Explore Psychology

Cognitive Approach to Psychology: Definition and Examples

Categories Cognition

Cognitive Approach to Psychology: Definition and Examples

Sharing is caring!

The cognitive approach to psychology focuses on internal mental processes. Such processes include thinking, decision-making, problem-solving , language, attention, and memory. The cognitive approach in psychology is often considered part of the larger field of cognitive science. This branch of psychology is also related to several other disciplines, including neuroscience, philosophy, and linguistics.

The core focus of the cognitive approach to psychology is on how people acquire, process, and store information. Cognitive psychologists are interested in studying what happens inside people’s minds.

Table of Contents

What Is the Cognitive Approach to Psychology?

While the cognitive approach to psychology is a popular branch of psychology today, it is actually a relatively young field of study. Until the 1950s, behaviorism was the dominant school of thought in psychology.

Between 1950 and 1970, the tide began to shift against behavioral psychology to focus on topics such as attention, memory, and problem-solving.

Often referred to as the cognitive revolution, this period generated considerable research on subjects, including processing models, cognitive research methods , and the first use of the term “cognitive psychology.”

The term “cognitive psychology” was first used in 1967 by American psychologist Ulric Neisser in his book Cognitive Psychology . According to Neisser, cognition involves “all processes by which the sensory input is transformed, reduced, elaborated, stored, recovered, and used.” Neisser also suggested that given such a broad and sweeping definition, cognition was involved in anything and everything that people do.

Essentially, all psychological events are cognitive events. Today, the American Psychological Association defines cognitive psychology as the “study of higher mental processes such as attention, language use, memory, perception, problem solving, and thinking.”

Understanding the Emergence of the Cognitive Approach

Some factors that contributed to the rise of the cognitive approach to psychology. These include:

  • Dissatisfaction with the behaviorist approach : Behaviorism largely focused on looking at external influences on behavior. What the behavioral perspective failed to account for was the internal processes that influence human behavior. The cognitive approached emerged to fill this void.
  • The increased use of computers : Scientists began comparing the way the human mind works to how a computer stores information on a hard drive. The information-processing model became popular as a result.

Thanks to these influences, the cognitive approach became an increasingly important branch of psychology. Behaviorism lost its hold as a dominant perspective, and psychologists began to look more intensely at memory, learning, language, and other internal processes.

Research Methods Used in the Cognitive Approach

Psychologists who use the cognitive approach rely on rigorous scientific methods to research the human mind. In many cases, this involves using experiments to determine if changes in an independent variable result in changes in the dependent variable.

Some of the main research methods used in the cognitive approach include:

Experimental Research

This involves conducting controlled experiments to manipulate variables and observe their effects on cognitive processes. Experiments are often conducted in laboratory settings to maintain control over extraneous variables.

For example, a memory experiment might involve randomly assigning participants to take a series of memory tests to determine if a certain change in conditions led to changes in memory abilities.

By using rigorous empirical methods, psychologists can accurately determine that it is the independent variable causing the changes rather than some other factor.

Cognitive Neuropsychology

This approach studies cognitive function by examining individuals with brain injuries or neurological disorders. By observing how damage to specific brain areas affects cognitive processes, researchers can infer the functions of those areas.

Neuroimaging Techniques

Cognitive neuroscientists use techniques to examine brain activity during cognitive tasks. Some of these neuroimaging tools include:

  • Functional magnetic resonance imaging (fMRI)
  • Positron emission tomography (PET)
  • Electroencephalography (EEG)

Eye-Tracking Studies

Eye-tracking technology is used to study visual attention and perception by recording eye movements as participants view stimuli. This method provides insights into how people process visual information and allocate attention.

Areas of Study in the Cognitive Approach

As mentioned previously, any mental event is considered a cognitive event. There are a number of larger topics that have held the interest of cognitive psychologists over the last few decades. These include:

Information-Processing

As you might imagine, studying what’s happening in a person’s thoughts is not always the easiest thing to do.

Very early in psychology’s history, Wilhelm Wundt attempted to use a process known as introspection to study what was happening inside a person’s mind. This involved training people to focus on their internal states and write down what they were feeling, thinking, or experiencing. This approach was extremely subjective, so it did not last long as a cognitive research tool.

Cognitive psychologists have developed different models of thinking to study the human mind. One of the most popular of these is the information-processing approach .

In this approach, the mind is thought of as a computer. Thoughts and memories are broken down into smaller units of knowledge. As information enters the mind through the senses, it is manipulated by the brain, which then determines what to do with it.

Some information triggers an immediate response. Other units of information are transferred into long-term memory for future use.

Units of Knowledge

Cognitive psychologists often break down the units of knowledge into three different types: concepts, prototypes, and schemas.

A concept is basically a larger category of knowledge. A broad category exists inside your mind for these concepts where similar items are grouped together. You have concepts for things that are concrete such as a dog or cat, as well as concepts for abstract ideas such as beauty, gravity, and love.

A prototype refers to the most recognizable example of a particular concept. For example, what comes to mind when you think of a chair. If a large, comfy recliner immediately springs to mind, that is your prototype for the concept of a chair. If a bench, office chair, or bar stool pops into your mind, then that would be your prototype for that concept.

A schema is a mental framework you utilize to make sense of the world around you. Concepts are essentially the building blocks that are used to construct schemas, which are mental models for what you expect from the world around you. You have schemas for a wide variety of objects, ideas, people, and situations.

So what happens when you come across information that does not fit into one of your existing schemas? In some cases, you might even encounter things in the world that challenges or completely upend the ideas you already hold.

When this happens, you can either assimilate or accommodate the information. Assimilating the information involves broadening your current schema or even creating a new one. Accommodating the information requires changing your previously held ideas altogether. This process allows you to learn new things and develop new and more complex schemas for the world around you.

The Cognitive Approach to Attention

Attention is another major topic studied in the field of cognitive psychology. Attention is a state of focused awareness of some aspect of the environment. This ability to focus your attention allows you to take in knowledge about relevant stimuli in the world around you while at the same time filtering out things that are not particularly important.

At any given moment in time, you are taking in an immense amount of information from your visual, auditory, olfactory, tactile, and taste senses. Because the human brain has a limited capacity for handling all of this information, attention is both limited and selective.

Your attentional processes allow you to focus on the things that are relevant and essential for your survival while filtering out extraneous details.

The Cognitive Approach to Memory

How people form, recall, and retain memories is another important focus in the cognitive approach. The two major types of memory that researchers tend to look at are known as short-term memory and long-term memory.

Short-Term Memory

Short-term memories are all the things that you are actively thinking about and aware of at any given moment. This type of memory is both limited and very brief.

Estimates suggest that you can probably hold anywhere from 5 to 9 items in short-term memory for approximately 20 to 30 seconds.

Long-Term Memory

If this information is actively rehearsed and attended to, it may be transferred to what is known as long-term memory. As the name suggests, this type of memory is much more durable. While these longer-lasting memories are still susceptible to forgetting , the information retained in your long-term memory can last anywhere from days to decades.

Cognitive psychologists are interested in the various processes that influence how memories are formed, stored, and later retrieved. They also look at things that might interfere with the formation and storage of memories as well as various factors that might lead to memory errors or even false memories.

The Cognitive Approach to Intelligence

Human intelligence is also a major topic of interest within cognitive psychology, but it is also one of the most hotly debated and sometimes controversial. Not only has there been considerable questioning over how intelligence is measured (or if it can even be measured), but experts also disagree on exactly how to define intelligence itself.

One survey of psychologists found that experts provided more than 70 different definitions of what made up intelligence. While exact definitions vary, many agree that two important themes include both the ability to learn and the capacity to adapt as a result of experience.

Researchers have found that more intelligent people tend to perform better on tasks that require working memory , problem-solving, selective attention , concept formation, and decision-making. When looking at intelligence, cognitive psychologists often focus on understanding the mental processes that underlie these critical abilities.

Cognitive Development

Cognitive development refers to the changes in cognitive abilities that occur over the lifespan, from infancy through old age. Cognitive psychologists study the development of perception, attention, memory, language, and reasoning skills.

Research in cognitive development explores factors that influence cognitive growth, such as genetics, environment, and social interactions.

Language is a complex cognitive ability that enables communication through the use of symbols and grammatical rules. Cognitive psychologists study the cognitive processes involved in language comprehension, production, and acquisition.

Research in language examines topics such as syntax, semantics, pragmatics, and the neurobiological basis of language processing.

Reasons to Study the Cognitive Approach

Because cognitive psychology touches on many other disciplines, this branch of psychology is frequently studied by people in different fields. Even if you are not a psychology student, learning some of the basics of cognitive psychology can be helpful.

The following are just a few of those who may benefit from studying cognitive psychology.

  • Students interested in behavioral neuroscience, linguistics, industrial-organizational psychology, artificial intelligence, and other related areas.
  • Teachers, curriculum designers, instructional developers, and other educators may find it helpful to learn more about how people process, learn, and remember information.
  • Engineers, scientists, artists, architects, and designers can all benefit from understanding internal mental states and processes.

Key Points to Remember About Cognitive Approach

  • The cognitive approach emerged during the 1960s and 70s and has become a major force in the field of psychology.
  • Cognitive psychologists are interested in mental processes, including how people take in, store, and utilize information.
  • The cognitive approach to psychology often relies on an information-processing model that likens the human mind to a computer.
  • Findings from the field of cognitive psychology apply in many areas, including our understanding of learning, memory, moral development, attention, decision-making, problem-solving, perceptions, and therapy approaches such as cognitive-behavior therapy and rational emotive behavior therapy.

Airenti G. (2019). The place of development in the history of psychology and cognitive science .  Frontiers in Psychology ,  10 , 895. https://doi.org/10.3389/fpsyg.2019.00895

Legg S, Hutter M.  A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications . 2007;157:17-24.

Miller, G. A. (1956). The magical n u mber seven, plus or minus two: Some limits on our capacity for processing information .  Psychological Review, 63 (2), 81–97. https://doi.org/10.1037/h0043158

Neisser U. Cognitive Psychology . Meredith Publishing Company; 1967.

Image: Julia Freeman-Woolpert / freeimages.com

What Is Cognitive Development? 3 Psychology Theories

Cognitive Development

But don’t worry, we will try our best to help you with the essentials of this complex field of study.

We’ll start with some background, then show you how cognitive skills are used every day. In addition, we will explain a few theories and describe fascinating studies.

Since cognitive development goes beyond childhood and into adolescence, we are sure you will want to know all about this, too.

To end this article, we provide some helpful resources. You can use these to support the cognitive skills of your students or clients.

Before you continue, we thought you might like to download our three Positive Psychology Exercises for free . These science-based exercises explore fundamental aspects of positive psychology, including strengths, values, and self-compassion, and will give you the tools to enhance the wellbeing of your clients, students, or employees.

This Article Contains:

What is cognitive development in psychology, cognitive development skills & important milestones, 5 real-life examples of cognitive development, 3 ground-breaking cognitive development theories, a look at cognitive development in adolescence, 3 fascinating research studies, helpful resources from positivepsychology.com, a take-home message.

Cognitive development is how humans acquire, organize, and learn to use knowledge (Gauvain & Richert, 2016).

In psychology, the focus of cognitive development has often been only on childhood. However, cognitive development continues through adolescence and adulthood. It involves acquiring language and knowledge, thinking, memory, decision making, problem solving, and exploration (Von Eckardt, 1996).

Much of the research within cognitive development in children focuses on thinking, developing knowledge, exploring, and solving problems (Carpendale & Lewis, 2015).

Nature vs nurture debate

The nature versus nurture debate refers to how much an individual inherits compared to how much they are influenced by the environment. How do nature and nurture shape cognitive development?

American psychologist Arthur Jensen (1969, 1974) emphasized the role of genetics within intelligence, arguing for a genetic difference in the intelligence of white and Black people.

Jensen (1969) made some very bold assertions, stating that Black people have lower cognitive abilities. His research was heavily criticized for being discriminatory. He did not consider the inbuilt bias of psychometric testing (Ford, 1996). The lower test scores of Black individuals were more likely to be a result of a lack of resources and poor-quality life opportunities (Ford, 2004).

In an enormous cross-sample of 11,000 adolescent twins, Brant et al. (2013) found that those with a higher intelligence quotient (IQ) appeared to be more influenced by nurture and stimulation. The researchers suggested this may be because of their heightened attention and arousal system, absorbing more information from the environment, being more open to new experiences, and allowing brain plasticity and changes to occur.

They also found that adolescents with a lower IQ showed more genetic influence on their IQ from their parents. The researchers suggested that their lower levels of intelligence may result in lower motivation levels and an inability to seek out new experiences.

This study highlights the need for those with lower IQ levels to be supported with positive interventions to increase their cognitive abilities and capacity.

Cognitive Development Skills

These milestones reflect skill achievement and take into account genetic makeup and environmental influence (Dosman, Andrews, & Goulden, 2012).

Here are a few of these important milestones, the associated skills, and the age at which they are typically achieved. The following table is modified from the Child Development Institute .

Table 1. Children’s cognitive milestones and skill development

Language and other cognitive skills

Language skills are essential for a child’s ability to communicate and engage with others. These skills support other areas of a child’s development, such as cognitive, literacy, and social development (Roulstone, Loader, Northstone, & Beveridge, 2002).

The modified table below was sourced from the Australian parenting website raisingchildren.net.au and describes how language develops in children.

Table 2. Language development from 0 to 8 years

Thinking skills

Thinking concerns manipulating information and is related to reasoning, decision making, and problem solving (Kashyap & Minda, 2016). It is required to develop language, because you need words to think.

Cognitive development activities helps thinking and reasoning to grow. Thinking is a skill that does not commence at birth. It develops gradually through childhood and advances more rapidly when children are around two years old. Reasoning develops around six. By the time they’re 11, children’s thinking becomes much more abstract and logical (Piaget, 1936).

Developing knowledge

Knowledge is essential for cognitive development and academic achievement. Increased knowledge equates to better speaking, reading, listening, and reasoning skills. Knowledge is not only related to language. It can also be gained by performing a task (Bhatt, 2000). It starts from birth as children begin to understand the world around them through their senses (Piaget, 1951).

Building knowledge is important for children to encode and retrieve new information. This makes them able to learn new material. Knowledge helps to facilitate critical thinking (Piaget, 1936). Clearly, the development of children’s knowledge base is a critical part of cognitive development.

Memory development

The development of memory is lifelong and related to personal experiences.

Explicit memory, which refers to remembering events and facts of everyday life, develops in the first two years (Stark, Yassa, & Stark, 2010). Explicit memory develops around 8 to 10 months.

Working memory and its increase in performance can be seen from three to four years through adolescence (Ward, Berry, & Shanks, 2013). This is demonstrated through increased attention, the acquisition of language, and increased knowledge.

Implicit memory, which is unconscious and unintentional, is an early developing memory system in infants and develops as the brain matures (Ward et al., 2013).

Perceptual skills

Perceptual skills develop from birth. They are an important aspect of cognitive development. Most children are born with senses of sight, hearing, touch, taste, and smell (Karasik, Tamis-LeMonda, & Adolph, 2014).

As children develop, they learn to communicate by interacting with their environment and using their sensory and motor skills (Karasik et al., 2014).

When visual, tactile, and auditory skills are combined, they emerge as perceptual skills. These perceptual skills are then used to gauge spatial relationships, discriminate between figure and ground, and develop hand–eye coordination (Libertus & Hauf, 2017).

Exploring and solving problems

Problem solving can be seen in very young children when they play with blocks, objects, and balls. It is entwined with perceptual skills and memory. Very young children playing with blocks, picking up a spoon, or even looking for objects demonstrate the development of problem solving skills (Goldschmied & Jackson, 1994). This is known as heuristic play (Auld, 2002).

3 positive psychology exercises

Download 3 Free Positive Psychology Exercises (PDF)

Enhance wellbeing with these free, science-based exercises that draw on the latest insights from positive psychology.

Download 3 Free Positive Psychology Tools Pack (PDF)

By filling out your name and email address below.

To understand how people think and process information, it is important to look at how cognitive skills are used in everyday life. Here are some real-life examples of cognitive development.

Decision making

To make a decision, a person needs to weigh up information and make the best choice. As an example, think about a restaurant menu. There is a lot of information on the menu about food options. Reading the menu requires you to analyze the data then reduce it to make a specific meal choice.

Recognition of faces

Have you ever wondered why it is possible to recognize a person even when they have grown a beard, wear makeup or glasses, or change their hair color?

Cognitive processing is used in facial recognition and explains why we still recognize people we meet after a long time, despite sometimes drastic changes in their physical appearance.

Cognitive-Behavioral Therapy (CBT)

This widely used therapeutic intervention is based on an understanding of cognition and how it changes behavior.

It is based on the premise that cognition and behavior are linked, and this theory is often used to help individuals overcome negative thinking patterns . CBT provides them with alternative positive thinking patterns to promote positive behavior.

The cognitive processes of short-term and long-term memory explain forgetting. An example of forgetting can be seen in students who do not study for exams. If they do not transfer the information from short-term to long-term memory, they forget the knowledge required for the examination and may fail.

Thinking and cognition are required for reasoning. Reasoning involves intellect and an attempt to search for the truth from new or existing information. An example of this activity can be seen in political debates on television.

Cognitive Development Theories

They all attempt to explain how cognitive development occurs.

Piaget’s cognitive development theory

Jean Piaget (1936) is famous for his theory of cognition that considers four specific stages of development .

The sensorimotor stage (0–2 years) is when infants build an understanding of the world through their senses and movement (touching, feeling, listening, and watching). This is when children develop object permanence.

The pre-operational stage (2–7 years) is when language and abstract thinking arise. This is the stage of symbolic play.

When a child is 7 years old, they enter Piaget’s concrete-operational stage , which goes up to 11 years. This is when logical and concrete thought come into action.

At the age of 11 onward, children learn logical and abstract rules and solve problems. Piaget described this as the formal operational stage.

Vygotsky’s theory

Lev Vygotsky described an alternative theory. He believed that children’s cognitive development arises through their physical interaction with the world (Vygotsky, 1932). Vygotsky’s theory is based on the premise that the support of adults and peers enables the development of higher psychological functions. His is known as the sociocultural theory (Yasnitsky, 2018).

Vygotsky believed that a child’s initial social interactions prompt development, and as the child internalizes learning, this shifts their cognition to an individual level.

Vygotsky (1932) considered children akin to apprentices, learning from the more experienced, who understand their needs.

There are two main themes of Vygotsky’s theory.

The zone of proximal development is described as the distance between the actual development level and the level of potential. This is determined by independent problem solving when children are collaborating with more able peers or under the guidance of an adult (Vygotsky, 1931).

This may explain why some children perform better in the presence of others who have more knowledge and skills but more poorly on their own. These skills, displayed in a social context but not in an isolated setting, are within the zone of proximal development. This highlights how a more knowledgeable person can provide support to a child’s cognitive development (Vygotsky, 1932).

Thinking and speech are considered essential. Vygotsky described a connected relationship between language development and the thinking process. His theory explains how younger children use speech to think out loud. Gradually, they evolve silent inner speech once mental concepts and cognitive awareness are developed (Vygotsky, 1931).

Ecological systems theory

Another more modern theory, similar in some sense to Vygotsky’s, is one by American psychologist Urie Bronfenbrenner (1974). He suggested that a child’s environment, within an arrangement of structures, has a differing impact on the child (Bronfenbrenner, 1974).

Bronfenbrenner’s five structures are the micro-system, mesosystem, ecosystem, macrosystem, and chronosystem. These concern the surrounding environment, family, school, values, customs, and cultures. They are interrelated, with each system influencing others to impact the child’s development (Bronfenbrenner, 1977).

Bronfenbrenner (1974) considered the micro-system as the most influential. This system contains the developing child, family, and educational environment, and impacts a child’s cognitive development the most.

Piaget’s theory of cognitive development – Sprouts

Adolescence is a period of transition between late childhood and the beginning of adulthood.

Based on Inhelder and Piaget’s (1958) stage theory of cognitive growth, adolescence is when children become self-conscious and concerned with other people’s opinions as they go through puberty (Steinberg, 2005). The psychosocial context of adolescents is considerably different from that of children and adults.

The brain goes through a dramatic remodeling process in adolescence. Neural plasticity facilitates the development of social cognitive skills (Huttenlocher, 1979). Structural development of cortical regions of the brain may significantly influence cognitive functioning during adolescence (Huttenlocher, De Courten, Garey, & Van der Loos, 1983).

Recognition of facial expressions and emotion is one area of social cognition that has been investigated in adolescence (Herba & Phillips, 2004). The amygdala, a part of the brain associated with emotion processing, was found to be significantly activated in response to fearful facial expressions in a study of adolescents (Baird et al., 1999). This highlights that the development of emotional cognition is prominent in this age group.

Cognitive Development Research

Here are three we find most interesting.

1. A cognitive habilitation program for children

Millians and Coles (2014) studied five children who had experienced learning and academic deficits because of prenatal alcohol exposure. Before and after an intervention, researchers gave standardized tests of nonverbal reasoning and academic achievement to the children.

Four of the five children showed increases to the average range of scores on measures of nonverbal, reasoning, reading, and mathematics. This study highlighted the benefit of interventions to address children’s cognitive difficulties and learning problems, even when the cognitive difficulties are apparent from birth.

2. Bilingual babies and enhanced learning

Introducing babies to two languages has been shown to improve cognitive abilities, especially problem solving (Ramírez-Esparza, García-Sierra, & Kuhl, 2017).

Spanish babies between 7 and 33.5 months were given one hour of English sessions for 18 weeks. By the end of the 18 weeks, the children produced an average of 74 English words and phrases. This study showed that the age between 0 and 3 years is the best time to learn a second language and gain excellent proficiency. However, languages can be learned at any time in life.

3. Unusual autobiographical memory

In an unusual case study, a woman described as ‘AJ’ was found to have highly superior autobiographical memory, a condition that dominated her life (Parker, Cahill, & McGaugh, 2006).

Her memory was described as ‘nonstop, uncontrollable and automatic.’ AJ did not use any mnemonic devices to recall. She could tell you what she was doing on any day of her life.

AJ could also recall her past with a high level of accuracy. This study provided some insightful details of the neurobiology of autobiographical memory and changes in the prefrontal cortex that cause these superior cognitive abilities.

thinking decision making problem solving cognitive skills and language are examples of

17 Top-Rated Positive Psychology Exercises for Practitioners

Expand your arsenal and impact with these 17 Positive Psychology Exercises [PDF] , scientifically designed to promote human flourishing, meaning, and wellbeing.

Created by Experts. 100% Science-based.

If this article has piqued your interest and you wish to know more about improving cognitive function, take a look at these related posts.

How to Improve Cognitive Function: 6 Mental Fitness Exercises

This article describes ways to test your clients’ cognitive abilities. There are several exercises and games you may wish to use with your clients to help them improve their cognitive health and functioning, and help them maintain this throughout their lifespan.

10 Neurological Benefits of Exercise

Physical exercise is an excellent way to boost brain functioning. This fascinating article explains the benefits of exercise to buffer stress and aging, and maintain positive mental health and cognition.

Sleep Hygiene Tips

Alongside exercise, sleep is an essential component for the brain to function properly. This article has excellent sleep hygiene ideas , and you can use the checklists and worksheets to support your clients’ sleep, enabling them to boost their brain functioning.

17 Positive Psychology Exercises

If you’re looking for more science-based ways to help others enhance their wellbeing, this signature collection contains 17 validated positive psychology tools for practitioners. Use them to help others flourish and thrive.

The first few years of a child’s life show rapid changes in brain development. This is part of the child’s cognitive development. There are a number of different theories of how and when this occurs. These are not set in stone, but are a guide to the cognitive development of children.

If children are not achieving their milestones at the approximate times they should, extra support can help make a difference. Even children with fetal alcohol syndrome can achieve considerably improved cognition with specialized support.

Remember, cognitive development does not end in childhood, as Piaget’s schema theory first suggested. It continues through adolescence and beyond. Cognitive development changes carry on through much of a teenager’s life as the brain is developing.

We hope you enjoyed reading this article. Don’t forget to download our three Positive Psychology Exercises for free .

  • Auld, S. (2002). Five key principles of heuristic play. The First Years: Nga Tau Tuatahi . New Zealand Journal of Infant and Toddler Education , 4 (2), 36–37.
  • Baird, A. A., Gruber, S. A., Fein, D. A., Maas, L. C., Steingard, R. J., Renshaw, P. F., … Yurgelun-Todd, D. A. (1999). Functional magnetic resonance imaging of facial affect recognition in children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry , 38 , 195–199.
  • Bhatt, G.D. (2000). Organizing knowledge in the knowledge development cycle. Journal of Knowledge Management , 4 (1), 15–26.
  • Brant, A. M., Munakata, Y., Boomsma, D. I., DeFries, J. C., Haworth, C. M. A., Keller, M. C., … Hewitt, J. K. (2013). The nature and nurture of high IQ: An extended sensitive period for intellectual development. Psychological Science , 28 (8), 1487–1495.
  • Bronfenbrenner, U. (1974). Developmental research, public policy, and the ecology of childhood. Child Development , 45 (1), 1–5.
  • Bronfenbrenner, U. (1977). Toward an experimental ecology of human development. American Psychologist , 32 (7), 513–531.
  • Carpendale, J. I. M., & Lewis, C. (2015). The development of social understanding. In L. S. Liben, U. Müller, & R. M. Lerner (Eds.). Handbook of child psychology and developmental science: Cognitive Processes (7th ed.) (pp. 381–424). John Wiley & Sons.
  • Dosman, C. F., Andrews, D., & Goulden, K. J. (2012). Evidence-based milestone ages as a framework for developmental surveillance. Paediatrics & Child Health , 17 (10), 561–568.
  • Ford, D. Y. (1996). Reversing underachievement among gifted Black students: Promising practices and programs . Teachers College Press.
  • Ford, D. Y. (2004). Intelligence testing and cultural diversity: Concerns, cautions and considerations (RM04204). The National Research Center on the Gifted and Talented.
  • Gauvain, M., & Richert, R. (2016). Cognitive development. In H.S. Friedman (Ed.) Encyclopedia of mental health (2nd ed.) (pp. 317–323). Academic Press.
  • Goldschmied, E., & Jackson, S. (1994). People under three. Young children in daycare . Routledge.
  • Herba, C., & Phillips, M. (2004). Annotation: Development of facial expression recognition from childhood to adolescence: Behavioural and neurological perspectives. Journal of Child Psychology and Psychiatry , 45 (7), 1185–1198.
  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Research , 163 , 195–205.
  • Huttenlocher, P. R., De Courten, C., Garey, L. J., & Van der Loos, H. (1983). Synaptic development in human cerebral cortex. International Journal of Neurology , 16–17 , 144–54.
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence . Basic Books.
  • Jensen, A. R. (1969). Intelligence, learning ability and socioeconomic status. The Journal of Special Education , 3 (1), 23–35.
  • Jensen, A. R. (1974). Ethnicity and scholastic achievement. Psychological Reports , 34(2), 659–668.
  • Karasik, L. B., Tamis-LeMonda, C. S., & Adolph, K. E. (2014). Crawling and walking infants elicit different verbal responses from mothers. Developmental Science , 17 , 388–395.
  • Kashyap, N., & Minda, J. P. (2016). The psychology of thinking: Reasoning, decision-making, and problem-solving. Psychology Learning & Teaching , 15 (3), 384–385.
  • Libertus, K., & Hauf, P. (2017). Editorial: Motor skills and their foundational role for perceptual, social, and cognitive development. Frontiers in Psychology , 8 .
  • Millians, M. N., & Coles, C. D. (2014). Case study: Saturday cognitive habilitation program children with prenatal alcohol exposure. Psychological Neuroscience , 7 , 163–173.
  • Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using ‘sticky mittens’ enhances young infants’ object exploration skills. Infant Behavior and Development , 25 , 279–295.
  • Parker, E. S., Cahill, L., & McGaugh, J. L. (2006). A case of unusual autobiographical remembering. Neurocase , 12 (1), 35–49.
  • Piaget, J. (1936). Origins of intelligence in the child . Routledge & Kegan Paul.
  • Piaget, J. (1951). Play, dreams and imitation in childhood (vol. 25). Routledge.
  • Ramírez-Esparza, N., García-Sierra, A., & Kuhl, K. P. (2017). The impact of early social interaction on later language development in Spanish–English bilingual infants. Child Development , 88 (4), 1216–1234.
  • Roulstone, S., Loader, S., Northstone, K., & Beveridge, M. (2002). The speech and language of children aged 25 months: Descriptive date from the Avon Longitudinal Study of Parents and Children. Early Child Development and Care , 172 , 259–268.
  • Stark, S. M., Yassa, M. A., & Stark, C. E. L. (2010). Individual differences in spatial pattern separation performance associated with healthy aging in humans. Learning and Memory , 17 (6), 284–288.
  • Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences , 9 , 69–74.
  • Von Eckardt, B. (1996). What is cognitive science? MIT Press.
  • Vygotsky, L. S. (1931). Adolescent pedagogy: The development of thinking and concept formation in adolescence . Marxists.org.
  • Vygotsky, L. S. (1932). Thought and language. Chapter 6: The development of scientific concepts in childhood . Marxists.org.
  • Yasnitsky, A. (2018). Vygotsky’s science of superman: from utopia to concrete psychology. In A. Yasnitsky (Ed.). Questioning Vygotsky’s legacy: Scientific psychology or heroic cult . Routledge.
  • Ward, E. V., Berry, C. J., & Shanks, D. R. (2013). An effect of age on implicit memory that is not due to explicit contamination: Implications for single and multiple-systems theories. Psychology and Aging , 28 (2), 429–442.

' src=

Share this article:

Article feedback

What our readers think.

Bismillah Khan

As a teacher in Primary School, I have found this article to be of great value. I sincerely appreciate your outstanding work.

Bennie Lopez

The article was excellent. I am a student doing research. This article went into key details, which is what I was looking for.

Gatahwi Lameck.

This article has tremendously helped me to come up with precise teaching notes for my educational psychology class. It is mu fervent hope that I will get more useful notes on social development.

Mr. Ricardo Sealy

Where did she learn her hypnotherapy? I am interested in learning as part of my holistic therapy.

Dr Saima Latif

Hi Ricardo, Thank you for asking. I undertook my hypnotherapy training with The London College of Clinical Hypnosis (LCCH) in the UK. It is defined as ‘Clinical Hypnosis’ given that the course very much focused on medical conditions and treatment, but not entirely. They have been up and running since 1984 and are still course providers and a well recognised school globally. I am not sure where you are based in the world. Looking at their present website, I have noticed they also now provide online courses. Nevertheless there are many more organisations who provide Clinical Hypnosis training than when I undertook my course. I hope that helps you.

Let us know your thoughts Cancel reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Related articles

Health Belief Model

What Is the Health Belief Model? An Updated Look

Early detection through regular screening is key to preventing and treating many diseases. Despite this fact, participation in screening tends to be low. In Australia, [...]

Pain Management

Positive Pain Management: How to Better Manage Chronic Pain

Chronic pain is a condition that causes widespread, constant pain and distress and fills both sufferers and the healthcare professionals who treat them with dread. [...]

Mental health in teens

Mental Health in Teens: 10 Risk & Protective Factors

31.9% of adolescents have anxiety-related disorders (ADAA, n.d.). According to Solmi et al. (2022), the age at which mental health disorders most commonly begin to [...]

