• Resources library

Polya’s Problem-Solving Process

Emma Moore, Teaching Excellence Program Master Teacher 

Problem-solving skills are crucial for students to navigate challenges, think critically, and find innovative solutions. In PISA, problem-solving competence is defined as “an individual’s capacity to engage in cognitive processing to understand and resolve problem situations where a method of solution is not immediately obvious” (OECD, 2014, p. 30). Returning to the classroom post-COVID, I found that students had lost their ‘grit’ for these deep-thinking tasks. They either struggled to start, gave up easily, or stopped at their first ‘answer’ without considering if it answered the problem or was the only possible solution.

To re-invigorate these skills, I investigated the impact of explicitly teaching Polya's problem-solving process in my Year Six class. This framework developed student agency and supported them to manage their feelings if they felt challenged by the work.

Here, I will share the impact of this initiative and how it empowered students to become effective and resilient problem solvers.  

Understanding Polya's Problem-Solving Process

Polya's problem-solving process, developed by mathematician George Polya, provides a structured approach to problem-solving that can be applied across various domains. This four-step process consists of understanding the problem, devising a plan, trying the plan, and revisiting the solution. (Polya, 1947)

In order to focus on the skills and knowledge of the problem-solving process, I began by using tasks where the mathematical processes were obvious. This allowed me to focus on the problem-solving process explicitly.

Polya's Problem-Solving Process - Figure 1

The question shown in Figure 2 is taken from Peter Sullivan and Pat Lilburn's Open-Ended Maths Activities book. This task was used to establish a baseline assessment for each stage of the process. I planned the prompts in dot points and revealed them one by one through the PowerPoint. After launching the task and giving the students time to think, they recorded all their possible answers in their workbook.

Understanding Polya's Problem-Solving Process - Figure 2

The student sample shown in Figure 3 demonstrates that the student followed a pattern and stuck to it but did not revisit their work. On line two, their response (1 half and 1 half is 2 quarters) is unreasonable.

Understanding Polya's Problem-Solving Process - Figure 3: Sample gathered from a small group of students

Figure 3 is a sample gathered from a small group of students. This group required support to start. They used paper folding and paper strips to model their thinking.

Over half of the class could give at least one correct answer, but only four students showed signs of checking to see if their plans addressed the problem and yielded correct answers. Understanding the problem and revisiting the solutions became the focus of my inquiry.

The following series of lessons covering operations with fractions and decimals focused on the stages of Polya’s process.  

Step 1: Understanding the Problem

The first step of Polya's problem-solving process emphasises the importance of ensuring you thoroughly comprehend the problem. In this step, students learn to read and analyse the problem statement, identify the key information, and clarify any uncertainties. This process encourages critical thinking (Bicer et al., 2020) as students develop the ability to break down complex problems into manageable parts. I facilitated this process by engaging students in discussions and guiding them to identify the essential components of the problem. By fostering a collaborative learning environment, students shared their perspectives and learned to refine their questions when they were unsure. Figure 6 shares an example of a prompt I use for Step 1.

Figure 4: Example prompt for Step 1.

Understanding Polya's Problem-Solving Process - Figure 4: Example prompt

Initially, students who were stuck provided the classic ‘white flag’ responses.

Student: I just don’t get it.

Teacher: What part don’t you get?

Student: All of it!

As a starting point, the students and I co-created a classroom display of helpful questions the students could use to develop their understanding.

These questions supported me to develop a deeper understanding of what students didn’t understand when they expressed uncertainty. This could range from not understanding specific terminology (often easy to explain) to where numbers came from and why their classmates interpreted the problem differently. I found engaging in this step made triaging their misunderstandings easier.  

Step 2: Devising a Plan

Once students had grasped the problem, the next step was to formulate a plan of action. In this step, students explored different strategies and selected the most appropriate approach. I prompted students to brainstorm possible solutions, draw diagrams, make tables, and create algorithms, all the time fostering creativity and diverse thinking.

This step had been a strength during the baseline assessment data, and a wide range of strategies were explored. Polya’s strategies were displayed in the classroom as the mathematician’s strategy tool kit, so students were comfortable acknowledging the many ways to solve the problem.

Students developed critical thinking and decision-making skills by keeping this step in problem-solving. They become adept at evaluating multiple approaches and selecting the most effective strategy to solve a problem, thus promoting the development of mathematical reasoning abilities (Barnes, 2021). Figure 7 shows a slide used in Step 2.

Figure 5: Example prompt for Step 2.

Understanding Polya's Problem-Solving Process - Figure 5: Example prompt for Step 2

Step 3: Try

The students implemented their selected strategy, performed calculations, made models, drew diagrams, created tables, and found patterns. This stage encouraged students to persevere and take ownership of their problem-solving process.

