Inference indicator words (a word or phrase that identifies a logical progression from reasons to a contention, such as ‘because’, ‘therefore’ or ‘it can be concluded that’);
  • Evidential sources taken as the endpoint of a line of reasoning (arguments must end somewhere, and often this will be a source of information, e.g. a media report, or an expert opinion , that we expect people to accept without the need for additional arg u ment.)

A rgument mapping concerns itself with relationships between claims or propositions. The first main challenge is to discuss with students the nature of claims. Experience in teaching argument mapping has shown us that students find this concept problematic, a nd , if students are unclear about claims, they cannot easily create argument maps.

How can the notion of a claim be taught to students? One might start with definition s such as:

  • A claim is a declarative sentence that has a truth value; or
  • A claim is an assertion that can be agreed with or disagreed with (or partly agreed with).

O ften , however, students find such definitions difficult to grasp. It is best to start with examples of simple empirical statements using the first definition above . M odel claims can be instructive here , along with a discussion about the states of affairs that can establish if and whether certain sentences can be said to be true or false (or empirica l ly uncertain) :

  • The door is shut . (This might be true, false, or empirically u n clear , i.e., when viewed from an angle ) .
  • Donald Trump was elected President of the United States . (T his is clearly true, and there are a number of facts that make it so. )
  • Sally is at McDonald’s . (T his could be determined by observ a tional evidence and perhaps knowledge of Sally dining habits . )
  • Acid turns blue litmus paper red . (T his could be determined by procedures used in the science of Chemistry . )

Students should then be encouraged to find similar claims in published literature. They should practice reading passages from texts, paying attention to whether the claims meet the standard criteria. The criteria are as follows.

Claims should be:

  • Singular declarative sentences (i.e., not making more than one point);
  • Complete sentences (not fragments);
  • Precisely expressed with a potential truth value (not vague or ambiguous);
  • Free of inference indicator words.

Once simple empirical claims are successfully used to clarify the notion of the claim, instructors can begin to use examples less reliant on a truth value, i.e., claims more subject to dispute and more likely to engender arguments. The second definition of a claim is apposite here: an assertion which can be agreed with or disagreed with (or partly agreed with). For example:

  • In a democracy, the poor have more power than the rich.

This is not a simple empirical claim (there is no discoverable fact of the matter) yet it is a claim with a potential truth value—even if this is not easily ascertained. While not a claim with an empirical basis, the same criteria for claims still apply. Examples like this can lead to many useful departure points for instruction and debate.

Once appraised of the distinction between an empirical claim and a contestable claim, one can introduce the distinction between claims and reasons. This is where inference indicator words become important. For example, it would be a mistake to include the following inference as a single claim in an argument map, because it contains two claims connected by the inference indicator ‘because’.

  • In a democracy the poor have more power than the rich, because there are more of them.

i .e., not :

image

but instead:

image

It should be mad e clear to students that t here should be no reaso n ing going on inside a claim box. S tudents should watch out for typical inference indicator terms that occur in passages of text such as: so, since, consequently, therefore, as a result/consequence, in view of the fact that, as shown by (see Table 1 , below). These terms are repr e sented as relationships between the claims and their location in the map rather than in the premise boxes themselves. Because in this e x ample becomes an inference indicator (not part of the statement), and any claims in boxes are rendered as complete sentences (not fra g ments). This is important to stress because the argument mapping software doesn’t check what the students put into the claim boxes. Without instructor input, students can create unintelligible maps b e cause they put either multiple claims into each box or ungrammatical or fra g mentary sentences that don’t have a potential truth value .

It is also important to make clear to students that claims are not questions, commands, demands, exhortations, warnings, and so on. Shut the door! (a demand) is not a claim as it is not potentially true or false. Similarly, interrogative forms such as: Is Sally going to McDonald’s? is not a claim. (One cannot ask: Is the question: Is Sally going to McDonald’s? true or false?) By contrast, one can establish the truth of the assertion: Sally is at McDonald’s . Practice should be emphasised in establishing claims in key passages of text, identifying non-claims, and turning non-claims into claims.

It is generally helpful to make sure that claims are singular statements and do not include conjunctions (e.g., and, but, moreover) though there is nothing logically wrong with putting conjunctions into an argument map. Conjunctions are permitted in a single claim box if they expand or elaborate on a singular claim rather than add another. If they add another claim they must be treated differently. For example, take So c rates is a man but he is not famous . This is two separate claims: So c rates is a man AND Socrates is not famous —the first true; the second clearly false, and in an argument map we generally shouldn’t conflate them. These would be represented in separate claim boxes.

It is also important to stress that claims are always complete sentences. They should also be clearly potentially true or false: “ Reshine moisturiser may make you look better ” is not even a potentially clear claim (how would one decide if it is true or false?) whereas the more precise “ Reshine moisturiser will make all your wrinkles disa p pear from your face within 24 hours ” is a claim that is much easier to verify or falsify. Moreover, it seems to beg a reason (e.g., that Reshine moisturiser might have exfoliate properties) and this suggests at least that there might be some science behind this. In the latter case, but not the former, there is—potentially at least—a fact of the matter that can be empirically determined. All claims can be mapped, but those with reasons and evidentiary support will inevitably be seen as much stronger—as they should.

The distinction between (a) simple empirical claims; (b) contestable claims that unclearly expressed; and (c) clearly expressed contestable claims which potentially admit of reasons that could be potentially true or false, is fundamental to argument mapping and time needs to be given to explore the differences.

These points are important to establish early in argument mapping as one of the ways in which students can fail to map arguments properly is either by (a) constructing a map without claims at all; (b) using unclear claims or truth-dubious claims; or (c) putting more than one claim inside a reason, objection or contention box. Any of these can lead to poorly constructed maps. Argument mapping can help students understand why these problems are important, but the software doesn’t assess students’ work for these problems. Some programs however offer online tutorials that cover some of these points. [3] Importantly, students should be given time to play around with the argument mapping software being used, and to practice putting claims into boxes. Simple examples of prose, e.g., from Letters to the Editor, advertising slogans, or extracts from academic texts can be used for this purpose.

Sources of evidence and the provisional endpoints of arguments

Arguments and argument maps need to stop somewhere and where possible it is good practice to finish a line of reasoning with an evidence source that is uncontentious and can be accepted without further debate. Evidential sources come in many forms. For example, a person might accept the claim that he or she has disease x because they trust the expert opinion of their doctor. Evidence sources include assertions, data, common belief, case studies, legal judgements, expert opinion, personal experience, quotes, statistics, and so on. The argument mapping software Rational e™ allows users to represent sources of evidence as unique claim boxes that can be used to clearly mark the current endpoint of a line of reasoning (see Figures 3 and 4 below).

Of course, whether a source of evidence is uncontentious or not is provisional, and this provisional nature make the notion of an endpoint to an argument difficult to teach to students. Teachers need to make the point clear to students that context matters when deciding if a particular source of evidence can be used as an endpoint in an argument. It is probably fine to take the testimony of one’s housemate that there is no milk in the fridge, but it is not acceptable to take for granted the assertion that Donald Trump is a part of a conspiracy of reptilian space aliens trying to take over the planet. It probably helps to reassure students that deciding on an acceptable endpoint to their argument is a very difficult thing to do and they can always revise their argument map at a later point in time if they tied off a line of debate too quickly.

image

Figure 3. Example of source of evidence used to end a line of reasoning. The argument mapping software Rationale™ has unique icons for different sources.

Once the notion of a claim is clear, the concept of an argument needs to be introduced and applied using CAAM software. The notion of an argument, like the notion of claim, may also need some explanation. An argument qua an unpleasant interpersonal quarrel between individuals, is in such common use that it can be hard for students to see the alternative. The philosophical concept of an argument is typically defined as a connected series of claims intending to establish some concl u sion, or variations on this, e.g., a sequence of claims with an inference i.e., a logical move, to a conclusion/contention . Students should be taught to appreciate that while claims are singular propositions only, arguments are—by definition—claims for which reason(s) are given.

image

Figure 4. Ideally, a good argument map requires all premises to be either supported by further reasoning or provisional sources of evidence.

Simple, Complex and Multi-Layer Arguments

Early on, the distinction between simple and complex arguments should be made clear. A simple argument is one for which a single reason is given; a complex, or multi-reason argument—as the name suggests—is one with a set of reasons supporting a contention. Here is an example of each:

image

Simple argument with a single reason

image

Complex argument with more than one reason

A key pitfall for students is in telling whether an argument has separate reasons working independently (as in this last example) or whether the reasons work together as dependent co-premises. We return to this later.

As students advance their understanding of argument mapping, multi-layer arguments can be introduced. These arguments have primary reasons supported by secondary level reasons.

An example is provided below. Here is should be noted that the contention of one argument can become a premise of another argument (naturally, mapping an argument does not imply one agrees with it):

image

A multi-layer argument

It takes a great deal of practice for students to accurately reconstruct multi-layer arguments from a passage of raw text. Gratuitous assumptions are often made in authentic prose, premises are left out, and connections between premises are contentions are not clear. The job of the argument mapper is to make all connections between reasons and contentions, and between primary and secondary-level reasons very explicit. There is no substitute for a skilful pedagogy that builds student’s skills from achieving competence in analysing and reconstructing simple and complex arguments, eventually to multi-layer arguments.

image

Expressed as a single multi-level argument this becomes:

image

The notion of an objection can be generally explained without difficulty as it mirrors the structure of reasons. Indeed, objections are simply reasons against something, and likewise, come in simple, complex and multi-layer variations.

When discussing objections, it should be made clear to students that objections can be supported by reasons—reasons here provide evidence that suggests an objection is a good one. For example:

image

Students should be made aware that very often passages of text are ambiguous. Argument mapping has to deal with such ambiguities. Is the following example a singular claim, or a claim for which a reason is given (an argument)? i.e., is it best rendered as a simple conditional claim?

image

Or should it be rendered as an argument (a contention with a premise offered in support of it)?:

image

Such examples are often context-dependent; a function of whether the author is trying to convince the reader of something, or whether they are merely asserting something. Class time should be devoted to looking at passages of text, establishing whether they are arguments or mere assertions and translating them into the argument mapping software.

As well as statements that could be arguments, there are also arguments that have implicit inferences that need elucidation. This phenomenon is very common. For example:

  • If you want a new car, now is the time and Hindmarsh is the place.

This advertising slogan for a Building Society money-lender is probably best interpreted (charitably) as an argument, not merely a conditional statement. It is trying to convince us of something. Context, and knowledge of the role of money-lenders in society can help interpret it. A moment’s reflection will tell us that the passage is trying to convince us that we should borrow money from Hindmarsh . Unfortunately for students, this contention is not present in the passage but must be gleaned from it. Indeed, the passage also intimates we want a new car! What seems like a simple conditional assertion appears to be a subtle argument with an intermediate conclusion and number of assumed premises. A possible interpretation of the argument is represented using the argument mapping software Rationale™ below.

image

No argument software can assist on its own with the interpretation of difficult passages of text like this, and an instructor’s role is essential (Note that argument mapping convention requires that implicit or hidden claims, when explicated, are expressed in square brackets […].).

Exposure to many different texts, and teaching sensitivity to argument context, can help. For example, the following advertising slogan:

  • The bigger the burger the better the burger, and the burgers are bigger at [Hungry] Jack’s.

conceals an implicit conclusion: So/Therefore the burgers are better at [Hungry] Jack’s. Not including the contention renders the passage as a simple assertion rather than what it really is, namely, an argument with an implied contention—and a non-sequitur at that!

image

Enthymematic arguments (with suppressed claims) are difficult for students, and are commonplace in reasoning. In this example, these premises work together as co-premises to support the (implied) contention. We shall discuss how to deal with these below.

As well as dealing with enthymematic arguments, mapping is also helpful in clearly identifying and exposing instances of circular reasoning—where question-begging supporting reasons are provided, as the following example indicates:

image

Inference indicators

Early in class instruction it is important to introduce the idea of an inference indicator. There are two types: (a) reason indicators and (b) conclusion indicators. The difference between them is the role they play in an argument. It should be demonstrated how these words and phrases have different grammatical roles too. Reason indicators such as because point to the reason in a grammatical construction; conclusion indicators (like so and therefore) point to the contention. The role they play in sentence construction can be introduced and it can be shown how they can be transposed.

Students should learn the different kinds of indicators to help determine what a reason is; and what a conclusion is. They should be given practice in translating passages like these into simply box and arrow diagrams, or—if they are confident—into argument maps. A table showing how the indictors work can be helpful here (examples provided here are not exhaustive).

At present, CAAM software has a limited range of inference indic a tors most ly using because or the neutral term supports exclusively (i.e., premise X supports contention Y ; or X because Y ) . S tudents need to be able to translate the many inference indicators used in text into the blunt categories offered by CAAM software. This is one of its drawbacks. F uture develo pments might address this. Given present limitations, it is important that students understand how to interpret ordinary language arguments replete in inference indicators of diffe r ent kinds. Nothing substitutes for class work using passages of text that illuminate the many examples of indicator words in use.