Read other articles by their category

  • Body & Brain (49)
  • Coaching & Application (57)
  • Compassion (26)
  • Counseling (51)
  • Emotional Intelligence (24)
  • Gratitude (18)
  • Grief & Bereavement (21)
  • Happiness & SWB (40)
  • Meaning & Values (26)
  • Meditation (20)
  • Mindfulness (45)
  • Motivation & Goals (45)
  • Optimism & Mindset (34)
  • Positive CBT (28)
  • Positive Communication (20)
  • Positive Education (47)
  • Positive Emotions (32)
  • Positive Leadership (18)
  • Positive Parenting (4)
  • Positive Psychology (33)
  • Positive Workplace (37)
  • Productivity (16)
  • Relationships (46)
  • Resilience & Coping (36)
  • Self Awareness (21)
  • Self Esteem (38)
  • Strengths & Virtues (31)
  • Stress & Burnout Prevention (34)
  • Theory & Books (46)
  • Therapy Exercises (37)
  • Types of Therapy (64)

3 Positive Psychology Tools (PDF)

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

thinking decision making problem solving cognitive skills and language are examples of

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

thinking decision making problem solving cognitive skills and language are examples of

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for Drake University Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Thinking, Language, and Problem Solving

Three different artistic portrayals of a person in thought are shown. From left to right, a painting of a woman with an open book, a sculpture of a man hunched over, head on chin, and a ink painting of a man sitting cross-legged holding his head.

What is the best way to solve a problem? How does a person who has never seen or touched snow in real life develop an understanding of the concept of snow? How do young children acquire the ability to learn language with no formal instruction? Psychologists who study thinking explore questions like these and are called cognitive psychologists.

In other chapters, we discussed the cognitive processes of perception, learning, and memory. In this chapter, we will focus on high-level cognitive processes. As a part of this discussion, we will consider thinking and briefly explore the development and use of language. We will also discuss problem solving and creativity. After finishing this chapter, you will have a greater appreciation of the higher-level cognitive processes that contribute to our distinctiveness as a species.

Table of Contents

7.1 What is Cognition? 7.2 Language 7.3 Problem Solving

7.1 What is Cognition?

Learning Objectives

By the end of this section, you will be able to:

  • Describe cognition
  • Distinguish concepts and prototypes
  • Explain the difference between natural and artificial concepts
  • Describe how schemata are organized and constructed

Imagine all of your thoughts as if they were physical entities, swirling rapidly inside your mind. How is it possible that the brain is able to move from one thought to the next in an organized, orderly fashion? The brain is endlessly perceiving, processing, planning, organizing, and remembering—it is always active. Yet, you don’t notice most of your brain’s activity as you move throughout your daily routine. This is only one facet of the complex processes involved in cognition . Simply put,  cognition  is thinking, and it encompasses the processes associated with perception, knowledge, problem solving, judgment, language, and memory. Scientists who study cognition are searching for ways to understand how we integrate, organize, and utilize our conscious cognitive experiences without being aware of all of the unconscious work that our brains are doing (for example, Kahneman, 2011).

Upon waking each morning, you begin thinking—contemplating the tasks that you must complete that day. In what order should you run your errands? Should you go to the bank, the cleaners, or the grocery store first? Can you get these things done before you head to class or will they need to wait until school is done? These thoughts are one example of cognition at work. Exceptionally complex, cognition is an essential feature of human consciousness, yet not all aspects of cognition are consciously experienced.

Cognitive psychology  is the field of psychology dedicated to examining how people think. It attempts to explain how and why we think the way we do by studying the interactions among human thinking, emotion, creativity, language, and problem solving, in addition to other cognitive processes. Cognitive psychologists strive to determine and measure different types of intelligence, why some people are better at problem solving than others, and how emotional intelligence affects success in the workplace, among countless other topics. They also sometimes focus on how we organize thoughts and information gathered from our environments into meaningful categories of thought, which will be discussed later.

Concepts and Prototypes

The human nervous system is capable of handling endless streams of information. The senses serve as the interface between the mind and the external environment, receiving stimuli and translating it into nervous impulses that are transmitted to the brain. The brain then processes this information and uses the relevant pieces to create thoughts, which can then be expressed through language or stored in memory for future use. To make this process more complex, the brain does not gather information from external environments only. When thoughts are formed, the mind synthesizes information from emotions and memories ( Figure 7.2 ). Emotion and memory are powerful influences on both our thoughts and behaviors.

A flow chart is overlaid on a drawing of a head with a ponytail. The flowchart reads: Information, sensations (arrow) emotions, memories (arrow) thoughts (arrow) behavior. Thoughts is also connected to Emotions, memories via a feedback arrow.

Concepts are informed by our semantic memory (you will learn more about semantic memory in a later chapter) and are present in every aspect of our lives; however, one of the easiest places to notice concepts is inside a classroom, where they are discussed explicitly. When you study United States history, for example, you learn about more than just individual events that have happened in America’s past. You absorb a large quantity of information by listening to and participating in discussions, examining maps, and reading first-hand accounts of people’s lives. Your brain analyzes these details and develops an overall understanding of American history. In the process, your brain gathers details that inform and refine your understanding of related concepts like democracy, power, and freedom.

Concepts can be complex and abstract, like justice, or more concrete, like types of birds. Some concepts, like tolerance, are agreed upon by many people, because they have been used in various ways over many years. Other concepts, like the characteristics of your ideal friend or your family’s birthday traditions, are personal and individualized. In this way, concepts touch every aspect of our lives, from our many daily routines to the guiding principles behind the way governments function.

Another technique used by your brain to organize information is the identification of prototypes for the concepts you have developed. A  prototype  is the best example or representation of a concept. For example, what comes to your mind when you think of a dog? Most likely your early experiences with dogs will shape what you imagine. If your first pet was a Golden Retriever, there is a good chance that this would be your prototype for the category of dogs.

Natural and Artificial Concepts

In psychology, concepts can be divided into two categories, natural and artificial. Natural concepts  are created “naturally” through your experiences and can be developed from either direct or indirect experiences. For example, if you live in Essex Junction, Vermont, you have probably had a lot of direct experience with snow. You’ve watched it fall from the sky, you’ve seen lightly falling snow that barely covers the windshield of your car, and you’ve shoveled out 18 inches of fluffy white snow as you’ve thought, “This is perfect for skiing.” You’ve thrown snowballs at your best friend and gone sledding down the steepest hill in town. In short, you know snow. You know what it looks like, smells like, tastes like, and feels like. If, however, you’ve lived your whole life on the island of Saint Vincent in the Caribbean, you may never have actually seen snow, much less tasted, smelled, or touched it. You know snow from the indirect experience of seeing pictures of falling snow—or from watching films that feature snow as part of the setting. Either way, snow is a natural concept because you can construct an understanding of it through direct observations, experiences with snow, or indirect knowledge (such as from films or books) ( Figure 7.3 ).

Two images labeled a and b. A depicts a snowy field on a sunny day. B depicts a sphere, rectangular prism, and triangular prism.

An  artificial concept , on the other hand, is a concept that is defined by a specific set of characteristics. Various properties of geometric shapes, like squares and triangles, serve as useful examples of artificial concepts. A triangle always has three angles and three sides. A square always has four equal sides and four right angles. Mathematical formulas, like the equation for area (length × width) are artificial concepts defined by specific sets of characteristics that are always the same. Artificial concepts can enhance the understanding of a topic by building on one another. For example, before learning the concept of “area of a square” (and the formula to find it), you must understand what a square is. Once the concept of “area of a square” is understood, an understanding of area for other geometric shapes can be built upon the original understanding of area. The use of artificial concepts to define an idea is crucial to communicating with others and engaging in complex thought. According to Goldstone and Kersten (2003), concepts act as building blocks and can be connected in countless combinations to create complex thoughts.

A  schema (plural: schemata)  is a mental construct consisting of a cluster or collection of related concepts (Bartlett, 1932). There are many different types of schemata, and they all have one thing in common: schemata are a method of organizing information that allows the brain to work more efficiently. When a schema is activated, the brain makes immediate assumptions about the person or object being observed.

There are several types of schemata. A  role schema  makes assumptions about how individuals in certain roles will behave (Callero, 1994). For example, imagine you meet someone who introduces himself as a firefighter. When this happens, your brain automatically activates the “firefighter schema” and begins making assumptions that this person is brave, selfless, and community-oriented. Despite not knowing this person, already you have unknowingly made judgments about him. Schemata also help you fill in gaps in the information you receive from the world around you. While schemata allow for more efficient information processing, there can be problems with schemata, regardless of whether they are accurate: Perhaps this particular firefighter is not brave, he just works as a firefighter to pay the bills while studying to become a children’s librarian.

An  event schema , also known as a  cognitive script , is a set of behaviors that can feel like a routine. Think about what you do when you walk into an elevator ( Figure 7.4 ). First, the doors open and you wait to let exiting passengers leave the elevator car. Then, you step into the elevator and turn around to face the doors, looking for the correct button to push. You never face the back of the elevator, do you? And when you’re riding in a crowded elevator and you can’t face the front, it feels uncomfortable, doesn’t it? Interestingly, event schemata can vary widely among different cultures and countries. For example, while it is quite common for people to greet one another with a handshake in the United States, in Tibet, you greet someone by sticking your tongue out at them, and in Belize, you bump fists (Cairns Regional Council, n.d.)

A crowded elevator.

Because event schemata are automatic, they can be difficult to change. Imagine that you are driving home from work or school. This event schema involves getting in the car, shutting the door, and buckling your seatbelt before putting the key in the ignition. You might perform this script two or three times each day. As you drive home, you hear your phone’s ring tone. Typically, the event schema that occurs when you hear your phone ringing involves locating the phone and answering it or responding to your latest text message. So without thinking, you reach for your phone, which could be in your pocket, in your bag, or on the passenger seat of the car. This powerful event schema is informed by your pattern of behavior and the pleasurable stimulation that a phone call or text message gives your brain. Because it is a schema, it is extremely challenging for us to stop reaching for the phone, even though we know that we endanger our own lives and the lives of others while we do it (Neyfakh, 2013) ( Figure 7.5 ).

A hand holds a cellphone in front of a steering wheel and front-shield window of a car. The car is on a road.

Remember the elevator? It feels almost impossible to walk in and  not  face the door. Our powerful event schema dictates our behavior in the elevator, and it is no different with our phones. Current research suggests that it is the habit, or event schema, of checking our phones in many different situations that makes refraining from checking them while driving especially difficult (Bayer & Campbell, 2012). Because texting and driving has become a dangerous epidemic in recent years, psychologists are looking at ways to help people interrupt the “phone schema” while driving. Event schemata like these are the reason why many habits are difficult to break once they have been acquired. As we continue to examine thinking, keep in mind how powerful the forces of concepts and schemata are to our understanding of the world.

7.2 LAnguage

  • Define language and demonstrate familiarity with the components of language
  • Understand the development of language
  • Explain the relationship between language and thinking

Language  is a communication system that involves using words and systematic rules to organize those words to transmit information from one individual to another. While language is a form of communication, not all communication is language. Many species communicate with one another through their postures, movements, odors, or vocalizations. This communication is crucial for species that need to interact and develop social relationships with their conspecifics. However, many people have asserted that it is language that makes humans unique among all of the animal species (Corballis & Suddendorf, 2007; Tomasello & Rakoczy, 2003). This section will focus on what distinguishes language as a special form of communication, how the use of language develops, and how language affects the way we think.

Components of Language

Language, be it spoken, signed, or written, has specific components: a lexicon and lexicon grammar .  Lexicon  refers to the words of a given language. Thus, lexicon is a language’s vocabulary.  Grammar  refers to the set of rules that are used to convey meaning through the use of the lexicon (Fernández & Cairns, 2011). For instance, English grammar dictates that most verbs receive an “-ed” at the end to indicate past tense.

Words are formed by combining the various phonemes that make up the language. A  phoneme  (e.g., the sounds “ah” vs. “eh”) is a basic sound unit of a given language, and different languages have different sets of phonemes. For example, the phoneme English speakers associate with the letter ‘L’ is not used in the Japanese language. Similarly, many Southern African languages use phonemes, sometimes referred to as ‘click consonants’ that are not used in English.

Phonemes are combined to form  morphemes , which are the smallest units of language that convey some type of meaning. Some words are morphemes, but not all morphemes are words.  For example, “-ed” is a morpheme used to convey the past-tense in English, but it is not a word. The word “review” contains two morphemes: re- (meaning to do something again) and view (to see). Finally, some words like “I” and “a” are both a phonemes and morphemes.

We use semantics and syntax to construct language. Semantics and syntax are part of a language’s grammar.  Semantics  refers to the process by which we derive meaning from morphemes and words by connecting those morphemes and words to stored concepts.  Syntax  refers to the way words are organized into sentences (Chomsky, 1965; Fernández & Cairns, 2011). For example, you would never say “the dog walked I today” to let someone know you took your dog for a walk–that sentence does not obey English syntax and is therefore difficult to make sense of.

We apply the rules of grammar to organize the lexicon in novel and creative ways, which allow us to communicate information about both concrete and abstract concepts. We can talk about our immediate and observable surroundings as well as the surface of unseen planets. We can share our innermost thoughts, our plans for the future, and debate the value of a college education. We can provide detailed instructions for cooking a meal, fixing a car, or building a fire. Through our use of words and language, we are able to form, organize, and express ideas, schema, and artificial concepts.

Language Development

Given the remarkable complexity of a language, one might expect that mastering a language would be an especially arduous task; indeed, for those of us trying to learn a second language as adults, this might seem to be true. However, young children master language very quickly with relative ease. B. F.  Skinner  (1957) proposed that language is learned through reinforcement. Noam  Chomsky  (1965) criticized this behaviorist approach, asserting instead that the mechanisms underlying language acquisition are biologically determined. The use of language develops in the absence of formal instruction and appears to follow a very similar pattern in children from vastly different cultures and backgrounds. It would seem, therefore, that we are born with a biological predisposition to acquire a language (Chomsky, 1965; Fernández & Cairns, 2011). Moreover, it appears that there is a critical period for language acquisition, such that this proficiency at acquiring language is maximal early in life; generally, as people age, the ease with which they acquire and master new languages diminishes (Johnson & Newport, 1989; Lenneberg, 1967; Singleton, 1995).

Children begin to learn about language from a very early age ( Table 7.1 ). In fact, it appears that this is occurring even before we are born. Newborns show preference for their mother’s voice and appear to be able to discriminate between the language spoken by their mother and other languages. Babies are also attuned to the languages being used around them and show preferences for videos of faces that are moving in synchrony with the audio of spoken language versus videos that do not synchronize with the audio (Blossom & Morgan, 2006; Pickens, 1994; Spelke & Cortelyou, 1981).

DIG DEEPER: The Case of Genie

In the fall of 1970, a social worker in the Los Angeles area found a 13-year-old girl who was being raised in extremely neglectful and abusive conditions. The girl, who came to be known as Genie, had lived most of her life tied to a potty chair or confined to a crib in a small room that was kept closed with the curtains drawn. For a little over a decade, Genie had virtually no social interaction and no access to the outside world. As a result of these conditions, Genie was unable to stand up, chew solid food, or speak (Fromkin, Krashen, Curtiss, Rigler, & Rigler, 1974; Rymer, 1993). The police took Genie into protective custody.

Genie’s abilities improved dramatically following her removal from her abusive environment, and early on, it appeared she was acquiring language—much later than would be predicted by critical period hypotheses that had been posited at the time (Fromkin et al., 1974). Genie managed to amass an impressive vocabulary in a relatively short amount of time. However, she never developed a mastery of the grammatical aspects of language (Curtiss, 1981). Perhaps being deprived of the opportunity to learn language during a critical period impeded Genie’s ability to fully acquire and use language.

You may recall that each language has its own set of phonemes that are used to generate morphemes, words, and so on. Babies can discriminate among the sounds that make up a language (for example, they can tell the difference between the “s” in vision and the “ss” in fission); early on, they can differentiate between the sounds of all human languages, even those that do not occur in the languages that are used in their environments. However, by the time that they are about 1 year old, they can only discriminate among those phonemes that are used in the language or languages in their environments (Jensen, 2011; Werker & Lalonde, 1988; Werker & Tees, 1984).

After the first few months of life, babies enter what is known as the babbling stage, during which time they tend to produce single syllables that are repeated over and over. As time passes, more variations appear in the syllables that they produce. During this time, it is unlikely that the babies are trying to communicate; they are just as likely to babble when they are alone as when they are with their caregivers (Fernández & Cairns, 2011). Interestingly, babies who are raised in environments in which sign language is used will also begin to show babbling in the gestures of their hands during this stage (Petitto, Holowka, Sergio, Levy, & Ostry, 2004).

Generally, a child’s first word is uttered sometime between the ages of 1 year to 18 months, and for the next few months, the child will remain in the “one word” stage of language development. During this time, children know a number of words, but they only produce one-word utterances. The child’s early vocabulary is limited to familiar objects or events, often nouns. Although children in this stage only make one-word utterances, these words often carry larger meaning (Fernández & Cairns, 2011). So, for example, a child saying “cookie” could be identifying a cookie or asking for a cookie.

As a child’s lexicon grows, she begins to utter simple sentences and to acquire new vocabulary at a very rapid pace. In addition, children begin to demonstrate a clear understanding of the specific rules that apply to their language(s). Even the mistakes that children sometimes make provide evidence of just how much they understand about those rules. This is sometimes seen in the form of  overgeneralization . In this context, overgeneralization refers to an extension of a language rule to an exception to the rule. For example, in English, it is usually the case that an “s” is added to the end of a word to indicate plurality. For example, we speak of one dog versus two dogs. Young children will overgeneralize this rule to cases that are exceptions to the “add an s to the end of the word” rule and say things like “those two gooses” or “three mouses.” Clearly, the rules of the language are understood, even if the exceptions to the rules are still being learned (Moskowitz, 1978).

Language and Thought

When we speak one language, we agree that words are representations of ideas, people, places, and events. The given language that children learn is connected to their culture and surroundings. But can words themselves shape the way we think about things? Psychologists have long investigated the question of whether language shapes thoughts and actions, or whether our thoughts and beliefs shape our language. Two researchers, Edward Sapir and Benjamin Lee Whorf, began this investigation in the 1940s. They wanted to understand how the language habits of a community encourage members of that community to interpret language in a particular manner (Sapir, 1941/1964). Sapir and Whorf proposed that language determines thought. For example, in some languages there are many different words for love. However, in English we use the word love for all types of love. Does this affect how we think about love depending on the language that we speak (Whorf, 1956)? Researchers have since identified this view as too absolute, pointing out a lack of empiricism behind what Sapir and Whorf proposed (Abler, 2013; Boroditsky, 2011; van Troyer, 1994). Today, psychologists continue to study and debate the relationship between language and thought.

WHAT DO YOU THINK? The Meaning of Language

Think about what you know of other languages; perhaps you even speak multiple languages. Imagine for a moment that your closest friend fluently speaks more than one language. Do you think that friend thinks differently, depending on which language is being spoken? You may know a few words that are not translatable from their original language into English. For example, the Portuguese word  saudade  originated during the 15th century, when Portuguese sailors left home to explore the seas and travel to Africa or Asia. Those left behind described the emptiness and fondness they felt as  saudade  ( Figure 7.6 ) .  The word came to express many meanings, including loss, nostalgia, yearning, warm memories, and hope. There is no single word in English that includes all of those emotions in a single description. Do words such as  saudade  indicate that different languages produce different patterns of thought in people? What do you think??

Two paintings are depicted in a and b. A depicts a young boy leaning on a trunk. He looks forlornly past the viewer. B depicts a woman wrapped in a black shawl standing near a window. She reads a letter while holding the shawl to her mouth.

One group of researchers who wanted to investigate how language influences thought compared how English speakers and the Dani people of Papua New Guinea think and speak about color. The Dani have two words for color: one word for  light  and one word for  dark . In contrast, the English language has 11 color words. Researchers hypothesized that the number of color terms could limit the ways that the Dani people conceptualized color. However, the Dani were able to distinguish colors with the same ability as English speakers, despite having fewer words at their disposal (Berlin & Kay, 1969). A recent review of research aimed at determining how language might affect something like color perception suggests that language can influence perceptual phenomena, especially in the left hemisphere of the brain. You may recall from earlier chapters that the left hemisphere is associated with language for most people. However, the right (less linguistic hemisphere) of the brain is less affected by linguistic influences on perception (Regier & Kay, 2009)

7.3 Problem Solving

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A  problem-solving strategy  is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is  trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An  algorithm  is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a  heuristic  is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards  is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

EVERYDAY CONNECTION: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A sudoku puzzle is pictured. The puzzle is a 4x4 square with each sub-square also divided into four. Inside the top left square, the numbers are 3, blank, blank, 4 from left-to-right and top-to-bottom. In the top right square, the numbers are blank, two, one, blank. In the bottom left square, the numbers are blank, 3, four, blank; and the bottom right square contains 2, blank, blank, 1.

Here is another popular type of puzzle ( Figure 7.8 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Nine dots are arrayed in three rows of three.

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A  mental set  is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

The top figure shows a book of matches, a box of tacks, and a candle. The bottom figure shows the box tacked to the wall with the candle standing in the box.

Functional fixedness  is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to solve the problem ( Figure 7.10 ). During the  Apollo 13  mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An  anchoring bias  occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The  confirmation bias  is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis.  Hindsight bias  leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did.  Representative bias  describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the  availability heuristic  is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision .  Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in  Table 7.3 .

Were you able to determine how many marbles are needed to balance the scales in  Figure 7.9 ? You need nine. Were you able to solve the problems in  Figure 7.7  and  Figure 7.8 ? Here are the answers ( Figure 7.11 ).

image

Chapter Summary

7.1 what is cognition.

In this section, you were introduced to cognitive psychology, which is the study of cognition, or the brain’s ability to think, perceive, plan, analyze, and remember. Concepts and their corresponding prototypes help us quickly organize our thinking by creating categories into which we can sort new information. We also develop schemata, which are clusters of related concepts. Some schemata involve routines of thought and behavior, and these help us function properly in various situations without having to “think twice” about them. Schemata show up in social situations and routines of daily behavior.

7.2 Language

Language is a communication system that has both a lexicon and a system of grammar. Language acquisition occurs naturally and effortlessly during the early stages of life, and this acquisition occurs in a predictable sequence for individuals around the world. Language has a strong influence on thought, and the concept of how language may influence cognition remains an area of study and debate in psychology.

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

thinking; or, all of the processes associated with perception, knowledge, problem solving, judgement, language, and memory.

A modern school of psychological thought that empirically examines mental processes such as perception, memory, language, and judgement.

a category or grouping of linguistic information, images, ideas or memories, such as life experiences.

knowledge about words, concepts, and language-based knowledge and facts

the best example or representation of a concept, specific to an individual

concepts developed through direct or indirect experiences with the world

a concept defined by a specific set of characteristics.

a mental construct consisting of a cluster of related concepts

a set of ideas relating to how individuals in certain roles will behave.

also known as a cognitive script; a set of behaviors associated with a particular place or event

also known as an event schema; a set of behaviors associated with a particular place or event

a communication system that involves using words and systematic rules to organize those words to transmit information from one individual to another.

the words of a language

the rules of a language used to convey meaning through the use of the lexicon

the basic sounds that make up a language

the smallest unit of language that conveys meaning

the process by which we derive meaning from morphemes and words

the rules guiding the organization of morphemes into words and words into sentences.

Psychology 2e Copyright © 2020 by Openstax is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Volodymyr Nik/ Shutterstock

Metacognition, Social Cognition, Embodied Cognition, Language, Sensory Perception, Thinking

Reviewed by Psychology Today Staff

Cognition refers, quite simply, to thinking. There are the obvious applications of conscious reasoning—doing taxes, playing chess, deconstructing Macbeth—but thought takes many subtler forms, such as interpreting sensory input, guiding physical actions, and empathizing with others.

The old metaphor for human cognition was the computer—a logical information-processing machine. You can’t spell cognition without the “cog.” Yet while some of our thoughts may be binary, there's a lot more to our “wetware” than 0's and 1's. Psychological research on cognition focuses not just on thinking, but also on attention , the creation and storage of memories, knowledge acquisition and retention, language learning, and logical reasoning. As people gain new experiences, their cognition can change in subtle but powerful ways.

  • Reasoning and Decision Making
  • How We Learn New Information
  • What Is Metacognition?

Bimbim/Shutterstock

The greatest divide between humans and all other animals resides in our higher-order mental processes. Much of cognition-related research has focused on the broad areas of reasoning and decision-making —including how people apply logic, think through problems, and make choices large and small.

One prominent area of research, for example, was popularized by noted psychologists Daniel Kahneman and Amos Tversky and focuses on the distinction between “fast” and “slow” thinking. Fast thinking is intuitive, automatic, and nearly impossible to switch off, relying on heuristic processes to come to a “good enough” decision. By contrast, slow thinking takes a great deal of time and energy analyzing all available data before reaching a conclusion.

Other areas of interest include cognitive biases, such as humans’ tendency to engage in stereotyping and self-serving biases (believing that one is above average on many traits). Isolating and understanding these biases, most of which occur unconsciously, is thought to help people think more objectively.

The brain processes information using a vast web of brain cells called neurons. Information is detected by and encoded in various neurons, which communicate with each other via electrical signals and chemicals called neurotransmitters. That communication between neurons forms the basis of what we experience as thought.

Common examples of cognitive biases include confirmation bias , or the tendency to search for information that supports what one already believes, and anchoring bias , in which someone gives undue weight to the first piece of information they receive, even if it’s incorrect or incomplete.

For more common cognitive biases, see Bias .

Research suggests that how one thinks is influenced by the culture in which one lives . People in Western cultures, for example, tend to focus on the attributes of individual objects or ideas and consider parts of a problem separately from the whole; people in Eastern cultures, by contrast, may be more likely to focus on the broader context and the relationships between objects or ideas.

Decision-making can be complicated by external factors such as incomplete information or an urgent deadline. It may also be hindered by internal processes—such as anxiety about making the “wrong” decision or feeling overwhelmed by an excessive number of choices. Evidence also suggests that when two choices promise relatively similar outcomes, it takes longer to determine which one is “best” than it does to distinguish between vastly dissimilar options.

To learn more, see Decision-Making.

Psychological research suggests that a few simple strategies could lead to better decision-making . These include making the decision when rested and minimally stressed ; taking time to think through complicated decisions, rather than acting on impulse; gathering necessary facts; and creating “rules” to help guide decisions that occur frequently. 

GaudiLab/Shutterstock

Learning—or the process of taking in new information and acquiring new behaviors and skills—is a key component of cognition. Humans are far from the only species that learns, but our advanced cognitive skills mean that we are able to learn more complex tasks, and grapple with more complex ideas, than most other known life forms. While some learning happens automatically and without conscious thought—learning not to touch a hot stove after one is burned, for instance—other kinds of learning require deliberate practice in order for the information to stick.

When the brain processes new information, new connections form between neurons. If that information is reinforced via repeated practice, these connections grow stronger and can communicate more efficiently; if it isn’t, the connections weaken and may be pruned away. Learning, therefore, literally rewires the brain, creating new links in the vast network of neurons.

Learning occurs via a number of pathways, such as association—if two stimuli are repeatedly paired together, a person or animal will learn that they go together and shift their behavior or expectations accordingly. Learning also happens via socialization; children, for example, learn what behavior is appropriate by observing and modeling the behavior of adults and other children. Human children, along with many other animals, also learn via play , which teaches them how to cooperate, share, follow rules, and think creatively.

The brain is plastic, meaning that it grows and changes over time; learning is a key driver of those changes . In response to new information and stimulating experiences, the brain generates new dendritic spines, which store memories and facilitate improved connections between nerve cells. When stimulation is lacking or information is no longer needed, the same spines may wither and connections between synapses weaken.

Studies show that breaking learning into brief, spread-out chunks is typically more effective than trying to cram the same amount into one longer session. Prioritizing sleep is also essential for effective learning, as sleep helps the brain consolidate short-term memories into long-term ones and prune away irrelevant information.

Memory and learning are closely intertwined. After a fact, concept, or physical skill is learned, it must be stored in one’s memory in order to be recalled or applied later on. Working memory —or the short-term storage of information that is being mentally manipulated—is especially essential for learning new concepts and solving problems.

Aleksandr Markin/Shutterstock

Metacognition is the act of thinking about one’s own mental processes. Metacognitive awareness allows people to identify, monitor, and uproot negative self-talk and self-limiting beliefs, and to be efficient in goal-setting and task execution. Thinking about and challenging one’s own thinking is at the heart of many types of therapy , including CBT.

Evaluating one’s thinking style or problem-solving processes may help someone identify cognitive biases that are interfering with their decision-making. Metacognition may also help them identify areas where their knowledge or comprehension is lacking.

Thinking aloud is thought to be related to metacognition, as it verbalizes and thus brings attention to an individual’s thought process. Some evidence suggests that articulating one’s thoughts out loud can improve concentration in certain high-pressure situations, such as during a competition . 

Metacognitive therapy is a form of cognitive behavioral therapy that examines patients’ metacognitive beliefs about how their minds work and aims to change those that foster counterproductive thought habits. It is generally a time-limited approach. Evidence suggests that it may be most helpful for treating anxiety and depression . 

thinking decision making problem solving cognitive skills and language are examples of

Words that were once negative can become positive through several different processes.

thinking decision making problem solving cognitive skills and language are examples of

A small nonprofit, Fake News Cleaner, fights misinformation in Taiwan among people of all ages, while the United States increasingly mandates media literacy training in schools.

thinking decision making problem solving cognitive skills and language are examples of

Despite your achievements, you may feel like an impostor. Here's how you can deal with it.

thinking decision making problem solving cognitive skills and language are examples of

Psychological experiments on human judgment under uncertainty showed that people often stray from presumptions about rational economic agents.

thinking decision making problem solving cognitive skills and language are examples of

A 2023 study sought to quantify exactly how many older adults have mild cognitive impairment, and how often the condition is diagnosed by a doctor.

thinking decision making problem solving cognitive skills and language are examples of

Learn how to communicate effectively and avoid common pitfalls.

thinking decision making problem solving cognitive skills and language are examples of

What does it mean if snakes pass a self-recognition test, and how might that ability relate to their social lives?

thinking decision making problem solving cognitive skills and language are examples of

A Personal Perspective: Here's a card-based metaphor to explore autism, bottom-up processing, and intense world theory.

thinking decision making problem solving cognitive skills and language are examples of

Review: The film’s carefully mapped-out confusion seems to reflect director Alex Garland’s key point--war, civil or international, ultimately blurs crucial moral distinctions.

thinking decision making problem solving cognitive skills and language are examples of

The field of critical thinking research owes Kahneman a debt of gratitude for his contributions in helping shine a light on the importance of ‘thinking slow.’

  • Find a Therapist
  • Find a Treatment Center
  • Find a Support Group
  • International
  • New Zealand
  • South Africa
  • Switzerland
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience
  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Cognitive Psychology

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Ch 8: Thinking and Language

Thinking and language.

Three side by side images are shown. On the left is a person lying in the grass with a book, looking off into the distance. In the middle is a sculpture of a person sitting on rock, with chin rested on hand, and the elbow of that hand rested on knee. The third is a drawing of a person sitting cross-legged with his head resting on his hand, elbow on knee.