Over-interpretation of inference indicators

When students are sufficiently informed about inference indicators, they can be prone to overuse their relevance and see arguments when they are not there. This is something the instructor needs to be wary of as well. Take, for example, the sentence: Sally said she was hungry before, so that is why you can see her eating a sandwich now . This appears to have an inference connector, “so”, but the “so” functions grammatically to connect an explanation to an observation, not as an inference indicator. The passage is not concluding that you can see Sally eating a sandwich. Similarly, Synonyms are good servants but bad masters , therefore select them with care . This is not proffering a contention; it is best interpreted as a subtle piece of advice. Inference indicator words are thus not always indicating an inference (neither is the indictor word thus in that sentence). There is a difference between their use in inference-making and their use in grammatical construction. Again, lots of text-based practice is needed.

Tiers of Reasons/Objections :

A procedural approach to argument m apping.

We have mentioned that arguments can be represented in terms of tiers of reasons and objections in the form of multi-layered arg u ments . It is very easy for students to become overwhelmed by the di f ficulty of this task. How is this best taught and what are the things to watch out for?

As always, it is best to start with simple examples and then attempt more complex examples. The following example , the kind of thing to be found in a ‘Letter to the Editor’ , provides an instructive case.

  • Dogs fetch balls and cats don’t, so you can play with dogs. I mean, who’d disagree with that? It’s obvious isn’t it? You can’t play with cats, of course. They are too stuck up. Dogs clearly make better pets.

It is clearly an argument. How can one map it to clearly display the reasoning? To establish this, it is best to ask students to follow a s e ries of steps. Th is is important as th ere is a strong tendency for st u dents to jump into the task of mapping a passage without clearly thinking through the text, nor establishing the connections between the component parts of an argument.

Here is a suggested step-by-step approach that could be used with students to help them understand arguments . It is a good idea to a sk student s to follow these steps for any argument under consideration :

This step is follow by: 

Eliminating the redundant expressions not germane to the argument, and the questions (non-claims), we get the following: <1>Dogs fetch balls and cats don’t, so <2>you can play with dogs. I mean, who’d disagree with that? It’s obvious isn’t it? <3>You can’t play with cats, of course. They are too stuck up. <4>Dogs clearly make better pets.

The claims are as follows:

  • Dogs fetch balls and cats don’t
  • You can play with dogs
  • You can’t play with cats
  • Dogs make better pets

Using the What’s the point? test mentioned above, the conclusion reveals itself to be the last claim <4>. This is placed at the top of the map, but how are the reasons supporting it to be arranged? The temptation might be that there are two independent reasons supporting the contention: You can play with dogs and You can’t play with cats.

image

But this representation of the argument is missing something. W hat is to be done with claim <1> Dogs fetch balls but cats don’t? A t this point a ttention should be drawn to the inference indicator “so” that seems to draw a conclusion , i.e., it is not merely functioning gra m matically in the sentence . But this “so” is clearly not an inference to claim <4>; it appears to be an inference to an intermediate conclusion that consists of claim <2> and thus should thus be represented in a multi-level argument like this:

image

On reflection, it can be seen that that the two supporting reasons <2> and <3> are best rendered as a single claim—an intermediate concl u sion (they are both making a point about “playing”) —and the claim about “ fetching ” can be seen as reasoned support for this . This ca p tures the intended use of the connector word “so” linking <1> to <2>. There is thus another rule to consider:

The resulting argument map provides a clear example of serial re a soning that accurately represents the case being made:

image

In the case of more complex arguments additional principles need to be followed.

The principle of abstraction

A very useful guideline for argument mapping is the principle of a b straction . In many cases, t he higher the claim in a multi-layered a r gument the greater the degree of abstraction; or to put it differently, the lower the claim the more specific it should be. In the above exa m ple, “playing” is more abstract than “ fetching balls ” , and both claims are less abstract than “better pet ”. They provide serial support for each other . Students should be guided in how to apply this principle, as without this, maps can become a jumble of disorganized claims with no clear hierarchical structure. Once again, this requires practice and students should be given a number of exercises where they are required to rank claims in terms of their degree of abstraction. To our series of rules we can add the following :

The principle of level consistency

Complex arguments have both a vertical and a horizontal axis. A r guments can be multi-layered along the vertical axis (as we have just seen) , but premises are present along a horizontal axis as well. I n sofar as many premises can be brought to bear in an argument it is i m portant to stress another principle, the principle of level consistency. W ithin each horizontal level, reasons or objections should be appro x imately of equal weighting in terms of their abstraction or generality. In the following argument t his rule is not adhered to and is cons e quently hard to interpret:

image

This argument is improved by subordinating lower-level claims to a more general claims at the middle-level, and ensuring level consiste n cy at the lower level, as follows:

image

We can thus add another guideline :

Missing Premises

Teaching students how to look out for missing premises is complex, but there are strategies that can help. It is difficult because reasoning is often replete in missing premises. Indeed, it is very rare that all premises are made explicit in reasoning. This is due to the implicit reliance of speakers or writers on the background beliefs assumed to be shared in any argumentative exchange. Here is a simple example.

  • Art must represent the world if it is to appeal to a broad audience for generations to come . So t hat’s why Blue Poles will not appeal to a broad audience .

In a normal human exchange, this would be a perfectly clear expression of a (rather dated) view about the painting Blue Poles . It is also an argument. We are giving a reason for a conclusion, as indicated by the words “so that’s why”. However, when teaching argument mapping it is an example of an argument with a missing premise; a premise that needs to be exposed, and made clear. What, precisely, is being argued?

In this case, it is easy to see what missing is. It is the assumption that Blue Poles does not represent the world . Exposing this missing premise allows it to be evaluated, confirmed or rejected. In this example, the missing premise can stated quite easily; in simple passages, this is often the case. But for more complex reasoning a series of steps need to be followed to ensure all missing premises are catered for. Fortunately, there is a very simple way to establish missing premises. This is done by applying two rules: the Rabbit Rule and the Holding Hands Rule . These rules are outlined in more detail in online tutorials available with the software Rationale™ .

Assumptions and how to find them using the Rabbit Rule and Holding Hands Rule

The Rabbit Rule is applied (vertically) to the inferential link between conclusion and the premises. This rule states that no conclusion should come out of thin air. (No rabbits out of hats!) The conclusion term(s) have to be present in the terms of the premises of an argument for it to appear in the conclusion. In the argument under consideration we can see that “ Blue Poles ” appears in the conclusion but does not appear in the available premise. We therefore know that Blue Poles must be supplied to the missing premise.

image

The Holding Hands Rule is applied horizontally between premises to any remaining terms after the Rabbit Rule has been applied (that is, if a term is not already supplied by means of the Rabbit Rule). The remaining terms must “hold hands” with another premise. No term can appear in one premise alone—there is always a companion term “holding hands”. In this example, we can see that “represent the world” appears in the stated premise, so it must be present in the missing premise. As the argument is negating something about Blue Poles , we similarly apply a corresponding negation to the terms of the missing premise.  The argument can be expressed as follows:

image

We can add the following to our list of procedural rules to establish missing premises:

The following example of a famous deductively valid argument in Philosophy demonstrates how both the Rabbit Rule and the Holding Hands Rule are satisfied. It also demonstrates an example of co-premises in action:It may not have escaped notice that the two claims that support the above contention are jointly necessary for the conclusion to follow. Strictly speaking they are not two independent reasons supporting the conclusion, but are co-premises that jointing support the conclusion. This raises the important issue of co-premises or “linked” premises. This is another crucial methodological principle that students find difficult.

image

A co-premise is when two or more premises are jointly necessary for the truth of the conclusion. Co-premises are often enthy me matic and s ome times a co-premise is trivial. For example, a person who reasons that they should rent a house because they should find a place to live as quickly as possible , tacitly assumes that renting a house is quickest way of find ing a place to live .

image

Such assumed claims are often tacit in arguments in both writing and speech , and are often so trivial they do not need to be stated . However, they are an important feature of arguments. Indeed, every argument has at least two of them. In CAAM this is often mentio ned as “The Golden Rule”: every argument has at least two co-premises. In the following example, we have extended the previous argument discussed by the addition of enthymematic co-premises.

image

While ubiquitous in reason ing, co-premises are not always unco n troversial . Often, co-premises conceal hidden assumptions that are false or misleading. This is why it is good argument mapping practice to expose them. For example, it need not be accepted (without ev i dence— or even intuitively) that pets that you can play with make be t ter pets than those you can’t [play with] (elderly people , the infirm or disabled , for example, like more docile pets). Being able to e x pose hidden assumption clearly for the purpose of critiquing them is a m a jor advantage of argument mapping. Argu ment mapping software makes identification and representation of hidden claims easier by using color conventions and shading; however, this does not help st u dents deciding how to determine how to locate a co -premise in a pa s sage of text. Clear i nstruction and LAMP is needed. Probably the best way to approach co-premises in the classroom is to begin by discus s in g the differences between complex reasoning and linked reasoning.

Co-p remises (Linke d r easoning)

S tudents find the distinction between linked reasoning (dependent premises) and complex reasoning (independent premises ) hard to grasp. It is best taught by showing students a number of simple multi-premise a rguments and asking them to classify examples of complex and linked reasoning . In the following example, it is fairly easy to see that the supporting premises are independent and not necessary for each other .

Plausibly, neither premise could be true; or both could, or one coul d be true and the other false. If either premise was true t he conclusion could sensibly follow in either case. The conclusion could follow even if one of the claims was missing.

In other examples, co-premises are neede d as the claims are not ind e pendent of each other and are examples of linked reasoning . For i n stance :

  • We should go to Rome for our holidays. Rome is beautiful. Also, it will enable us to visit your relatives and this is something really need to do.

The passage complete with numbered claims would look like this:

  • <1 We should go to Rome for our holidays>. <2 Rome is beautiful.> Also, <3 It will enable us to visit your relatives> , and <4 this is something really need to do>.

How can one teach students w hich premises are linked and which are independent?

To our set of suggested procedural rules discu ssed earlier, we can add another step:

In the example above the claim Rome is beautiful is an independent reason (it does not depend on visiting relatives) and the contention We should go to Rome for our holidays can be supported by it. The contention can follow from Rome being beautiful regardless of the other claims provided. However, the claims about visiting the relatives appear to be linked. The claim: This is something [Visiting your relatives] we really need to do will not alone support the conclusion without including the claim It [Visiting Rome] will enable us to visit your relatives . Note however, this relationship is not symmetrical. Premise <3> can support the contention without premise <4>. However, <4> can’t without <3>. If one premise can’t support a conclusion without another premise, they are said to be “linked”. In convergent (or divergent) reasoning, none of the claims are dependent on any other claim; either one of the claims might support the conclusion alone. By contrast, in linked reasoning, the claims are not independent; they are necessary for each other for the conclusion to follow.

With <2> as an independent premise, and <3> and <4> being linked premises, the map would appear as follows:

image

A useful feature of argument mapping is the capacity to display linked premises in an intuitive visual way . Like other software, t he software Rationale™ (used here) uses the colo r green for reasons and the colo r red for objections ( the colo r orange is used exclusiv e ly for rebuttals , i.e., objections to objections ) . Co-premises are ind i cated by an umbrella shading that fades to white . This is a subtle visual indic a tion that no argument is ever complete and more premises could p o tentially be added.

O bjections too can be linked as co-premises as the following exte n sion to the argument indicate. We have added a rebuttal against an objection (in orange) to demonstrate their use.

  • On the other hand <5 > travelling to Rome is very expensive ,> primarily because <6 > flights are so expensive>. And <7 > we don’t have a lot of money at the moment>. But then again, <there is plenty of money in the children’s bank account we could use>.

We have laid out the complete map of the argument on page 169.

tools of argument in critical thinking

Note here that the claim that Travelling to Rome is expensive could well object to the conclusion alone, but premise could not (without premise ). The premises under consideration must independently support the conclusion to stand as independent reasons. If this is not the case, the premises are said to be linked.

A brief history of argument mapping

Argument mapping can be traced to the work of Richard Whately in his Elements of Logic (1834/1826) but his notation was not widely adopted. In the early twentieth century, John Henry Wigmore mapped legal reasoning using numbers to indicate premises (Wigmore, 1913; Wigmore, 1931) . Monroe Beardsley developed this, and it became standard model of an argument map (Beardsley, 1950) . On this a p proach, premises are numbered, a legend is provided to the claims identified by the numbers, and serial, divergent and convergent re a soning can be clearly represented. An example of each of these forms of reasoning using the standard model is provided below.

image

This model is still widely used and is advantageous in contexts where students are required to produce argument maps without access to software (e.g., in paper-based logic and reasoning exams under timed conditions).