Why is it so difficult to break habits—like reaching for your ringing phone even when you shouldn’t, such as when you’re driving? Why is it hard to pay attention to a conversation when typing out a text message? How does a person who has never seen or touched snow in real life develop an understanding of the concept of snow? How do young children acquire the ability to learn language with no formal instruction? Psychologists who study thinking explore questions like these.

As a part of this discussion, we will consider thinking, and briefly explore the development and use of language. We will also discuss problem solving and creativity. After finishing this chapter, you will have a greater appreciation of the higher-level cognitive processes that contribute to our distinctiveness as a species.

Learning Objectives

  • Understand why selective attention is important and how it can be studied.
  • Learn about different models of when and how selection can occur.
  • Understand how divided attention or multitasking is studied, and implications of multitasking in situations such as distracted driving.

Thinking and Problem-Solving

A man sitting down in "The Thinker" pose.

Imagine all of your thoughts as if they were physical entities, swirling rapidly inside your mind. How is it possible that the brain is able to move from one thought to the next in an organized, orderly fashion? The brain is endlessly perceiving, processing, planning, organizing, and remembering—it is always active. Yet, you don’t notice most of your brain’s activity as you move throughout your daily routine. This is only one facet of the complex processes involved in cognition. Simply put, cognition is thinking, and it encompasses the processes associated with perception, knowledge, problem solving, judgment, language, and memory. Scientists who study cognition are searching for ways to understand how we integrate, organize, and utilize our conscious cognitive experiences without being aware of all of the unconscious work that our brains are doing (for example, Kahneman, 2011).

  • Distinguish between concepts and prototypes
  • Explain the difference between natural and artificial concepts
  • Describe problem solving strategies, including algorithms and heuristics
  • Explain some common roadblocks to effective problem solving

What is Cognition?

Categories and concepts, concepts and prototypes.

The human nervous system is capable of handling endless streams of information. The senses serve as the interface between the mind and the external environment, receiving stimuli and translating it into nerve impulses that are transmitted to the brain. The brain then processes this information and uses the relevant pieces to create thoughts, which can then be expressed through language or stored in memory for future use. To make this process more complex, the brain does not gather information from external environments only. When thoughts are formed, the brain also pulls information from emotions and memories (Figure 9). Emotion and memory are powerful influences on both our thoughts and behaviors.

The outline of a human head is shown. There is a box containing “Information, sensations” in front of the head. An arrow from this box points to another box containing “Emotions, memories” located where the person’s brain would be. An arrow from this second box points to a third box containing “Thoughts” behind the head.

In order to organize this staggering amount of information, the brain has developed a file cabinet of sorts in the mind. The different files stored in the file cabinet are called concepts. Concepts  are categories or groupings of linguistic information, images, ideas, or memories, such as life experiences. Concepts are, in many ways, big ideas that are generated by observing details, and categorizing and combining these details into cognitive structures. You use concepts to see the relationships among the different elements of your experiences and to keep the information in your mind organized and accessible.

Concepts are informed by our semantic memory (you will learn more about this concept when you study memory) and are present in every aspect of our lives; however, one of the easiest places to notice concepts is inside a classroom, where they are discussed explicitly. When you study United States history, for example, you learn about more than just individual events that have happened in America’s past. You absorb a large quantity of information by listening to and participating in discussions, examining maps, and reading first-hand accounts of people’s lives. Your brain analyzes these details and develops an overall understanding of American history. In the process, your brain gathers details that inform and refine your understanding of related concepts like democracy, power, and freedom.

Concepts can be complex and abstract, like justice, or more concrete, like types of birds. In psychology, for example, Piaget’s stages of development are abstract concepts. Some concepts, like tolerance, are agreed upon by many people because they have been used in various ways over many years. Other concepts, like the characteristics of your ideal friend or your family’s birthday traditions, are personal and individualized. In this way, concepts touch every aspect of our lives, from our many daily routines to the guiding principles behind the way governments function.

Concepts are at the core of intelligent behavior. We expect people to be able to know what to do in new situations and when confronting new objects. If you go into a new classroom and see chairs, a blackboard, a projector, and a screen, you know what these things are and how they will be used. You’ll sit on one of the chairs and expect the instructor to write on the blackboard or project something onto the screen. You do this even if you have never seen any of these particular objects before , because you have concepts of classrooms, chairs, projectors, and so forth, that tell you what they are and what you’re supposed to do with them. Furthermore, if someone tells you a new fact about the projector—for example, that it has a halogen bulb—you are likely to extend this fact to other projectors you encounter. In short, concepts allow you to extend what you have learned about a limited number of objects to a potentially infinite set of entities.

A photograph of Mohandas Gandhi is shown. There are several people walking with him.

Another technique used by your brain to organize information is the identification of prototypes for the concepts you have developed. A prototype  is the best example or representation of a concept. For example, for the category of civil disobedience, your prototype could be Rosa Parks. Her peaceful resistance to segregation on a city bus in Montgomery, Alabama, is a recognizable example of civil disobedience. Or your prototype could be Mohandas Gandhi, sometimes called Mahatma Gandhi (“Mahatma” is an honorific title) (Figure 10).

Mohandas Gandhi served as a nonviolent force for independence for India while simultaneously demanding that Buddhist, Hindu, Muslim, and Christian leaders—both Indian and British—collaborate peacefully. Although he was not always successful in preventing violence around him, his life provides a steadfast example of the civil disobedience prototype (Constitutional Rights Foundation, 2013). Just as concepts can be abstract or concrete, we can make a distinction between concepts that are functions of our direct experience with the world and those that are more artificial in nature.

Link to Learning

Natural and artificial concepts.

In psychology, concepts can be divided into two categories, natural and artificial. Natural concepts  are created “naturally” through your experiences and can be developed from either direct or indirect experiences. For example, if you live in Essex Junction, Vermont, you have probably had a lot of direct experience with snow. You’ve watched it fall from the sky, you’ve seen lightly falling snow that barely covers the windshield of your car, and you’ve shoveled out 18 inches of fluffy white snow as you’ve thought, “This is perfect for skiing.” You’ve thrown snowballs at your best friend and gone sledding down the steepest hill in town. In short, you know snow. You know what it looks like, smells like, tastes like, and feels like. If, however, you’ve lived your whole life on the island of Saint Vincent in the Caribbean, you may never have actually seen snow, much less tasted, smelled, or touched it. You know snow from the indirect experience of seeing pictures of falling snow—or from watching films that feature snow as part of the setting. Either way, snow is a natural concept because you can construct an understanding of it through direct observations or experiences of snow (Figure 11).

Photograph A shows a snow covered landscape with the sun shining over it. Photograph B shows a sphere shaped object perched atop the corner of a cube shaped object. There is also a triangular object shown.

An artificial concept  on the other hand, is a concept that is defined by a specific set of characteristics. Various properties of geometric shapes, like squares and triangles, serve as useful examples of artificial concepts. A triangle always has three angles and three sides. A square always has four equal sides and four right angles. Mathematical formulas, like the equation for area (length × width) are artificial concepts defined by specific sets of characteristics that are always the same. Artificial concepts can enhance the understanding of a topic by building on one another. For example, before learning the concept of “area of a square” (and the formula to find it), you must understand what a square is. Once the concept of “area of a square” is understood, an understanding of area for other geometric shapes can be built upon the original understanding of area. The use of artificial concepts to define an idea is crucial to communicating with others and engaging in complex thought. According to Goldstone and Kersten (2003), concepts act as building blocks and can be connected in countless combinations to create complex thoughts.

A schema is a mental construct consisting of a cluster or collection of related concepts (Bartlett, 1932). There are many different types of schemata, and they all have one thing in common: schemata are a method of organizing information that allows the brain to work more efficiently. When a schema is activated, the brain makes immediate assumptions about the person or object being observed.

There are several types of schemata. A role schema makes assumptions about how individuals in certain roles will behave (Callero, 1994). For example, imagine you meet someone who introduces himself as a firefighter. When this happens, your brain automatically activates the “firefighter schema” and begins making assumptions that this person is brave, selfless, and community-oriented. Despite not knowing this person, already you have unknowingly made judgments about him. Schemata also help you fill in gaps in the information you receive from the world around you. While schemata allow for more efficient information processing, there can be problems with schemata, regardless of whether they are accurate: Perhaps this particular firefighter is not brave, he just works as a firefighter to pay the bills while studying to become a children’s librarian.

An event schema , also known as a cognitive script , is a set of behaviors that can feel like a routine. Think about what you do when you walk into an elevator (Figure 12). First, the doors open and you wait to let exiting passengers leave the elevator car. Then, you step into the elevator and turn around to face the doors, looking for the correct button to push. You never face the back of the elevator, do you? And when you’re riding in a crowded elevator and you can’t face the front, it feels uncomfortable, doesn’t it? Interestingly, event schemata can vary widely among different cultures and countries. For example, while it is quite common for people to greet one another with a handshake in the United States, in Tibet, you greet someone by sticking your tongue out at them, and in Belize, you bump fists (Cairns Regional Council, n.d.)

A crowded elevator is shown. There are many people standing close to one another.

Because event schemata are automatic, they can be difficult to change. Imagine that you are driving home from work or school. This event schema involves getting in the car, shutting the door, and buckling your seatbelt before putting the key in the ignition. You might perform this script two or three times each day. As you drive home, you hear your phone’s ring tone. Typically, the event schema that occurs when you hear your phone ringing involves locating the phone and answering it or responding to your latest text message. So without thinking, you reach for your phone, which could be in your pocket, in your bag, or on the passenger seat of the car. This powerful event schema is informed by your pattern of behavior and the pleasurable stimulation that a phone call or text message gives your brain. Because it is a schema, it is extremely challenging for us to stop reaching for the phone, even though we know that we endanger our own lives and the lives of others while we do it (Neyfakh, 2013) (Figure 13).

A person’s right hand is holding a cellular phone. The person is in the driver’s seat of an automobile while on the road.

Remember the elevator? It feels almost impossible to walk in and not face the door. Our powerful event schema dictates our behavior in the elevator, and it is no different with our phones. Current research suggests that it is the habit, or event schema, of checking our phones in many different situations that makes refraining from checking them while driving especially difficult (Bayer & Campbell, 2012). Because texting and driving has become a dangerous epidemic in recent years, psychologists are looking at ways to help people interrupt the “phone schema” while driving. Event schemata like these are the reason why many habits are difficult to break once they have been acquired. As we continue to examine thinking, keep in mind how powerful the forces of concepts and schemata are to our understanding of the world.

Watch this CrashCourse video to see more examples of concepts and prototypes. You’ll also get a preview on other key topics in cognition, including problem-solving strategies like algorithms and heuristics.

You can view the transcript for “Cognition – How Your Mind Can Amaze and Betray You: Crash Course Psychology #15” here (opens in new window) .

Think It Over

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them. For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm  is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic  is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards  is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

What problem-solving method could you use to solve Einstein’s famous riddle?

You can view the transcript for “Can you solve “Einstein’s Riddle”? – Dan Van der Vieren” here (opens in new window) .

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connections: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 14) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 16). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Were you able to determine how many marbles are needed to balance the scales in the Puzzling Scales? You need nine. Were you able to solve the other problems above? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Pitfalls to Problem Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set  is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now. Functional fixedness   is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias  occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. This bias proves that first impressions do matter and that we tend to look for information to confirm our initial judgments of others.

Watch this video from the Big Think to learn more about the confirmation bias.

You can view the transcript for “Confirmation Bias: Your Brain is So Judgmental” here (opens in new window) .

Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias  describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . To use a common example, would you guess there are more murders or more suicides in America each year? When asked, most people would guess there are more murders. In truth, there are twice as many suicides as there are murders each year. However, murders seem more common because we hear a lot more about murders on an average day. Unless someone we know or someone famous takes their own life, it does not make the news. Murders, on the other hand, we see in the news every day. This leads to the erroneous assumption that the easier it is to think of instances of something, the more often that thing occurs.

Watch the following video for an example of the availability heuristic.

You can view the transcript for “Availability Heuristic: Are Planes More Dangerous Than Cars?” here (opens in new window) .

Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 2 below.

Learn more about heuristics and common biases through the article, “ 8 Common Thinking Mistakes Our Brains Make Every Day and How to Prevent Them ” by Belle Beth Cooper.

You can also watch this clever music video explaining these and other cognitive biases.

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

The word language written on the chalkboard with a silhouette of children in front of the chalkboard.

  • Understand how the use of language develops
  • Explain the relationship between language and thinking

Language Development

Language is a communication system that involves using words and systematic rules to organize those words to transmit information from one individual to another. While language is a form of communication, not all communication is language. Many species communicate with one another through their postures, movements, odors, or vocalizations. This communication is crucial for species that need to interact and develop social relationships with their conspecifics. However, many people have asserted that it is language that makes humans unique among all of the animal species (Corballis & Suddendorf, 2007; Tomasello & Rakoczy, 2003). This section will focus on what distinguishes language as a special form of communication, how the use of language develops, and how language affects the way we think.

Components of Language

Language , be it spoken, signed, or written, has specific components: a lexicon and grammar. Lexicon refers to the words of a given language. Thus, lexicon is a language’s vocabulary. Grammar  refers to the set of rules that are used to convey meaning through the use of the lexicon (Fernández & Cairns, 2011). For instance, English grammar dictates that most verbs receive an “-ed” at the end to indicate past tense.

Words are formed by combining the various phonemes that make up the language. A phoneme  (e.g., the sounds “ah” vs. “eh”) is a basic sound unit of a given language, and different languages have different sets of phonemes. Phonemes are combined to form morphemes , which are the smallest units of language that convey some type of meaning (e.g., “I” is both a phoneme and a morpheme).  Further, a morpheme is not the same as a word. The main difference is that a morpheme sometimes does not stand alone, but a word, by definition, always stands alone.

We use semantics and syntax to construct language. Semantics and syntax are part of a language’s grammar. Semantics refers to the process by which we derive meaning from morphemes and words. Syntax  refers to the way words are organized into sentences (Chomsky, 1965; Fernández & Cairns, 2011).

We apply the rules of grammar to organize the lexicon in novel and creative ways, which allow us to communicate information about both concrete and abstract concepts. We can talk about our immediate and observable surroundings as well as the surface of unseen planets. We can share our innermost thoughts, our plans for the future, and debate the value of a college education. We can provide detailed instructions for cooking a meal, fixing a car, or building a fire. The flexibility that language provides to relay vastly different types of information is a property that makes language so distinct as a mode of communication among humans.

Given the remarkable complexity of a language, one might expect that mastering a language would be an especially arduous task; indeed, for those of us trying to learn a second language as adults, this might seem to be true. However, young children master language very quickly with relative ease. B. F. Skinner (1957) proposed that language is learned through reinforcement. Noam Chomsky (1965) criticized this behaviorist approach, asserting instead that the mechanisms underlying language acquisition are biologically determined. The use of language develops in the absence of formal instruction and appears to follow a very similar pattern in children from vastly different cultures and backgrounds. It would seem, therefore, that we are born with a biological predisposition to acquire a language (Chomsky, 1965; Fernández & Cairns, 2011). Moreover, it appears that there is a critical period for language acquisition, such that this proficiency at acquiring language is maximal early in life; generally, as people age, the ease with which they acquire and master new languages diminishes (Johnson & Newport, 1989; Lenneberg, 1967; Singleton, 1995).

Children begin to learn about language from a very early age (Table 1). In fact, it appears that this is occurring even before we are born. Newborns show preference for their mother’s voice and appear to be able to discriminate between the language spoken by their mother and other languages. Babies are also attuned to the languages being used around them and show preferences for videos of faces that are moving in synchrony with the audio of spoken language versus videos that do not synchronize with the audio (Blossom & Morgan, 2006; Pickens, 1994; Spelke & Cortelyou, 1981).

Dig Deeper: The Case of Genie

In the fall of 1970, a social worker in the Los Angeles area found a 13-year-old girl who was being raised in extremely neglectful and abusive conditions. The girl, who came to be known as Genie, had lived most of her life tied to a potty chair or confined to a crib in a small room that was kept closed with the curtains drawn. For a little over a decade, Genie had virtually no social interaction and no access to the outside world. As a result of these conditions, Genie was unable to stand up, chew solid food, or speak (Fromkin, Krashen, Curtiss, Rigler, & Rigler, 1974; Rymer, 1993). The police took Genie into protective custody.

Genie’s abilities improved dramatically following her removal from her abusive environment, and early on, it appeared she was acquiring language—much later than would be predicted by critical period hypotheses that had been posited at the time (Fromkin et al., 1974). Genie managed to amass an impressive vocabulary in a relatively short amount of time. However, she never developed a mastery of the grammatical aspects of language (Curtiss, 1981). Perhaps being deprived of the opportunity to learn language during a critical period impeded Genie’s ability to fully acquire and use language.

You may recall that each language has its own set of phonemes that are used to generate morphemes, words, and so on. Babies can discriminate among the sounds that make up a language (for example, they can tell the difference between the “s” in vision and the “ss” in fission); early on, they can differentiate between the sounds of all human languages, even those that do not occur in the languages that are used in their environments. However, by the time that they are about 1 year old, they can only discriminate among those phonemes that are used in the language or languages in their environments (Jensen, 2011; Werker & Lalonde, 1988; Werker & Tees, 1984).

After the first few months of life, babies enter what is known as the babbling stage, during which time they tend to produce single syllables that are repeated over and over. As time passes, more variations appear in the syllables that they produce. During this time, it is unlikely that the babies are trying to communicate; they are just as likely to babble when they are alone as when they are with their caregivers (Fernández & Cairns, 2011). Interestingly, babies who are raised in environments in which sign language is used will also begin to show babbling in the gestures of their hands during this stage (Petitto, Holowka, Sergio, Levy, & Ostry, 2004).

Generally, a child’s first word is uttered sometime between the ages of 1 year to 18 months, and for the next few months, the child will remain in the “one word” stage of language development. During this time, children know a number of words, but they only produce one-word utterances. The child’s early vocabulary is limited to familiar objects or events, often nouns. Although children in this stage only make one-word utterances, these words often carry larger meaning (Fernández & Cairns, 2011). So, for example, a child saying “cookie” could be identifying a cookie or asking for a cookie.

As a child’s lexicon grows, she begins to utter simple sentences and to acquire new vocabulary at a very rapid pace. In addition, children begin to demonstrate a clear understanding of the specific rules that apply to their language(s). Even the mistakes that children sometimes make provide evidence of just how much they understand about those rules. This is sometimes seen in the form of overgeneralization . In this context, overgeneralization refers to an extension of a language rule to an exception to the rule. For example, in English, it is usually the case that an “s” is added to the end of a word to indicate plurality. For example, we speak of one dog versus two dogs. Young children will overgeneralize this rule to cases that are exceptions to the “add an s to the end of the word” rule and say things like “those two gooses” or “three mouses.” Clearly, the rules of the language are understood, even if the exceptions to the rules are still being learned (Moskowitz, 1978).

Language and Thinking

Think about it:  the meaning of language.

Think about what you know of other languages; perhaps you even speak multiple languages. Imagine for a moment that your closest friend fluently speaks more than one language. Do you think that friend thinks differently, depending on which language is being spoken? You may know a few words that are not translatable from their original language into English. For example, the Portuguese word saudade originated during the 15th century, when Portuguese sailors left home to explore the seas and travel to Africa or Asia. Those left behind described the emptiness and fondness they felt as saudade (Figure 20) . The word came to express many meanings, including loss, nostalgia, yearning, warm memories, and hope. There is no single word in English that includes all of those emotions in a single description. Do words such as saudade indicate that different languages produce different patterns of thought in people? What do you think??

Photograph A shows a painting of a person leaning against a ledge, slumped sideways over a box. Photograph B shows a painting of a person reading by a window.

Language may indeed influence the way that we think, an idea known as linguistic determinism. One recent demonstration of this phenomenon involved differences in the way that English and Mandarin Chinese speakers talk and think about time. English speakers tend to talk about time using terms that describe changes along a horizontal dimension, for example, saying something like “I’m running behind schedule” or “Don’t get ahead of yourself.” While Mandarin Chinese speakers also describe time in horizontal terms, it is not uncommon to also use terms associated with a vertical arrangement. For example, the past might be described as being “up” and the future as being “down.” It turns out that these differences in language translate into differences in performance on cognitive tests designed to measure how quickly an individual can recognize temporal relationships. Specifically, when given a series of tasks with vertical priming, Mandarin Chinese speakers were faster at recognizing temporal relationships between months. Indeed, Boroditsky (2001) sees these results as suggesting that “habits in language encourage habits in thought” (p. 12).

Language does not completely determine our thoughts—our thoughts are far too flexible for that—but habitual uses of language can influence our habit of thought and action. For instance, some linguistic practice seems to be associated even with cultural values and social institution. Pronoun drop is the case in point. Pronouns such as “I” and “you” are used to represent the speaker and listener of a speech in English. In an English sentence, these pronouns cannot be dropped if they are used as the subject of a sentence. So, for instance, “I went to the movie last night” is fine, but “Went to the movie last night” is not in standard English. However, in other languages such as Japanese, pronouns can be, and in fact often are, dropped from sentences. It turned out that people living in those countries where pronoun drop languages are spoken tend to have more collectivistic values (e.g., employees having greater loyalty toward their employers) than those who use non–pronoun drop languages such as English (Kashima & Kashima, 1998). It was argued that the explicit reference to “you” and “I” may remind speakers the distinction between the self and other, and the differentiation between individuals. Such a linguistic practice may act as a constant reminder of the cultural value, which, in turn, may encourage people to perform the linguistic practice.

One group of researchers who wanted to investigate how language influences thought compared how English speakers and the Dani people of Papua New Guinea think and speak about color. The Dani have two words for color: one word for light and one word for dark . In contrast, the English language has 11 color words. Researchers hypothesized that the number of color terms could limit the ways that the Dani people conceptualized color. However, the Dani were able to distinguish colors with the same ability as English speakers, despite having fewer words at their disposal (Berlin & Kay, 1969). A recent review of research aimed at determining how language might affect something like color perception suggests that language can influence perceptual phenomena, especially in the left hemisphere of the brain. You may recall from earlier chapters that the left hemisphere is associated with language for most people. However, the right (less linguistic hemisphere) of the brain is less affected by linguistic influences on perception (Regier & Kay, 2009)

Learn more about language, language acquisition, and especially the connection between language and thought in the following CrashCourse video:

You can view the transcript for “Language: Crash Course Psychology #16” here (opens in new window) .

In this chapter, you learned to

  • describe attention
  • describe cognition and problem-solving strategies
  • describe language acquisition and the role language plays in communication and thought

You learned about non-memory cognitive processes in this chapter. Because each of you reading this is using language in some shape or form, we will end with a quick summary and a video on this topic. Language is a communication system that has both a lexicon and a system of grammar. Language acquisition occurs naturally and effortlessly during the early stages of life, and this acquisition occurs in a predictable sequence for individuals around the world. Language has a strong influence on thought, and the concept of how language may influence cognition remains an area of study and debate in psychology.

In this TED talk, Lera Boroditsky summarizes unique ways that language and culture intersect with some basic cognitive processes. How was your language shaped your thinking?

Abler, W. (2013). Sapir, Harris, and Chomsky in the twentieth century. Cognitive Critique, 7, 29–48.

Aronson, E. (Ed.). (1995). Social cognition. In The social animal (p. 151). New York: W.H. Freeman and Company.

Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, England: Cambridge University Press.

Bayer, J. B., & Campbell, S. W. (2012). Texting while driving on automatic: Considering the frequency-independent side of habit. Computers in Human Behavior, 28, 2083–2090.

Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: What governs choking under pressure?  Journal of Experimental Psychology: General, 130 , 701–725.

Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkley: University of California Press.

Blossom, M., & Morgan, J. L. (2006). Does the face say what the mouth says? A study of infants’ sensitivity to visual prosody. In the 30th annual Boston University Conference on Language Development, Somerville, MA.

Boroditsky, L. (2001). Does language shape thought? Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43, 1–22.

Boroditsky, L. (2011, February). How language shapes thought. Scientific American, 63–65.Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press

Broadbent, D. A. (1958).  Perception and communication . London, England: Pergamon Press.

Cairns Regional Council. (n.d.). Cultural greetings. Retrieved from http://www.cairns.qld.gov.au/__data/assets/pdf_file/0007/8953/CulturalGreetingExercise.pdf

Callero, P. L. (1994). From role-playing to role-using: Understanding role as resource. Social Psychology Quarterly, 57, 228–243.

Cherry, E. C. (1953). Experiments on the recognition of speech with one and two ears.  Journal of the Acoustical Society of America, 25 , 975–979.

Chomsky, N.(1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press

Corballis, M. C., & Suddendorf, T. (2007). Memory, time, and language. In C. Pasternak (Ed.), What makes us human (pp. 17–36). Oxford, UK: Oneworld Publications.

Curtiss, S. (1981). Dissociations between language and cognition: Cases and implications. Journal of Autism and Developmental Disorders, 11(1), 15–30.

Cyclopedia of Puzzles. (n.d.) Retrieved from http://www.mathpuzzle.com/loyd/

Deutsch, J. A., & Deutsch, D. (1963). Attention: some theoretical considerations.  Psychological Review, 70 , 80–90.

Fernández, E. M., & Cairns, H. S. (2011). Fundamentals of psycholinguistics. West Sussex, UK: Wiley-Blackwell.

Fromkin, V., Krashen, S., Curtiss, S., Rigler, D., & Rigler, M. (1974). The development of language in Genie: A case of language acquisition beyond the critical period. Brain and Language, 1, 81–107.

German, T. P., & Barrett, H. C. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, 16, 1–5.

Goldstone, R. L., & Kersten, A. (2003). Concepts and categorization. In A. F. Healy, R. W. Proctor, & I.B. Weiner (Eds.), Handbook of psychology (Volume IV, pp. 599–622). Hoboken, New Jersey: John Wiley & Sons, Inc.

Hirst, W. C., Neisser, U., & Spelke, E. S. (1978). Divided attention.  Human Nature, 1 , 54–61.

James, W. (1983).  The principles of psychology . Cambridge, MA: Harvard University Press. (Original work published 1890)

Jensen, J. (2011). Phoneme acquisition: Infants and second language learners. The Language Teacher, 35(6), 24–28.

Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21, 60–99.

Johnston, W. A., & Heinz, S. P. (1978). Flexibility and capacity demands of attention.  Journal of Experimental Psychology: General, 107 , 420–435.

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus, and Giroux.

Lenneberg, E. (1967). Biological foundations of language. New York: Wiley.

Monsell, S. (2003). Task switching.  Trends in Cognitive Science, 7 (3), 134–140.

Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions.  Quarterly Journal of Experimental Psychology, 11 , 56–60.

Moskowitz, B. A. (1978). The acquisition of language. Scientific American, 239, 92–108. Petitto, L. A., Holowka, S., Sergio, L. E., Levy, B., & Ostry, D. J. (2004). Baby hands that move to the rhythm of language: Hearing babies acquiring sign languages babble silently on the hands. Cognition, 93, 43–73.

Neyfakh, L. (2013, October 7). “Why you can’t stop checking your phone.” Retrieved from http://www.bostonglobe.com/ideas/2013/10/06/why-you-can-stop-checking-your-phone/rrBJzyBGDAr1YlEH5JQDcM/story.html

Petitto, L. A., Holowka, S., Sergio, L. E., Levy, B., & Ostry, D. J. (2004). Baby hands that move to the rhythm of language: Hearing babies acquiring sign languages babble silently on the hands. Cognition, 93, 43–73.

Pickens, J. (1994). Full-term and preterm infants’ perception of face-voice synchrony. Infant Behavior and Development, 17, 447–455.

Pratkanis, A. (1989). The cognitive representation of attitudes. In A. R. Pratkanis, S. J. Breckler, & A. G. Greenwald (Eds.), Attitude structure and function (pp. 71–98). Hillsdale, NJ: Erlbaum.

Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 13(10), 439–446.

Rymer, R. (1993). Genie: A Scientific Tragedy. New York: Harper Collins.

Sapir, E. (1964). Culture, language, and personality. Berkley: University of California Press. (Original work published 1941)

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events.  Perception, 28 , 1059–1074.

Skinner, B. F. (1957). Verbal behavior. Acton, MA: Copley Publishing Group.

Spelke, E. S., & Cortelyou, A. (1981). Perceptual aspects of social knowing: Looking and listening in infancy. In M.E. Lamb & L.R. Sherrod (Eds.), Infant social cognition: Empirical and theoretical considerations (pp. 61–83). Hillsdale, NJ: Erlbaum.

Spelke, E. S., Hirst, W. C., & Neisser, U. (1976). Skills of divided attention.  Cognition, 4 , 215–250.

Strayer, D. L., & Drews, F. A. (2007). Cell-phone induced inattention blindness.  Current Directions in Psychological Science, 16 , 128–131.

Strayer, D. L., & Johnston, W. A. (2001). Driven to distraction: Dual-task studies of simulated driving and conversing on a cellular telephone.  Psychological Science, 12 , 462–466.

Strayer, D. L., Watson, J. M., & Drews, F. A. (2011) Cognitive distraction while multitasking in the automobile. In Brian Ross (Ed.),  The Psychology of Learning and Motivation  (Vol. 54, pp. 29–58). Burlington, VT: Academic Press.

Tomasello, M., & Rakoczy, H. (2003). What makes human cognition unique? From individual to shared to collective intentionality. Mind & Language, 18(2), 121–147.

Treisman, A. (1960). Contextual cues in selective listening.  Quarterly Journal of Experimental Psychology, 12 , 242–248.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.

van Troyer, G. (1994). Linguistic determinism and mutability: The Sapir-Whorf “hypothesis” and intercultural communication. JALT Journal, 2, 163–178.

Watson, J. M., & Strayer, D. L. (2010). Supertaskers: Profiles in extraordinary multitasking ability.  Psychonomic Bulletin & Review, 17 , 479–485.

Werker, J. F., & Lalonde, C. E. (1988). Cross-language speech perception: Initial capabilities and developmental change. Developmental Psychology, 24, 672–683.

Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 49–63.

Whorf, B. L. (1956). Language, thought and relativity. Cambridge, MA: MIT Press.

CC original content.

Attention, Thinking and Language.  Authored by:  Karenna Malavanti Provided by: PressBooks. License: CC BY-SA: Attribution-ShareAlike

CC licensed content, Shared previously

  • Why It Matters: Thinking and Intelligence.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/introduction-10/
  • Attention. Authored by: Frances Friedrich. Located at NOBA Psychology. License: CC-BY-NC-SA. Retrieved from: Retrieved from  http://noba.to/uv9x8df5
  • Introduction to Thinking and Intelligence. Authored by : OpenStax College. License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction   Located at : https://openstax.org/books/psychology-2e/pages/7-introduction .
  • What Is Cognition?. Authored by : OpenStax College. License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction   Located at : https://openstax.org/books/psychology-2e/pages/7-1-what-is-cognition .
  • A Thinking Man Image. Authored by : Wesley Nitsckie. License : CC BY-SA: Attribution-ShareAlike   Located at : https://www.flickr.com/photos/nitsckie/5507777269 .
  • What Is Cognition?.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/what-is-cognition/
  • Categories and Concepts. Authored by : Gregory Murphy. Provided by : New York University. Project : The Noba Project. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike   Located at : http://nobaproject.com/textbooks/wendy-king-introduction-to-psychology-the-full-noba-collection/modules/categories-and-concepts .
  • Solving Problems.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at : https://pressbooks.online.ucf.edu/lumenpsychology/chapter/problem-solving/
  • Problem-Solving. Authored by : OpenStax College. License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction . Located at : https://openstax.org/books/psychology-2e/pages/7-3-problem-solving .
  • Pitfalls to Problem Solving.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-pitfalls-to-problem/
  • Introduction to Language.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/outcome-language/
  • Language. Authored by : OpenStax College.  License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction   Located at : https://openstax.org/books/psychology-2e/pages/7-2-language .
  • Language. Authored by : geralt. Provided by : Pixabay. License : CC0: No Rights Reserved   Located at : https://pixabay.com/en/school-board-languages-blackboard-1063556/ .
  • Language and Language Use.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/language-and-language-use/
  • Language and Language Use. Authored by : Yoshihisa Kashima. Project : The Noba Project. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike   Located at : http://nobaproject.com/textbooks/introduction-to-psychology-the-full-noba-collection/modules/language-and-language-use .
  • Language Development.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/language/
  • Morpheme. Provided by : Wikipedia. License : CC BY-SA: Attribution-ShareAlike   Located at : https://en.wikipedia.org/wiki/Morpheme .
  • Language and Thinking.  Authored by : Lumen Learning License :  CC BY: Attribution   Located at :  https://pressbooks.online.ucf.edu/lumenpsychology/chapter/reading-language-and-thought/
  • Summary. Authored by : OpenStax College. License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction . Located at : https://openstax.org/books/psychology-2e/pages/7-summary .

All rights reserved content

  • Cognition: How Your Mind Can Amaze and Betray You – Crash Course Psychology #15. Provided by : CrashCourse. License : All Rights Reserved . License Terms : Standard YouTube License   Located at : https://www.youtube.com/watch?v=R-sVnmmw6WY&feature=youtu.be&list=PL8dPuuaLjXtOPRKzVLY0jJY-uHOH9KVU6 .
  • Can you solve Einsteinu2019s Riddle? . Authored by : Dan Van der Vieren. Provided by : Ted-Ed. License : Other . License Terms : Standard YouTube License .  Located at : https://www.youtube.com/watch?v=1rDVz_Fb6HQ&index=3&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a .
  • Language: Crash Course Psychology #16. Authored by : CrashCourse. License : Other . License Terms : Standard YouTube License .  Located at : https://www.youtube.com/watch?v=s9shPouRWCs&feature=youtu.be&list=PL8dPuuaLjXtOPRKzVLY0jJY-uHOH9KVU6 .
  • How language shapes the way we think Authored by: Lera Boroditsky.  Provided by :  TED.  License : Other . License Terms : Standard YouTube License .  Located at :  https://youtu.be/RKK7wGAYP6k

thinking, including perception, learning, problem solving, judgment, and memory

field of psychology dedicated to studying every aspect of how people think

a set of objects that can be treated as equivalent in some way

category or grouping of linguistic information, objects, ideas, or life experiences

best representation of a concept

mental groupings that are created “naturally” through your experiences

concept that is defined by a very specific set of characteristics

(plural = schemata) mental construct consisting of a cluster or collection of related concepts

set of expectations that define the behaviors of a person occupying a particular role

set of behaviors that are performed the same way each time; also referred to as a cognitive script

set of behaviors that are performed the same way each time; also referred to as an event schema

method for solving problems

problem-solving strategy in which multiple solutions are attempted until the correct one is found

problem-solving strategy characterized by a specific set of instructions

mental shortcut that saves time when solving a problem

heuristic in which you begin to solve a problem by focusing on the end result

continually using an old solution to a problem without results

inability to see an object as useful for any other use other than the one for which it was intended

faulty heuristic in which you fixate on a single aspect of a problem to find a solution

belief that the event just experienced was predictable, even though it really wasn’t

subset of the population that accurately represents the general population

faulty heuristic in which you make a decision based on information readily available to you

communication system that involves using words to transmit information from one individual to another

Words and expressions.

set of rules that are used to convey meaning through the use of a lexicon

basic sound unit of a given language

smallest unit of language that conveys some type of meaning

process by which we derive meaning from morphemes and words

manner by which words are organized into sentences

extension of a rule that exists in a given language to an exception to the rule

Psychological Science: Understanding Human Behavior Copyright © by Karenna Malavanti is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Technical Support
  • Find My Rep

You are here

The Psychology of Thinking

The Psychology of Thinking Reasoning, Decision-Making and Problem-Solving

  • John Paul Minda - University of Western Ontario, Canada
  • Description

The Psychology of Thinking is an engaging, interesting and easy-to-follow guide into the essential concepts behind our reasoning, decision-making and problem-solving. Clearly structured into 3 sections, this book will;

  • Introduce your students to organisation of thought including memory, language and concepts;
  • Expand their understanding of reasoning including inference and induction as well as motivation and the impact of mood;
  • Improve their thinking in action, focusing on decision-making and problem-solving.

Suitable for any course in which students need to develop their judgement and decision-making skills, this book uses clever examples of real-world situations to help them understand and apply the theories discussed to their everyday thinking.

See what’s new to this edition by selecting the Features tab on this page. Should you need additional information or have questions regarding the HEOA information provided for this title, including what is new to this edition, please email [email protected] . Please include your name, contact information, and the name of the title for which you would like more information. For information on the HEOA, please go to http://ed.gov/policy/highered/leg/hea08/index.html .

For assistance with your order: Please email us at [email protected] or connect with your SAGE representative.

SAGE 2455 Teller Road Thousand Oaks, CA 91320 www.sagepub.com

Whilst this book is primarily aimed at students of psychology, it is a really useful general resource for anyone interested in thinking and reasoning. Lawyers who understand the psychological context of thinking and reasoning will be able to distinguish good from bad thinking whether in the context of litigation or general legal advice. This book will help. Whilst the whole book is useful, I will direct students to particular chapters, especially in Part 2. This is a good, accessible book that can be used in many different courses and beyond.

I was not able to download this book and review it

Creative thinking is one of the civil engineers critical skills and up until now I hadn't discovered an text booked that explained the many facets of thinking is such a succinct and clear style. I may well be recommending this for other courses I deliver.

Some excellent chapters around memory, language and thought which will be useful to students on our postgraduate programmes.

The new edition provides an enhanced pedagogical structure, helping to further engage students with the content and aid their understanding of the concepts. Firstly, there are two newly boxed in-text features,, ' Theory in the real world’ and 'Examples in practice', both of which are designed to help students understand how the theory discussed applies to both their real-world everyday and their practice. The new edition also features brand new 'Questions to think about' at the end of each chapter, challenging students to further their understanding and consolidate their learning, as well as 'Objectives' at the start of each chapter helping to focus and frame students' learning.  Fully updated throughout, to include more global-friendly content, this new edition is suitable for students regardless of where they are studying.

Preview this book

For instructors, select a purchasing option, related products.

The SAGE Handbook of Applied Memory

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Research, expert insights, and resources to develop courageous leaders within your organization.

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

Find your Coach

For Business

For Individuals

9 cognitive skill examples and how to improve them

woman-writing-on-whiteboard-cognitive-skill-examples

Jump to section

What are cognitive skills?

Cognitive development

Types of cognitive skills.

What are examples of cognitive skills at work?

How to improve your cognitive skills

Stay focused.

Out of the blue, your team leader drops a curveball: the team is adopting a new project management app and updating work performance standards. 

Such an abrupt shift pushes your most basic cognitive skills into action. You diligently listen to your manager's instructions, process the influx of new information, and use logic to understand it all.

Normally, your thinking skills operate in the background, quietly supporting your daily work. But moments like this emphasize the incredible potential of your brain and the importance of honing your cognitive abilities.

Of course, some abilities — such as reasoning, visual learning, and listening — may come more naturally than others. Don’t worry: like any skill, you can grow and develop your brain power.

Prepare to unlock the full potential of your mind . Let's explore examples of cognitive skills and discover practical ways to elevate them in the workplace.

What are cognitive skills? 

The definition of cognitive skills encompasses your brain's remarkable capacity to process, store, and utilize information . These include abilities such as concentration , memory , and problem-solving.

Your cognitive skills operate subtly yet significantly, shaping your social interactions, learning processes, and ability to complete tasks successfully.

Say you meet a potential client at a networking event. Your brain effortlessly processes various pieces of information, from nonverbal social cues (like gestures ) to your elevator pitch . In this scenario, your adaptability is the defining factor between a successful and unsuccessful connection.

Cognitive development begins in infancy and early childhood and continues throughout your life. Your brain learns and grows as you age — a process called neuroplasticity . The more you train your mind through goal-setting and skill learning, the sharper your brain becomes. 

Research suggests the greater your cognitive ability, the better your performance . But there’s a caveat: your cognitive skills don’t operate in a vacuum. Self-discipline and planning also play a strong role in your ability to access and improve these abilities.

Although you may lean toward certain skills — perhaps your auditory processing is stronger than your visual learning — you can improve in any area with thoughtful practice and goal-setting .

Remember: your cognitive skills define your capacity for processing incoming information, building memories, and interpreting stimuli. Before jumping into cognitive skills to fine-tune, let’s explore eight different types of cognitive skills and their daily applications:  

Attention abilities

The world is full of stimuli. With so many distractions, it’s important to build up your ability to keep your focus. 

Your attention span is divided into three categories: 

  • Sustained attention: This is your ability to focus and concentrate your thought processes over an extended period of time. You’ve likely been in a meeting or call where your mind started to wander — that was your sustained attention clocking off. But when you let distractions get the best of you, you might procrastinate , take exc essive time to complete tasks, or lose out on important information. 
  • Selective attention : When various stimuli battle for your attention, your selective attention helps you suppress distractions and stay on task. Giving into distractions pushes your workflow off course and disrupts your productivity.  
  • Divided attention : When you’re working on a project, you often have constructive feedback from your manager, requests from your client, and the scope of work to consider. Your divided attention allows you to take in all this information and find the right path forward. Without it, you might become overwhelmed and struggle to chart a course of action.

woman-listening-to-her-client-talking-at-work-event-cognitive-skill-examples

Memory skills

At work, building your memory helps ensure that information doesn't go in one ear and out the other. These are the two types of memories to polish: 

  • Working memory : Sometimes referred to as your short-term memory, working memory allows you to hold on to information while you use it. Imagine a virtual onboarding with a new project management app: your working memory allows you to process instructions as you work through the platform. Weak working memory can cost you time. You might re-read directions, forget what someone just told you, or have difficulty following step-by-step instructions.
  • Long-term memory : Long-term memories are the procedures, facts, and experiences you use to interact with your environment and learn new skills . Your long-term memory guides your professional development as you build upon your knowledge and expertise. Without a sharp long-term memory, you may struggle to fine-tune important technical skills or build relationships impo rtant to your career. 

Information processing skills

Pings on your phone, numbers on a chart, and the inflection of a coworker's voice all signal different messages. Here are three ways your brain processes information: 

  • Auditory processing: Noise is identified, analyzed, and separated by your auditory processing abilities. Auditory processing disorder is a common cognitive disorder that impacts your ability to listen to speech with background noise, follow spoken instructions, or learn new languages. 
  • Visual processing: This is your ability to perceive, analyze, and synthesize visual patterns — as well as form visual imagery and memory. It’s not uncommon to struggle with visual pro cessing, which can make pattern recognition in math and written instructions difficult. Fortunately, this can often be improved with a vision therapist . 
  • Processing speed: This is the time required to respond to and process information from your environment. Low processing speeds can cause you to take longer to complete tasks — especially under pressure — which throws off your efficiency and workflow.

two-friends-reading-notebook-with-highlighted-text-cognitive-skill-examples

What are examples of cognitive skills at work? 

Ready to level up your performance? Here are nine examples of cognitive skills to work on to strengthen your professional development:

1. Logic and reasoning 

The ability to draw specific conclusions based on varied facts or data is your deductive reasoning. Even mundane tasks, like organizing your calendar, require strong logic and problem-solving skills. Deductive reasoning also helps you gauge importance, estimate work times, and set realistic goals. Without these logical thinking skills, you would struggle to work productively. 

2. Language

Language is divided into four skills: reading, writing, listening, and speaking. Every person is different — you may be an excellent writer but struggle with verbally expressing your ideas. However, clearly communicating your ideas is valuable in just about any role. Strong language skills can help you overcome miscommunications, resolve conflict, and encourage teamwork.  

3. Critical thinking

Critical thinking is a union of several soft skills , including attention to detail, intellectual curiosity , and open-mindedness. These traits are integral to problem-solving because they help you work through biases and arrive at independent, out-of-the-box solutions . That’s likely why critical thinking is considered one of the most durable skills in the workplace . 

4. Planning

Your day-to-day is full of short-term tasks and long-term objectives. Without proper planning, you could become disorganized or miss important deadlines. Planning requires logic and memory recall — these skills allow you to estimate a task's relevance and how long it should take to complete. Learning to organize and prioritize your tasks empowers you to be efficient, responsible, and proactive.

work-team-looking-at-manager-presenting-project-at-meeting-cognitive-skill-examples

5. Quantitative skills

An understanding of statistics and math helps you turn ideas into data and eliminate emotional biases from important decisions. Data analysis is an increasingly important hard skill to have on your resume .

And as artificial intelligence and big data can contribute to businesses project growth and calculate risk, learning quantitative tools might help you stay competitive in the job market. Similarly, if you’re a freelancer building a personal brand , being able to read analytics allows you to engage wider audiences and find opportunities in your market. 

6. Networking

Making the right first impression is a science. It requires you to pay attention to social cues and process several visual and auditory stimuli from the person you’re networking with. Practicing active listening trains your brain to sustain its focus and pick up on information that will lead to positive and productive professional interactions. 

In the digital age, we work with more emails, project management tools, and messenger apps than ever before. While you don’t have to aspire to be a copywriting master, learning to organize your thoughts and contextualize them for your readers can reduce miscommunications. And when someone understands a message immediately, it saves you and your colleagues time that you can dedicate to more important tasks. 

8. Reading comprehension

Reading requires you to connect ideas, sustain your focus, and recall past experiences or know-how to de-code information. Similar to writing, analyzing and contextualizing information can help you avoid misunderstandings and improve your productivity. Reading comprehension is important in any job, particularly remote jobs that depend heavily on written communication. 

man-reading-while-listening-to-music-on-headphones-cognitive-skill-examples

9. Collaboration

While collaboration may sound more like a social skill than a cognitive function, efficient teamwork requires abstract thinking. These skills help you break a project down into different tasks, leverage everyone’s strengths, and keep on top of all your team members’ deliverables. 

Inspired to level up your cognitive capacities? Here are four ways to take care of your brain: 

1. Stay healthy

Your physical and mental health are intimately connected to one another. Besides working up a sweat, physical exercise builds new neurons and stimulates memory by increasing blood flow to the brain. 

Consider developing a routine to get your 150 minutes of recommended weekly exercise , like an after work swim, joining a jogging club, or hiring a personal trainer. Similarly, a firm sleep schedule , staying hydrated , and good nutrition are complimentary habits that contribute to better brain health. 

2. Practice focusing

Repetition leads to success, which also applies to strengthening your focus. Methods like the Pomodoro Technique and concentration-based apps are great ways to build self-awareness and discover how you can stay on track.

Learning task management methods (like the Eisenhower Matrix) , adopting work productivity tools, or occasional digital detoxes are more ways to prioritize your focus. Find what works for you and practice until it becomes a habit. This prolonged ability to concentrate will strengthen your overall cognitive abilities.  

3. Reduce your stress

Worry activates your fight or flight response , which can cause mental fatigue and poor sleep. Acute stress or anxiety can often be improved by developing regular self-care practices, such as meditation , yoga, and deep breathing. 

Chronic stress is a more serious mental health risk with serious implications on your short term wellness and long-term cognitive health. Mental health professionals can help you identify the root cause of your stress and provide you with the tools and resources to ease your mind.

4. Train your brain

Your brain is like any other muscle in your body — to keep it in peak condition, you need to work it out. Incorporate some mental activities into your free time , such as reading before bed, playing chess on your lunch break, or following a serial podcast during your daily commute. You ca n also try memory or reasoning games to sharpen your cognitive skills in fun and practical ways. Even two minutes a day dedicated to self-improvement can grow your skills. 

Your brain is working even when you aren’t. But even though many of your cognitive skills are firing off in the background, you can still work to actively sharpen your abilities. 

The next time you’re tackling a new task, pay close attention to your focus. How easily do you succumb to distractions? Do you respond better to visual or auditory learning? Once you understand your strengths and acknowledge your weaknesses, you can incorporate techniques to improve. 

Eventually, you won’t have to focus so much on focusing. And the next time your coworker comes at you with a curveball, you’ll have the resources and know-how to take the change in stride. 

Transform your life

Make meaningful changes and become the best version of yourself. BetterUp's professional Coaches are here to support your personal growth journey.

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

Improve these 12 parenting skills and watch your kids thrive

Discover the 7 essential types of life skills you need, why self-management is key to success and how to improve yours, using mindfulness skills to improve your daily life, developing emotional intelligence skills for lasting success, how to organize your life (and keep it that way), find out what the data reveal about the 6 key skills for managing stress, 8 social skills examples: how socializing can take you to the top, how to improve adaptability skills, similar articles, multitasking isn't working: a science-backed approach to a better day, sound on, distractions off: how to use music to concentrate, how to use 100% of your brain: is it possible, eq versus iq: which should you leverage when, what are analytical skills examples and how to level up, how executive functioning governs daily life activities, squirrel how to increase attention span so you get stuff done, all about the 3 types of memory and how they form, what are metacognitive skills examples in everyday life, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of jintell

Analysing Complex Problem-Solving Strategies from a Cognitive Perspective: The Role of Thinking Skills

1 MTA-SZTE Digital Learning Technologies Research Group, Center for Learning and Instruction, University of Szeged, 6722 Szeged, Hungary

Gyöngyvér Molnár

2 MTA-SZTE Digital Learning Technologies Research Group, Institute of Education, University of Szeged, 6722 Szeged, Hungary; uh.degezs-u.yspde@ranlomyg

Associated Data

The data used to support the findings cannot be shared at this time as it also forms part of an ongoing study.

Complex problem solving (CPS) is considered to be one of the most important skills for successful learning. In an effort to explore the nature of CPS, this study aims to investigate the role of inductive reasoning (IR) and combinatorial reasoning (CR) in the problem-solving process of students using statistically distinguishable exploration strategies in the CPS environment. The sample was drawn from a group of university students (N = 1343). The tests were delivered via the eDia online assessment platform. Latent class analyses were employed to seek students whose problem-solving strategies showed similar patterns. Four qualitatively different class profiles were identified: (1) 84.3% of the students were proficient strategy users, (2) 6.2% were rapid learners, (3) 3.1% were non-persistent explorers, and (4) 6.5% were non-performing explorers. Better exploration strategy users showed greater development in thinking skills, and the roles of IR and CR in the CPS process were varied for each type of strategy user. To sum up, the analysis identified students’ problem-solving behaviours in respect of exploration strategy in the CPS environment and detected a number of remarkable differences in terms of the use of thinking skills between students with different exploration strategies.

1. Introduction

Problem solving is part and parcel of our daily activities, for instance, in determining what to wear in the morning, how to use our new electronic devices, how to reach a restaurant by public transport, how to arrange our schedule to achieve the greatest work efficiency and how to communicate with people in a foreign country. In most cases, it is essential to solve the problems that recur in our study, work and daily lives. These situations require problem solving. Generally, problem solving is the thinking that occurs if we want “to overcome barriers between a given state and a desired goal state by means of behavioural and/or cognitive, multistep activities” ( Frensch and Funke 1995, p. 18 ). It has also been considered as one of the most important skills for successful learning in the 21st century. This study focuses on one specific kind of problem solving, complex problem solving (CPS). (Numerous other terms are also used ( Funke et al. 2018 ), such as interactive problem solving ( Greiff et al. 2013 ; Wu and Molnár 2018 ), and creative problem solving ( OECD 2010 ), etc.).

CPS is a transversal skill ( Greiff et al. 2014 ), operating several mental activities and thinking skills (see Molnár et al. 2013 ). In order to explore the nature of CPS, some studies have focused on detecting its component skills ( Wu and Molnár 2018 ), whereas others have analysed students’ behaviour during the problem-solving process ( Greiff et al. 2018 ; Wu and Molnár 2021 ). This study aims to link these two fields by investigating the role of thinking skills in learning by examining students’ use of statistically distinguishable exploration strategies in the CPS environment.

1.1. Complex Problem Solving: Definition, Assessment and Relations to Intelligence

According to a widely accepted definition proposed by Buchner ( 1995 ), CPS is “the successful interaction with task environments that are dynamic (i.e., change as a function of users’ intervention and/or as a function of time) and in which some, if not all, of the environment’s regularities can only be revealed by successful exploration and integration of the information gained in that process” ( Buchner 1995, p. 14 ). A CPS process is split into two phases, knowledge acquisition and knowledge application. In the knowledge acquisition (KAC) phase of CPS, the problem solver understands the problem itself and stores the acquired information ( Funke 2001 ; Novick and Bassok 2005 ). In the knowledge application (KAP) phase, the problem solver applies the acquired knowledge to bring about the transition from a given state to a goal state ( Novick and Bassok 2005 ).

Problem solving, especially CPS, has frequently been compared or linked to intelligence in previous studies (e.g., Beckmann and Guthke 1995 ; Stadler et al. 2015 ; Wenke et al. 2005 ). Lotz et al. ( 2017 ) observed that “intelligence and [CPS] are two strongly overlapping constructs” (p. 98). There are many similarities and commonalities that can be detected between CPS and intelligence. For instance, CPS and intelligence share some of the same key features, such as the integration of information ( Stadler et al. 2015 ). Furthermore, Wenke et al. ( 2005 ) stated that “the ability to solve problems has featured prominently in virtually every definition of human intelligence” (p. 9); meanwhile, from the opposite perspective, intelligence has also been considered as one of the most important predictors of the ability to solve problems ( Wenke et al. 2005 ). Moreover, the relation between CPS and intelligence has also been discussed from an empirical perspective. A meta-analysis conducted by Stadler et al. ( 2015 ) selected 47 empirical studies (total sample size N = 13,740) which focused on the correlation between CPS and intelligence. The results of their analysis confirmed that a correlation between CPS and intelligence exists with a moderate effect size of M(g) = 0.43.

Due to the strong link between CPS and intelligence, assessments of these two domains have been connected and have overlapped to a certain extent. For instance, Beckmann and Guthke ( 1995 ) observed that some of the intelligence tests “capture something akin to an individual’s general ability to solve problems (e.g., Sternberg 1982 )” (p. 184). Nowadays, some widely used CPS assessment methods are related to intelligence but still constitute a distinct construct ( Schweizer et al. 2013 ), such as the MicroDYN approach ( Greiff and Funke 2009 ; Greiff et al. 2012 ; Schweizer et al. 2013 ). This approach uses the minimal complex system to simulate simplistic, artificial but still complex problems following certain construction rules ( Greiff and Funke 2009 ; Greiff et al. 2012 ).

The MicroDYN approach has been widely employed to measure problem solving in a well-defined problem context (i.e., “problems have a clear set of means for reaching a precisely described goal state”, Dörner and Funke 2017, p. 1 ). To complete a task based on the MicroDYN approach, the problem solver engages in dynamic interaction with the task to acquire relevant knowledge. It is not possible to create this kind of test environment with the traditional paper-and-pencil-based method. Therefore, it is currently only possible to conduct a MicroDYN-based CPS assessment within the computer-based assessment framework. In the context of computer-based assessment, the problem-solvers’ operations were recorded and logged by the assessment platform. Thus, except for regular achievement-focused result data, logfile data are also available for analysis. This provides the option of exploring and monitoring problem solvers’ behaviour and thinking processes, specifically, their exploration strategies, during the problem-solving process (see, e.g., Chen et al. 2019 ; Greiff et al. 2015a ; Molnár and Csapó 2018 ; Molnár et al. 2022 ; Wu and Molnár 2021 ).

Problem solving, in the context of an ill-defined problem (i.e., “problems have no clear problem definition, their goal state is not defined clearly, and the means of moving towards the (diffusely described) goal state are not clear”, Dörner and Funke 2017, p. 1), involved a different cognitive process than that in the context of a well-defined problem ( Funke 2010 ; Schraw et al. 1995 ), and it cannot be measured with the MicroDYN approach. The nature of ill-defined problem solving has been explored and discussed in numerous studies (e.g., Dörner and Funke 2017 ; Hołda et al. 2020 ; Schraw et al. 1995 ; Welter et al. 2017 ). This will not be discussed here as this study focuses on well-defined problem solving.

1.2. Inductive and Combinatorial Reasoning as Component Skills of Complex Problem Solving

Frensch and Funke ( 1995 ) constructed a theoretical framework that summarizes the basic components of CPS and the interrelations among the components. The framework contains three separate components: problem solver, task and environment. The impact of the problem solver is mainly relevant to three main categories, which are memory contents, dynamic information processing and non-cognitive variables. Some thinking skills have been reported to play an important role in dynamic information processing. We can thus describe them as component skills of CPS. Inductive reasoning (IR) and combinatorial reasoning (CR) are the two thinking skills that have been most frequently discussed as component skills of CPS.

IR is the reasoning skill that has been covered most commonly in the literature. Currently, there is no universally accepted definition. Molnár et al. ( 2013 ) described it as the cognitive process of acquiring general regularities by generalizing single and specific observations and experiences, whereas Klauer ( 1990 ) defined it as the discovery of regularities that relies upon the detection of similarities and/or dissimilarities as concerns attributes of or relations to or between objects. Sandberg and McCullough ( 2010 ) provided a general conclusion of the definitions of IR: it is the process of moving from the specific to the general.

Csapó ( 1997 ) pointed out that IR is a basic component of thinking and that it forms a central aspect of intellectual functioning. Some studies have also discussed the role of IR in a problem-solving environment. For instance, Mayer ( 1998 ) stated that IR will be applied in information processing during the process of solving general problems. Gilhooly ( 1982 ) also pointed out that IR plays a key role in some activities in the problem-solving process, such as hypothesis generation and hypothesis testing. Moreover, the influence of IR on both KAC and KAP has been analysed and demonstrated in previous studies ( Molnár et al. 2013 ).

Empirical studies have also provided evidence that IR and CPS are related. Based on the results of a large-scale assessment (N = 2769), Molnár et al. ( 2013 ) showed that IR significantly correlated with 9–17-year-old students’ domain-general problem-solving achievement (r = 0.44–0.52). Greiff et al. ( 2015b ) conducted a large-scale assessment project (N = 2021) in Finland to explore the links between fluid reasoning skills and domain-general CPS. The study measured fluid reasoning as a two-dimensional model which consisted of deductive reasoning and scientific reasoning and included inductive thinking processes ( Greiff et al. 2015b ). The results drawing on structural equation modelling indicated that fluid reasoning which was partly based on IR had significant and strong predictive effects on both KAC (β = 0.51) and KAP (β = 0.55), the two phases of problem solving. Such studies have suggested that IR is one of the component skills of CPS.

According to Adey and Csapó ’s ( 2012 ) definition, CR is the process of creating complex constructions out of a set of given elements that satisfy the conditions explicitly given in or inferred from the situation. In this process, some cognitive operations, such as combinations, arrangements, permutations, notations and formulae, will be employed ( English 2005 ). CR is one of the basic components of formal thinking ( Batanero et al. 1997 ). The relationship between CR and CPS has frequently been discussed. English ( 2005 ) demonstrated that CR has an essential meaning in several types of problem situations, such as problems requiring the systematic testing of alternative solutions. Moreover, Newell ( 1993 ) pointed out that CR is applied in some key activities of problem-solving information processing, such as strategy generation and application. Its functions include, but are not limited to, helping problem solvers to discover relationships between certain elements and concepts, promoting their fluency of thinking when they are considering different strategies ( Csapó 1999 ) and identifying all possible alternatives ( OECD 2014 ). Moreover, Wu and Molnár ’s ( 2018 ) empirical study drew on a sample (N = 187) of 11–13-year-old primary school students in China. Their study built a structural equation model between CPS, IR and CR, and the result indicated that CR showed a strong and statistically significant predictive power for CPS (β = 0.55). Thus, the results of the empirical study also support the argument that CR is one of the component skills of CPS.

1.3. Behaviours and Strategies in a Complex Problem-Solving Environment

Wüstenberg et al. ( 2012 ) stated that the creation and implementation of strategic exploration are core actions of the problem-solving task. Exploring and generating effective information are key to successfully solving a problem. Wittmann and Hattrup ( 2004 ) illustrated that “riskier strategies [create] a learning environment with greater opportunities to discover and master the rules and boundaries [of a problem]” (p. 406). Thus, when gathering information about a complex problem, there may be differences between exploration strategies in terms of efficacy. The MicroDYN scenarios, a simplification and simulation of the real-world problem-solving context, will also be influenced by the adoption and implementation of exploration strategies.

The effectiveness of the isolated variation strategy (or “Vary-One-Thing-At-A-Time” strategy—VOTAT; Vollmeyer et al. 1996 ) in a CPS environment has been hotly debated ( Chen et al. 2019 ; Greiff et al. 2018 ; Molnár and Csapó 2018 ; Molnár et al. 2022 ; Wu and Molnár 2021 ; Wüstenberg et al. 2014 ). To use the VOTAT strategy, a problem solver “systematically varies only one input variable, whereas the others remain unchanged. This way, the effect of the variable that has just been changed can be observed directly by monitoring the changes in the output variables” ( Molnár and Csapó 2018, p. 2 ). Understanding and using VOTAT effectively is the foundation for developing more complex strategies for coordinating multiple variables and the basis for some phases of scientific thinking (i.e., inquiry, analysis, inference and argument; Kuhn 2010 ; Kuhn et al. 1995 ).

Some previous studies have indicated that students who are able to apply VOTAT are more likely to achieve higher performance in a CPS assessment ( Greiff et al. 2018 ), especially if the problem is a well-defined minimal complex system (such as MicroDYN) ( Fischer et al. 2012 ; Molnár and Csapó 2018 ; Wu and Molnár 2021 ). For instance, Molnár and Csapó ( 2018 ) conducted an empirical study to explore how students’ exploration strategies influence their performance in an interactive problem-solving environment. They measured a group (N = 4371) of 3rd- to 12th-grade (aged 9–18) Hungarian students’ problem-solving achievement and modelled students’ exploration strategies. This result confirmed that students’ exploration strategies influence their problem-solving performance. For example, conscious VOTAT strategy users proved to be the best problem-solvers. Furthermore, other empirical studies (e.g., Molnár et al. 2022 ; Wu and Molnár 2021 ) achieved similar results, thus confirming the importance of VOTAT in a MicroDYN-based CPS environment.

Lotz et al. ( 2017 ) illustrated that effective use of VOTAT is associated with higher levels of intelligence. Their study also pointed out that intelligence has the potential to facilitate successful exploration behaviour. Reasoning skills are an important component of general intelligence. Based on Lotz et al. ’s ( 2017 ) statements, the roles IR and CR play in the CPS process might vary due to students’ different strategy usage patterns. However, there is still a lack of empirical studies in this regard.