In 1958, Stephen Toulmin devised another model of an argument map that included the notion of a “warrant” (which licenses the inference from the reasons, which he called “data”, to the claim), “backing” (which provides the authority for the warrant), modal qualifiers (such as “probably”), and “rebuttals” (which mention conditions restricting the inference) (Toulmin, 1958). An example of a Toulmin map is provided below.

image

In 1973, Stephen L. Thomas refined Beardsley’s approach (Thomas, 1997/1973) . Thomas included in his approach the important notion of “linked” arguments where two or more premises work together to support a conclusion (the distinction between dependent and ind e pendent premises having being described earlier). This innovation made it feasible for arguments to include “hidden” premises. He is also said to have introduced the terms “argument diagram”, “basic” (or “simple”) reasons, i.e., those not supported by other reasons (as distinct from “complex” reasons). He also made the distinction b e tween “intermediate” conclusions (a conclusion reached before a final conclusion) and a “final” conclusion (not used to support another conclusion). Thomas also suggested including objections as reasons against a proposition, and that these too should be included in arg u ment maps.

In 1976 , Michael Scriven proposed a procedure for mapping that could be recommended to students (Scriven, 1976) . This involved a number of steps: ( 1) writing out the statements in an argument; ( 2) clarifying their meaning; ( 3) listing the statements, including any hi d den claims; and ( 4) using numbers for premises along the lines of the Beardsley-Thomas model. In the case of hidden assumptions, Scriven’s notation used an alphabetical letter to distinguish hidden assumptions from explicit reasons. Scriven also emphasized the i m portance of a rebuttal in argument mapping, a notion identified earlier by Thomas.

In the 1990s a number of innovations occurred. Robert Horn helped popularize the notion of an argument map by producing idiosyncratic, large-format argument diagrams on key issues in philosophy such as “Can Computers Think?” (Horn, 1999; Horn, 2003) . These maps did not adopt either the standard model or Toulmin -style notation for mapping arguments, but did use arrows and pictures to make the co n tent clear, making it obvious for the first time that argument maps could be visually interesting as well as informative. These were di s tributed widely and used in class teaching. In addition, computer software programs began to be developed. This was important, as dedicated argument mapping software allowed premises to be co m posed, edited and placed within an argument map, as distinct from a legend alongside the map.

Argument mapping software

Once dedicated computer software was introduced, the standard mo d el of numbered premises became outdated in all contexts outside its use in examinations. Several iterations of mapping software were d e veloped in Australia and the U . S .A. with increasingly greater levels of sophistication. Tim van Gelder developed Rationale™ and bC i sive ™ , the former designed as a basic argument mapping software, the latter designed for business decision-making applications (van Gelder, 2007, 2013) . Both were later purchased by Dutch company Kritisch Denken BV .

A variety of argument mapping packages are now available, inclu d ing Araucaria, Compendium, Logos, Argunet , Theseus, Convince Me, LARGO, Athena, Carneades and SEAS . These range from single-user software such as Rationale™ , Convince Me and Athena ; to small group software such as Digalo , QuestMap , Compendium, Belvedere, and AcademicTalk ; to collaborative online debating tools for arg u mentation such as Debategraph and Collaboratorium . Enhancements to argument mapping software proceed apace. For example, there are moves to introduce a Bayesian network model to Rationale™ to cater for probabilistic reasoning.

Rationale™ or bCisive are perhaps the easiest programs to use for teaching argument mapping, but they require a subscription. E xcellent free alternative s i nclude the Argumen t Visualization mode in the online MindMup : https://www.mindmup.com/tutorials/argument-visualization.html , and the cross-platform desktop package iLogos

http://www.phil.cmu.edu/projects/argument_mapping/

Argument mapping class room examples

There are a number of free argument resources available online.

  • The designers of Rationale™ made tutorials to be used with their software. https://www.rationaleonline.com/docs/en/tutorials#tvy5fw
  • Simon Cullen, who helped design the MindMup argument visualisation function, has posted some of the activities he uses for teaching philosophical arguments using argument maps. http://www.philmaps.com
  • Ashley Barnett, who has written lots of questions for argument mapping courses for students and intelligence analysts has posted his teaching material on http://www.ergoshmergo.com

In this paper we have covered some of the basic concepts and considerations that teachers need to be aware of when using CAAM in the classroom. A set of procedural steps was suggested that is recommended for use with students. Understanding claims and arguments and how they are structured is only the start. Students should also be aware of how to interpret inference indicators, construct and analyse simple, complex and multi-layer arguments, and be able to integrate objections and rebuttals. They should be wary of misusing inference indicators, confusing reasons with evidence for reasons, and misinterpreting independent reasons for co-premises. There is much more we could have discussed. We have not touched on the use of inference objections (in contrast to premise objections). We have not mentioned argument webs or chains of reasoning, nor have we discussed in detail the appropriate ways to integrate evidence into an argument. However, it should be clear from this brief outline how CAAM can assist students in disentangling arguments in everyday prose—replete, as it often is, with non-sequiturs, repetition, irrelevancies, unstated conclusions, and other infelicities.

Beardsley, M. C. (1950). Practical logic. New York: Prentice-Hall.

Davies, M. (2009). Computer-assisted argument mapping: a rationale approach. Higher Education, 58, 799-820. Higher Education, 58(6), 799-820.

Davies, M. (2011). Mind Mapping, Concept Mapping, Argument Mapping: What are the Differences and Do they Matter? Higher Education, 62 (3), 279-301.

Harrell, M. (2008). No Computer program required: Even pencil-and-Paper argument mapping improves critical-thinking skills. Teaching Philosophy, 31 (4), 351-374.

Horn, R. (1999). Can Computers Think? : Macrovu.

Horn, R. E. (2003). Infrastructure for Navigating Interdisciplinary Debates: Critical Decisions for Representing Argumentation. In P. A. Kirschner, S. J. B. Shum, & C. S. Carr (Eds.), Visualizing argumentation: Software tools for collaborative and educational sense-making . New York: Springer-Verlag.

Rider, Y., & Thomason, N. (2008). Cognitive and Pedagogical Benefits of Argument Mapping: L.A.M.P. Guides the Way to Better Thinking. In A. Okada, S. Buckingham Shum, & T. Sherborne (Eds.), Knowledge Cartography: Software Tools and Mapping Techniques (pp. 113-130): Springer.

Scriven, M. (1976). Reasoning . New York: McGraw-Hill.

Thomas, S. N. (1997/1973). Practical reasoning in natural language (4th ed.). Upper Saddle River, NJ: Prentice-Hall.

Toulmin, S. E. (1958). The uses of argument (first ed.). Cambridge, England: Cambridge University Press.

van Gelder, T. (2007). The Rationale for Rationale™. Law, Probability and Risk, 6 , 23-42.

van Gelder, T. (2013). Rationale 2.0.10. Retrieved from http://rationale.austhink.com/download

van Gelder, T. J. (2015). Using argument mapping to improve critical thinking skills. In M. Davies & R. Barnett (Eds.), The Palgrave Handbook of Critical Thinking in Higher Education (pp. 183-192). New York: Palgrave MacMillan.

Whately, R. (1834/1826). Elements of logic: comprising the substance of the article in the Encyclopædia metropolitana: with additions, &c. (5th ed.). London: B. Fellowes.

Wigmore, J. (1913). The Problem of Proof. Illinois Law Review, 8 , 77.

Wigmore, J. (1931). The Science of Judicial Proof as Given by Logic, Psychology and General Experience and Illustrated in Judicial Trials (2 ed. Vol. Little, Brown and Co. ): Boston.

  • © Martin Davies, Ashley Barnett, & Tim van Gelder ↵
  • The colored versions of the argument maps in this chapter are available only in the open-access Ebook edition of this book at: https://windsor.scholarsportal.info/omp/index.php/wsia/catalog ↵
  • https://www.rationaleonline.com/docs/en/tutorials#tvy5fw). ↵

Studies in Critical Thinking Copyright © by Martin Davies; Ashley Barnett; and Tim van Gelder is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Back Home

  • Search Search Search …
  • Search Search …

Critical thinking arguments for beginners

critical thinking arguments

Critical thinking is one of the most valuable sets of life skills you can ever have and it’s never too late to learn them. People who can think critically are better at problem solving of all kinds, whether at school or work, in ordinary daily life, and even in crises. You can practice critical thinking by working through typical arguments from premises to conclusions.

Thinking critically isn’t about following a single path to an inevitable conclusion. It’s about developing a set of powerful and versatile mental processing tools in your head and being able to apply these meaningfully to the world around you.

You need no special qualifications to become a strong critical thinker, and can’t pick it up simply from reading books about critical thinking. The only way to hone critical thinking skills is to practice critical thinking.

If you’re ready to learn more about critical thinking arguments for beginners then read on…

What is critical thinking?

Let’s first illustrate the answer to this question by taking a look at how we can think critically about potential misinformation online.

Your friend on a social media site has shared a photograph of election ballot slips apparently being tipped into a river by a postal truck driver, reportedly a supporter of a political party who will benefit from lower postal voter turnout.

Your friend is a supporter of another party and expresses outrage at the alleged law-breaking, election influencing, and reduced chances for her own party candidate. Many other friends pile in with sympathetic and equally outraged comments, or new allegations.

The temptation might be strong to accept the narrative caption which accompanies the picture, echo your friends’ emotional responses, and share the photo further. However, as a critical thinker, you should step back and ask some crucial questions first:

  • Is the photo obviously manipulated? Sophisticated image alterations can now be made which won’t be spotted by the majority of non-experts. Could this be an image of a simple truck crash with ballot papers photoshopped in?
  • Does your friend fact-check stories, pictures, memes etc.. before posting them online? If she has a history of posting stories which turned out to be false, it reduces her credibility in presenting the current story.
  • I s there anything in the photograph which supports or undermines the claims made? If you can see that the van has a foreign registration plate, the ballot papers aren’t in English, or the date on the clock is actually several years ago, it is clear that the true story is somewhat different to the one being told.

Let’s say that your initial suspicions after asking yourself these questions are enough that you do a quick web search for the story.

Your search reveals that credible sources have already uncovered the photo as having been manipulated and spread by an online political group. It was originally a local news story about a crashed postal truck in another country five years earlier and has no relationship whatsoever to the current election in your country…

Your critical thinking helped you to avoid falling into group-think along with your friends and saved you from spreading more misinformation online. These real life type examples are are an excellent way to grasp the relevance and value of critical thinking arguments for beginners.

Now for a little of the theory. Critical thinking is a description that brings together a range of useful intellectual skills and their synergies. While there is no definitive list, there are some common key competences necessary for critical thinking:

  • Conducting analysis. Being able to understand the issue in question; distinguish between relevant and irrelevant information; identify commonalities, differences and connections.
  • Making inferences. Using inductive or deductive reasoning to draw out meanings; identifying assumptions; abstracting ideas; applying analogies and recognizing cause and effect relationships in order to develop theories or potential conclusions.
  • Evaluating evidence. Making a judgement about whether a theory or statement is credible or correct; adjusting views and theories in the light of new data or perspectives; grasping the significance of events and information.
  • Making robust decisions. Reaching sound conclusions by applying critical thinking skills to the available evidence.

To apply critical thinking in real life, you also need to possess the right attitude to problem solving, as well as the critical thinking skills themselves.

This means being automatically inclined to think critically in the face of a difficult question or problem. Being fair, open-minded, curious and free from ideology or group-think will all help to create a mindset in which critical thinking can thrive.

What are critical thinking arguments?

Let’s now look at some of the basic building blocks underpinning critical thinking arguments for beginners.

In critical thinking and logic, ‘argument’ has a particular meaning. It refers to a set of statements, consisting of one conclusion and one or more premises. The conclusion is the statement that the argument is intended to prove. The premises are the reasons offered for believing that the conclusion is true.

A critical thinking argument could use a deductive reasoning approach, an inductive reasoning approach, or both.

Deductive reasoning

Deductive reasoning attempts to absolutely guarantee a conclusion’s truth through logic. If a deductive argument’s premises are true, it should be impossible for its conclusion to be false. For example:

  • All humans are mortal. (Premise)
  • Socrates is a human. (Premise)
  • Therefore, Socrates is mortal.  (Conclusion)

Inductive reasoning

Inductive reasoning attempts to show that the conclusion is probably true, with each premise making the case for the conclusion stronger or weaker. For example:

  • Three independent witnesses saw Max climb in through the window of the house. (Premise)
  • Max’s fingerprints are on the window frame and several stolen items. (Premise)
  • Max confessed to the burglary. (Premise)
  • Therefore, Max committed the burglary. (Conclusion)

Do note that in either case, straight assertions, explanations or conditional sentences are not arguments.

How do I assess a critical thinking argument?

You can evaluate whether an argument is valid or invalid, sound or unsound, strong or weak .

If an argument is said to be ‘valid’, it means that it is impossible for the conclusion to be false if the premises are true. If an argument is ‘invalid’, it is possible for the premises to be true and the conclusion false.

An argument is ‘sound’ if it is both valid and contains only true premises. If either of these conditions isn’t met then the argument is ‘unsound’.

A deductively ‘strong’ argument is both valid and it is reasonable for the person in question to believe the premises are true. In a deductively weak argument , the person considering the premises may have good reason to doubt them.

When an argument is inductively strong, the truth of the premises makes the the truth of the conclusion probable. In contrast, in an inductively ‘weak’ argument, the truth of the premises do not make the truth of the conclusion probable.

Counterexamples

A ‘counterexample’ is a consistent story which shows that an argument can have true premises but a false conclusion, rendering it invalid.

NB A valid argument is not necessarily true, and a weak argument is not necessarily false.

All of these fundamentals can be applied both to simple practice arguments and then to more complex problems of the type you might encounter in real life.

For example:

  • All unicorns are Swedish (Premise)
  • My new pet is a unicorn (Premise)
  • Therefore,  my new pet is Swedish (Conclusion)

The premises here are both false – unicorns do not exist, and I therefore cannot own one as a pet. However, if they were true, then the conclusion would be true. What we have here is a valid argument, but not a sound one, nor a strong one.

How can I practice critical thinking arguments for beginners?

Now that you have the basic tools and concepts for putting together a critical thinking argument, you can look  out for real life examples to practice with.

News stories

Look at the headlines covering stories in TV,  online or paper news. Do you agree that the facts of the story are credible and constitute premises strong enough to justify the headline drawn from them?

Social media

Critically examine stories and claims shared by friends and contacts online. Ask yourself whether the evidence presented is credible and justifies the claims being made.

Corporate statements

Evaluate claims made by big corporations in public statements and annual reports alongside their actions and impacts. For example, if a major oil company claims that it is working to combat climate change, how strong, valid and sound are their arguments?

Conclusion…

Whatever your starting point, we hope this article has set you on the road to becoming a critical thinker, and that these developing skills might open new doors at school, at work or in other areas of life. The world needs more critical thinking at all levels and your contribution might one day be valuable.

You may also like

How Does Technology Affect Critical Thinking?

How Does Technology Affect Critical Thinking?

Technology is always quickly advancing. New apps, new updates, and platforms emerge to help us connect to each other, automate our tasks, […]

critical thinking and ethics

The Connection between Critical Thinking and Ethics: Unraveling the Link

The connection between critical thinking and ethics is a significant one, as both concepts play crucial roles in decision-making and problem-solving. Critical […]

Critical Thinking vs Positive Thinking

Critical Thinking vs Positive Thinking (The Pros and Cons)

In a world where we are expected to be on top of things every second of the day, having the best coping […]

Critical thinking and conflict resolution

Critical thinking and conflict resolution

Introduction Have you ever wondered how critical thinking can help in terms of conflict resolution? Critical thinking is a powerful tool, but […]

Advertisement

Advertisement

Developing Students’ Critical Thinking Skills and Argumentation Abilities Through Augmented Reality–Based Argumentation Activities in Science Classes

  • Published: 22 August 2022
  • Volume 32 , pages 1165–1195, ( 2023 )

Cite this article

  • Tuba Demircioglu   ORCID: orcid.org/0000-0003-3567-1739 1 ,
  • Memet Karakus   ORCID: orcid.org/0000-0002-6099-5420 2 &
  • Sedat Ucar   ORCID: orcid.org/0000-0002-4158-1038 1  

6684 Accesses

5 Citations

Explore all metrics

Due to the COVID-19 pandemic and adapting the classes urgently to distance learning, directing students’ interest in the course content became challenging. The solution to this challenge emerges through creative pedagogies that integrate the instructional methods with new technologies like augmented reality (AR). Although the use of AR in science education is increasing, the integration of AR into science classes is still naive. The lack of the ability to identify misinformation in the COVID-19 pandemic process has revealed the importance of developing students’ critical thinking skills and argumentation abilities. The purpose of this study was to examine the change in critical thinking skills and argumentation abilities through augmented reality–based argumentation activities in teaching astronomy content. The participants were 79 seventh grade students from a private school. In this case study, the examination of the verbal arguments of students showed that all groups engaged in the argumentation and produced quality arguments. The critical thinking skills of the students developed until the middle of the intervention, and the frequency of using critical thinking skills varied after the middle of the intervention. The findings highlight the role of AR-based argumentation activities in students’ critical thinking skills and argumentation in science education.

Similar content being viewed by others

tools of argument in critical thinking

Students’ voices on generative AI: perceptions, benefits, and challenges in higher education

Cecilia Ka Yuk Chan & Wenjie Hu

AI and education: the importance of teacher and student relations

Alex Guilherme

tools of argument in critical thinking

Teachers’ AI digital competencies and twenty-first century skills in the post-pandemic world

Davy Tsz Kit Ng, Jac Ka Lok Leung, … Samuel Kai Wah Chu

Avoid common mistakes on your manuscript.

1 Introduction

With rapidly developing technology, the number of children using mobile handheld devices has increased drastically (Rideout et al., 2010 ; Squire, 2006 ). Technologies and digital enhancements that use the internet have become a part of the daily life of school-age children (Kennedy et al., 2008 ), and education evolves in line with the changing technology. Rapidly changing innovation technologies have changed the characteristics of learners in the fields of knowledge, skills, and expertise that are valuable for society, and circumstances for teachers and students have changed over time (Yuen et al., 2011 ). Almost every school subject incorporates technological devices into the pedagogy to different extents, but science teachers are the most eager to use technological devices in science classes because of the nature of the content they are expected to teach.

The COVID-19 pandemic has had an important impact on educational systems worldwide. Due to the fast-spreading of that disease, the educators had to adapt their classes urgently to technology and distance learning (Dietrich et al., 2020 ), and schools have had to put more effort into adapting new technologies to teaching. Z generation was born into a time of information technology, but they did not choose distance courses that were not created for them so they are not motivated during the classes (Dietrich et al., 2020 ). Directing students’ interest in the course content is challenging, while their interest has changed by this technological development. The solution to this challenge emerges through creative pedagogies that integrate the instructional methods with new striking technology. Augmented reality has demonstrated high potential as part of many teaching methods.

2 Literature Review

2.1 augmented reality, education, and science education.

AR applications have important potential for many areas where rapid transfer of information is important. This is especially effective for education. Science education is among the disciplines where rapid information transfer is important. Taylor ( 1987 , p. 1) stated that “the transfer of scientific and technological information to children and to the general public is as important as the search for information.” With the rapid change in science and technology and outdating of knowledge, learning needs rapid changes in transfer of information (Ploman, 1987 ). Technology provides new and innovative methods for science education and could be an effective media in promoting students’ learning (Virata & Castro, 2019 ). AR technology could be a promising teaching tool for science teaching in which AR technology is especially applicable (Arici et al., 2019 ).

Research shows that AR has great potential and benefits for learning and teaching (Yuen et al., 2011 ). The AR applications used in teaching and learning present many objects, practices, and experiments that students cannot obtain from the first-hand experience into many different dimensions because of the impossibilities in the real world, and it is an approach that can be applied to many science contents that are unreachable, unobtrusive, and unable to travel (Cai et al., 2013 ; Huang et al., 2019 ; Pellas et al., 2019 ). For example, physically unreachable phenomena such as solar systems, moon phases, and magnetic fields become accessible for learners through AR (Fleck & Simon, 2013 ; Kerawalla et al., 2006 ; Shelton & Hedley, 2002 ; Sin & Zaman, 2010 ; Yen et al., 2013 ). Through AR, learners can obtain instant access to location-specific information provided by a wide range of sources (Yuen et al., 2011 ). Location-based information, when used in particular contextual learning activities, is essential for assisting students’ outdoor learning. This interaction develops comprehension, understanding, imagination, and retention, which are the learning and cognitive skills of learners (Chiang et al., 2014 ). For example, an AR-based mobile learning system was used in the study conducted by Chiang et al. ( 2014 ) on aquatic animals and plants. The location module can identify the students’ GPS location, direct them to discover the target ecological regions, and provide the appropriate learning tasks or additional resources. When students explore various characteristics of learning objects, the camera and image editing modules can take the image from the real environment and make comment on the image of the observed things.

Research reveals that the use of AR technology as part of teaching a subject has the features of being constructivist, problem solving-based, student-centered, authentic, participative, creative, personalized, meaningful, challenging, collaborative, interactive, entertaining, cognitively rich, contextual, and motivational (Dunleavy et al., 2009 ). Despite its advantages and although the use of AR in science education is increasing, the integration of AR into science classes is still naive, and teachers still do not consider themselves as ready for use of AR in their class (Oleksiuk & Oleksiuk, 2020 ; Romano et al., 2020 ) and choose not to use AR technology (Alalwan et al., 2020 ; Garzón et al., 2019 ), because most of them do not have the abilities and motivation to design AR learning practices (Garzón et al., 2019 ; Romano et al., 2020 ). It is thought that the current study will contribute to the use of AR in science lessons and how science teachers will include AR technology in their lessons.

2.2 Argumentation, Critical Thinking, and Augmented Reality

New trends in information technologies have contributed to the development of new skills in which people have to struggle with a range of information and evaluate this information. An important point of these skills is the ability to argue with evidence (Jiménez -Aleixandre & Erduran, 2007 ) in which young people create appropriate results from the information and evidence given to them to criticize the claims of others in the direction of the evidence and to distinguish an idea from evidence-based situations (OECD, 2003 , p. 132).

Learning with technologies could produce information and misinformation simultaneously (Chai et al., 2015 ). Misinformation has spread very quickly in public in COVID-19 pandemic, so the lack of the ability to interpret and evaluate the validity and credibility of them arose again (Saribas & Çetinkaya, 2021 ). This process revealed the importance of developing students’ critical thinking skills and argumentation abilities (Erduran, 2020 ) to make decisions and adequate judgments when they encountered contradicting information (Chai et al., 2015 ).

Thinking about different subjects, evaluating the validity of scientific claims, and interpreting and evaluating evidence are important elements of science courses and play important roles in the construction of scientific knowledge (Driver et al., 2000 ). The use of scientific knowledge in everyday life ensures that critical thinking skills come to the forefront. Ennis ( 2011 , p. 1) defined critical thinking as “Critical thinking is reasonable and reflective thinking focused on deciding what to believe”. Jiménez-Aleixandre and Puig ( 2012 ) found this definition very broad, and they proposed a comprehensive definition of critical thinking that combines the components of social emancipation and evidence evaluation. It contains the competence to form autonomous ideas as well as the ability to participate in and reflect on the world around us. Figure  1 summarizes this comprehensive definition.

figure 1

Argumentation levels by groups

Critical thinking skills that include the ability to evaluate arguments and counterarguments in a variety of contexts are very important, and effective argumentation is the focal point of criticism and the informed decision (Nussbaum, 2008 ). Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, using warrants, and criticizing, refuting, and evaluating an idea (Toulmin, 1990 ). Argumentation as an instructional method is an important research area in science education and has received enduring interest from science educators for more than a decade (Erduran et al., 2015 ). Researchers concluded that learners mostly made only claims in the argumentation process and had difficulty producing well-justified and high-quality arguments (Demircioglu & Ucar, 2014 ; Demircioglu & Ucar, 2015 ; Cavagnetto et al., 2010 ; Erdogan et al., 2017 ; Erduran et al., 2004 ; Novak & Treagust, 2017 ). To improve the quality of arguments, students should be given supportive elements to produce more consistent arguments during argumentation. One of these supportive elements is the visual representations of the phenomena.

Visual representations could make it easier to see the structure of the arguments of learners (Akpınar et al., 2014 ) and improve students’ awareness. For example, the number of words and comments used by students or meaningful links in conversations increases with visually enriched arguments (Erkens & Janssen, 2006 ). Sandoval & Millwood ( 2005 ) stated that students should be able to evaluate different kinds of evidence such as digital data and graphic photography to defend their claims. Appropriate data can directly support a claim and allow an argument to be accepted or rejected by students (Lin & Mintzes, 2010 ). Enriched visual representations provide students with detailed and meaningful information about the subject (Clark et al., 2007 ). Students collect evidence for argumentation by observing enriched representations (Clark et al., 2007 ), and these representations help to construct higher-quality arguments (Buckingham Shum et al., 1997 ; Jermann & Dillenbourg, 2003 ). Visualization techniques enable students to observe how objects behave and interact and provide an easy-to-understand presentation of scientific facts that are difficult to understand with textual or oral explanations (Cadmus, 1990 ). In short, technological opportunities to create visually enriched representations increase students’ access to rich data to support their arguments.

Among the many technological opportunities to promote argumentation, AR seems to be the most promising application for instructing school subjects. AR applications are concerned with the combination of computer-generated data (virtual reality) and the real world, where computer graphics are projected onto real-time video images (Dias, 2009 ). In addition, augmented reality provides users with the ability to see a real-world environment enriched with 3D images and to interact in real time by combining virtual objects with the real environment in 3D and showing the spatial relations (Kerawalla et al., 2006 ). AR applications are thus important tools for students’ arguments with the help of detailed and meaningful information and enriched representations. Research studies using AR technology revealed that all students in the study engaged in argumentation and produced arguments (Jan, 2009 ; Squire & Jan, 2007 ).