2. Research Aims and Questions

Numerous studies have explored the nature of CPS, some of them discussing and analysing it from behavioural or cognitive perspectives. However, there have barely been any that have merged these two perspectives. From the cognitive perspective, this study explores the role of thinking skills (including IR and CR) in the cognition process of CPS. From the behavioural perspective, the study focuses on students’ behaviour (i.e., their exploration strategy) in the CPS assessment process. More specifically, the research aims to fill this gap and examine students’ use of statistically distinguishable exploration strategies in CPS environments and to detect the connection between the level of students’ thinking skills and their behaviour strategies in the CPS environment. The following research questions were thus formed.

  • (RQ1) What exploration strategy profiles characterise the various problem-solvers at the university level?
  • (RQ2) Can developmental differences in CPS, IR and CR be detected among students with different exploration strategy profiles?
  • (RQ3) What are the similarities and differences in the roles IR and CR play in the CPS process as well as in the two phases of CPS (i.e., KAC and KAP) among students with different exploration strategy profiles?

3.1. Participants and Procedure

The sample was drawn from one of the largest universities in Hungary. Participation was voluntary, but students were able to earn one course credit for taking part in the assessment. The participants were students who had just started their studies there (N = 1671). 43.4% of the first-year students took part in the assessment. 50.9% of the participants were female, and 49.1% were male. We filtered the sample and excluded those who had more than 80% missing data on any of the tests. After the data were cleaned, data from 1343 students were available for analysis. The test was designed and delivered via the eDia online assessment system ( Csapó and Molnár 2019 ). The assessment was held in the university ICT room and divided into two sessions. The first session involved the CPS test, whereas the second session entailed the IR and CR tests. Each session lasted 45 min. The language of the tests was Hungarian, the mother tongue of the students.

3.2. Instruments

3.2.1. complex problem solving (cps).

The CPS assessment instrument adopted the MicroDYN approach. It contains a total of twelve scenarios, and each scenario consisted of two items (one item in the KAC phase and one item in the KAP phase in each problem scenario). Twelve KAC items and twelve KAP items were therefore delivered on the CPS test for a total of twenty-four items. Each scenario has a fictional cover story. For instance, students found a sick cat in front of their house, and they were expected to feed the cat with two different kinds of cat food to help it recover.

Each item contains up to three input and three output variables. The relations between the input and output variables were formulated with linear structural equations ( Funke 2001 ). Figure 1 shows a MicroDYN sample structure containing three input variables (A, B and C), three output variables (X, Y and Z) and a number of possible relations between the variables. The complexity of the item was defined by the number of input and output variables, and the number of relations between the variables. The test began with the item with the lowest complexity. The complexity of each item gradually increased as the test progressed.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g001.jpg

A typical MicroDYN structure with three input variables and three output variables ( Greiff and Funke 2009 ).

The interface of each item displays the value of each variable in both numerical and figural forms (See Figure 2 ). Each of the input variables has a controller, which makes it possible to vary and set the value between +2 (+ +) and −2 (− −). To operate the system, students need to click the “+” or “−” button or use the slider directly to select the value they want to be added to or subtracted from the current value of the input variable. After clicking the “Apply” button in the interface, the input variables will add or subtract the selected value, and the output variables will show the corresponding changes. The history of the values for the input and output variables within the same problem scenario is displayed on screen. If students want to withdraw all the changes and set all the variables to their original status, they can click the “Reset” button.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g002.jpg

Screenshot of the MicroDYN item Cat—first phase (knowledge acquisition). (The items were administered in Hungarian.)

In the first phase of the problem-solving process, the KAC phase, students are asked to interact with the system by changing the value of the input variables and observing and analysing the corresponding changes in the output variables. They are then expected to determine the relationship between the input and output variables and draw it in the form of (an) arrow(s) on the concept map at the bottom of the interface. To avoid item dependence in the second phase of the problem-solving process, the students are provided with a concept map during the KAP phase (see Figure 3 ), which shows the correct connections between the input and output variables. The students are expected to interact with the system by manipulating the input variables to make the output variables reach the given target values in four steps or less. That is, they cannot click on the “Apply” button more than four times. The first phase had a 180 s time limit, whereas the second had a 90 s time limit.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g003.jpg

Screenshot of the MicroDYN item Cat—second phase (knowledge application). (The items were administered in Hungarian).

3.2.2. Inductive Reasoning (IR)

The IR instrument (see Figure 4 ) was originally designed and developed in Hungary ( Csapó 1997 ). In the last 25 years, the instrument has been further developed and scaled for a wide age range ( Molnár and Csapó 2011 ). In addition, figural items have been added, and the assessment method has evolved from paper-and-pencil to computer-based ( Pásztor 2016 ). Currently, the instrument is widely employed in a number of countries (see, e.g., Mousa and Molnár 2020 ; Pásztor et al. 2018 ; Wu et al. 2022 ; Wu and Molnár 2018 ). In the present study, four types of items were included after test adaptation: figural series, figural analogies, number analogies and number series. Students were expected to ascertain the correct relationship between the given figures and numbers and select a suitable figure or number as their answer. Students used the drag-and-drop operation to provide their answers. In total, 49 inductive reasoning items were delivered to the participating students.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g004.jpg

Sample items for the IR test. (The items were administered in Hungarian.).

3.2.3. Combinatorial Reasoning (CR)

The CR instrument (see Figure 5 ) was originally designed by Csapó ( 1988 ). The instrument was first developed in paper-and-pencil format and then modified for computer use ( Pásztor and Csapó 2014 ). Each item contained figural or verbal elements and a clear requirement for combing through the elements. Students were asked to list every single combination based on a given rule they could find. For the figural items, students provided their answers using the drag-and-drop operation; for the verbal items, they were asked to type their answers in a text box provided on screen. The test consisted of eight combinatorial reasoning items in total.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g005.jpg

Sample item for the CR test. (The items were administered in Hungarian).

3.3. Scoring

Students’ performance was automatically scored via the eDia platform. Items on the CPS and IR tests were scored dichotomously. In the first phase (KAC) of the CPS test, if a student drew all the correct relations on the concept map provided on screen within the given timeframe, his/her performance was assigned a score of 1 or otherwise a score of 0. In the second phase (KAP) of the CPS test, if the student successfully reached the given target values of the output variables by manipulating the level of the input variables within no more than four steps and the given timeframe, then his/her performance earned a score of 1 or otherwise a score of 0. On the IR test items, if a student selected the correct figure or number as his/her answer, then he or she received a score of 1; otherwise, the score was 0.

Students’ performance on the CR test items was scored according to a special J index, which was developed by Csapó ( 1988 ). The J index ranges from 0 to 1, where 1 means that the student provided all the correct combinations without any redundant combinations on the task. The formula for computing the J index is the following:

x stands for the number of correct combinations in the student’s answer,

T stands for the number of all possible correct combinations, and

y stands for the number of redundant combinations in the student’s answer.

Furthermore, according to Csapó ’s ( 1988 ) design, if y is higher than T, then the J index will be counted as 0.

3.4. Coding and Labelling the Logfile Data

Beyond concrete answer data, students’ interaction and manipulation behaviour were also logged in the assessment system. This made it possible to analyse students’ exploration behaviour in the first phase of the CPS process (KAC phase). Toward this aim, we adopted a labelling system developed by Molnár and Csapó ( 2018 ) to transfer the raw logfile data to structured data files for analysis. Based on the system, each trial (i.e., the sum of manipulations within the same problem scenario which was applied and tested by clicking the “Apply” button) was modelled as a single data entity. The sum of these trials within the same problem was defined as a strategy. In our study, we only consider the trials which were able to provide useful and new information for the problem-solvers, whereas the redundant or operations trials were excluded.

In this study, we analysed students’ trials to determine the extent to which they used the VOTAT strategy: fully, partially or not at all. This strategy is the most successful exploration strategy for such problems; it is the easiest to interpret and provides direct information about the given variable without any mediation effects ( Fischer et al. 2012 ; Greiff et al. 2018 ; Molnár and Csapó 2018 ; Wüstenberg et al. 2014 ; Wu and Molnár 2021 ). Based on the definition of VOTAT noted in Section 1.3 , we checked students’ trials to ascertain if they systematically varied one input variable while keeping the others unchanged, or applied a different, less successful strategy. We considered the following three types of trials:

  • “Only one single input variable was manipulated, whose relationship to the output variables was unknown (we considered a relationship unknown if its effect cannot be known from previous settings), while the other variables were set at a neutral value like zero […]
  • One single input variable was changed, whose relationship to the output variables was unknown. The others were not at zero, but at a setting used earlier. […]
  • One single input variable was changed, whose relationship to the output variables was unknown, and the others were not at zero; however, the effect of the other input variable(s) was known from earlier settings. Even so, this combination was not attempted earlier” ( Molnár and Csapó 2018, p. 8 )

We used the numbers 0, 1 and 2 to distinguish the level of students’ use of the most effective exploration strategy (i.e., VOTAT). If a student applied one or more of the above trials for every input variable within the same scenario, we considered that they had used the full VOTAT strategy and labelled this behaviour 2. If a student had only employed VOTAT on some but not all of the input variables, we concluded that they had used a partial VOTAT strategy for that problem scenario and labelled it 1. If a student had used none of the trials noted above in their problem exploration, then we determined that they had not used VOTAT at all and thus gave them a label of 0.

3.5. Data Analysis Plan

We used LCA (latent class analysis) to explore students’ exploration strategy profiles. LCA is a latent variable modelling approach that can be used to identify unmeasured (latent) classes of samples with similarly observed variables. LCA has been widely used in analysing logfile data for CPS assessment and in exploring students’ behaviour patterns (see, e.g., Gnaldi et al. 2020 ; Greiff et al. 2018 ; Molnár et al. 2022 ; Molnár and Csapó 2018 ; Mustafić et al. 2019 ; Wu and Molnár 2021 ). The scores for the use of VOTAT in the KAC phase (0, 1, 2; see Section 3.4 ) were used for the LCA analysis. We used Mplus ( Muthén and Muthén 2010 ) to run the LCA analysis. Several indices were used to measure the model fit: AIC (Akaike information criterion), BIC (Bayesian information criterion) and aBIC (adjusted Bayesian information criterion). With these three indicators, lower values indicate a better model fit. Entropy (ranging from 0 to 1, with values close to 1 indicating high certainty in the classification). The Lo–Mendell–Rubin adjusted likelihood ratio was used to compare the model containing n latent classes with the model containing n − 1 latent classes, and the p value was the indicator for whether a significant difference could be detected ( Lo et al. 2001 ). The results of the Lo–Mendell–Rubin adjusted likelihood ratio analysis were used to decide the correct number of latent classes in LCA models.

ANOVA was used to analyse the performance differences for CPS, IR and CR across the students from the different class profiles. The analysis was run using SPSS. A path analysis (PA) was employed in the structural equation modelling (SEM) framework to investigate the roles of CR and IR in CPS and the similarities and differences across the students from the different exploration strategy profiles. The PA models were carried out with Mplus. The Tucker–Lewis index (TLI), the comparative fit index (CFI) and the root-mean-square error of approximation (RMSEA) were used as indicators for the model fit. A TLI and CFI larger than 0.90 paired with a RMSEA less than 0.08 are commonly considered as an acceptable model fit ( van de Schoot et al. 2012 ).

4.1. Descriptive Results

All three tests showed good reliability (Cronbach’s α: CPS: 0.89; IR: 0.87; CR: 0.79). Furthermore, the two sub-dimensions of the CPS test, KAC and KAP, also showed satisfactory reliability (Cronbach’s α: KAC: 0.86; KAP: 0.78). The tests thus proved to be reliable. The means and standard deviations of students’ performance (in percentage) on each test are provided in Table 1 .

The means and standard deviations of students’ performance on each test.

4.2. Four Qualitatively Different Exploration Strategy Profiles Can Be Distinguished in CPS

Based on the labelled logfile data for CPS, we applied latent class analyses to identify the behaviour patterns of the students in the exploration phase of the problem-solving process. The model fits for the LCA analysis are listed in Table 2 . Compared with the 2 or 3 latent class models, the 4 latent class model has a lower AIC, BIC and aBIC, and the likelihood ratio statistical test (the Lo–Mendell–Rubin adjusted likelihood ratio test) confirmed it has a significantly better model fit. The 5 and 6 latent class models did not show a better model fit than the 4 latent class model. Therefore, based on the results, four qualitatively different exploration strategy profiles can be distinguished, which covered 96% of the students.

Fit indices for latent class analyses.

The patterns for the four qualitatively different exploration strategy profiles are shown in Figure 6 . In total, 84.3% of the students were proficient exploration strategy users, who were able to use VOTAT in each problem scenario independent of its difficulty level (represented by the red line in Figure 5 ). In total, 6.2% of the students were rapid learners. They were not able to apply VOTAT at the beginning of the test on the easiest problems but managed to learn quickly, and, after a rapid learning curve by the end of the test, they reached the level of proficient exploration strategy users, even though the problems became much more complex (represented by the blue line). In total, 3.1% of the students proved to be non-persistent explorers, and they employed VOTAT on the easiest problems but did not transfer this knowledge to the more complex problems. Finally, they were no longer able to apply VOTAT when the complexity of the problems increased (represented by the green line). In total, 6.5% of the students were non-performing explorers; they barely used any VOTAT strategy during the whole test (represented by the pink line) independent of problem complexity.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g006.jpg

Four qualitatively different exploration strategy profiles.

4.3. Better Exploration Strategy Users Showed Better Performance in Reasoning Skills

Students with different exploration strategy profiles showed different kinds of performance in each reasoning skill under investigation. Results (see Table 3 ) showed that more proficient strategy users tended to have higher achievement in all the domains assessed as well as in the two sub-dimensions in CPS (i.e., KAC and KAP; ANOVA: CPS: F(3, 1339) = 187.28, p < 0.001; KAC: F(3, 1339) = 237.15, p < 0.001; KAP: F(3, 1339) = 74.91, p < 0.001; IR: F(3, 1339) = 48.10, p < 0.001; CR: F(3, 1339) = 28.72, p < 0.001); specifically, students identified as “proficient exploration strategy users” achieved the highest level on the reasoning skills tests independent of the domains. On average, they were followed by rapid learners, non-persistent explorers and, finally, non-performing explorers. Tukey’s post hoc tests revealed more details on the performance differences of students with different exploration profiles in each of the domains being measured. Proficient strategy users proved to be significantly more skilled in each of the reasoning domains. They were followed by rapid learners, who outperformed non-persistent explorers and non-performing explorers in CPS. In the domains of IR and CR, there were no achievement differences between rapid learners and non-persistent explorers, who significantly outperformed non-performing strategy explorers.

Students’ performance on each test—grouped according to the different exploration strategy profiles.

4.4. The Roles of IR and CR in CPS and Its Processes Were Different for Each Type of Exploration Strategy User

Path analysis was used to explore the predictive power of IR and CR for CPS and its processes, knowledge acquisition and knowledge application, for each group of students with different exploration strategy profiles. That is, four path analysis models were built to indicate the predictive power of IR and CR for CPS (see Figure 7 ), and another four path analyses models were developed to monitor the predictive power of IR and CR for the two empirically distinguishable phases of CPS (i.e., KAC and KAP) (see Figure 8 ). All eight models had good model fits, the fit indices TLI and CFI were above 0.90, and RMSEA was less than 0.08.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g007.jpg

Path analysis models (with CPS, IR and CR) for each type of strategy user; * significant at 0.05 ( p   <  0.05); ** significant at 0.01 ( p   <  0.01); N.S.: no significant effect can be found.

An external file that holds a picture, illustration, etc.
Object name is jintelligence-10-00046-g008.jpg

Path analysis models (with KAC, KAP, IR and CR) for each type of strategy user; * significant at 0.05 ( p  <  0.05); ** significant at 0.01 ( p  <  0.01); N.S.: no significant effect can be found.

Students’ level of IR significantly predicted their level of CPS in all four path analysis models independent of their exploration strategy profile ( Figure 7 ; proficient strategy users: β = 0.432, p < 0.01; rapid learners: β = 0.350, p < 0.01; non-persistent explorers: β = 0.309, p < 0.05; and non-performing explorers: β = 0.386, p < 0.01). This was not the case for CR, which only proved to have predictive power for CPS among proficient strategy users (β = 0.104, p < 0.01). IR and CR were significantly correlated in all four models.

After examining the roles of IR and CR in the CPS process, we went further to explore the roles of these two reasoning skills in the distinguishable phases of CPS. The path analysis models ( Figure 8 ) showed that the predictive power of IR and CR for KAC and KAP was varied in each group. Levels of IR and CR among non-persistent explorers and non-performing explorers failed to predict their achievement in the KAC phase of the CPS process. Moreover, rapid learners’ level of IR significantly predicted their achievement in the KAC phase (β = 0.327, p < 0.01), but their level of CR did not have the same predictive power. Furthermore, the proficient strategy users’ levels of both reasoning skills had significant predictive power for KAC (IR: β = 0.363, p < 0.01; CR: β = 0.132, p < 0.01). In addition, in the KAP phase of the CPS problems, IR played a significant role for all types of strategy users, although with different power (proficient strategy users: β = 0.408, p < 0.01; rapid learners: β = 0.339, p < 0.01; non-persistent explorers: β = 0.361, p < 0.01; and non-performing explorers: β = 0.447, p < 0.01); by contrast, CR did not have significant predictive power for the KAP phase in any of the models.

5. Discussion

The study aims to investigate the role of IR and CR in CPS and its phases among students using statistically distinguishable exploration strategies in different CPS environments. We examined 1343 Hungarian university students and assessed their CPS, IR and CR skills. Both achievement data and logfile data were used in the analysis. The traditional achievement indicators formed the foundation for analysing the students’ CPS, CR and IR performance, whereas process data extracted from logfile data were used to explore students’ exploration behaviour in various CPS environments.

Four qualitatively different exploration strategy profiles were distinguished: proficient strategy users, rapid learners, non-persistent explorers and non-performing explorers (RQ1). The four profiles were consistent with the result of another study conducted at university level (see Molnár et al. 2022 ), and the frequencies of these four profiles in these two studies were very similar. The two studies therefore corroborate and validate each other’s results. The majority of the participants were identified as proficient strategy users. More than 80% of the university students were able to employ effective exploration strategies in various CPS environments. Of the remaining students, some performed poorly in exploration strategy use in the early part of the test (rapid learners), some in the last part (non-persistent explorers) and some throughout the test (non-performing explorers). However, students with these three exploration strategy profiles only constituted small portions of the total sample (with proportions ranging from 3.1% to 6.5%). The university students therefore exhibited generally good performance in terms of exploration strategy use in a CPS environment, especially compared with previous results among younger students (e.g., primary school students, see Greiff et al. 2018 ; Wu and Molnár 2021 ; primary to secondary students, see Molnár and Csapó 2018 ).

The results have indicated that better exploration strategy users achieved higher CPS performance and had better development levels of IR and CR (RQ2). First, the results have confirmed the importance of VOTAT in a CPS environment. This finding is consistent with previous studies (e.g., Greiff et al. 2015a ; Molnár and Csapó 2018 ; Mustafić et al. 2019 ; Wu and Molnár 2021 ). Second, the results have confirmed that effective use of VOTAT is strongly tied to the level of IR and CR development. Reasoning forms an important component of human intelligence, and the level of development in reasoning was an indicator of the level of intelligence ( Klauer et al. 2002 ; Sternberg and Kaufman 2011 ). Therefore, this finding has supplemented empirical evidence for the argument that effective use of VOTAT is associated with levels of intelligence to a certain extent.

The roles of IR and CR proved to be varied for each type of exploration strategy user (RQ3). For instance, the level of CPS among the best exploration strategy users (i.e., the proficient strategy users) was predicted by both the levels of IR and CR, but this was not the case for students with other profiles. In addition, the results have indicated that IR played important roles in both the KAC and KAP phases for the students with relatively good exploration strategy profiles (i.e., proficient strategy users and rapid learners) but only in the KAP phase for the rest of the students (non-persistent explorers and non-performing explorers); moreover, the predictive power of CR can only be detected in the KAC phase of the proficient strategy users. To sum up, the results suggest a general trend of IR and CR playing more important roles in the CPS process among better exploration strategy users.

Combining the answers to RQ2 and RQ3, we can gain further insights into students’ exploration strategy use in a CPS environment. Our results have confirmed that the use of VOTAT is associated with the level of IR and CR development and that the importance of IR and CR increases with proficiency in exploration strategy use. Based on these findings, we can make a reasonable argument that IR and CR are essential skills for using VOTAT and that underdeveloped IR and CR will prevent students from using effective strategies in a CPS environment. Therefore, if we want to encourage students to become better exploration strategy users, it is important to first enhance their IR and CR skills. Previous studies have suggested that establishing explicit training in using effective strategies in a CPS environment is important for students’ CPS development ( Molnár et al. 2022 ). Our findings have identified the importance of IR and CR in exploration strategy use, which has important implications for designing training programmes.

The results have also provided a basis for further studies. Future studies have been suggested to further link the behavioural and cognitive perspectives in CPS research. For instance, IR and CR were considered as component skills of CPS (see Section 1.2 ). The results of the study have indicated the possibility of not only discussing the roles of IR and CR in the cognitive process of CPS, but also exploration behaviour in a CPS environment. The results have thus provided a new perspective for exploring the component skills of CPS.

6. Limitations

There are some limitations in the study. All the tests were low stake; therefore, students might not be sufficiently motivated to do their best. This feature might have produced the missing values detected in the sample. In addition, some students’ exploration behaviour shown in this study might theoretically be below their true level. However, considering that data cleaning was adopted in this study (see Section 3.1 ), we believe this phenomenon will not have a remarkable influence on the results. Moreover, the CPS test in this study was based on the MicroDYN approach, which is a well-established and widely used artificial model with a limited number of variables and relations. However, it does not have the power to cover all kinds of complex and dynamic problems in real life. For instance, the MicroDYN approach cannot measure ill-defined problem solving. Thus, this study can only demonstrate the influence of IR and CR on problem solving in well-defined MicroDYN-simulated problems. Furthermore, VOTAT is helpful with minimally complex problems under well-defined laboratory conditions, but it may not be that helpful with real-world, ill-defined complex problems ( Dörner and Funke 2017 ; Funke 2021 ). Therefore, the generalizability of the findings is limited.

7. Conclusions

In general, the results have shed new light on students’ problem-solving behaviours in respect of exploration strategy in a CPS environment and explored differences in terms of the use of thinking skills between students with different exploration strategies. Most studies discuss students’ problem-solving strategies from a behavioural perspective. By contrast, this paper discusses them from both behavioural and cognitive perspectives, thus expanding our understanding in this area. As for educational implications, the study contributes to designing and revising training methods for CPS by identifying the importance of IR and CR in exploration behaviour in a CPS environment. To sum up, the study has investigated the nature of CPS from a fresh angle and provided a sound basis for future studies.

Funding Statement

This study has been conducted with support provided by the National Research, Development and Innovation Fund of Hungary, financed under the OTKA K135727 funding scheme and supported by the Research Programme for Public Education Development, Hungarian Academy of Sciences (KOZOKT2021-16).

Author Contributions

Conceptualization, H.W. and G.M.; methodology, H.W. and G.M.; formal analysis, H.W.; writing—original draft preparation, H.W.; writing—review and editing, G.M.; project administration, G.M.; funding acquisition, G.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Ethical approval was not required for this study in accordance with the national and institutional guidelines. The assessments which provided data for this study were integrated parts of the educational processes of the participating university. The participation was voluntary.

Informed Consent Statement

All of the students in the assessment turned 18, that is, it was not required or possible to request and obtain written informed parental consent from the participants.

Data Availability Statement

Conflicts of interest.

Authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Adey Philip, Csapó Benő. Developing and Assessing Scientific Reasoning. In: Csapó Benő, Szabó Gábor., editors. Framework for Diagnostic Assessment of Science. Nemzeti Tankönyvkiadó; Budapest: 2012. pp. 17–53. [ Google Scholar ]
  • Batanero Carmen, Navarro-Pelayo Virginia, Godino Juan D. Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics. 1997; 32 :181–99. doi: 10.1023/A:1002954428327. [ CrossRef ] [ Google Scholar ]
  • Beckmann Jens F., Guthke Jürgen. Complex problem solving, intelligence, and learning ability. In: Frensch Peter A., Funke Joachim., editors. Complex Problem Solving: The European Perspective. Erlbaum; Hillsdale: 1995. pp. 177–200. [ Google Scholar ]
  • Buchner Axel. Basic topics and approaches to the study of complex problem solving. In: Frensch Peter A., Funke Joachim., editors. Complex Problem Solving: The European Perspective. Erlbaum; Hillsdale: 1995. pp. 27–63. [ Google Scholar ]
  • Chen Yunxiao, Li Xiaoou, Liu Jincheng, Ying Zhiliang. Statistical analysis of complex problem-solving process data: An event history analysis approach. Frontiers in Psychology. 2019; 10 :486. doi: 10.3389/fpsyg.2019.00486. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Csapó Benő. A kombinatív képesség struktúrája és fejlődése. Akadémiai Kiadó; Budapest: 1988. [ Google Scholar ]
  • Csapó Benő. The development of inductive reasoning: Cross-sectional assessments in an educational context. International Journal of Behavioral Development. 1997; 20 :609–26. doi: 10.1080/016502597385081. [ CrossRef ] [ Google Scholar ]
  • Csapó Benő. Teaching and Learning Thinking Skills. Swets & Zeitlinger; Lisse: 1999. Improving thinking through the content of teaching; pp. 37–62. [ Google Scholar ]
  • Csapó Benő, Molnár Gyöngyvér. Online diagnostic assessment in support of personalized teaching and learning: The eDia System. Frontiers in Psychology. 2019; 10 :1522. doi: 10.3389/fpsyg.2019.01522. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dörner Dietrich, Funke Joachim. Complex problem solving: What it is and what it is not. Frontiers in Psychology. 2017; 8 :1153. doi: 10.3389/fpsyg.2017.01153. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • English Lyn D. Combinatorics and the development of children’s combinatorial reasoning. In: Jones Graham A., editor. Exploring Probability in School: Challenges for Teaching and Learning. Springer; New York: 2005. pp. 121–41. [ Google Scholar ]
  • Fischer Andreas, Greiff Samuel, Funke Joachim. The process of solving complex problems. Journal of Problem Solving. 2012; 4 :19–42. doi: 10.7771/1932-6246.1118. [ CrossRef ] [ Google Scholar ]
  • Frensch Peter A., Funke Joachim. Complex Problem Solving: The European Perspective. Psychology Press; New York: 1995. [ Google Scholar ]
  • Funke Joachim. Dynamic systems as tools for analysing human judgement. Thinking and Reasoning. 2001; 7 :69–89. doi: 10.1080/13546780042000046. [ CrossRef ] [ Google Scholar ]
  • Funke Joachim. Complex problem solving: A case for complex cognition? Cognitive Processing. 2010; 11 :133–42. doi: 10.1007/s10339-009-0345-0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke Joachim. It Requires More Than Intelligence to Solve Consequential World Problems. Journal of Intelligence. 2021; 9 :38. doi: 10.3390/jintelligence9030038. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Funke Joachim, Fischer Andreas, Holt Daniel V. Competencies for complexity: Problem solving in the twenty-first century. In: Care Esther, Griffin Patrick, Wilson Mark., editors. Assessment and Teaching of 21st Century Skills. Springer; Dordrecht: 2018. pp. 41–53. [ Google Scholar ]
  • Gilhooly Kenneth J. Thinking: Directed, Undirected and Creative. Academic Press; London: 1982. [ Google Scholar ]
  • Gnaldi Michela, Bacci Silvia, Kunze Thiemo, Greiff Samuel. Students’ complex problem solving profiles. Psychometrika. 2020; 85 :469–501. doi: 10.1007/s11336-020-09709-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Funke Joachim. Measuring complex problem solving-the MicroDYN approach. In: Scheuermann Friedrich, Björnsson Julius., editors. The Transition to Computer-Based Assessment. Office for Official Publications of the European Communities; Luxembourg: 2009. pp. 157–63. [ Google Scholar ]
  • Greiff Samuel, Holt Daniel V., Funke Joachim. Perspectives on problem solving in educational assessment: Analytical, interactive, and collaborative problem solving. Journal of Problem Solving. 2013; 5 :71–91. doi: 10.7771/1932-6246.1153. [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Molnár Gyöngyvér, Martina Romain, Zimmermann Johannes, Csapó Benő. Students’ exploration strategies in computer-simulated complex problem environments: A latent class approach. Computers & Education. 2018; 126 :248–63. [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Avvisati Francesco. Computer-generated log-file analyses as a window into students’ minds? A showcase study based on the PISA 2012 assessment of problem solving. Computers & Education. 2015a; 91 :92–105. [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Funke Joachim. Dynamic problem solving: A new measurement perspective. Applied Psychological Measurement. 2012; 36 :189–213. doi: 10.1177/0146621612439620. [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Csapó Benő, Demetriou Andreas, Hautamäki Jarkko, Graesser Arthur C., Martin Romain. Domain-general problem solving skills and education in the 21st century. Educational Research Review. 2014; 13 :74–83. doi: 10.1016/j.edurev.2014.10.002. [ CrossRef ] [ Google Scholar ]
  • Greiff Samuel, Wüstenberg Sascha, Goetz Thomas, Vainikainen Mari-Pauliina, Hautamäki Jarkko, Bornstein Marc H. A longitudinal study of higher-order thinking skills: Working memory and fluid reasoning in childhood enhance complex problem solving in adolescence. Frontiers in Psychology. 2015b; 6 :1060. doi: 10.3389/fpsyg.2015.01060. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hołda Małgorzata, Głodek Anna, Dankiewicz-Berger Malwina, Skrzypińska Dagna, Szmigielska Barbara. Ill-defined problem solving does not benefit from daytime napping. Frontiers in Psychology. 2020; 11 :559. doi: 10.3389/fpsyg.2020.00559. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Klauer Karl Josef. Paradigmatic teaching of inductive thinking. Learning and Instruction. 1990; 2 :23–45. [ Google Scholar ]
  • Klauer Karl Josef, Willmes Klaus, Phye Gary D. Inducing inductive reasoning: Does it transfer to fluid intelligence? Contemporary Educational Psychology. 2002; 27 :1–25. doi: 10.1006/ceps.2001.1079. [ CrossRef ] [ Google Scholar ]
  • Kuhn Deanna. What is scientific thinking and how does it develop? In: Goswami Usha., editor. The Wiley-Blackwell Handbook of Childhood Cognitive Development. Wiley-Blackwell; Oxford: 2010. pp. 371–93. [ Google Scholar ]
  • Kuhn Deanna, Garcia-Mila Merce, Zohar Anat, Andersen Christopher, Sheldon H. White, Klahr David, Carver Sharon M. Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development. 1995; 60 :1–157. doi: 10.2307/1166059. [ CrossRef ] [ Google Scholar ]
  • Lo Yungtai, Mendell Nancy R., Rubin Donald B. Testing the number of components in a normal mixture. Biometrika. 2001; 88 :767–78. doi: 10.1093/biomet/88.3.767. [ CrossRef ] [ Google Scholar ]
  • Lotz Christin, Scherer Ronny, Greiff Samuel, Sparfeldt Jörn R. Intelligence in action—Effective strategic behaviors while solving complex problems. Intelligence. 2017; 64 :98–112. doi: 10.1016/j.intell.2017.08.002. [ CrossRef ] [ Google Scholar ]
  • Mayer Richard E. Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science. 1998; 26 :49–63. doi: 10.1023/A:1003088013286. [ CrossRef ] [ Google Scholar ]
  • Molnár Gyöngyvér, Csapó Benő. Az 1–11 évfolyamot átfogó induktív gondolkodás kompetenciaskála készítése a valószínűségi tesztelmélet alkalmazásával. Magyar Pedagógia. 2011; 111 :127–40. [ Google Scholar ]
  • Molnár Gyöngyvér, Csapó Benő. The efficacy and development of students’ problem-solving strategies during compulsory schooling: Logfile analyses. Frontiers in Psychology. 2018; 9 :302. doi: 10.3389/fpsyg.2018.00302. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Molnár Gyöngyvér, Alrababah Saleh Ahmad, Greiff Samuel. How we explore, interpret, and solve complex problems: A cross-national study of problem-solving processes. Heliyon. 2022; 8 :e08775. doi: 10.1016/j.heliyon.2022.e08775. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Molnár Gyöngyvér, Greiff Samuel, Csapó Benő. Inductive reasoning, domain specific and complex problem solving: Relations and development. Thinking Skills and Creativity. 2013; 9 :35–45. doi: 10.1016/j.tsc.2013.03.002. [ CrossRef ] [ Google Scholar ]
  • Mousa Mojahed, Molnár Gyöngyvér. Computer-based training in math improves inductive reasoning of 9- to 11-year-old children. Thinking Skills and Creativity. 2020; 37 :100687. doi: 10.1016/j.tsc.2020.100687. [ CrossRef ] [ Google Scholar ]
  • Mustafić Maida, Yu Jing, Stadler Matthias, Vainikainen Mari-Pauliina, Bornstein Marc H., Putnick Diane L., Greiff Samuel. Complex problem solving: Profiles and developmental paths revealed via latent transition analysis. Developmental Psychology. 2019; 55 :2090–101. doi: 10.1037/dev0000764. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Muthén Linda K., Muthén Bengt O. Mplus User’s Guide. Muthén & Muthén; Los Angeles: 2010. [ Google Scholar ]
  • Newell Allen. Reasoning, Problem Solving, and Decision Processes: The Problem Space as a Fundamental Category. MIT Press; Boston: 1993. [ Google Scholar ]
  • Novick Laura R., Bassok Miriam. Problem solving. In: Holyoak Keith James, Morrison Robert G., editors. The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press; New York: 2005. pp. 321–49. [ Google Scholar ]
  • OECD . PISA 2012 Field Trial Problem Solving Framework. OECD Publishing; Paris: 2010. [ Google Scholar ]
  • OECD . Results: Creative Problem Solving—Students’ Skills in Tackling Real-Life Problems (Volume V) OECD Publishing; Paris: 2014. [ Google Scholar ]
  • Pásztor Attila. Ph.D. thesis. Doctoral School of Education, University of Szeged; Szeged, Hungary: 2016. Technology-Based Assessment and Development of Inductive Reasoning. [ Google Scholar ]
  • Pásztor Attila, Csapó Benő. Improving Combinatorial Reasoning through Inquiry-Based Science Learning; Paper presented at the Science and Mathematics Education Conference; Dublin, Ireland. June 24–25; 2014. [ Google Scholar ]
  • Pásztor Attila, Kupiainen Sirkku, Hotulainen Risto, Molnár Gyöngyvér, Csapó Benő. Comparing Finnish and Hungarian Fourth Grade Students’ Inductive Reasoning Skills; Paper presented at the EARLI SIG 1 Conference; Helsinki, Finland. August 29–31; 2018. [ Google Scholar ]
  • Sandberg Elisabeth Hollister, McCullough Mary Beth. The development of reasoning skills. In: Sandberg Elisabeth Hollister, Spritz Becky L., editors. A Clinician’s Guide to Normal Cognitive Development in Childhood. Routledge; New York: 2010. pp. 179–89. [ Google Scholar ]
  • Schraw Gregory, Dunkle Michael E., Bendixen Lisa D. Cognitive processes in well-defined and ill-defined problem solving. Applied Cognitive Psychology. 1995; 9 :523–38. doi: 10.1002/acp.2350090605. [ CrossRef ] [ Google Scholar ]
  • Schweizer Fabian, Wüstenberg Sascha, Greiff Samuel. Validity of the MicroDYN approach: Complex problem solving predicts school grades beyond working memory capacity. Learning and Individual Differences. 2013; 24 :42–52. doi: 10.1016/j.lindif.2012.12.011. [ CrossRef ] [ Google Scholar ]
  • Stadler Matthias, Becker Nicolas, Gödker Markus, Leutner Detlev, Greiff Samuel. Complex problem solving and intelligence: A meta-analysis. Intelligence. 2015; 53 :92–101. doi: 10.1016/j.intell.2015.09.005. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. Handbook of Human Intelligence. Cambridge University Press; New York: 1982. [ Google Scholar ]
  • Sternberg Robert J., Kaufman Scott Barry. The Cambridge Handbook of Intelligence. Cambridge University Press; New York: 2011. [ Google Scholar ]
  • van de Schoot Rens, Lugtig Peter, Hox Joop. A checklist for testing measurement invariance. European Journal of Developmental Psychology. 2012; 9 :486–92. doi: 10.1080/17405629.2012.686740. [ CrossRef ] [ Google Scholar ]
  • Vollmeyer Regina, Burns Bruce D., Holyoak Keith J. The impact of goal specificity on strategy use and the acquisition of problem structure. Cognitive Science. 1996; 20 :75–100. doi: 10.1207/s15516709cog2001_3. [ CrossRef ] [ Google Scholar ]
  • Welter Marisete Maria, Jaarsveld Saskia, Lachmann Thomas. Problem space matters: The development of creativity and intelligence in primary school children. Creativity Research Journal. 2017; 29 :125–32. doi: 10.1080/10400419.2017.1302769. [ CrossRef ] [ Google Scholar ]
  • Wenke Dorit, Frensch Peter A., Funke Joachim. Complex Problem Solving and intelligence: Empirical relation and causal direction. In: Sternberg Robert J., Pretz Jean E., editors. Cognition and Intelligence: Identifying the Mechanisms of the Mind. Cambridge University Press; New York: 2005. pp. 160–87. [ Google Scholar ]
  • Wittmann Werner W., Hattrup Keith. The relationship between performance in dynamic systems and intelligence. Systems Research and Behavioral Science. 2004; 21 :393–409. doi: 10.1002/sres.653. [ CrossRef ] [ Google Scholar ]
  • Wu Hao, Molnár Gyöngyvér. Interactive problem solving: Assessment and relations to combinatorial and inductive reasoning. Journal of Psychological and Educational Research. 2018; 26 :90–105. [ Google Scholar ]
  • Wu Hao, Molnár Gyöngyvér. Logfile analyses of successful and unsuccessful strategy use in complex problem-solving: A cross-national comparison study. European Journal of Psychology of Education. 2021; 36 :1009–32. doi: 10.1007/s10212-020-00516-y. [ CrossRef ] [ Google Scholar ]
  • Wu Hao, Saleh Andi Rahmat, Molnár Gyöngyvér. Inductive and combinatorial reasoning in international educational context: Assessment, measurement invariance, and latent mean differences. Asia Pacific Education Review. 2022; 23 :297–310. doi: 10.1007/s12564-022-09750-z. [ CrossRef ] [ Google Scholar ]
  • Wüstenberg Sascha, Greiff Samuel, Funke Joachim. Complex problem solving—More than reasoning? Intelligence. 2012; 40 :1–14. doi: 10.1016/j.intell.2011.11.003. [ CrossRef ] [ Google Scholar ]
  • Wüstenberg Sascha, Greiff Samuel, Molnár Gyöngyvér, Funke Joachim. Cross-national gender differences in complex problem solving and their determinants. Learning and Individual Differences. 2014; 29 :18–29. doi: 10.1016/j.lindif.2013.10.006. [ CrossRef ] [ Google Scholar ]