Many studies focusing on using AR in science education have been published in recent decades. Research studies related to AR in science education have focused on the use of game-based AR in science education (Atwood-Blaine & Huffman, 2017 ; Bressler & Bodzin, 2013 ; Dunleavy et al., 2009 ; López-Faican & Jaen, 2020 ; Squire, 2006 ), academic achievement (Hsiao et al., 2016 ; Faridi et al., 2020 ; Hwang et al., 2016 ; Lu et al., 2020 ; Sahin & Yilmaz, 2020 ;, Yildirim & Seckin-Kapucu, 2020 ), understanding science content and its conceptual understanding (Cai et al., 2021 ; Chang et al., 2013 ; Chen & Liu, 2020 ; Ibáñez et al., 2014 ), attitude (Sahin & Yilmaz, 2020 0; Hwang et al., 2016 ), self-efficacy (Cai et al., 2021 ), motivation (Bressler & Bodzin, 2013 ; Chen & Liu, 2020 ; Kirikkaya & Başgül, 2019 ; Lu et al., 2020 ; Zhang et al., 2014 ), and critical thinking skills (Faridi et al., 2020 ; Syawaludin et al., 2019 ). The general trend in these research studies based on the content of “learning/academic achievement,” “understanding science content and its conceptual understanding,” “motivation,” “attitude,” and methodologically quantitative studies was mostly used in articles in science education. Therefore, qualitative and quantitative data to be obtained from studies investigating the use of augmented reality technology in education and focusing on cognitive issues, interaction, and collaborative activities are needed (Arici et al., 2019 ; Cheng & Tsai, 2013 ).

Instructional strategies using AR technology ensure interactions between students and additionally between students and teachers (Hanid et al., 2020 ). Both the technological features of AR and learning strategies should be regarded by the teachers, the curriculum, and AR technology developers to acquire the complete advantage of AR in student learning (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ). Researchers investigated the learning outcomes with AR-integrated learning strategies such as collaborative learning (Baran et al., 2020 ; Chen & Liu, 2020 ; Ke & Carafano, 2016 ), socioscientific reasoning (Chang et al., 2020 ), student-centered hands-on learning activities (Chen & Liu, 2020 ), inquiry-based learning (Radu & Schneider, 2019 ), concept-map learning system (Chen et al., 2019 ), problem-based learning (Fidan & Tuncel, 2019 ), and argumentation (Jan, 2009 ; Squire & Jan, 2007 ) in science learning.

The only two existing studies using both AR and argumentation (Jan, 2009 ; Squire & Jan, 2007 ) focus on environmental education and use location-based augmented reality games through mobile devices to engage students in scientific argumentation. Studies combining AR and argumentation in astronomy education have not been found in the literature. In the current study, AR was integrated with argumentation in teaching astronomy content.

Studies have revealed that many topics in astronomy are very difficult to learn and that students have incorrect and naive concepts (Yu & Sahami, 2007 ). Many topics include three-dimensional (3D) spatial relationships between astronomical objects (Aktamış & Arıcı, 2013 ; Yu & Sahami, 2007 ). However, most of the traditional teaching materials used in astronomy education are two-dimensional (Aktamış & Arıcı, 2013 ). Teaching astronomy through photographs and 2D animations is not sufficient to understand the difficult and complex concepts of astronomy (Chen et al., 2007 ). Static visualization tools such as texts, photographs, and 3D models do not change over time and do not have continuous movement, while dynamic visualization tools such as videos or animations show continuous movement and change over time (Schnotz & Lowe, 2008 ). However, animation is the presentation of images on a computer screen (Rieber & Kini, 1991 ), not in the real world, and the users do not have a chance to manipulate the images (Setozaki et al., 2017 ). As a solution to this shortcoming, using 3D technology in science classes, especially AR technology for abstract concepts, has become a necessity (Sahin & Yilmaz, 2020 ). By facilitating interaction with real and virtual environment and supporting object manipulation, AR is possible to enhance educational benefits (Billinghurst, 2002 ). The students are not passive participants while using AR technology. For example, the animated 3D sun and Earth models are moved on a handheld platform that adjusts its orientation in accordance with the student’s point of view in Shelton’s study ( 2002 ). They found that the ability of students to manage “how” and “when” they are allowed to manipulate virtual 3D objects has a direct impact on learning complex spatial phenomena. Experimental results show that compared with traditional video teaching, AR multimedia video teaching method significantly improves students’ learning (Chen et al., 2022 ).

This study, which integrates argumentation with new striking technology “AR” in astronomy education, clarifies the relationship between them and examines variables such as critical thinking skills and argumentation abilities that are essential in the era we live, making this research important.

2.3 Research Questions

The purpose of this study was to identify the change in critical thinking skills and argumentation abilities through augmented reality–based argumentation activities in teaching astronomy content. The following research questions guided this study:

RQ1: How do the critical thinking skills of students who participated in both augmented reality and argumentation activities on astronomy change during the study?

RQ2: How do the argumentation abilities of students who participated in both augmented reality and argumentation activities on astronomy change during the study?

In this case study, we investigated the change of critical thinking skills and argumentation abilities of middle school students. Before the main intervention, a pilot study was conducted to observe the effectiveness of the prepared lesson plans in practice and to identify the problems in the implementation process. The pilot study was recorded with a camera. The camera recordings were watched by the researcher, and the difficulties in the implementation process were identified. In the main intervention, preventions were taken to overcome these difficulties. Table 1 illustrates that the problems encountered during the pilot study and the preventions taken to eliminate these problems.

During the main intervention, qualitative data were collected through observations and audio recordings to determine the change in the critical thinking skills and argumentation abilities of students who participated in both augmented reality and argumentation activities on astronomy.

3.1 Context and Participants

The participants consisted of 79 7th middle school students aged between 12 and 13 from a private school in Southern Turkey. The participants were determined as students in a private school where tablet computers are available for each student and the school willing to participate in the study. Twenty-six students, including 17 females and 9 males, participated in the study. The students’ parents signed the consent forms (whether participating or refusing participation in the study). The researcher informed them about the purpose of the study, instructional process, and ethical principles that directed the study. The teachers and school principals were informed that the preliminary and detailed conclusions of the study will be shared with them. The first researcher conducted the lessons in all groups because when the study was conducted, the use of augmented reality technology in education was very new. Also, the science teachers had inadequate knowledge and experience about augmented reality applications. Before the study, the researcher attended the classes with the teacher and made observations to help students become accustomed to the presence of the researcher in the classroom. This prolonged engagement increased the reliability of the implementation of instructions and data collection (Guba & Lincoln, 1989 ).

3.2 Instructional Activities

The 3-week, 19-h intervention process, which was based on the prepared lesson plan, was conducted. The students participated in the learning process that included both augmented reality and argumentation activities about astronomy.

3.2.1 Augmented Reality Activities

Free applications such as Star Chart, Sky View Free, Aurasma, Junaio, Augment, and i Solar System were used with students’ tablet computers in augmented reality instructions. Tablet computers were provided by the school administration from their stock. Videos, simulations, and 3D visuals generated by applications were used as “overlays.” In addition, pictures, photographs, colored areas in the worksheets, and students’ textbooks were used as “trigger images.” Students had the opportunity to interact with and manipulate these videos, simulations, and 3D visuals while using the applications. With applications such as Sky View Free and Star Chart, students were provided with the resources to make sky observations.

A detailed description of the activities used in augmented reality is given in Appendix Table 8 .

3.2.2 Argumentation Activities

Before the instruction, the students were divided into six groups by the teacher, paying attention to heterogeneity in terms of gender and academic achievement. After small group discussions, the students participated in whole-class discussions. Competing theories cartoons, tables of statements, constructing an argument, and argument-driven inquiry (ADI) frameworks were used to support argumentation in the learning process. Argument-driven inquiry consists of eight steps including the following: identification of the task, the generation and analysis of data, the production of a tentative argument, an argumentation session, an investigation report, a double-blind peer review, revision of the report, and explicit and reflective discussion (Sampson & Gleim, 2009 ; Sampson et al., 2011 ).

A detailed description of the activities used in argumentation is given in Appendix Table 9 .

4 Data Collection

The data were collected through unstructured and participant observations (Maykut & Morehouse, 1994 ; Patton, 2002 ). The instructional intervention was recorded with a video camera, and the students’ argumentation processes were also recorded with a voice recorder.

Since all students spoke at the same time during group discussions, the observation records were insufficient to understand the student talks. To determine what each student in the group said during the argumentation process, a voice recorder was placed in the middle of the group table, and a voice recording was taken throughout the lesson. A total of 2653.99 min of voice recordings were taken in the six groups.

4.1 Data Analysis

The analysis of the data was conducted with inductive and deductive approaches. Before coding, the data were arranged. The critical thinking data were organized by day. The argumentation skills were organized by day and also on the basis of the groups. After generating codes during the inductive analysis of the development of critical thinking skills, a deductive approach was adopted (Patton, 2002 ). The critical thinking skills dimensions discussed by Ennis ( 2011 ) and Ennis ( 1991 ) were used to determine the relationship between codes. Ennis ( 2011 ) prepared an outline to distinguish critical thinking dispositions and skills by synthesizing of many years of studies. These critical skills that contain abilities that ideal critical thinkers have were used to generate codes from students’ talks. This skills and abilities were given in Appendix Table 10 . Then “clarification skills, decision making-supporting skills, inference skills, advanced clarification skills, and other/strategy and techniques skills” discussed by Ennis ( 1991 ) and Ennis ( 2011 ) were used to determine the categories. The change in the argumentation abilities of the students was analyzed descriptively based on the Toulmin argument model (Toulmin, 1990 ) using the data obtained from the students’ voice recordings. The argument structures of each group during verbal argumentation were determined by dividing them into components according to the Toulmin model (Toulmin, 1990 ). The first three items (data, claim, and warrant) in the Toulmin model form the basis of an argument, and the other three items (rebuttal, backing, and qualifier) are subsidiary elements of the argument (Toulmin, 1990 ).

Some quotations regarding the analysis of the arguments according to the items are given in Appendix Table 11 .

Arguments from the whole group were put into stages based on the argumentation-level model developed by Erduran et al. ( 2004 ) to examine the changes in each lesson and to make comparisons between the small groups of students. By considering the argument model developed by Toulmin, Erduran et al. ( 2004 ) created a five-level framework for the assessment of the quality of argumentation supposing that the quality of the arguments including rebuttals was high. The framework is given in Table 2 .

4.2 Validity and Reliability

To confirm the accuracy and validity of the analysis, method triangulation, triangulation of data sources, and analyst triangulation were used (Patton, 2002 ).

For analyst triangulation, the qualitative findings were also analyzed independently by a researcher studying in the field of critical thinking and argumentation, and then these evaluations made by the researchers were compared.

Video and audio recordings of intervention and documents from the activities were used for the triangulation of data sources. In addition, the data were described in detail without interpretation. Additionally, within the reliability and validity efforts, direct quotations were given in the findings. In this sense, for students, codes such as S1, S2, and S3 were used, and the source of data, group number, and relevant date of the conversation were included at the end of the quotations.

In addition, experts studying in the field of critical thinking and argumentation were asked to verify all data and findings. After the process of reflection and discussion with experts, the codes, subcategories, and categories were revised.

For reliability, some of the data randomly selected from the written transcripts of the students’ audio recordings were also coded by a second encoder, and the interrater agreement between the two coders, determined by Cohen’s kappa (Cohen, 1960 ), was κ = 0.86, which is considered high reliability.

5.1 Development of Critical Thinking Ability

The development of critical thinking skills was given separately for the trend drastically changed on the day when the first skills were used by the students. All six dimensions of critical thinking skills were included in students’ dialogs or when there was a decrease in the number of categories of critical thinking skills.

The codes, subcategories, and categories of critical thinking skills that occurred on the first day (dated 11.05) are given in Table 3 .

Clarification skills, inference skills, other/strategy and technical skills, advanced clarification skills, and decision-making/supporting skills occurred on the first day. The students mostly used decision-making/supporting skills ( f  = 55). Under the decision-making/supporting skills category, students mostly explained observation data ( f  = 37). S7, S1, and S20 stated the data they presented about their observations with the Star Chart and Sky View applications as follows:

S7: Venus is such a yellowish reddish colour.

S1: What was the colour? Red and big. The moon’s color is white.

S20: Not white here.

S20: It’s not white here. (Audio Recordings (AuR), Group 2 / 11.05).

Additionally, S19 mentioned the observation data with the words “I searched Saturn. It is bright. It does not vibrate. It is yellow and it’s large.” (AuR, Group 2 / 11.05).

Decision-making/supporting skills were followed by inference ( f  = 17), clarification ( f  = 13), advanced clarification ( f  = 5), and skills and other/strategy technical skills ( f  = 1).

In Table 4 , the categories, subcategories, and codes for critical thinking skills that occurred on the fifth day (dated 18.05) are presented.

It was observed for the first time on the fifth day that all six dimensions of critical thinking skills were included in students’ dialogs. These are, according to the frequency of use, inference ( f  = 152), decision-making/support ( f  = 116), clarification ( f  = 43), advanced clarification ( f  = 8), other/strategy and technique ( f  = 3), and suppositional thinking and integrational ( f  = 2) skills.

On this date, judging the credibility of the source from decision-making/supporting skills ( f  = 1) was the skill used for the first time.

Unlike other days, for the first time, a student tried to prove his thoughts with an analogy in advanced clarification skills. An exemplary dialogue to this finding is as follows:

S19: Even the Moon remains constant, we will see different faces of the moon because the Earth revolves around its axis.

S6: I also say that it turns at the same speed. So, for example, when this house turns like this while we return in the same way, we always see the same face. (AuR, 18.05, Group 2).

Here, S6 tried to explain to his friend that they always see the same face of the moon by comparing how they see the same face of the house.

In Table 5 , the categories, subcategories, and codes for critical thinking skills that occurred on the sixth day (dated 21.05) are included.

There is a decrease in the number of categories of critical thinking skills. It was determined that the students used mostly inference skills in three categories ( f  = 38). Additionally, students used decision-making/support ( f  = 34) and clarification ( f  = 9) skills. In inference skills, it is seen that students often make claims ( f  = 33) and rarely infer from the available data ( f  = 4).

Among the decision-making/support skills, students mostly used the skill to give reasons ( f  = 28). S24 accepted herself as Uranus during the activity, and she gave reason to make Saturn as an enemy like that: “No, Saturn would be my enemy too. Its ring is more distinctive, it can be seen from the Earth, its ring is more beautiful than me.” (AuR, 21.05, Group 3/).

The categories, subcategories, and codes for critical thinking skills that occurred on the ninth day (dated 28.05) are presented in Table 6 .

In the course of the day dated 28.05, six categories of critical thinking skills were observed: clarification, inference, other/strategy and technique, advanced clarification, decision-making/support, suppositional thinking and integration skills. Furthermore, the subcategories under these categories are also very diverse.

There are 10 subcategories under clarification skills ( f  = 57), which are the most commonly used skills. The frequency of using these skills is as follows: asking his friend about his opinion ( f  = 15), asking questions to clarify the situation ( f  = 12), explaining his statement ( f  = 10), summarizing the solutions of other groups ( f  = 7), asking for a detailed explanation ( f  = 4), summarizing the idea ( f  = 3), explaining the solution proposal ( f  = 2), asking for a reason ( f  = 2), focusing on the question ( f  = 1), and asking what the tools used in experiment do ( f  = 1) skills. Explaining the solution proposal, asking what the tools used in the experiment do, and focusing on the question are the first skills used by the students.

When the qualitative findings regarding the critical thinking skills of the students were examined as a whole, it was determined that there was an improvement in the students’ critical thinking skills dimensions in the lessons held in the first 5 days (between 11.05 and 18.05). There was a decrease in the number of critical thinking skills dimensions in the middle of the intervention (21.05). However, after this date, there was an increase again in the number of critical thinking skills dimensions; and on the last day of the intervention, all the critical thinking skills dimensions were used by the students. In addition, it was determined that the skills found under these dimensions showed great variety at this date. Only in the middle (18.05) and on the last day (28.05) of the intervention did students use the skills in the six dimensions of critical thinking.

It was determined that students used mostly decision-making/support, inference, and clarification skills. According to the days, it was determined that the students mostly used inference skills (12.05, 15.05, 18.05, and 21.05) among these skills.

5.2 The Argumentation Abilities of the Students

5.2.1 argument structures in students’ verbal argumentation activities.

Instead of the argument structures of all groups, only an example of one group is presented because of including both basic and subsidiary items in the Toulmin argument model. In Table 7 , the argument structures in the verbal argumentation activities of the fourth group of students are presented due to the use of the “rebuttal” item.

When the argument structures in the verbal argumentation process of the six groups were examined, it was found that all groups engaged in the argumentation and produced arguments. In the activities, students mostly made claims. This was followed by data and warrant items. In the “the phases of the moon” activity, it was determined that only the second and fourth groups used rebuttal and the other groups did not.

The number of rebuttals used by the groups is lower in “the planets-table of statements” activity than in other activities. The rebuttals used are also weak. The use of rebuttals differs in the “who is right?” and “urgent solution to space pollution” activities. The number of rebuttal students used in these activities is higher than that in the other activities. The quality rebuttals are also higher.

When the structure of the warrants is examined, there are more unscientific warrants in the “urgent solution to space pollution” and “who is right” activities, while the correct scientific and partially correct scientific warrants were more frequently used in the “the phases of the moon” and “the planets table of statements” activities.

When the models related to the argument structures are examined in general, it was found that there is a decrease in the type of items used and the number of uses in the “the phases of the moon” and “the planets-table of statements” activities rather than the “urgent solution to space pollution” and “who is right” activities.

When the results were analyzed in terms of groups, it was determined that the argument structures of the second and fourth groups showed more variety than those of the other groups.

5.2.2 The Change of Argumentation Levels

The argumentation levels achieved by six groups created in the “who is right,” “ the planets-table of statements,” “phases of the moon,” and “urgent solution to space pollution” activities are shown in Fig.  2 .

figure 2

A characterization of the components of critical thinking (Jiménez-Aleixandre & Puig, 2012 , p. 6)

In the first verbal argumentation activity, “who is right?,” the arguments achieved by the five of the six groups were at level 5. Additionally, the arguments achieved by one group, which was group 6, were at level 4.

In the second verbal argumentation activity “table of statements,” a decrease was determined at the levels of the argumentation of the other groups except group 1 and group 3. In the “the phases of the moon” activity, there was a decrease at the level of argumentation achieved by the other groups except for group 2 and group 4. In the last argumentation activity, “urgent solution to space pollution,” it was found that the arguments of all groups were at level 5.

6 Conclusions and Discussion

The critical thinking skills of the students developed until the middle of the intervention, and the frequency of using critical thinking skills varied after the middle of the intervention. When the activities in the lessons were examined, on the days when critical thinking skills were frequently used, activities including argumentation methods were performed. Based on this situation, it could be revealed that the frequency of using critical thinking skills by students varies according to the use of the argumentation method.

Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, providing reasons for proof, and criticizing, rebutting, and evaluating an idea (Toulmin, 1990 ). According to the definition of argumentation, these processes are also in the subdimensions of critical thinking skills. The ability to provide reasons for critical thinking skills in decision-making/supporting skills is the equivalent of providing reasons for proof in the argumentation process using warrants in the Toulmin argument model. Different types of claims under inference skills are related to making claims in the argumentation process, and rejecting a judgment is related to rebutting an idea in the argumentation process. In this context, the argumentation method is thought to contribute to the development of critical thinking skills within AR.

Another qualitative finding reached in the study is that the skills most used in the subdimensions differ according to the days. This can be explained by the different types of activities performed in each lesson. For example, on the day when the ability to explain observation data was used the most, students observed the sky, constellations, and galaxies with the Star Chart or Sky View applications or observed the planets with the i-Solar System application, and they presented the data they obtained during these observations.

Regarding the verbal argumentation structure of the groups, the findings imply that all groups engaged in argumentation and produced arguments. This finding presented evidence with qualitative data to further verify Squire & Jan’s ( 2007 ) research conducted with primary, middle, and high school students to investigate the potential of a location-based AR game in environmental science concluding that all groups engaged in argumentation. Similarly, Jan ( 2009 ) investigated the experience of three middle school students and their argumentative discourse on environmental education using a location-based AR game, and it was found that all students participated in argumentation and produced arguments.

Another finding in the current study was that students mostly made claims in the activities. This situation can be interpreted as students being strong in expressing their opinions. Similar findings are found in the literature (Author, 20xxa; Cavagnetto et al., 2010 ; Erduran et al., 2004 ; Novak & Treagust, 2017 ). In addition, it was concluded that the students failed to use warrants and data, they could not support their claims with the data, and they did not use “rebuttal” in these studies. However, in this study in which both augmented reality applications and argumentation methods were used, students mostly made contradictory claims and used data and warrants in their arguments. This situation can be interpreted as students being strong in defending their opinions. Additionally, although it was stated in many of the studies that students’ argumentation levels were generally at level 1 or level 2 (Erdogan et al., 2017 ; Erduran et al., 2004 ; Venville & Dawson, 2010 ; Zohar & Nemet, 2002 ), it was found that most of the students’ arguments were at level 4 and level 5 in the current study. Arguments are considered to be high quality in line with the existence of rebuttals, and discussions involving rebuttals are characterized as having a high level of argumentation (Aufschnaiter et al., 2008 ; Erduran et al., 2004 ). Students used rebuttals in their arguments, and their arguments were at high levels, which indicates that students could produce quality arguments. The reason for these findings to differ from those of other studies may be due to the augmented reality technology used in the current study. Enriched representations make it easier to see the structure of arguments (Akpınar et al., 2014 ), helping students to improve their awareness, increase the number of words they use and comments they make (Erkens & Janssen, 2006 ), and provide important information about the subject (Clark et al., 2007 ). By observing enriched representations, students collect evidence for argumentation (Clark & Sampson, 2008 ) and explore different points of view to support their claim (Oestermeier & Hesse, 2000 ). AR technology, which includes enriched representations, may have increased the accessibility of rich data to support students’ arguments; and using these data has helped them to support their arguments and enabled them to discover different perspectives. For example, S4 explained that the statement in the table is incorrect because she observed Uranus, Jupiter, and Neptune having rings around them in the application “I-solar system” as Uranus. She used the data obtained in the AR application to support her claim.

When the models related to the argument structures are examined in general, it was concluded that the type of items, the number of items, and the rebuttals used in scientific activities were less than those in the activities involving socioscientific issues. The rebuttals used were also weak. There are also findings in the literature that producing arguments on scientific issues is more difficult than producing arguments on socioscientific issues (Osborne et al., 2004 ).

When the structure of the warrants in the students’ arguments was examined, it was seen that there are more nonscientific warrants in socioscientific activities, and the scientific and partially scientific warrants are more in the activities that contain scientific subjects. This shows that students were unable to combine what they have learned in science with socioscientific issues. Albe ( 2008 ) and Kolsto ( 2001 ) stated that scientific knowledge is very low in students’ arguments on socioscientific issues. Similarly, the results of the studies conducted in the related literature support this view (Demircioglu & Ucar, 2014 ; Sadler & Donnelly, 2006 ; Wu & Tsai, 2007 ).

When the argument structures in the activities are analyzed by groups, the argument structures of the two groups vary more than the other groups, and the argumentation levels of these groups are at level 4 and level 5. This might be because some students have different prior knowledge about subjects. Different studies have also indicated that content knowledge plays an important role in the quality of students’ arguments (Acar, 2008 ; Aufschnaiter et al., 2008 ; Clark & Sampson, 2008 ; Cross et al., 2008 ; Sampson & Clark, 2011 ). In many studies, it has been emphasized that the most important thing affecting the choice and process of knowledge is previous information (Stark et al., 2009 ). To better understand how previous information affects argumentation quality in astronomy education, investigating the relationship between middle school students’ content knowledge and argumentation quality could be a direction of future research.

7 Limitations and Future Research

There are some limitations in this study. First, this study was implemented in a private school. Therefore, the results are true for these students. Future research is necessary to be performed with the students in public schools. Second, the researcher conducted the lessons because the science teacher had no ability to design AR learning practices. Teachers and students creating their own AR experiences is an important way to bring the learning outcomes of AR available to a wider audience (Romano et al., 2020 ). Further research can be conducted in which the science teacher of the class is the instructor. Another limitation of the study is that the instruction with AR-based argumentation was time-consuming, and the time allocated for the “Solar System and Beyond” unit in the curriculum was not sufficient for the implementation, because students tried to understand to use AR applications, and they needed time to reflect on the activities despite prior training on AR before the instructional process. This situation may cause cognitive overload (Alalwan et al., 2020 ). The adoption and implementation of educational technologies are more difficult and time-consuming than other methods (Parker & Heywood, 1998 ). A longer period is needed to prepare student-centered and technology-supported activities.

Acar, O. (2008).  Argumentation skills and conceptual knowledge of undergraduate students in a physics by inquiry class . (Doctoral dissertation, The Ohio State University). https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1228972473&disposition=inline

Akpınar, Y., Ardaç, D., & Er-Amuce, N. (2014). Development and validation of an argumentation based multimedia science learning environment: Preliminary findings. Procedia-Social and Behavioral Sciences, 116 , 3848–3853.

Article   Google Scholar  

Aktamış, H., & Arıcı, V. A. (2013). The effects of using virtual reality software in teaching astronomy subjects on academic achievement and retention. Mersin University Journal of the Faculty of Education, 9 (2), 58–70.

Google Scholar  

Alalwan, N., Cheng, L., Al-Samarraie, H., Yousef, R., Alzahrani, A. I., & Sarsam, S. M. (2020). Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: A developing country perspective. Studies in Educational Evaluation, 66 , 100876.

Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38 (1), 67–90.

Arici, F., Yildirim, P., Caliklar, Ş, & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142 , 103647.

Atwood-Blaine, D., & Huffman, D. (2017). Mobile gaming and student interactions in a science center: The future of gaming in science education. International Journal of Science and Mathematics Education, 15 (1), 45–65.

Baran, B., Yecan, E., Kaptan, B., & Paşayiğit, O. (2020). Using augmented reality to teach fifth grade students about electrical circuits. Education and Information Technologies, 25 (2), 1371–1385.

Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12 (5), 1–5.

Bressler, D. M., & Bodzin, A. M. (2013). A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning, 29 (6), 505–517.