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.3: Using Critical Thinking Skills- Decision Making and Problem Solving

  • Last updated
  • Save as PDF
  • Page ID 24260

Introduction

In previous lessons, you learned about characteristics of critical thinkers and information literacy. In this module, you will learn how to put those skills into action through the important processes of decision making and problem solving.

As with the process of developing information literacy, asking questions is an important part of decision making and problem solving. Thinking is born of questions. Questions wake us up. Questions alert us to hidden assumptions. Questions promote curiosity and create new distinctions. Questions open up options that otherwise go unexplored. Besides, teachers love questions.

We make decisions all the time, whether we realize it or not. Even avoiding decisions is a form of decision making. The student who puts off studying for a test until the last minute, for example, might really be saying, “I’ve decided this course is not important” or “I’ve decided not to give this course much time.”

Decisions are specific and lead to focused action. When we decide, we narrow down. We give up actions that are inconsistent with our decision.

In addition to decision making, critical thinking skills are important to solving problems. We encounter problems every single day, and having a solid process in place is important to solving them.

At the end of the lesson, you will learn how to put your critical thinking skills to use by reviewing an example of how critical thinking skills can help with making those everyday decisions.

Using Critical Thinking Skills: Asking Questions

Questions have practical power. Asking for directions can shave hours off a trip. Asking a librarian for help can save hours of research time. Asking how to address an instructor—by first name or formal title—can change your relationship with that person. Asking your academic advisor a question can alter your entire education. Asking people about their career plans can alter your career plans.

You can use the following strategies to develop questions for problem solving and decision making:

Ask questions that create possibilities. At any moment, you can ask a question that opens up a new possibility for someone.

  • Suppose a friend walks up to you and says, “People just never listen to me.” You listen carefully. Then you say, “Let me make sure I understand. Who, specifically, doesn’t listen to you? And how do you know they’re not listening?”
  • Another friend tells you, “I just lost my job to someone who has less experience. That should never happen.” You respond, “Wow, that’s hard. I’m sorry you lost your job. Who can help you find another job?”
  • A relative seeks your advice. “My mother-in-law makes me mad,” she says. “You’re having a hard time with this person,” you say. “What does she say and do when you feel mad at her? And are there times when you don’t get mad at her?”

These kinds of questions—asked with compassion and a sense of timing—can help people move from complaining about problems to solving them.

Discover new questions. Students sometimes say, “I don’t know what questions to ask.” Consider the following ways to create questions about any subject you want to study or about any

area of your life that you want to change:

  • Let your pen start moving. Sometimes you can access a deeper level of knowledge by taking out your pen, putting it on a piece of paper, and writing down questions—even before you know what to write. Don’t think. Just watch the pen move across the paper. Notice what appears. The results might be surprising.
  • Ask about what’s missing . Another way to invent useful questions is to notice what’s missing from your life and then ask how to supply it. For example, if you want to take better notes, you can write, “What’s missing is skill in note taking. How can I gain more skill in taking notes?” If you always feel rushed, you can write, “What’s missing is time. How do I create enough time in my day to actually do the things that I say I want to do?”
  • Pretend to be someone else. Another way to invent questions is first to think of someone you greatly respect. Then pretend you’re that person. Ask the questions you think she would ask.
  • What can I do when ... an instructor calls on me in class and I have no idea what to say? When a teacher doesn’t show up for class on time? When I feel overwhelmed with assignments?
  • How can I ... take the kind of courses that I want? Expand my career options? Become much more effective as a student, starting today?
  • When do I ... decide on a major? Transfer to another school? Meet with an instructor to discuss an upcoming term paper?
  • What else do I want to know about ... my academic plan? My career plan? My options for job hunting? My friends? My relatives? My spouse?
  • Who can I ask about ... my career options? My major? My love life? My values and purpose in life?

Many times you can quickly generate questions by simply asking yourself, “What else do I want to know?” Ask this question immediately after you read a paragraph in a book or listen to someone speak.

Start from the assumption that you are brilliant. Then ask questions to unlock your brilliance.

Using Critical Thinking Skills in Decision Making

As you develop your critical thinking skills, you can apply them as you make decisions. The following suggestions can help in your decision-making process:

Recognize decisions. Decisions are more than wishes or desires. There’s a world of difference between “I wish I could be a better student” and “I will take more powerful notes, read with greater retention, and review my class notes daily.” Deciding to eat fruit for dessert instead of ice cream rules out the next trip to the ice cream store.

Establish priorities. Some decisions are trivial. No matter what the outcome, your life is not affected much. Other decisions can shape your circumstances for years. Devote more time and energy to the decisions with big outcomes.

Base decisions on a life plan. The benefit of having long-term goals for our lives is that they provide a basis for many of our daily decisions. Being certain about what we want to accomplish this year and this month makes today’s choices more clear.

Balance learning styles in decision making. To make decisions more effectively, use all four modes of learning explained in a previous lesson. The key is to balance reflection with action, and thinking with experience. First, take the time to think creatively, and generate many options. Then think critically about the possible consequences of each option before choosing one. Remember, however, that thinking is no substitute for experience. Act on your chosen option, and notice what happens. If you’re not getting the results you want, then quickly return to creative thinking to invent new options.

Choose an overall strategy. Every time you make a decision, you choose a strategy—even when you’re not aware of it. Effective decision makers can articulate and choose from among several strategies. For example:

  • Find all of the available options, and choose one deliberately. Save this strategy for times when you have a relatively small number of options, each of which leads to noticeably different results.
  • Find all of the available options, and choose one randomly. This strategy can be risky. Save it for times when your options are basically similar and fairness is the main issue.
  • Limit the options, and then choose. When deciding which search engine to use, visit many search sites and then narrow the list down to two or three from which to choose.

Use time as an ally. Sometimes we face dilemmas—situations in which any course of action leads to undesirable consequences. In such cases, consider putting a decision on hold. Wait it out. Do nothing until the circumstances change, making one alternative clearly preferable to another.

Use intuition. Some decisions seem to make themselves. A solution pops into your mind, and you gain newfound clarity. Using intuition is not the same as forgetting about the decision or refusing to make it. Intuitive decisions usually arrive after we’ve gathered the relevant facts and faced a problem for some time.

Evaluate your decision. Hindsight is a source of insight. After you act on a decision, observe the consequences over time. Reflect on how well your decision worked and what you might have done differently.

Think of choices. This final suggestion involves some creative thinking. Consider that the word decide derives from the same roots as suicide and homicide . In the spirit of those words, a decision forever “kills” all other options. That’s kind of heavy. Instead, use the word choice , and see whether it frees up your thinking. When you choose , you express a preference for one option over others. However, those options remain live possibilities for the future. Choose for today, knowing that as you gain more wisdom and experience, you can choose again.

Using Critical Thinking Skills in Problem Solving

Think of problem solving as a process with four Ps : Define the problem , generate possibilities ,

create a plan , and perform your plan.

Step 1: Define the problem. To define a problem effectively, understand what a problem is—a mismatch between what you want and what you have. Problem solving is all about reducing the gap between these two factors.

Tell the truth about what’s present in your life right now, without shame or blame. For example: “I often get sleepy while reading my physics assignments, and after closing the book I cannot remember what I just read.”

Next, describe in detail what you want. Go for specifics: “I want to remain alert as I read about physics. I also want to accurately summarize each chapter I read.”

Remember that when we define a problem in limiting ways, our solutions merely generate new problems. As Albert Einstein said, “The world we have made is a result of the level of thinking we have done thus far. We cannot solve problems at the same level at which we created them” (Calaprice 2000).

This idea has many applications for success in school. An example is the student who struggles with note taking. The problem, she thinks, is that her notes are too sketchy. The logical solution, she decides, is to take more notes; her new goal is to write down almost everything her instructors say. No matter how fast and furiously she writes, she cannot capture all of the instructors’ comments.

Consider what happens when this student defines the problem in a new way. After more thought, she decides that her dilemma is not the quantity of her notes but their quality . She adopts a new format for taking notes, dividing her notepaper into two columns. In the right-hand column, she writes down only the main points of each lecture. In the left-hand column, she notes two or three supporting details for each point.

Over time, this student makes the joyous discovery that there are usually just three or four core ideas to remember from each lecture. She originally thought the solution was to take more notes. What really worked was taking notes in a new way.

Step 2: Generate possibilities. Now put on your creative thinking hat. Open up. Brainstorm as many possible solutions to the problem as you can. At this stage, quantity counts. As you generate possibilities, gather relevant facts. For example, when you’re faced with a dilemma about what courses to take next semester, get information on class times, locations, and instructors. If you haven’t decided which summer job offer to accept, gather information on salary, benefits, and working conditions.

Step 3: Create a plan. After rereading your problem definition and list of possible solutions, choose the solution that seems most workable. Think about specific actions that will reduce the gap between what you have and what you want. Visualize the steps you will take to make this solution a reality, and arrange them in chronological order. To make your plan even more powerful, put it in writing.

Step 4: Perform your plan. This step gets you off your chair and out into the world. Now you actually do what you have planned.

Ultimately, your skill in solving problems lies in how well you perform your plan. Through the quality of your actions, you become the architect of your own success.

When facing problems, experiment with these four Ps, and remember that the order of steps is not absolute. Also remember that any solution has the potential to create new problems. If that happens, cycle through the four Ps of problem solving again.

Critical Thinking Skills in Action: Thinking About Your Major, Part 1

One decision that troubles many students in higher education is the choice of a major. Weighing the benefits, costs, and outcomes of a possible major is an intellectual challenge. This choice is an opportunity to apply your critical thinking, decision-making, and problem-solving skills. The following suggestions will guide you through this seemingly overwhelming process.

The first step is to discover options. You can use the following suggestions to discover options for choosing your major:

Follow the fun. Perhaps you look forward to attending one of your classes and even like completing the assignments. This is a clue to your choice of major.

See whether you can find lasting patterns in the subjects and extracurricular activities that you’ve enjoyed over the years. Look for a major that allows you to continue and expand on these experiences.

Also, sit down with a stack of 3 × 5 cards and brainstorm answers to the following questions:

  • What do you enjoy doing most with your unscheduled time?
  • Imagine that you’re at a party and having a fascinating conversation. What is this conversation about?
  • What kind of problems do you enjoy solving—those that involve people? Products? Ideas?
  • What interests are revealed by your choices of reading material, television shows, and other entertainment?
  • What would an ideal day look like for you? Describe where you would live, who would be with you, and what you would do throughout the day. Do any of these visions suggest a possible major?

Questions like these can uncover a “fun factor” that energizes you to finish the work of completing a major.

Consider your abilities. In choosing a major, ability counts as much as interest. In addition to considering what you enjoy, think about times and places when you excelled. List the courses that you aced, the work assignments that you mastered, and the hobbies that led to rewards or recognition. Let your choice of a major reflect a discovery of your passions and potentials.

Use formal techniques for self-discovery. Explore questionnaires and inventories that are designed to correlate your interests with specific majors. Examples include the Strong Interest Inventory and the Self-Directed Search. Your academic advisor or someone in your school’s career planning office can give you more details about these and related assessments. For some fun, take several of them and meet with an advisor to interpret the results. Remember inventories can help you gain self-knowledge, and other people can offer valuable perspectives. However, what you do with all this input is entirely up to you.

Critical Thinking Skills in Action: Thinking About Your Major, Part 2

As you review the following additional suggestions of discovering options, think about what strategies you already use in your own decision-making process. Also think about what new strategies you might try in the future.

Link to long-term goals. Your choice of a major can fall into place once you determine what you want in life. Before you choose a major, back up to a bigger picture. List your core values, such as contributing to society, achieving financial security and professional recognition, enjoying good health, or making time for fun. Also write down specific goals that you want to accomplish 5 years, 10 years, or even 50 years from today.

Many students find that the prospect of getting what they want in life justifies all of the time, money, and day-to-day effort invested in going to school. Having a major gives you a powerful incentive for attending classes, taking part in discussions, reading textbooks, writing papers, and completing other assignments. When you see a clear connection between finishing school and creating the life of your dreams, the daily tasks of higher education become charged with meaning.

Ask other people. Key people in your life might have valuable suggestions about your choice of major. Ask for their ideas, and listen with an open mind. At the same time, distance yourself from any pressure to choose a major or career that fails to interest you. If you make a choice solely on the basis of the expectations of other people, you could end up with a major or even a career you don’t enjoy.

Gather information. Check your school’s catalog or website for a list of available majors. Here is a gold mine of information. Take a quick glance, and highlight all the majors that interest you. Then talk to students who have declared these majors. Also read the descriptions of courses required for these majors. Do you get excited about the chance to enroll in them? Pay attention to your gut feelings.

Also chat with instructors who teach courses in a specific major. Ask for copies of their class syllabi. Go to the bookstore and browse the required texts. Based on all of this information, write a list of prospective majors. Discuss them with an academic advisor and someone at your school’s career-planning center.

Invent a major. When choosing a major, you might not need to limit yourself to those listed in your school catalog. Many schools now have flexible programs that allow for independent study. Through such programs, you might be able to combine two existing majors or invent an entirely new one of your own.

Consider a complementary minor. You can add flexibility to your academic program by choosing a minor to complement or contrast with your major. The student who wants to be a minister could opt for a minor in English; all of those courses in composition can help in writing sermons. Or the student with a major in psychology might choose a minor in business administration, with the idea of managing a counseling service some day. An effective choice of a minor can expand your skills and career options.

Think critically about the link between your major and your career. Your career goals might have a significant impact on your choice of major.

You could pursue a rewarding career by choosing among several different majors. Even students planning to apply for law school or medical school have flexibility in their choice of majors. In addition, after graduation, many people tend to be employed in jobs that have little relationship to their major. And you might choose a career in the future that is unrelated to any currently available major.

Critical Thinking Skills in Action: Thinking About Your Major, Part 3

Once you have discovered all of your options, you can move on to the next step in the process— making a trial choice.

Make a Trial Choice

Pretend that you have to choose a major today. Based on the options for a major that you’ve already discovered, write down the first three ideas that come to mind. Review the list for a few minutes, and then choose one.

Evaluate Your Trial Choice

When you’ve made a trial choice of major, take on the role of a scientist. Treat your choice as a hypothesis, and then design a series of experiments to evaluate and test it. For example:

  • Schedule office meetings with instructors who teach courses in the major. Ask about required course work and career options in the field.
  • Discuss your trial choice with an academic advisor or career counselor.
  • Enroll in a course related to your possible major. Remember that introductory courses might not give you a realistic picture of the workload involved in advanced courses. Also, you might not be able to register for certain courses until you’ve actually declared a related major.
  • Find a volunteer experience, internship, part-time job, or service-learning experience related to the major.
  • Interview students who have declared the same major. Ask them in detail about their experiences and suggestions for success.
  • Interview people who work in a field related to the major and “shadow” them—that is, spend time with those people during their workday.
  • Think about whether you can complete your major given the amount of time and money that you plan to invest in higher education.
  • Consider whether declaring this major would require a transfer to another program or even another school.

If your “experiments” confirm your choice of major, celebrate that fact. If they result in choosing a new major, celebrate that outcome as well.

Also remember that higher education represents a safe place to test your choice of major—and to change your mind. As you sort through your options, help is always available from administrators, instructors, advisors, and peers.

Choose Again

Keep your choice of a major in perspective. There is probably no single “correct” choice. Your unique collection of skills is likely to provide the basis for majoring in several fields.

Odds are that you’ll change your major at least once—and that you’ll change careers several times during your life. One benefit of higher education is mobility. You gain the general skills and knowledge that can help you move into a new major or career field at any time.

Viewing a major as a one-time choice that determines your entire future can raise your stress levels. Instead, look at choosing a major as the start of a continuing path that involves discovery, choice, and passionate action.

As you review this example of how you can use critical thinking to make a decision about choosing your major, think about how you will use your critical thinking to make decisions and solve problems in the future.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

thinking decision making problem solving cognitive skills and language are examples of

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

thinking decision making problem solving cognitive skills and language are examples of

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Complex cognition: the science of human reasoning, problem-solving, and decision-making

  • Published: 23 March 2010
  • Volume 11 , pages 99–102, ( 2010 )

Cite this article

  • Markus Knauff 1 &
  • Ann G. Wolf 1  

19k Accesses

39 Citations

Explore all metrics

Avoid common mistakes on your manuscript.

Climate change, globalization, policy of peace, and financial market crises—often we are faced with very complex problems. In order to tackle these complex problems, the responsible people should first come to mutual terms. An additional challenge is that typically the involved parties have different (often conflicting) interests and relate the problems to different emotions and wishes. These factors certainly do not ease the quest for a solution to these complex problems.

It is needless to say that the big problems of our time are not easy to solve. Less clear, however, is identifying the causes that led to these problems. Interest conflicts between social groups, the economic and social system or greed—one can think of many responsible factors for the large-scale problems we are currently confronted with.

The present “Special Corner: complex cognition” deals with questions in this regard that have often received little consideration. Under the headline “complex cognition”, we summarize mental activities such as thinking, reasoning, problem - solving, and decision - making that typically rely on the combination and interaction of more elementary processes such as perception, learning, memory, emotion, etc. (cf. Sternberg and Ben-Zeev 2001 ). However, even though complex cognition relies on these elementary functions, the scope of complex cognition research goes beyond the isolated analysis of such elementary mental processes. Two aspects are essential for “complex cognition”: The first aspect refers to the interaction of different mental activities such as perception, memory, learning, reasoning, emotion, etc. The second aspect takes the complexity of the situation into account an agent is confronted with. Based on these two aspects, the term “complex cognition” can be defined in the following way:

Complex psychological processes: We talk about “complex cognition”, when thinking, problem-solving, or decision-making falls back on other cognitive processes such as “perception”, “working memory”, “long-term memory”, “executive processes”, or when the cognitive processes are in close connection with other processes such as “emotion” and “motivation”. The complexity also results from an interaction from a multitude of processes that occur simultaneously or at different points in time and can be realized in different cognitive and/or neuronal structures.

Complex conditions: We also talk about “complex cognition” when the conditions are complex in which a person finds himself and in which conclusions need to be drawn, a problem needs to be solved, or decisions need to be made. The complexity of the conditions or constraints can have different causes. The situation structure itself can be difficult to “see”, or the action alternatives are difficult “to put into effect”. The conditions can themselves comprise of many different variables. These variables can exhibit a high level of interdependence and cross-connection, and it can, as time passes by, come to a change of the original conditions (e.g. Dörner and Wearing 1995 ; Osman 2010 ). It can also be the case that the problem is embedded in a larger social context and can be solved only under certain specifications (norms, data, legislations, culture, etc.) or that the problem can only be solved in interaction with other agents, be it other persons or technical systems.

When one summarizes these two aspects, this yields the following view of what should be understood as “complex cognition”.

As “complex cognition” we define all mental processes that are used by individuals for deriving new information out of given information, with the intention to solve problems, make decision, and plan actions. The crucial characteristic of “complex cognition” is that it takes place under complex conditions in which a multitude of cognitive processes interact with one another or with other noncognitive processes.

The “Special Corner: complex cognition” deals with complex cognition from many different perspectives. The typical questions of all contributions are: Does the design of the human mind enable the necessary thinking skills to solve the truly complex problems we are faced with? Where lay the boundaries of our thinking skills? How do people derive at conclusions? What makes a problem a complex problem? How can we improve our skills to effectively solve problems and make sound judgements?

It is for sure too much to expect that the Special Corner answers these questions. If it were that easy, we would not be still searching for an answer. It is, however, our intention with the current collection of articles to bring to focus such questions to a larger extent than has been done so far.

An important starting point is the fact that people’s skills to solve the most complex of all problems and to ponder about the most complex issues is often immense—humankind would not otherwise be there were she is now. Yet, on the other hand, it has become more clear in the past few years that often people drift away from what one would identify as “rational” (Kahneman 2003 ). People hardly ever adhere to that what the norms of logic, the probability calculus, or the mathematical decision theory state. For example, most people (and organizations) typically accept more losses for a potential high gain than would be the case if they were to take into account the rules of the probability theory. Similarly, they draw conclusions from received information in a way that is not according to the rules of logic. When people, for example, accept the rule “If it rains, then the street is wet”, they most often conclude that when the street is wet, it must have rained. That, however, is incorrect from a logical perspective: perhaps a cleaning car just drove by. In psychology, two main views are traditionally put forward to explain how such deviations from the normative guidelines occur. One scientific stream is interested in how deviations from the normative models can be explained (Evans 2005 ; Johnson-Laird 2008 ; Knauff 2007 ; Reason 1990 ). According to this line of research, deviations are caused by the limitations of the human cognitive system. The other psychological stream puts forward as the main criticism that the deviations can actually be regarded as mistakes (Gigerenzer 2008 ). The deviations accordingly have a high value, because they are adjusted to the information structure of the environment (Gigerenzer et al. 1999 ). They have probably developed during evolution, because they could ensure survival as for example the specifications of formal logic (Hertwig and Herzog 2009 ). We, the editors of the special corner, are very pleased that we can offer an impression of this debate with the contributions from Marewski, Gaissmaier, and Gigerenzer and the commentaries to this contribution from Evans and Over. Added to this is a reply from Marewski, Gaissmaier, and Gigerenzer to the commentary from Evans and Over.

Another topic in the area of complex cognition can be best illustrated by means of the climate protection. To be successful in this area, the responsible actors have to consider a multitude of ecological, biological, geological, political, and economical factors, the basic conditions are constantly at change, and the intervention methods are not clear. Because the necessary information is not readily available for the person dealing with the problem, the person is forced to obtain the relevant information from other sources. Furthermore, intervention in the complex variable structure of the climate can trigger processes whose impact was likely not intended. Finally, the system will not “wait” for intervention of the actors but will change itself over time. The special corner is also concerned with thinking and problem-solving in such complex situations. The article by Funke gives an overview of the current state of research on this topic from the viewpoint of the author, in which several research areas are covered that have internationally not received much acknowledgement (but see, for example, Osman 2010 ).

Although most contributions to the special corner come from the area of psychology, the contribution by Ragni and Löffler illustrates that computer science can provide a valuable addition to the understanding of complex cognition. Computer science plays an important role in complex cognition. In general, computer science, which is used to investigate computational processes central to all research approaches, can be placed in a “computational theory of cognition” framework. This is true especially for the development of computational theories of complex cognitive processes. In many of our modern knowledge domains, the application of simulations and modelling has become a major part of the methods inventory. Simulations help forecast the weather and climate change, help govern traffic flow and help comprehend physical processes. Although modelling in these areas is a vastly established method, it has been very little applied in the area of human thinking (but see e.g. Anderson 1990 ; Gray 2007 ). However, exactly in the area of complex cognition, the method of cognitive modelling offers empirical research an additional methodological access to the description and explanation of complex cognitive processes. While the validity of psychological theories can be tested with the use of empirical research, cognitive models, with their internal coherence, make possible to test consistency and completeness (e.g. Schmid 2008 ). They will also lead to new hypotheses that will in turn be possible to test experimentally. The contribution of Ragni and Löffler demonstrates with the help of an interesting example, finding the optimal route, the usefulness of simulation and modelling in psychology.

A further problem in the area of complex cognition is that many problems are solvable only under certain social conditions (norms, values, laws, culture) or only in interaction with other actors (cf. Beller 2008 ). The article on deontic reasoning by Beller is concerned with this topic. Deontic reasoning is thinking about whether actions are forbidden or allowed, obligatory or not obligatory. Beller proposes that social norms, imposing constraints on individual actions, constitute the fundamental concept for deontic thinking and that people reason from such norms flexibly according to deontic core principles. The review paper shows how knowing what in a certain situation is allowed or forbidden can influence how people derive at conclusions.