Buckingham Shum, S. J., MacLean, A., Bellotti, V. M., & Hammond, N. V. (1997). Graphical argumentation and design cognition. Human-Computer Interaction, 12 (3), 267–300.

Cadmus, R. R., Jr. (1990). A video technique to facilitate the visualization of physical phenomena. American Journal of Physics, 58 (4), 397–399.

Cai, S., Chiang, F. K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29 (4), 856–865.

Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16 (3), 389–398.

Cai, S., Liu, C., Wang, T., Liu, E., & Liang, J. C. (2021). Effects of learning physics using augmented reality on students’ self-efficacy and conceptions of learning. British Journal of Educational Technology, 52 (1), 235–251.

Cavagnetto, A., Hand, B. M., & Norton-Meier, L. (2010). The nature of elementary student science discourse in the context of the science writing heuristic approach. International Journal of Science Education, 32 (4), 427–449.

Chang, H. Y., Wu, H. K., & Hsu, Y. S. (2013). Integrating a mobile augmented reality activity to contextualize student learning of a socioscientific issue. British Journal of Educational Technology, 44 (3), 95–99.

Chang, H. Y., Liang, J. C., & Tsai, C. C. (2020). Students’ context-specific epistemic justifications, prior knowledge, engagement, and socioscientific reasoning in a mobile augmented reality learning environment. Journal of Science Education and Technology, 29 (3), 399–408.

Chen, S. Y., & Liu, S. Y. (2020). Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, 111 (2020), 106418.

Chen, C. H., Yang, J. C., Shen, S., & Jeng, M. C. (2007). A desktop virtual reality earth motion system in astronomy education. Educational Technology & Society, 10 (3), 289–304.

Chen, C. H., Huang, C. Y., & Chou, Y. Y. (2019). Effects of augmented reality-based multidimensional concept maps on students’ learning achievement, motivation and acceptance. Universal Access in the Information Society, 18 (2), 257–268.

Chen, C. C., Chen, H. R., & Wang, T. Y. (2022). Creative situated augmented reality learning for astronomy curricula. Educational Technology & Society, 25 (2), 148–162.

Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22 (4), 449–462.

Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17 (4), 352–365.

Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45 (3), 293–321.

Clark, D. B., Stegmann, K., Weinberger, A., Menekse, M., & Erkens, G. (2007). Technology-enhanced learning environments to support students’ argumentation. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 217–243). Springer.

Chapter   Google Scholar  

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 (1), 37–46.

Cross, D., Taasoobshirazi, G., Hendricks, S., & Hickey, D. T. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30 (6), 837–861.

Demircioglu, T., & Ucar, S. (2014). Investigation of written arguments about Akkuyu nuclear power plant. Elementary Education Online, 13 (4), 1373–1386.

Demircioglu, T., & Ucar, S. (2015). Investigation the effect of argument-driven inquiry in laboratory instruction. Educational Sciences: Theory and Practice, 15 (1), 267–283.

Dias, A. (2009). Technology enhanced learning and augmented reality: An application on multimedia interactive books. International Business & Economics Review, 1 (1), 69–79.

Dietrich, N., Kentheswaran, K., Ahmadi, A., Teychené, J., Bessière, Y., Alfenore, S., Laborie, S., & Hébrard, G. (2020). Attempts, successes, and failures of distance learning in the time of COVID-19. Journal of Chemical Education, 97 (9), 2448–2457.

Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84 , 287–312.

Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18 (1), 7–22.

Ennis, R. H. (1991). Goals for a critical thinking curriculum. In A. Costa (Ed.), Developing minds: A resource book for teaching thinking (pp. 68–71). The Association of Supervision and Curriculum Development.

Ennis, R. H. (2011). The nature of critical thinking: An outline of critical thinking dispositions and abilities. Illinois College of Education. https://education.illinois.edu/docs/default-source/faculty-documents/robert-ennis/thenatureofcriticalthinking_51711_000.pdf

Erdogan, I., Ciftci, A., & Topcu, M. S. (2017). Examination of the questions used in science lessons and argumentation levels of students. Journal of Baltic Science Education, 16 (6), 980–993.

Erduran, S. (2020). Science education in the era of a pandemic: How can history, philosophy and sociology of science contribute to education for understanding and solving the Covid-19 crisis? Science & Education, 29 , 233–235.

Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88 (6), 915–933.

Erduran, S., Özdem, Y., & Park, J. Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998–2014. International Journal of STEM Education, 2 (1), 1–12.

Erkens, G., & Janssen, J. (2006). Automatic coding of communication in collaboration protocols. In S. Barab, K. Hay, & D. Hickey (Eds.), Proceedings of the 7th International Conference on Learning Sciences (ICLS) , (pp. 1063–1064). International Society of the Learning Sciences. https://doi.org/10.5555/1150034

Faridi, H., Tuli, N., Mantri, A., Singh, G., & Gargrish, S. (2020). A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics. Computer Applications in Engineering Education, 29 , 258–273.

Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142 , 103635.

Fleck, S., & Simon, G. (2013, November). An augmented reality environment for astronomy learning in elementary grades: An exploratory study. In  Proceedings of the 25th Conference on l ’ Interaction Homme-Machine  (pp. 14–22). ACM.

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of augmented reality on students’ learning gains. Educational Research Review, 27 , 244–260.

Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality , 1–13

Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis.  Educational Research Review , 100334.

Guba, E.G. & Lincoln, Y.S. (1989). Fourth generation evaluation . Sage Publications.

Hanid, M. F. A., Said, M. N. H. M., & Yahaya, N. (2020). Learning strategies using augmented reality technology in education: Meta-analysis. Universal Journal of Educational Research, 8 (5A), 51–56.

Hsiao, H. S., Chang, C. S., Lin, C. Y., & Wang, Y. Z. (2016). Weather observers: A manipulative augmented reality system for weather simulations at home, in the classroom, and at a museum. Interactive Learning Environments, 24 (1), 205–223.

Huang, K. T., Ball, C., Francis, J., Ratan, R., Boumis, J., & Fordham, J. (2019). Augmented versus virtual reality in education: An exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychology, Behavior, and Social Networking, 22 (2), 105–110.

Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24 (8), 1895–1906.

Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71 , 1–13.

Jan, M. (2009). Designing an augmented reality game-based curriculum for argumentation . (Unpublished doctoral dissertation). University of Wisconsin-Madison.

Jermann, P., & Dillenbourg, P. (2003). Elaborating new arguments through a CSCL script. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 205–226). Springer.

Jiménez –Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Springer.

Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In  Second international handbook of science education  (pp. 1001–1015). Springer, Dordrecht.

Ke, F., & Carafano, P. (2016). Collaborative science learning in an immersive flight simulation. Computers & Education, 103 , 114–123.

Kennedy, G., Dalgarno, B., Bennett, S., Judd, T., Gray, K., & Chang, R. (2008). Immigrants and natives: Investigating differences between staff and students’ use of technology. In Hello! Where are you in the landscape of educational technology? . Proceedings Ascilite Melbourne, 2008 , 484–492.

Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10 (3–4), 163–174.

Kirikkaya, E. B., & Başgül, M. Ş. (2019). The effect of the use of augmented reality applications on the academic success and motivation of 7th grade students. Journal of Baltic Science Education, 18 (3), 362.

Kolsto, S. D. (2001). ‘To trust or not to trust,…’-pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23 (9), 877–901.

Lin, S. S., & Mintzes, J. J. (2010). Learning argumentation skills through instruction in socioscientific issues: The effect of ability level. International Journal of Science and Mathematics Education, 8 (6), 993–1017.

López-Faican, L., & Jaen, J. (2020). Emofindar: Evaluation of a mobile multiplayer augmented reality game for primary school children. Computers & Education, 149 (2020), 103814.

Lu, S. J., Liu, Y. C., Chen, P. J., & Hsieh, M. R. (2020). Evaluation of AR embedded physical puzzle game on students’ learning achievement and motivation on elementary natural science. Interactive Learning Environments, 28 (4), 451–463.

Maykut, P., & Morehouse, R. (1994). Beginning qualitative research: A philosophic and practical guide. The Falmer Press.

Novak, A. M., & Treagust, D. F. (2017). Adjusting claims as new evidence emerges: Do students incorporate new evidence into their scientific explanations? Journal of Research in Science Teaching, 55 (4), 526–549.

Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review. Contemporary Educational Psychology, 33 (3), 345–359.

OECD. (2003). Literacy skills for the world of tomorrow: Further results from PISA 2003 . OECD Publishing.

Book   Google Scholar  

Oestermeier, U., & Hesse, F. W. (2000). Verbal and visual causal arguments. Cognition, 75 (1), 65–104.

Oleksiuk, V.P., Oleksiuk, O.R. (2020). Exploring the potential of augmented reality for teaching school computer science. In Burov, O.Yu., Kiv, A.E. (Eds.) Proceedings of the 3rd International Workshop on Augmented Reality in Education (AREdu 2020) (pp. 91–107).

Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41 (10), 994–1020.

Parker, J., & Heywood, D. (1998). The earth and beyond: Developing primary teachers’ understanding of basic astronomical events. International Journal of Science Education, 20 , 503–520.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Sage.

Pellas, N., Fotaris, P., Kazanidis, I., & Wells, D. (2019). Augmenting the learning experience in primary and secondary school education: A systematic review of recent trends in augmented reality game-based learning. Virtual Reality, 23 (4), 329–346.

Ploman, E. W. (1987), Global learning: A challenge. In C. A., Taylor (Ed.) Science education and information transfer (pp. 75–80). Oxford: Pergamon (for ICSU Press).

Radu, I., & Schneider, B. (2019). What can we learn from augmented reality (AR)? Benefits and drawbacks of AR for inquiry-based learning of physics. In  Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems  (pp. 1–12).

Rideout, V. J., Foehr, U. G., & Roberts, D. F. (2010). Generation M [superscript 2]: Media in the lives of 8-to 18-year-olds . Kaiser Family Foundation.

Rieber, L. P., & Kini, A. S. (1991). Theoretical foundations of instructional applications of computer-generated animated visuals. Journal of Computer-Based Instruction, 18 , 83e88.

Romano, M., Díaz, P., & Aedo, I. (2020). Empowering teachers to create augmented reality experiences: The effects on the educational experience.  Interactive Learning Environments , 1–18.

Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28 (12), 1463–1488.

Sahin, D., & Yilmaz, R. M. (2020). The effect of augmented reality technology on middle school students’ achievements and attitudes towards science education. Computers & Education, 144 (2020), 103710.

Sampson, V., & Clark, D. B. (2011). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41 (1), 63–97.

Sampson, V., & Gleim, L. (2009). Argument-driven ınquiry to promote the understanding of important concepts & practices in biology. The American Biology Teacher, 71 (8), 465–472.

Sampson, V., Grooms, J., & Walker, J. P. (2011). Argument-driven ınquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95 (2), 217–257.

Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23 (1), 23–55.

Saribas, D., & Çetinkaya, E. (2021). Pre-service teachers’ analysis of claims about COVID-19 in an online course. Science & Education, 30 (2), 235–266.

Schnotz, W., & Lowe, R. K. (2008). A unified view of learning from animated and static graphics. In R. K. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 304–357). Cambridge University Press.

Setozaki, N., Suzuki, K., Iwasaki, T., & Morita, Y. (2017). Development and evaluation of the usefulness of collaborative learning on the tangible AR learning equipment for astronomy education. Educational Technology Research, 40 (1), 71–83.

Shelton, B. E. & Hedley, N. R. (2002). Using augmented reality for teaching earth-sun relationships to undergraduate geography students. In Augmented Reality Toolkit, The First IEEE International Workshop (8).

Sin, A. K., & Zaman, H. B. (2010). Live solar system (LSS): Evaluation of an augmented reality book-based educational tool. In Proceedings of 2010 International Symposium on Information Technology, 1 , 1–6.

Squire, K. (2006). From content to context: Videogames as designed experience. Educational Researcher, 35 (8), 19–29.

Squire, K. D., & Jan, M. (2007). Mad City Mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16 (1), 5–29.

Stark, R., Puhl, T., & Krause, U. M. (2009). Improving scientific argumentation skills by a problem-based learning environment: Effects of an elaboration tool and relevance of student characteristics. Evaluation & Research in Education, 22 (1), 51–68.

Syawaludin, A., Gunarhadi, R., & P. (2019). Development of augmented reality-based interactive multimedia to improve critical thinking skills in science learning. International Journal of Instruction, 12 (4), 331–344.

Taylor, C. A. (1987). Science education and information transfer (pp.1–15). Oxford: Pergamon (for ICSU Press)

Toulmin, S. E. (1990). The uses of argument (10th ed.). Cambridge University Press.

Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47 (8), 952–977.

Virata, R. O., & Castro, J. D. L. (2019). Augmented reality in science classroom: Perceived effects in education, visualization and information processing. In  Proceedings of the 10th International Conference on E-Education, E-Business, E-Management and E-Learning  (pp. 85–92).

Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45 (1), 101–131.

Wu, Y. T., & Tsai, C. C. (2007). High school students’ informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29 (9), 1163–1187.

Yen, J. C., Tsai, C. H., & Wu, M. (2013). Augmented reality in the higher education: Students’ science concept learning and academic achievement in astronomy. Procedia-Social and Behavioral Sciences, 103 , 165–173.

Yildirim, I., & Seckin-Kapucu, M. (2020). The effect of augmented reality applications in science education on academic achievement and retention of 6th grade students. Journal of Education in Science Environment and Health, 7 (1), 56–71.

Yu, K. C., & Sahami, K. (2007). Visuospatial astronomy education in immersive digital planetariums.  Communicating Astronomy with the Public , 242–245.

Yuen, S., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange, 4 (1), 119–140.

Zhang, J., Sung, Y.-T., Hou, H.-T., & Chang, K.-E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & Education, 73 , 178–188.

Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39 (1), 35–62.

Download references

This study is a part of Tuba Demircioğlu’s dissertation supported by the Cukurova University Scientific Research Projects (grant number: SDK20153929).

The manuscript is part of first author’s PhD dissertation. The study was reviewed and approved by the PhD committee in the Cukurova University Faculty of Education, as well as by the committee of Ministry of National Education. The parents of students were provided with written informed consent.

Author information

Authors and affiliations.

Faculty of Education, Department of Mathematics and Science Education/Elementary Science Education, Cukurova University, 01330, Saricam-Adana, Turkey

Tuba Demircioglu & Sedat Ucar

Department of Educational Sciences, Cukurova University, Adana, Turkey

Memet Karakus

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Tuba Demircioglu .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tables 8 , 9 , 10 and 11

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Demircioglu, T., Karakus, M. & Ucar, S. Developing Students’ Critical Thinking Skills and Argumentation Abilities Through Augmented Reality–Based Argumentation Activities in Science Classes. Sci & Educ 32 , 1165–1195 (2023). https://doi.org/10.1007/s11191-022-00369-5

Download citation

Accepted : 15 July 2022

Published : 22 August 2022

Issue Date : August 2023

DOI : https://doi.org/10.1007/s11191-022-00369-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Critical thinking definition

tools of argument in critical thinking

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

  • Book a Speaker

right-icon

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus convallis sem tellus, vitae egestas felis vestibule ut.

Error message details.

Reuse Permissions

Request permission to republish or redistribute SHRM content and materials.

Critical Thinking Will Be Necessary When Using AI

Justin Reinert Talent24

Artificial intelligence is gaining widespread adoption in the workplace, and critical thinking skills will be key to successfully using the technology to improve work and limit negative consequences.

AI is a powerful tool, but the results need to be questioned and verified by humans in your organization, said Justin Reinert, SHRM-SCP, a corporate trainer and principal of Performance Accelerated Learning, speaking April 15 at the SHRM Talent Conference & Expo 2024 (Talent 2024).  

“AI offers an opportunity and an imperative for enhanced critical thinking skills in the workplace as responsibilities for some will change from producers to verifiers,” he said.

Critical thinking is the practice of analysis to understand a problem or topic thoroughly. Critical thinking typically includes steps such as collecting information and data, asking thoughtful questions, and analyzing possible solutions.

This important skill is even more necessary in the age of AI, because the technology is still prone to negative outcomes, such as the potential for making up or “hallucinating” information, generating biased results and demonstrating gaps in reasoning.

Some recent noteworthy misses include:

  • Attorneys who used generative AI (GenAI) to write motions and briefs that contained made-up case citations .
  • The AI-powered chatbot created by the New York City government to help small-business owners providing inaccurate information .

“The use of AI in the workplace is fast growing and quickly evolving—an individual’s ability to discern fact from AI hallucination is increasingly challenging,” Reinert said. “Without deep critical thinking skills, we face a danger where falsehoods are being incorporated into our workplaces and consumer interactions. The educators in the corporate world will have the responsibility to develop this in your people.”

He added that there are two paths forward: a path of automation and a path of new capabilities for humans.

“Typically, as technology advances, we use technology to automate processes, make things faster and more efficient,” he said. “But as we appropriate AI into our work, there is another path to be mindful of. Identify the things that are uniquely human, and make sure you develop those skills in people, and then automate what can be automated. Ensure that humans stay front of mind.”

Of course, to effectively use, train and improve AI, those involved must have strong critical thinking skills themselves.

5 Critical Thinking Skills and How to Develop Them

Reinert listed the following critical thinking skills and what employers can do to help build these capabilities in their workforce:

1. Observation , or the ability to notice and predict opportunities, problems, and solutions. Organizations can practice scenario and risk planning, engaging teams with various possibilities, mindfulness training to improve concentration and focus, and competitive intelligence exercises.  

2. Analysis , or the gathering, understanding, and interpreting of data and other information. This can be practiced through data analysis training, data interpretation workshops and data reviews.

3. Inference , or drawing conclusions based on relevant data, information, and personal knowledge and experience. This skill can be developed through case study analyses related to specific work functions, critical reading and discussion assignments, and mind mapping exercises to identify connections in disparate information.

4. Communication , or the sharing and receiving of information with others verbally, nonverbally, and in writing. Organizations can practice this skill with role-playing scenarios, through public speaking opportunities, and by holding feedback sessions and peer reviews.

5. Problem-solving , or choosing and executing a solution after identifying and analyzing a problem. Problem-solving can be developed through root cause analysis drills to find the underlying causes of a problem; working through a decision-making matrix to evaluate potential solutions based on feasibility, impact and cost; and via simulation exercises that mimic real-world challenges.

Related Content

tools of argument in critical thinking

Rising Demand for Workforce AI Skills Leads to Calls for Upskilling

As artificial intelligence technology continues to develop, the demand for workers with the ability to work alongside and manage AI systems will increase. This means that workers who are not able to adapt and learn these new skills will be left behind in the job market.

A vast majority of U.S. professionals  think students should be prepared to use AI upon entering the workforce.

Employers Want New Grads with AI Experience, Knowledge

A vast majority of U.S. professionals say students entering the workforce should have experience using AI and be prepared to use it in the workplace, and they expect higher education to play a critical role in that preparation.

Advertisement

tools of argument in critical thinking

Artificial Intelligence in the Workplace

​An organization run by AI is not a futuristic concept. Such technology is already a part of many workplaces and will continue to shape the labor market and HR. Here's how employers and employees can successfully manage generative AI and other AI-powered systems.

HR Daily Newsletter

New, trends and analysis, as well as breaking news alerts, to help HR professionals do their jobs better each business day.

Success title

Success caption

IMAGES

  1. Critical Thinking Skills

    tools of argument in critical thinking

  2. Guide to improve critical thinking skills

    tools of argument in critical thinking

  3. 6 Main Types of Critical Thinking Skills (With Examples)

    tools of argument in critical thinking

  4. Critical thinking theory, teaching, and practice

    tools of argument in critical thinking

  5. How to promote Critical Thinking Skills

    tools of argument in critical thinking

  6. Critical_Thinking_Skills_Diagram_svg

    tools of argument in critical thinking

VIDEO

  1. Part 3 Various tools, Critical Thinking, Evidence

  2. Video Argument presentation for Critical Thinking Class

  3. Fail-Safe Argument Mapping with Rationale Software

  4. Part 1 Various tools, Critical Thinking, Evidence

  5. Group 11 : Build an Argument (Critical Thinking Reading)

  6. EP.1 What is an Argument ?

COMMENTS

  1. Arguments and Critical Thinking

    Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. " Argument: An attempt to support a conclusion by giving reasons for it.". Robert Ennis, Critical Thinking, p. 396. "Argument - A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).".

  2. Chapter 2 Arguments

    Chapter 2 Arguments. Chapter 2. Arguments. The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python's Flying Circus: 3. Man: (Knock) Mr. Vibrating: Come in.

  3. Arguments in Context

    Arguments in Context is a comprehensive introduction to critical thinking that covers all the basics in student-friendly language. Intended for use in a semester-long course, the text features classroom-tested examples and exercises that have been chosen to emphasize the relevance and applicability of the subject to everyday life. Three themes are developed as the text proceeds from argument ...

  4. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  5. Introduction to Logic and Critical Thinking

    This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a ...

  6. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  7. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  8. PDF FUNDAMENTALS OF CRITICAL ARGUMENTATION

    Fundamentals of Critical Argumentation presents the basic tools for the iden-tification, analysis, and evaluation of common arguments for beginners. The book teaches by using examples of arguments in dialogues, both in the text itself and in the exercises. Examples of controversial legal, political, and ethi-cal arguments are analyzed.

  9. Arguing Using Critical Thinking

    Critical thinking skills are crucial. Critical thinking is a series learned skills. In each chapter of this book you will find a variety of skills that will help you improve your thinking and argumentative ability. As you improve, you will grow into a more confident person being more in charge of your world and the decisions you make.

  10. How to analyse arguments (CHAPTER 4)

    A s critical thinkers, we should know how to analyse arguments clearly. This is because a complete analysis of an argument helps us to arrive at a better understanding of the meaning of the argument. The word 'analyse' means to dissect, or to lay bare. When we analyse an argument we want to lay bare the components of the argument.

  11. Chapter 14 Inductive Arguments

    Chapter 14. Inductive Arguments. The goal of an inductive argument is not to guarantee the truth of the conclusion, but to show that the conclusion is probably true. Three important kinds of inductive arguments are. Inductive generalizations, Arguments from analogy, and. Inferences to the best explanation.

  12. Making an Argument

    Critical Thinking in Academic Research. Nearly all scholarly writing makes an argument. That's because its purpose is to create and share new knowledge so it can be debated to confirm, disprove, or improve it. That arguing takes place mostly in journals and scholarly books and at conferences. It's called the scholarly conversation, and it ...

  13. Research Guides: Critical Thinking Tutorial: Argument Mapping

    Argument mapping can be quite involved and depends on a good working knowledge of the components of an argumen and the interplay between those components. For more information and step-by-step instructions, see Chapter 10 of Studies in Critical Thinking, an open textbook provided by eCampusOntario. Scroll down to the bottom of the chapter, or ...

  14. Identify arguments

    An argument is any statement or claim supported by reasons. Arguments range from quite simple (e.g. 'You should bring an umbrella, because it looks like it might rain') to very complex (e.g. an argument for changing the law or introducing a new scientific theory). Arguments can be found everywhere. Whenever somebody is trying to show that ...

  15. LOGOS: Critical Thinking, Arguments, and Fallacies

    LOGOS: Critical Thinking, Arguments, and Fallacies Heather Wilburn, Ph.D. Critical Thinking: With respect to critical thinking, it seems that everyone uses this phrase. Yet, there is a fear that this is becoming a buzz-word (i.e. a word or phrase you use because it's popular or enticing in some way). Ultimately, this means that we may be ...

  16. 4.1: Making an Argument

    Critical Thinking in Academic Research (Gruwell and Ewing) 4: Making an Argument 4.1: Making an Argument Expand/collapse global location 4.1: Making an Argument ... Most arguments put forth a new theory, hypothesis, or new view of a current or ongoing issue. Of course, you're probably a beginner at constructing arguments in writing, while ...

  17. Kinds of Arguments

    Kinds of Arguments. Contemporary Western philosophy treats arguments as coming in two main types, deductive and inductive. The basic distinction and difference will be mentioned here. Deductive arguments are arguments in which the premises (if true) guarantee the truth of the conclusion. The conclusion of a successful deductive argument cannot ...

  18. Improving Critical Thinking Through Argument Mapping

    An evaluation of argument mapping as a method of enhancing critical thinking performance in e-learning environments. Metacognition and Learning, 7, 219-244. Halpern, D.F. (2014).

  19. Argumentation, Evidence Evaluation and Critical Thinking

    Using this frame, the chapter examines the contributions of argumentation in science education to the components of critical thinking, and also discusses the evaluation of evidence and the different factors influencing or even hampering it. The chapter concludes with consideration of the development of critical thinking in the science classroom.

  20. Using Computer-Aided Argument Mapping to Teach Reasoning

    Introduction [1], [2]. Argument mapping is a way of diagram m ing the l ogical structure of an argument to explicitly and concisely represent reasoning. (See F igure 1, for a n example.) The use of argument mapping in critical thinking instruction has increased dramatically in recent decades. A brief history of argument mapping is provided at the end of this p a per.

  21. Critical thinking arguments for beginners

    In critical thinking and logic, 'argument' has a particular meaning. It refers to a set of statements, consisting of one conclusion and one or more premises. The conclusion is the statement that the argument is intended to prove. The premises are the reasons offered for believing that the conclusion is true. A critical thinking argument ...

  22. Developing Students' Critical Thinking Skills and Argumentation

    Critical thinking skills that include the ability to evaluate arguments and counterarguments in a variety of contexts are very important, and effective argumentation is the focal point of criticism and the informed decision (Nussbaum, 2008).Argumentation is defined as the process of making claims about a scientific subject, supporting them with data, using warrants, and criticizing, refuting ...

  23. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  24. Critical Thinking Will Be Necessary When Using AI

    Critical thinking typically includes steps such as collecting information and data, asking thoughtful questions, and analyzing possible solutions. This important skill is even more necessary in ...