The article of Waldmann, Meder, von Sydow, and Hagmayer is concerned with the important topic of causal reasoning. More specifically, the authors explore the interaction between category and causal induction in causal model learning. The paper is a good example of how experimental work in psychology can combine different research traditions that typically work quite isolated. The paper goes beyond a divide and conquers approach and shows that causal knowledge plays an important role in learning, categorization, perception, decision-making, problem-solving, and text comprehension. In each of these fields, separate theories have been developed to investigate the role of causal knowledge. The first author of the paper is internationally well known for his work on the role of causality in other cognitive functions, in particular in categorization and learning (e.g. Lagnado et al. 2007 ; Waldmann et al. 1995 ). In a number of experimental studies, Waldmann and his colleagues have shown that people when learning about causal relations do not simply form associations between causes and effects but make use of abstract prior assumptions about the underlying causal structure and functional form (Waldmann 2007 ).

We, the guest editors, are very pleased that we have the opportunity with this Special corner to make accessible the topic “complex cognition” to the interdisciplinary readership of Cognitive Processing . We predict a bright future for this topic. The research topic possesses high research relevance in the area of basic research for a multitude of disciplines, for example psychology, computer science, and neuroscience. In addition, this area forms a good foundation for an interdisciplinary cooperation.

A further important reason for the positive development of the area is that the relevance of the area goes beyond fundamental research. In that way, the results of the area can for example also contribute to better understanding of the possibilities and borders of human thinking, problem-solving, and decisions in politics, corporations, and economy. In the long term, it might even lead to practical directions on how to avoid “mistakes” and help us better understand the global challenges of our time—Climate change, globalization, financial market crises, etc.

We thank all the authors for their insightful and inspiring contributions, a multitude of reviewers for their help, the editor-in-chief Marta Olivetti Belardinelli that she gave us the opportunity to address this topic, and the editorial manager, Thomas Hünefeldt, for his support for accomplishing the Special Corner. We wish the readers of the Special Corner lots of fun with reading the contributions!

Anderson JR (1990) The adaptive character of thought. Erlbaum, Hillsdale

Google Scholar  

Beller S (2008) Deontic norms, deontic reasoning, and deontic conditionals. Think Reason 14:305–341

Article   Google Scholar  

Dörner D, Wearing A (1995) Complex problem solving: toward a (computer-simulated) theory. In: Frensch PA, Funke J (eds) Complex problem solving: the European perspective. Lawrence Erlbaum Associates, Hillsdale, pp 65–99

Evans JSBT (2005) Deductive reasoning. In: Holyoak KJ, Morrison RG (eds) The Cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge, pp 169–184

Gigerenzer G (2008) Rationality for mortals: how people cope with uncertainty. Oxford University Press, Oxford

Gigerenzer G, Todd PM, The ABC Research Group (1999) Simple heuristics that make us smart. Oxford University Press, New York

Gray WD (2007) Integrated models of cognitive systems. Oxford University Press, Oxford

Hertwig R, Herzog SM (2009) Fast and frugal heuristics: tools of social rationality. Soc Cogn 27:661–698

Johnson-Laird PN (2008) Mental models and deductive reasoning. In: Rips L, Adler J (eds) Reasoning: studies in human inference and its foundations. Cambridge University Press, Cambridge, pp 206–222

Kahneman D (2003) A perspective on judgment and choice: mapping bounded rationality. Am Psychol 58:697–720

Article   PubMed   Google Scholar  

Knauff M (2007) How our brains reason logically. Topio 26:19–36

Lagnado DA, Waldmann MR, Hagmayer Y, Sloman SA (2007) Beyond covariation: cues to causal structure. In: Gopnik A, Schulz L (eds) Causal learning: psychology, philosophy, and computation. Oxford University Press, Oxford, pp 154–172

Osman M (2010) Controlling uncertainty: a review of human behavior in complex dynamic environments. Psychol Bull 136(1):65–86

Reason J (1990) Human error. Cambridge University Press, Cambridge

Schmid U (2008) Cognition and AI. KI 08/1, Themenheft “Kognition’’, pp 5–7

Sternberg RJ, Ben-Zeev T (2001) Complex cognition: the psychology of human thought. Oxford University Press, New York

Waldmann MR (2007) Combining versus analyzing multiple causes: how domain assumptions and task context affect integration rules. Cogn Sci 31:233–256

Waldmann MR, Holyoak KJ, Fratianne A (1995) Causal models and the acquisition of category structure. J Exp Psychol Gen 124:181–206

Download references

Author information

Authors and affiliations.

University of Giessen, Giessen, Germany

Markus Knauff & Ann G. Wolf

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Markus Knauff .

Rights and permissions

Reprints and permissions

About this article

Knauff, M., Wolf, A.G. Complex cognition: the science of human reasoning, problem-solving, and decision-making. Cogn Process 11 , 99–102 (2010). https://doi.org/10.1007/s10339-010-0362-z

Download citation

Received : 10 March 2010

Accepted : 10 March 2010

Published : 23 March 2010

Issue Date : May 2010

DOI : https://doi.org/10.1007/s10339-010-0362-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Logo for Maricopa Open Digital Press

6 Thinking and Intelligence

Three side by side images are shown. On the left is a person lying in the grass with a book, looking off into the distance. In the middle is a sculpture of a person sitting on rock, with chin rested on hand, and the elbow of that hand rested on knee. The third is a drawing of a person sitting cross-legged with his head resting on his hand, elbow on knee.

What is the best way to solve a problem? How does a person who has never seen or touched snow in real life develop an understanding of the concept of snow? How do young children acquire the ability to learn language with no formal instruction? Psychologists who study thinking explore questions like these and are called cognitive psychologists.

Cognitive psychologists also study intelligence. What is intelligence, and how does it vary from person to person? Are “street smarts” a kind of intelligence, and if so, how do they relate to other types of intelligence? What does an IQ test really measure? These questions and more will be explored in this chapter as you study thinking and intelligence.

In other chapters, we discussed the cognitive processes of perception, learning, and memory. In this chapter, we will focus on high-level cognitive processes. As a part of this discussion, we will consider thinking and briefly explore the development and use of language. We will also discuss problem solving and creativity before ending with a discussion of how intelligence is measured and how our biology and environments interact to affect intelligence. After finishing this chapter, you will have a greater appreciation of the higher-level cognitive processes that contribute to our distinctiveness as a species.

Learning Objectives

By the end of this section, you will be able to:

  • Describe cognition
  • Distinguish concepts and prototypes
  • Explain the difference between natural and artificial concepts
  • Describe how schemata are organized and constructed

Imagine all of your thoughts as if they were physical entities, swirling rapidly inside your mind. How is it possible that the brain is able to move from one thought to the next in an organized, orderly fashion? The brain is endlessly perceiving, processing, planning, organizing, and remembering—it is always active. Yet, you don’t notice most of your brain’s activity as you move throughout your daily routine. This is only one facet of the complex processes involved in cognition. Simply put,  cognition  is thinking, and it encompasses the processes associated with perception, knowledge, problem solving, judgment, language, and memory. Scientists who study cognition are searching for ways to understand how we integrate, organize, and utilize our conscious cognitive experiences without being aware of all of the unconscious work that our brains are doing (for example, Kahneman, 2011).

Upon waking each morning, you begin thinking—contemplating the tasks that you must complete that day. In what order should you run your errands? Should you go to the bank, the cleaners, or the grocery store first? Can you get these things done before you head to class or will they need to wait until school is done? These thoughts are one example of cognition at work. Exceptionally complex, cognition is an essential feature of human consciousness, yet not all aspects of cognition are consciously experienced.

Cognitive psychology  is the field of psychology dedicated to examining how people think. It attempts to explain how and why we think the way we do by studying the interactions among human thinking, emotion, creativity, language, and problem solving, in addition to other cognitive processes. Cognitive psychologists strive to determine and measure different types of intelligence, why some people are better at problem solving than others, and how emotional intelligence affects success in the workplace, among countless other topics. They also sometimes focus on how we organize thoughts and information gathered from our environments into meaningful categories of thought, which will be discussed later.

Concepts and Prototypes

The human nervous system is capable of handling endless streams of information. The senses serve as the interface between the mind and the external environment, receiving stimuli and translating it into nerve impulses that are transmitted to the brain. The brain then processes this information and uses the relevant pieces to create thoughts, which can then be expressed through language or stored in memory for future use. To make this process more complex, the brain does not gather information from external environments only. When thoughts are formed, the mind synthesizes information from emotions and memories ( Figure 7.2 ). Emotion and memory are powerful influences on both our thoughts and behaviors.

The outline of a human head is shown. There is a box containing “Information, sensations” in front of the head. An arrow from this box points to another box containing “Emotions, memories” located where the front of the person's brain would be. An arrow from this second box points to a third box containing “Thoughts” located where the back of the person's brain would be. There are two arrows coming from “Thoughts.” One arrow points back to the second box, “Emotions, memories,” and the other arrow points to a fourth box, “Behavior.”

In order to organize this staggering amount of information, the mind has developed a “file cabinet” of sorts in the mind. The different files stored in the file cabinet are called concepts.  Concepts  are categories or groupings of linguistic information, images, ideas, or memories, such as life experiences. Concepts are, in many ways, big ideas that are generated by observing details, and categorizing and combining these details into cognitive structures. You use concepts to see the relationships among the different elements of your experiences and to keep the information in your mind organized and accessible.

Concepts are informed by our semantic memory (you will learn more about semantic memory in a later chapter) and are present in every aspect of our lives; however, one of the easiest places to notice concepts is inside a classroom, where they are discussed explicitly. When you study United States history, for example, you learn about more than just individual events that have happened in America’s past. You absorb a large quantity of information by listening to and participating in discussions, examining maps, and reading first-hand accounts of people’s lives. Your brain analyzes these details and develops an overall understanding of American history. In the process, your brain gathers details that inform and refine your understanding of related concepts like democracy, power, and freedom.

Concepts can be complex and abstract, like justice, or more concrete, like types of birds. In psychology, for example, Piaget’s stages of development are abstract concepts. Some concepts, like tolerance, are agreed upon by many people because they have been used in various ways over many years. Other concepts, like the characteristics of your ideal friend or your family’s birthday traditions, are personal and individualized. In this way, concepts touch every aspect of our lives, from our many daily routines to the guiding principles behind the way governments function.

Another technique used by your brain to organize information is the identification of prototypes for the concepts you have developed. A  prototype  is the best example or representation of a concept. For example, what comes to your mind when you think of a dog? Most likely your early experiences with dogs will shape what you imagine. If your first pet was a Golden Retriever, there is a good chance that this would be your prototype for the category of dogs.

Natural and Artificial Concepts

In psychology, concepts can be divided into two categories, natural and artificial.  Natural concepts  are created “naturally” through your experiences and can be developed from either direct or indirect experiences. For example, if you live in Essex Junction, Vermont, you have probably had a lot of direct experience with snow. You’ve watched it fall from the sky, you’ve seen lightly falling snow that barely covers the windshield of your car, and you’ve shoveled out 18 inches of fluffy white snow as you’ve thought, “This is perfect for skiing.” You’ve thrown snowballs at your best friend and gone sledding down the steepest hill in town. In short, you know snow. You know what it looks like, smells like, tastes like, and feels like. If, however, you’ve lived your whole life on the island of Saint Vincent in the Caribbean, you may never have actually seen snow, much less tasted, smelled, or touched it. You know snow from the indirect experience of seeing pictures of falling snow—or from watching films that feature snow as part of the setting. Either way, snow is a natural concept because you can construct an understanding of it through direct observations, experiences with snow, or indirect knowledge (such as from films or books) ( Figure 7.3 ).

Photograph A shows a snow covered landscape with the sun shining over it. Photograph B shows a sphere shaped object perched atop the corner of a cube shaped object. There is also a triangular object shown.

An  artificial concept , on the other hand, is a concept that is defined by a specific set of characteristics. Various properties of geometric shapes, like squares and triangles, serve as useful examples of artificial concepts. A triangle always has three angles and three sides. A square always has four equal sides and four right angles. Mathematical formulas, like the equation for area (length × width), are artificial concepts defined by specific sets of characteristics that are always the same. Artificial concepts can enhance the understanding of a topic by building on one another. For example, before learning the concept of “area of a square” (and the formula to find it), you must understand what a square is. Once the concept of “area of a square” is understood, an understanding of area for other geometric shapes can be built upon the original understanding of area. The use of artificial concepts to define an idea is crucial to communicating with others and engaging in complex thought. According to Goldstone and Kersten (2003), concepts act as building blocks and can be connected in countless combinations to create complex thoughts.

A  schema  is a mental construct consisting of a cluster or collection of related concepts (Bartlett, 1932). There are many different types of schemata, and they all have one thing in common: schemata are a method of organizing information that allows the brain to work more efficiently. When a schema is activated, the brain makes immediate assumptions about the person or object being observed.

There are several types of schemata. A  role schema  makes assumptions about how individuals in certain roles will behave (Callero, 1994). For example, imagine you meet someone who introduces himself as a firefighter. When this happens, your brain automatically activates the “firefighter schema” and begins making assumptions that this person is brave, selfless, and community-oriented. Despite not knowing this person, already you have unknowingly made judgments about him. Schemata also help you fill in gaps in the information you receive from the world around you. While schemata allow for more efficient information processing, there can be problems with schemata, regardless of whether they are accurate: Perhaps this particular firefighter is not brave, he just works as a firefighter to pay the bills while studying to become a children’s librarian.

An  event schema , also known as a  cognitive script , is a set of behaviors that can feel like a routine. Think about what you do when you walk into an elevator ( Figure 7.4 ). First, the doors open and you wait to let exiting passengers leave the elevator car. Then, you step into the elevator and turn around to face the doors, looking for the correct button to push. You never face the back of the elevator, do you? And when you’re riding in a crowded elevator and you can’t face the front, it feels uncomfortable, doesn’t it? Interestingly, event schemata can vary widely among different cultures and countries. For example, while it is quite common for people to greet one another with a handshake in the United States, in Tibet, you greet someone by sticking your tongue out at them, and in Belize, you bump fists (Cairns Regional Council, n.d.)

A crowded elevator is shown. There are many people standing close to one another.

Because event schemata are automatic, they can be difficult to change. Imagine that you are driving home from work or school. This event schema involves getting in the car, shutting the door, and buckling your seatbelt before putting the key in the ignition. You might perform this script two or three times each day. As you drive home, you hear your phone’s ring tone. Typically, the event schema that occurs when you hear your phone ringing involves locating the phone and answering it or responding to your latest text message. So without thinking, you reach for your phone, which could be in your pocket, in your bag, or on the passenger seat of the car. This powerful event schema is informed by your pattern of behavior and the pleasurable stimulation that a phone call or text message gives your brain. Because it is a schema, it is extremely challenging for us to stop reaching for the phone, even though we know that we endanger our own lives and the lives of others while we do it (Neyfakh, 2013) ( Figure 7.5 ).

A person’s right hand is holding a cellular phone. The person is in the driver’s seat of an automobile while on the road.

Remember the elevator? It feels almost impossible to walk in and  not  face the door. Our powerful event schema dictates our behavior in the elevator, and it is no different with our phones. Current research suggests that it is the habit, or event schema, of checking our phones in many different situations that make refraining from checking them while driving especially difficult (Bayer & Campbell, 2012). Because texting and driving has become a dangerous epidemic in recent years, psychologists are looking at ways to help people interrupt the “phone schema” while driving. Event schemata like these are the reason why many habits are difficult to break once they have been acquired. As we continue to examine thinking, keep in mind how powerful the forces of concepts and schemata are to our understanding of the world.

  • Define language and demonstrate familiarity with the components of language
  • Understand the development of language
  • Explain the relationship between language and thinking

Language  is a communication system that involves using words and systematic rules to organize those words to transmit information from one individual to another. While language is a form of communication, not all communication is language. Many species communicate with one another through their postures, movements, odors, or vocalizations. This communication is crucial for species that need to interact and develop social relationships with their conspecifics. However, many people have asserted that it is language that makes humans unique among all of the animal species (Corballis & Suddendorf, 2007; Tomasello & Rakoczy, 2003). This section will focus on what distinguishes language as a special form of communication, how the use of language develops, and how language affects the way we think.

Components of Language

Language, be it spoken, signed, or written, has specific components: a lexicon and grammar.  Lexicon  refers to the words of a given language. Thus, lexicon is a language’s vocabulary.  Grammar  refers to the set of rules that are used to convey meaning through the use of the lexicon (Fernández & Cairns, 2011). For instance, English grammar dictates that most verbs receive an “-ed” at the end to indicate past tense.

Words are formed by combining the various phonemes that make up the language. A  phoneme  (e.g., the sounds “ah” vs. “eh”) is a basic sound unit of a given language, and different languages have different sets of phonemes. Phonemes are combined to form  morphemes , which are the smallest units of language that convey some type of meaning (e.g., “I” is both a phoneme and a morpheme). We use semantics and syntax to construct language. Semantics and syntax are part of a language’s grammar.  Semantics  refers to the process by which we derive meaning from morphemes and words.  Syntax  refers to the way words are organized into sentences (Chomsky, 1965; Fernández & Cairns, 2011).

We apply the rules of grammar to organize the lexicon in novel and creative ways, which allow us to communicate information about both concrete and abstract concepts. We can talk about our immediate and observable surroundings as well as the surface of unseen planets. We can share our innermost thoughts, our plans for the future, and debate the value of a college education. We can provide detailed instructions for cooking a meal, fixing a car, or building a fire. Through our use of words and language, we are able to form, organize, and express ideas, schema, and artificial concepts.

Language Development

Given the remarkable complexity of a language, one might expect that mastering a language would be an especially arduous task; indeed, for those of us trying to learn a second language as adults, this might seem to be true. However, young children master language very quickly with relative ease. B. F.  Skinner  (1957) proposed that language is learned through reinforcement. Noam  Chomsky  (1965) criticized this behaviorist approach, asserting instead that the mechanisms underlying language acquisition are biologically determined. The use of language develops in the absence of formal instruction and appears to follow a very similar pattern in children from vastly different cultures and backgrounds. It would seem, therefore, that we are born with a biological predisposition to acquire a language (Chomsky, 1965; Fernández & Cairns, 2011). Moreover, it appears that there is a critical period for language acquisition, such that this proficiency at acquiring language is maximal early in life; generally, as people age, the ease with which they acquire and master new languages diminishes (Johnson & Newport, 1989; Lenneberg, 1967; Singleton, 1995).

Children begin to learn about language from a very early age ( Table 7.1 ). In fact, it appears that this is occurring even before we are born. Newborns show a preference for their mother’s voice and appear to be able to discriminate between the language spoken by their mother and other languages. Babies are also attuned to the languages being used around them and show preferences for videos of faces that are moving in synchrony with the audio of spoken language versus videos that do not synchronize with the audio (Blossom & Morgan, 2006; Pickens, 1994; Spelke & Cortelyou, 1981).

DIG DEEPER: The Case of Genie

In the fall of 1970, a social worker in the Los Angeles area found a 13-year-old girl who was being raised in extremely neglectful and abusive conditions. The girl, who came to be known as Genie, had lived most of her life tied to a potty chair or confined to a crib in a small room that was kept closed with the curtains drawn. For a little over a decade, Genie had virtually no social interaction and no access to the outside world. As a result of these conditions, Genie was unable to stand up, chew solid food, or speak (Fromkin, Krashen, Curtiss, Rigler, & Rigler, 1974; Rymer, 1993). The police took Genie into protective custody.

Genie’s abilities improved dramatically following her removal from her abusive environment, and early on, it appeared she was acquiring language—much later than would be predicted by critical period hypotheses that had been posited at the time (Fromkin et al., 1974). Genie managed to amass an impressive vocabulary in a relatively short amount of time. However, she never developed a mastery of the grammatical aspects of language (Curtiss, 1981). Perhaps being deprived of the opportunity to learn language during a critical period impeded Genie’s ability to fully acquire and use language.

You may recall that each language has its own set of phonemes that are used to generate morphemes, words, and so on. Babies can discriminate among the sounds that make up a language (for example, they can tell the difference between the “s” in vision and the “ss” in fission); early on, they can differentiate between the sounds of all human languages, even those that do not occur in the languages that are used in their environments. However, by the time that they are about 1 year old, they can only discriminate among those phonemes that are used in the language or languages in their environments (Jensen, 2011; Werker & Lalonde, 1988; Werker & Tees, 1984).

After the first few months of life, babies enter what is known as the babbling stage, during which time they tend to produce single syllables that are repeated over and over. As time passes, more variations appear in the syllables that they produce. During this time, it is unlikely that the babies are trying to communicate; they are just as likely to babble when they are alone as when they are with their caregivers (Fernández & Cairns, 2011). Interestingly, babies who are raised in environments in which sign language is used will also begin to show babbling in the gestures of their hands during this stage (Petitto, Holowka, Sergio, Levy, & Ostry, 2004).

Generally, a child’s first word is uttered sometime between the ages of 1 year to 18 months, and for the next few months, the child will remain in the “one word” stage of language development. During this time, children know a number of words, but they only produce one-word utterances. The child’s early vocabulary is limited to familiar objects or events, often nouns. Although children in this stage only make one-word utterances, these words often carry larger meaning (Fernández & Cairns, 2011). So, for example, a child saying “cookie” could be identifying a cookie or asking for a cookie.

As a child’s lexicon grows, she begins to utter simple sentences and to acquire new vocabulary at a very rapid pace. In addition, children begin to demonstrate a clear understanding of the specific rules that apply to their language(s). Even the mistakes that children sometimes make provide evidence of just how much they understand about those rules. This is sometimes seen in the form of  overgeneralization . In this context, overgeneralization refers to an extension of a language rule to an exception to the rule. For example, in English, it is usually the case that an “s” is added to the end of a word to indicate plurality. For example, we speak of one dog versus two dogs. Young children will overgeneralize this rule to cases that are exceptions to the “add an s to the end of the word” rule and say things like “those two gooses” or “three mouses.” Clearly, the rules of the language are understood, even if the exceptions to the rules are still being learned (Moskowitz, 1978).

Language and Thought

When we speak one language, we agree that words are representations of ideas, people, places, and events. The given language that children learn is connected to their culture and surroundings. But can words themselves shape the way we think about things? Psychologists have long investigated the question of whether language shapes thoughts and actions, or whether our thoughts and beliefs shape our language. Two researchers, Edward Sapir and Benjamin Lee Whorf began this investigation in the 1940s. They wanted to understand how the language habits of a community encourage members of that community to interpret language in a particular manner (Sapir, 1941/1964). Sapir and Whorf proposed that language determines thought. For example, in some languages, there are many different words for love. However, in English, we use the word love for all types of love. Does this affect how we think about love depending on the language that we speak (Whorf, 1956)? Researchers have since identified this view as too absolute, pointing out a lack of empiricism behind what Sapir and Whorf proposed (Abler, 2013; Boroditsky, 2011; van Troyer, 1994). Today, psychologists continue to study and debate the relationship between language and thought.

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe is doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A  problem-solving strategy  is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is  trial and error . The old adage, “If at first, you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An  algorithm  is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a  heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of the five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backward is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C., and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backward heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or a long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

EVERYDAY CONNECTION: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle ( Figure 7.8 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below ( Figure 7.9 ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A  mental set  is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness  is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to solve the problem ( Figure 7.10 ). During the  Apollo 13  mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Figure a shows a book of matches, a box of thumbtacks, and a candle. Figure b shows the candle standing in the box that held the thumbtacks. A thumbtack attaches the box holding the candle to the wall.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An  anchoring bias  occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The  confirmation bias  is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis.  Hindsight bias  leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did.  Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the  availability heuristic  is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision .  Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in  Table 7.3 .

Were you able to determine how many marbles are needed to balance the scales in  Figure 7.9 ? You need nine. Were you able to solve the problems in  Figure 7.7  and  Figure 7.8 ? Here are the answers ( Figure 7.11 ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

  • Define intelligence
  • Explain the triarchic theory of intelligence
  • Identify the difference between intelligence theories
  • Explain emotional intelligence
  • Define creativity

Classifying Intelligence

What exactly is intelligence? The way that researchers have defined the concept of intelligence has been modified many times since the birth of psychology. British psychologist Charles Spearman believed intelligence consisted of one general factor, called  g , which could be measured and compared among individuals. Spearman focused on the commonalities among various intellectual abilities and de-emphasized what made each unique. Long before modern psychology developed, however, ancient philosophers, such as Aristotle, held a similar view (Cianciolo & Sternberg, 2004).

Other psychologists believe that instead of a single factor, intelligence is a collection of distinct abilities. In the 1940s, Raymond Cattell proposed a theory of intelligence that divided general intelligence into two components: crystallized intelligence and fluid intelligence (Cattell, 1963). Crystallized intelligence  is characterized as acquired knowledge and the ability to retrieve it. When you learn, remember, and recall information, you are using crystallized intelligence. You use crystallized intelligence all the time in your coursework by demonstrating that you have mastered the information covered in the course.  Fluid intelligence  encompasses the ability to see complex relationships and solve problems. Navigating your way home after being detoured onto an unfamiliar route because of road construction would draw upon your fluid intelligence. Fluid intelligence helps you tackle complex, abstract challenges in your daily life, whereas crystallized intelligence helps you overcome concrete, straightforward problems (Cattell, 1963).

Other theorists and psychologists believe that intelligence should be defined in more practical terms. For example, what types of behaviors help you get ahead in life? Which skills promote success? Think about this for a moment. Being able to recite all 45 presidents of the United States in order is an excellent party trick, but will knowing this make you a better person?

Robert Sternberg developed another theory of intelligence, which he titled the  triarchic theory of intelligence  because it sees intelligence as comprised of three parts (Sternberg, 1988): practical, creative, and analytical intelligence ( Figure 7.12 ).

Three boxes are arranged in a triangle. The top box contains “Analytical intelligence; academic problem solving and computation.” There is a line with arrows on both ends connecting this box to another box containing “Practical intelligence; street smarts and common sense.” Another line with arrows on both ends connects this box to another box containing “Creative intelligence; imaginative and innovative problem solving.” Another line with arrows on both ends connects this box to the first box described, completing the triangle.

Practical intelligence , as proposed by Sternberg, is sometimes compared to “street smarts.” Being practical means you find solutions that work in your everyday life by applying knowledge based on your experiences. This type of intelligence appears to be separate from the traditional understanding of IQ; individuals who score high in practical intelligence may or may not have comparable scores in creative and analytical intelligence (Sternberg, 1988).

Analytical intelligence is closely aligned with academic problem solving and computations. Sternberg says that analytical intelligence is demonstrated by an ability to analyze, evaluate, judge, compare, and contrast. When reading a classic novel for a literature class, for example, it is usually necessary to compare the motives of the main characters of the book or analyze the historical context of the story. In a science course such as anatomy, you must study the processes by which the body uses various minerals in different human systems. In developing an understanding of this topic, you are using analytical intelligence. When solving a challenging math problem, you would apply analytical intelligence to analyze different aspects of the problem and then solve it section by section.

Creative intelligence  is marked by inventing or imagining a solution to a problem or situation. Creativity in this realm can include finding a novel solution to an unexpected problem or producing a beautiful work of art or a well-developed short story. Imagine for a moment that you are camping in the woods with some friends and realize that you’ve forgotten your camp coffee pot. The person in your group who figures out a way to successfully brew coffee for everyone would be credited as having higher creative intelligence.

Multiple Intelligences Theory  was developed by Howard Gardner, a Harvard psychologist and former student of Erik Erikson. Gardner’s theory, which has been refined for more than 30 years, is a more recent development among theories of intelligence. In Gardner’s theory, each person possesses at least eight intelligences. Among these eight intelligences, a person typically excels in some and falters in others (Gardner, 1983).  Table 7.4  describes each type of intelligence.

Gardner’s theory is relatively new and needs additional research to better establish empirical support. At the same time, his ideas challenge the traditional idea of intelligence to include a wider variety of abilities, although it has been suggested that Gardner simply relabeled what other theorists called “cognitive styles” as “intelligences” (Morgan, 1996). Furthermore, developing traditional measures of Gardner’s intelligences is extremely difficult (Furnham, 2009; Gardner & Moran, 2006; Klein, 1997).

Gardner’s inter- and intrapersonal intelligences are often combined into a single type: emotional intelligence.  Emotional intelligence  encompasses the ability to understand the emotions of yourself and others, show empathy, understand social relationships and cues, and regulate your own emotions and respond in culturally appropriate ways (Parker, Saklofske, & Stough, 2009). People with high emotional intelligence typically have well-developed social skills. Some researchers, including Daniel Goleman, the author of  Emotional Intelligence: Why It Can Matter More than IQ , argue that emotional intelligence is a better predictor of success than traditional intelligence (Goleman, 1995). However, emotional intelligence has been widely debated, with researchers pointing out inconsistencies in how it is defined and described, as well as questioning results of studies on a subject that is difficult to measure and study empirically (Locke, 2005; Mayer, Salovey, & Caruso, 2004)

The most comprehensive theory of intelligence to date is the Cattell-Horn-Carroll (CHC) theory of cognitive abilities (Schneider & McGrew, 2018). In this theory, abilities are related and arranged in a hierarchy with general abilities at the top, broad abilities in the middle, and narrow (specific) abilities at the bottom. The narrow abilities are the only ones that can be directly measured; however, they are integrated within the other abilities. At the general level is general intelligence. Next, the broad level consists of general abilities such as fluid reasoning, short-term memory, and processing speed. Finally, as the hierarchy continues, the narrow level includes specific forms of cognitive abilities. For example, short-term memory would further break down into memory span and working memory capacity.

Intelligence can also have different meanings and values in different cultures. If you live on a small island, where most people get their food by fishing from boats, it would be important to know how to fish and how to repair a boat. If you were an exceptional angler, your peers would probably consider you intelligent. If you were also skilled at repairing boats, your intelligence might be known across the whole island. Think about your own family’s culture. What values are important for Latinx families? Italian families? In Irish families, hospitality and telling an entertaining story are marks of the culture. If you are a skilled storyteller, other members of Irish culture are likely to consider you intelligent.

Some cultures place a high value on working together as a collective. In these cultures, the importance of the group supersedes the importance of individual achievement. When you visit such a culture, how well you relate to the values of that culture exemplifies your  cultural intelligence , sometimes referred to as cultural competence.

Creativity  is the ability to generate, create, or discover new ideas, solutions, and possibilities. Very creative people often have intense knowledge about something, work on it for years, look at novel solutions, seek out the advice and help of other experts, and take risks. Although creativity is often associated with the arts, it is actually a vital form of intelligence that drives people in many disciplines to discover something new. Creativity can be found in every area of life, from the way you decorate your residence to a new way of understanding how a cell works.

Creativity is often assessed as a function of one’s ability to engage in  divergent thinking . Divergent thinking can be described as thinking “outside the box;” it allows an individual to arrive at unique, multiple solutions to a given problem. In contrast,  convergent thinking describes the ability to provide a correct or well-established answer or solution to a problem (Cropley, 2006; Gilford, 1967)

  • Explain how intelligence tests are developed
  • Describe the history of the use of IQ tests
  • Describe the purposes and benefits of intelligence testing

While you’re likely familiar with the term “IQ” and associate it with the idea of intelligence, what does IQ really mean? IQ stands for  intelligence quotient  and describes a score earned on a test designed to measure intelligence. You’ve already learned that there are many ways psychologists describe intelligence (or more aptly, intelligences). Similarly, IQ tests—the tools designed to measure intelligence—have been the subject of debate throughout their development and use.

When might an IQ test be used? What do we learn from the results, and how might people use this information? While there are certainly many benefits to intelligence testing, it is important to also note the limitations and controversies surrounding these tests. For example, IQ tests have sometimes been used as arguments in support of insidious purposes, such as the eugenics movement (Severson, 2011). The infamous Supreme Court Case,  Buck v. Bell , legalized the forced sterilization of some people deemed “feeble-minded” through this type of testing, resulting in about 65,000 sterilizations ( Buck v. Bell , 274 U.S. 200; Ko, 2016). Today, only professionals trained in psychology can administer IQ tests, and the purchase of most tests requires an advanced degree in psychology. Other professionals in the field, such as social workers and psychiatrists, cannot administer IQ tests. In this section, we will explore what intelligence tests measure, how they are scored, and how they were developed.

Measuring Intelligence

It seems that the human understanding of intelligence is somewhat limited when we focus on traditional or academic-type intelligence. How then, can intelligence be measured? And when we measure intelligence, how do we ensure that we capture what we’re really trying to measure (in other words, that IQ tests function as valid measures of intelligence)? In the following paragraphs, we will explore the how intelligence tests were developed and the history of their use.

The IQ test has been synonymous with intelligence for over a century. In the late 1800s, Sir Francis Galton developed the first broad test of intelligence (Flanagan & Kaufman, 2004). Although he was not a psychologist, his contributions to the concepts of intelligence testing are still felt today (Gordon, 1995). Reliable intelligence testing (you may recall from earlier chapters that reliability refers to a test’s ability to produce consistent results) began in earnest during the early 1900s with a researcher named Alfred Binet ( Figure 7.13 ). Binet was asked by the French government to develop an intelligence test to use on children to determine which ones might have difficulty in school; it included many verbally based tasks. American researchers soon realized the value of such testing. Louis Terman, a Stanford professor, modified Binet’s work by standardizing the administration of the test and tested thousands of different-aged children to establish an average score for each age. As a result, the test was normed and standardized, which means that the test was administered consistently to a large enough representative sample of the population that the range of scores resulted in a bell curve (bell curves will be discussed later).  Standardization  means that the manner of administration, scoring, and interpretation of results is consistent.  Norming  involves giving a test to a large population so data can be collected comparing groups, such as age groups. The resulting data provide norms, or referential scores, by which to interpret future scores. Norms are not expectations of what a given group  should  know but a demonstration of what that group  does  know. Norming and standardizing the test ensures that new scores are reliable. This new version of the test was called the Stanford-Binet Intelligence Scale (Terman, 1916). Remarkably, an updated version of this test is still widely used today.

Photograph A shows a portrait of Alfred Binet. Photograph B shows six sketches of human faces. Above these faces is the label “Guide for Binet-Simon Scale. 223” The faces are arranged in three rows of two, and these rows are labeled “1, 2, and 3.” At the bottom it reads: “The psychological clinic is indebted for the loan of these cuts and those on p. 225 to the courtesy of Dr. Oliver P. Cornman, Associate Superintendent of Schools of Philadelphia, and Chairman of Committee on Backward Children Investigation. See Report of Committee, Dec. 31, 1910, appendix.”

In 1939, David Wechsler, a psychologist who spent part of his career working with World War I veterans, developed a new IQ test in the United States. Wechsler combined several subtests from other intelligence tests used between 1880 and World War I. These subtests tapped into a variety of verbal and nonverbal skills because Wechsler believed that intelligence encompassed “the global capacity of a person to act purposefully, to think rationally, and to deal effectively with his environment” (Wechsler, 1958, p. 7). He named the test the Wechsler-Bellevue Intelligence Scale (Wechsler, 1981). This combination of subtests became one of the most extensively used intelligence tests in the history of psychology. Although its name was later changed to the Wechsler Adult Intelligence Scale (WAIS) and has been revised several times, the aims of the test remain virtually unchanged since its inception (Boake, 2002). Today, there are three intelligence tests credited to Wechsler, the Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV), the Wechsler Intelligence Scale for Children (WISC-V), and the Wechsler Preschool and Primary Scale of Intelligence—IV (WPPSI-IV) (Wechsler, 2012). These tests are used widely in schools and communities throughout the United States, and they are periodically normed and standardized as a means of recalibration. As a part of the recalibration process, the WISC-V was given to thousands of children across the country, and children taking the test today are compared with their same-age peers ( Figure 7.13 ).

The WISC-V is composed of 14 subtests, which comprise five indices, which then render an IQ score. The five indices are Verbal Comprehension, Visual Spatial, Fluid Reasoning, Working Memory, and Processing Speed. When the test is complete, individuals receive a score for each of the five indices and a Full Scale IQ score. The method of scoring reflects the understanding that intelligence is comprised of multiple abilities in several cognitive realms and focuses on the mental processes that the child used to arrive at his or her answers to each test item.

Interestingly, the periodic recalibrations have led to an interesting observation known as the Flynn effect. Named after James Flynn, who was among the first to describe this trend, the  Flynn effect  refers to the observation that each generation has a significantly higher IQ than the last. Flynn himself argues, however, that increased IQ scores do not necessarily mean that younger generations are more intelligent per se (Flynn, Shaughnessy, & Fulgham, 2012).

Ultimately, we are still left with the question of how valid intelligence tests are. Certainly, the most modern versions of these tests tap into more than verbal competencies, yet the specific skills that should be assessed in IQ testing, the degree to which any test can truly measure an individual’s intelligence, and the use of the results of IQ tests are still issues of debate (Gresham & Witt, 1997; Flynn, Shaughnessy, & Fulgham, 2012; Richardson, 2002; Schlinger, 2003).

The Bell Curve

The results of intelligence tests follow the bell curve, a graph in the general shape of a bell. When the bell curve is used in psychological testing, the graph demonstrates a normal distribution of a trait, in this case, intelligence, in the human population. Many human traits naturally follow the bell curve. For example, if you lined up all your female schoolmates according to height, it is likely that a large cluster of them would be the average height for an American woman: 5’4”–5’6”. This cluster would fall in the center of the bell curve, representing the average height for American women ( Figure 7.14 ). There would be fewer women who stand closer to 4’11”. The same would be true for women of above-average height: those who stand closer to 5’11”. The trick to finding a bell curve in nature is to use a large sample size. Without a large sample size, it is less likely that the bell curve will represent the wider population. A  representative sample  is a subset of the population that accurately represents the general population. If, for example, you measured the height of the women in your classroom only, you might not actually have a representative sample. Perhaps the women’s basketball team wanted to take this course together, and they are all in your class. Because basketball players tend to be taller than average, the women in your class may not be a good representative sample of the population of American women. But if your sample included all the women at your school, it is likely that their heights would form a natural bell curve.

A graph of a bell curve is labeled “Height of U.S. Women.” The x axis is labeled “Height” and the y axis is labeled “Frequency.” Between the heights of five feet tall and five feet and five inches tall, the frequency rises to a curved peak, then begins dropping off at the same rate until it hits five feet ten inches tall.

The same principles apply to intelligence test scores. Individuals earn a score called an intelligence quotient (IQ). Over the years, different types of IQ tests have evolved, but the way scores are interpreted remains the same. The average IQ score on an IQ test is 100. Standard deviations  describe how data are dispersed in a population and give context to large data sets. The bell curve uses the standard deviation to show how all scores are dispersed from the average score ( Figure 7.15 ). In modern IQ testing, one standard deviation is 15 points. So a score of 85 would be described as “one standard deviation below the mean.” How would you describe a score of 115 and a score of 70? Any IQ score that falls within one standard deviation above and below the mean (between 85 and 115) is considered average, and 68% of the population has IQ scores in this range. An IQ score of 130 or above is considered a superior level.

A graph of a bell curve is labeled “Intelligence Quotient Score.” The x axis is labeled “IQ,” and the y axis is labeled “Population.” Beginning at an IQ of 60, the population rises to a curved peak at an IQ of 100 and then drops off at the same rate ending near zero at an IQ of 140.

Only 2.2% of the population has an IQ score below 70 (American Psychological Association [APA], 2013). A score of 70 or below indicates significant cognitive delays. When these are combined with major deficits in adaptive functioning, a person is diagnosed with having an intellectual disability (American Association on Intellectual and Developmental Disabilities, 2013). Formerly known as mental retardation, the accepted term now is intellectual disability, and it has four subtypes: mild, moderate, severe, and profound ( Table 7.5 ).  The Diagnostic and Statistical Manual of Psychological Disorders  lists criteria for each subgroup (APA, 2013).

On the other end of the intelligence spectrum are those individuals whose IQs fall into the highest ranges. Consistent with the bell curve, about 2% of the population falls into this category. People are considered gifted if they have an IQ score of 130 or higher, or superior intelligence in a particular area. Long ago, popular belief suggested that people of high intelligence were maladjusted. This idea was disproven through a groundbreaking study of gifted children. In 1921, Lewis Terman began a longitudinal study of over 1500 children with IQs over 135 (Terman, 1925). His findings showed that these children became well-educated, successful adults who were, in fact, well-adjusted (Terman & Oden, 1947). Additionally, Terman’s study showed that the subjects were above average in physical build and attractiveness, dispelling an earlier popular notion that highly intelligent people were “weaklings.” Some people with very high IQs elect to join Mensa, an organization dedicated to identifying, researching, and fostering intelligence. Members must have an IQ score in the top 2% of the population, and they may be required to pass other exams in their application to join the group.

DIG DEEPER: What’s in a Name? 

In the past, individuals with IQ scores below 70 and significant adaptive and social functioning delays were diagnosed with mental retardation. When this diagnosis was first named, the title held no social stigma. In time, however, the degrading word “retard” sprang from this diagnostic term. “Retard” was frequently used as a taunt, especially among young people, until the words “mentally retarded” and “retard” became an insult. As such, the DSM-5 now labels this diagnosis as “intellectual disability.” Many states once had a Department of Mental Retardation to serve those diagnosed with such cognitive delays, but most have changed their name to the Department of Developmental Disabilities or something similar in language.

Erin Johnson’s younger brother Matthew has Down syndrome. She wrote this piece about what her brother taught her about the meaning of intelligence:

His whole life, learning has been hard. Entirely possible – just different. He has always excelled with technology – typing his thoughts was more effective than writing them or speaking them. Nothing says “leave me alone” quite like a text that reads, “Do Not Call Me Right Now.” He is fully capable of reading books up to about a third-grade level, but he didn’t love it and used to always ask others to read to him. That all changed when his nephew came along, because he willingly reads to him, and it is the most heart-swelling, smile-inducing experience I have ever had the pleasure of witnessing.

When it comes down to it, Matt can learn. He does learn. It just takes longer, and he has to work harder for it, which if we’re being honest, is not a lot of fun. He is extremely gifted in learning things he takes an interest in, and those things often seem a bit “strange” to others. But no matter. It just proves my point – he  can  learn. That does not mean he will learn at the same pace, or even to the same level. It also, unfortunately, does not mean he will be allotted the same opportunities to learn as many others.

Here’s the scoop. We are all wired with innate abilities to retain and apply our learning and natural curiosities and passions that fuel our desire to learn. But our abilities and curiosities may not be the same.

The world doesn’t work this way though, especially not for my brother and his counterparts. Have him read aloud a book about skunks, and you may not get a whole lot from him. But have him tell you about skunks straight out of his memory, and hold onto your hats. He can hack the school’s iPad system, but he can’t tell you how he did it. He can write out every direction for a drive to our grandparents’ home in Florida, but he can’t drive.

Society is quick to deem him disabled and use demeaning language like the r-word to describe him, but in reality, we haven’t necessarily given him opportunities to showcase the learning he can do. In my case, I can escape the need to memorize how to change the oil in my car without anyone assuming I can’t do it, or calling me names when they find out I can’t. But Matthew can’t get through a day at his job without someone assuming he needs help. He is bright. Brighter than most anyone would assume. Maybe we need to redefine what is smart.

My brother doesn’t fit in the narrow schema of intelligence that is accepted in our society. But intelligence is far more than being able to solve 525 x 62 or properly introduce yourself to another. Why can’t we assume the intelligence of someone who can recite all of a character’s lines in a movie or remember my birthday a year after I told him/her a single time? Why is it we allow a person’s diagnosis or appearance to make us not just wonder if, but entirely doubt that they are capable? Maybe we need to cut away the sides of the box we have created for people so everyone can fit.

My brother can learn. It may not be what you know. It may be knowledge you would deem unimportant. It may not follow a traditional learning trajectory. But the fact remains – he can learn. Everyone can learn. And even though it is harder for him and harder for others still, he is not a “retard.” Nobody is.

When you use the r-word, you are insinuating that an individual, whether someone with a disability or not, is unintelligent, foolish, and purposeless. This in turn tells a person with a disability that they too are unintelligent, foolish, and purposeless. Because the word was historically used to describe individuals with disabilities and twisted from its original meaning to fit a cruel new context, it is forevermore associated with people like my brother. No matter how a person looks or learns or behaves, the r-word is never a fitting term. It’s time we waved it goodbye.

Why Measure Intelligence?

The value of IQ testing is most evident in educational or clinical settings. Children who seem to be experiencing learning difficulties or severe behavioral problems can be tested to ascertain whether the child’s difficulties can be partly attributed to an IQ score that is significantly different from the mean for her age group. Without IQ testing—or another measure of intelligence—children and adults needing extra support might not be identified effectively. In addition, IQ testing is used in courts to determine whether a defendant has special or extenuating circumstances that preclude him from participating in some way in a trial. People also use IQ testing results to seek disability benefits from the Social Security Administration.

  • Describe how genetics and environment affect intelligence
  • Explain the relationship between IQ scores and socioeconomic status
  • Describe the difference between a learning disability and a developmental disorder

High Intelligence: Nature or Nurture?

Where does high intelligence come from? Some researchers believe that intelligence is a trait inherited from a person’s parents. Scientists who research this topic typically use twin studies to determine the  heritability  of intelligence. The Minnesota Study of Twins Reared Apart is one of the most well-known twin studies. In this investigation, researchers found that identical twins raised together and identical twins raised apart exhibit a higher correlation between their IQ scores than siblings or fraternal twins raised together (Bouchard, Lykken, McGue, Segal, & Tellegen, 1990). The findings from this study reveal a genetic component to intelligence ( Figure 7.15 ). At the same time, other psychologists believe that intelligence is shaped by a child’s developmental environment. If parents were to provide their children with intellectual stimuli from before they are born, it is likely that they would absorb the benefits of that stimulation, and it would be reflected in intelligence levels.

A chart shows correlations of IQs for people of varying relationships. The bottom is labeled “Percent IQ Correlation” and the left side is labeled “Relationship.” The percent IQ Correlation for relationships where no genes are shared, including adoptive parent-child pairs, similarly aged unrelated children raised together, and adoptive siblings are around 21 percent, 30 percent, and 32 percent, respectively. The percent IQ Correlation for relationships where 25 percent of genes are shared, as in half-siblings, is around 33 percent. The percent IQ Correlation for relationships where 50 percent of genes are shared, including parent-children pairs, and fraternal twins raised together, are roughly 44 percent and 62 percent, respectively. A relationship where 100 percent of genes are shared, as in identical twins raised apart, results in a nearly 80 percent IQ correlation.

The reality is that aspects of each idea are probably correct. In fact, one study suggests that although genetics seem to be in control of the level of intelligence, the environmental influences provide both stability and change to trigger manifestation of cognitive abilities (Bartels, Rietveld, Van Baal, & Boomsma, 2002). Certainly, there are behaviors that support the development of intelligence, but the genetic component of high intelligence should not be ignored. As with all heritable traits, however, it is not always possible to isolate how and when high intelligence is passed on to the next generation.

Range of Reaction  is the theory that each person responds to the environment in a unique way based on his or her genetic makeup. According to this idea, your genetic potential is a fixed quantity, but whether you reach your full intellectual potential is dependent upon the environmental stimulation you experience, especially in childhood. Think about this scenario: A couple adopts a child who has average genetic intellectual potential. They raise her in an extremely stimulating environment. What will happen to the couple’s new daughter? It is likely that the stimulating environment will improve her intellectual outcomes over the course of her life. But what happens if this experiment is reversed? If a child with an extremely strong genetic background is placed in an environment that does not stimulate him: What happens? Interestingly, according to a longitudinal study of highly gifted individuals, it was found that “the two extremes of optimal and pathological experience are both represented disproportionately in the backgrounds of creative individuals”; however, those who experienced supportive family environments were more likely to report being happy (Csikszentmihalyi & Csikszentmihalyi, 1993, p. 187).

Another challenge to determining the origins of high intelligence is the confounding nature of our human social structures. It is troubling to note that some ethnic groups perform better on IQ tests than others—and it is likely that the results do not have much to do with the quality of each ethnic group’s intellect. The same is true for socioeconomic status. Children who live in poverty experience more pervasive, daily stress than children who do not worry about the basic needs of safety, shelter, and food. These worries can negatively affect how the brain functions and develops, causing a dip in IQ scores. Mark Kishiyama and his colleagues determined that children living in poverty demonstrated reduced prefrontal brain functioning comparable to children with damage to the lateral prefrontal cortex (Kishyama, Boyce, Jimenez, Perry, & Knight, 2009).

The debate around the foundations and influences on intelligence exploded in 1969 when an educational psychologist named Arthur Jensen published the article “How Much Can We Boost I.Q. and Achievement” in the Harvard Educational Review . Jensen had administered IQ tests to diverse groups of students, and his results led him to the conclusion that IQ is determined by genetics. He also posited that intelligence was made up of two types of abilities: Level I and Level II. In his theory, Level I is responsible for rote memorization, whereas Level II is responsible for conceptual and analytical abilities. According to his findings, Level I remained consistent among the human race. Level II, however, exhibited differences among ethnic groups (Modgil & Routledge, 1987). Jensen’s most controversial conclusion was that Level II intelligence is prevalent among Asians, then Caucasians, then African Americans. Robert Williams was among those who called out racial bias in Jensen’s results (Williams, 1970).

Obviously, Jensen’s interpretation of his own data caused an intense response in a nation that continued to grapple with the effects of racism (Fox, 2012). However, Jensen’s ideas were not solitary or unique; rather, they represented one of many examples of psychologists asserting racial differences in IQ and cognitive ability. In fact, Rushton and Jensen (2005) reviewed three decades worth of research on the relationship between race and cognitive ability. Jensen’s belief in the inherited nature of intelligence and the validity of the IQ test to be the truest measure of intelligence are at the core of his conclusions. If, however, you believe that intelligence is more than Levels I and II, or that IQ tests do not control for socioeconomic and cultural differences among people, then perhaps you can dismiss Jensen’s conclusions as a single window that looks out on the complicated and varied landscape of human intelligence.

In a related story, parents of African American students filed a case against the State of California in 1979, because they believed that the testing method used to identify students with learning disabilities was culturally unfair as the tests were normed and standardized using white children ( Larry P. v. Riles ). The testing method used by the state disproportionately identified African American children as mentally retarded. This resulted in many students being incorrectly classified as “mentally retarded.”

What are Learning Disabilities?

Learning disabilities are cognitive disorders that affect different areas of cognition, particularly language or reading. It should be pointed out that learning disabilities are not the same thing as intellectual disabilities. Learning disabilities are considered specific neurological impairments rather than global intellectual or developmental disabilities. A person with a language disability has difficulty understanding or using spoken language, whereas someone with a reading disability, such as dyslexia, has difficulty processing what he or she is reading.

Often, learning disabilities are not recognized until a child reaches school age. One confounding aspect of learning disabilities is that they most often affect children with average to above-average intelligence. In other words, the disability is specific to a particular area and not a measure of overall intellectual ability. At the same time, learning disabilities tend to exhibit comorbidity with other disorders, like attention-deficit hyperactivity disorder (ADHD). Anywhere between 30–70% of individuals with diagnosed cases of ADHD also have some sort of learning disability (Riccio, Gonzales, & Hynd, 1994). Let’s take a look at three examples of common learning disabilities: dysgraphia, dyslexia, and dyscalculia.

Children with  dysgraphia  have a learning disability that results in a struggle to write legibly. The physical task of writing with a pen and paper is extremely challenging for the person. These children often have extreme difficulty putting their thoughts down on paper (Smits-Engelsman & Van Galen, 1997). This difficulty is inconsistent with a person’s IQ. That is, based on the child’s IQ and/or abilities in other areas, a child with dysgraphia should be able to write, but can’t. Children with dysgraphia may also have problems with spatial abilities.

Students with dysgraphia need academic accommodations to help them succeed in school. These accommodations can provide students with alternative assessment opportunities to demonstrate what they know (Barton, 2003). For example, a student with dysgraphia might be permitted to take an oral exam rather than a traditional paper-and-pencil test. Treatment is usually provided by an occupational therapist, although there is some question as to how effective such treatment is (Zwicker, 2005).

Dyslexia is the most common learning disability in children. An individual with  dyslexia  exhibits an inability to correctly process letters. The neurological mechanism for sound processing does not work properly in someone with dyslexia. As a result, dyslexic children may not understand sound-letter correspondence. A child with dyslexia may mix up letters within words and sentences—letter reversals, such as those shown in  Figure 7.17 , are a hallmark of this learning disability—or skip whole words while reading. A dyslexic child may have difficulty spelling words correctly while writing. Because of the disordered way that the brain processes letters and sounds, learning to read is a frustrating experience. Some dyslexic individuals cope by memorizing the shapes of most words, but they never actually learn to read (Berninger, 2008).

Two columns and five rows all containing the word “teapot” are shown. “Teapot” is written ten times with the letters jumbled, sometimes appearing backwards and upside down.

Dyscalculia

Dyscalculia  is difficulty in learning or comprehending arithmetic. This learning disability is often first evident when children exhibit difficulty discerning how many objects are in a small group without counting them. Other symptoms may include struggling to memorize math facts, organize numbers, or fully differentiate between numerals, math symbols, and written numbers (such as “3” and “three”).

Additional Supplemental Resources

  • Use Google’s QuickDraw web app on your phone to quickly draw 5 things for Google’s artificially intelligent neural net. When you are done, the app will show you what it thought each of the drawings was. How does this relate to the psychological idea of concepts, prototypes, and schemas? Check out here.  Works best in Chrome if used in a web browser
  • This article lists information about a variety of different topics relating to speech development, including how speech develops and what research is currently being done regarding speech development.
  • The Human intelligence site includes biographical profiles of people who have influenced the development of intelligence theory and testing, in-depth articles exploring current controversies related to human intelligence, and resources for teachers.

Preview the document

  • In 2000, psychologists Sheena Iyengar and Mark Lepper from Columbia and Stanford University published a study about the paradox of choice.  This is the original journal article.
  • Mensa , the high IQ society, provides a forum for intellectual exchange among its members. There are members in more than 100 countries around the world.  Anyone with an IQ in the top 2% of the population can join.
  • This test developed in the 1950s is used to refer to some kinds of behavioral tests for the presence of mind, or thought, or intelligence in putatively minded entities such as machines.
  • Your central “Hub” of information and products created for the network of Parent Centers serving families of children with disabilities.
  • How have average IQ levels changed over time? Hear James Flynn discuss the “Flynn Effect” in this Ted Talk. Closed captioning available.
  • We all want customized experiences and products — but when faced with 700 options, consumers freeze up. With fascinating new research, Sheena Iyengar demonstrates how businesses (and others) can improve the experience of choosing. This is the same researcher that is featured in your midterm exam.
  • What does an IQ Score distribution look like?  Where do most people fall on an IQ Score distribution?  Find out more in this video. Closed captioning available.
  • How do we solve problems?  How can data help us to do this?  Follow Amy Webb’s story of how she used algorithms to help her find her way to true love. Closed captioning available.
  • In this Ted-Ed video, explore some of the ways in which animals communicate, and determine whether or not this communication qualifies as language.  A variety of discussion and assessment questions are included with the video (free registration is required to access the questions). Closed captioning available.
  • Watch this Ted-Ed video to learn more about the benefits of speaking multiple languages, including how bilingualism helps the brain to process information, strengthens the brain, and keeps the speaker more engaged in their world.  A variety of discussion and assessment questions are included with the video (free registration is required to access the questions). Closed captioning available.
  • This video is on how your mind can amaze and betray you includes information on topics such as concepts, prototypes, problem-solving and mistakes in thinking. Closed captioning available.
  • This video on language includes information on topics such as the development of language, language theories, and brain areas involved in language, as well as language disorders. Closed captioning available.
  • This video on the controversy of intelligence includes information on topics such as theories of intelligence, emotional intelligence, and measuring intelligence. Closed captioning available.
  • This video on the brains vs. bias includes information on topics such as intelligence testing, testing bias, and stereotype threat. Closed captioning available.

Access for free at  https://openstax.org/books/psychology-2e/pages/1-introduction

Introduction to Psychology Copyright © 2020 by Julie Lazzara is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    thinking decision making problem solving cognitive skills and language are examples of

  2. 23 Cognitive Skills Examples (2024)

    thinking decision making problem solving cognitive skills and language are examples of

  3. Cognitive Skills: What They Are and Why They Are Important

    thinking decision making problem solving cognitive skills and language are examples of

  4. 6 Main Types of Critical Thinking Skills (With Examples)

    thinking decision making problem solving cognitive skills and language are examples of

  5. Master Your Problem Solving and Decision Making Skills

    thinking decision making problem solving cognitive skills and language are examples of

  6. Critical Thinking Definition, Skills, and Examples

    thinking decision making problem solving cognitive skills and language are examples of

VIDEO

  1. Problem Solving

  2. Part 3: Your Mental Odyssey Begins Here! 🔍 #viral #youtubeshorts

  3. Part 1: Can You Crack This Dilemma? 🧠

  4. Introduction 02 : Master your Decision-Making, and Critical Thinking Skills ! (BESTSELLER)

  5. Decision Making, Critical Thinking, and Problem Solving ; COURSE INTRODUCTION 01

  6. Master your Decision Making, Critical Thinking, and Problem Solving Skills ! (BESTSELLER)

COMMENTS

  1. Cognitive Approach to Psychology: Definition and Examples

    The cognitive approach to psychology focuses on internal mental processes. Such processes include thinking, decision-making, problem-solving, language, attention, and memory. The cognitive approach in psychology is often considered part of the larger field of cognitive science. This branch of psychology is also related to several other ...

  2. What Is Cognitive Development? 3 Psychology Theories

    Thinking skills. Thinking concerns manipulating information and is related to reasoning, decision making, and problem solving (Kashyap & Minda, 2016). It is required to develop language, because you need words to think. Cognitive development activities helps thinking and reasoning to grow. Thinking is a skill that does not commence at birth.

  3. Cognition in Psychology: Definition, Types, Effects, and Tips

    Definition of Cognition. Cognition is a term referring to the mental processes involved in gaining knowledge and comprehension. Some of the many different cognitive processes include thinking, knowing, remembering, judging, and problem-solving. These are higher-level functions of the brain and encompass language, imagination, perception, and ...

  4. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  5. Thinking, Language, and Problem Solving

    Cognitive psychology is the field of psychology dedicated to examining how people think. It attempts to explain how and why we think the way we do by studying the interactions among human thinking, emotion, creativity, language, and problem solving, in addition to other cognitive processes. Cognitive psychologists strive to determine and ...

  6. Cognitive Skills: What They Are, Why They Matter, and How ...

    Making a daily commitment to strengthen or preserve your cognitive skills will have long-lasting benefits. In the workplace. Every job requires the use of cognitive skills. Your job might involve the application of problem-solving, critical and analytical thinking, and the ability to make logical and reasoned decisions.

  7. Cognitive Psychology: The Science of How We Think

    MaskotOwner/Getty Images. Cognitive psychology involves the study of internal mental processes—all of the workings inside your brain, including perception, thinking, memory, attention, language, problem-solving, and learning. Cognitive psychology--the study of how people think and process information--helps researchers understand the human brain.

  8. Cognition

    Common examples of cognitive biases ... Evaluating one's thinking style or problem-solving processes may help someone identify cognitive biases that are interfering with their decision-making.

  9. Problem Solving

    Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. ... Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking ...

  10. PDF Complex cognition: the science of human reasoning, problem-solving, and

    learning, categorization, perception, decision-making, problem-solving, and text comprehension. In each of these fields, separate theories have been developed to investigate the role of causal knowledge. The first author of the paper is internationally well known for his work on the role of causality in other cognitive functions, in ...

  11. Ch 8: Thinking and Language

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  12. The Psychology of Thinking

    Features. Preview. The Psychology of Thinking is an engaging, interesting and easy-to-follow guide into the essential concepts behind our reasoning, decision-making and problem-solving. Clearly structured into 3 sections, this book will; Introduce your students to organisation of thought including memory, language and concepts;

  13. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  14. Cognition 101: Executive functions, Cognitive processes & abilities

    The underlying mechanisms are called cognitive processes. They govern cognitive functions like attention, pattern-matching, problem-solving, memory, learning, decision-making, language, mental processing, perception, imagination, logic, strategic thinking, etc. The word cognition comes from the Latin word cognoscere which means "get to know".

  15. 9 cognitive skill examples and how to improve them

    Here are nine examples of cognitive skills to work on to strengthen your professional development: 1. Logic and reasoning . The ability to draw specific conclusions based on varied facts or data is your deductive reasoning. Even mundane tasks, like organizing your calendar, require strong logic and problem-solving skills.

  16. PDF Higher-Order and Complex Cognitive Skills

    HIGHER-ORDER COGNITIVE SKILLS "Higher-order" cognitive tasks typically include reasoning, decision making, problem solving, and thinking. In each of these tasks, the information that has been previously received, processed, and stored by basic cognitive processes gets used, combined, reformatted, or manipulated by higher-order cognitive ...

  17. Analysing Complex Problem-Solving Strategies from a Cognitive

    Generally, problem solving is the thinking that occurs if we want "to overcome barriers between a given state and a desired goal state by means of behavioural and/or cognitive, multistep activities" (Frensch and Funke 1995, p. 18). It has also been considered as one of the most important skills for successful learning in the 21st century.

  18. Critical Thinking and Decision-Making

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  19. 5.3: Using Critical Thinking Skills- Decision Making and Problem Solving

    Using Critical Thinking Skills in Problem Solving. Think of problem solving as a process with four Ps: Define the problem, generate possibilities, create a plan, and perform your plan. Step 1: Define the problem. To define a problem effectively, understand what a problem is—a mismatch between what you want and what you have.

  20. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  21. 6 Main Types of Critical Thinking Skills (With Examples)

    Critical thinking skills examples. There are six main skills you can develop to successfully analyze facts and situations and come up with logical conclusions: 1. Analytical thinking. Being able to properly analyze information is the most important aspect of critical thinking. This implies gathering information and interpreting it, but also ...

  22. Complex cognition: the science of human reasoning, problem-solving, and

    The present "Special Corner: complex cognition" deals with questions in this regard that have often received little consideration. Under the headline "complex cognition", we summarize mental activities such as thinking, reasoning, problem-solving, and decision-making that typically rely on the combination and interaction of more elementary processes such as perception, learning, memory ...

  23. Thinking and Intelligence

    Simply put, cognition is thinking, and it encompasses the processes associated with perception, knowledge, problem solving, judgment, language, and memory. Scientists who study cognition are searching for ways to understand how we integrate, organize, and utilize our conscious cognitive experiences without being aware of all of the unconscious ...