At Cowes Primary School, we have developed whole-school expectations around providing opportunities for hands-on learning, allowing students to engage in practical activities that support the development of ideas, expecting students to represent their work visually (pictures, materials and manipulatives), using language and numbers/symbols. This approach enhances students' problem-solving skills and fosters a sense of autonomy and confidence in their capabilities and ability to talk about their work (Roche et al., 2023). Figure 9 shows the slide used for Step 3.

Figure 6: Example prompt for Step 3.

Understanding Polya's Problem-Solving Process - Figure 6: Example prompt for Step 3

Step 4. Re-visiting the solution

The last step in Polya's problem-solving process is re-visit. After finding a solution, students critically analyse and evaluate their approach after finding a solution. They consider the effectiveness of their chosen strategy, identify strengths and weaknesses, and reflect on how they could improve their problem-solving techniques. This step was missing from most students’ work during the baseline assessment.

As a class, we added to the display questions to facilitate better reflective practice and developed a more critical approach to looking at our work. This process encouraged students to refine their answers, not go too far down the wrong path, fostered resilience, embrace challenge and normalise uncertainty (Buckley & Sullivan, 2023).

Figure 7: Class display showing our questions.

Understanding Polya's Problem-Solving Process - Figure 7: Class display showing questions

  Figure 8: Student samples from the task.

Understanding Polya's Problem-Solving Process - Figure 8: Fraction Wall sample task

Impact and Benefits:

Figure 9 shows four tasks, including the initial baseline assessment. The blue series shows the percentage of students who arrived at least one correct solution. The green series shows evidence that students were revisiting their initial solutions using other strategies to check they were correct or checking in with other groups and adjusting. There was a steady increase in both skills over the course of these four tasks.

Understanding Polya's Problem-Solving Process - Figure 9: Shows four tasks, including the initial baseline assessment

By explicitly teaching Polya's problem-solving process, the students cultivated valuable skills that extend beyond maths problems. Some of the key benefits observed were:

Mathematical Reasoning: Polya's process promotes the development of mathematical reasoning skills. Students analysed problems, explored different strategies, and apply logical thinking to arrive at solutions. These skills can enhance their overall mathematical proficiency.

Self-efficacy: Through problem-solving, students gained confidence in their ability to tackle problems. They become more self-reliant, taking ownership of their learning, and seeking solutions proactively.

Collaboration and Communication: The process encouraged collaboration and communication among students. They discussed problems, shared ideas, and considered multiple perspectives, students developed effective teamwork and interpersonal skills.

Metacognition: The reflective aspect of Polya's process fostered metacognitive skills, enabling students to monitor and regulate their thinking processes. They learned to identify their strengths and weaknesses, supporting continuous improvement and growth.  

Overall using the 4 steps was a really effective and an explicit way to focus on developing the problem-solving skills of my Year 6 students.

This article was originally published for the Mathematical Association of Victoria's Prime Number.    

References:

Barnes, A. (2021). Enjoyment in learning mathematics: Its role as a potential barrier to children’s perseverance in mathematical reasoning. Educational Studies in Mathematics , 106(1), 45–63. https://doi.org/10.1007/s10649-020-09992-x

Bicer, Ali, Yujin Lee, Celal Perihan, Mary M. Capraro, and Robert M. Capraro. ‘Considering Mathematical Creative Self-Efficacy with Problem Posing as a Measure of Mathematical Creativity’. Educational Studies in Mathematics 105, no. 3 (November 2020): 457–85. https://doi.org/10.1007/s10649-020-09995-8

Buckley, S., & Sullivan, P. (2023). Reframing anxiety and uncertainty in the mathematics classroom. Mathematics Education Research Journal , 35(S1), 157–170. https://doi.org/10.1007/s13394-021-00393-8

OECD (Ed.). (2014). Creative problem solving: Students’ skills in tackling real-life problems. OECD.

Pólya, G. (1988). How to solve it: A new aspect of mathematical method (2nd ed). Princeton university press.

Roche, A., Gervasoni, A., & Kalogeropoulos, P. (2023). Factors that promote interest and engagement in learning mathematics for low-achieving primary students across three learning settings. Mathematics Education Research Journal , 35(3), 525–556. https://doi.org/10.1007/s13394-021-00402-w

sadlier-connect

  • Mathematics
  • Reading and Writing
  • Intervention
  • Professional Learning
  • Virtual Events
  • What is Phonics?
  • Teaching Grammar
  • Vocabulary Games
  • What is Virtual Learning?
  • About Sadlier
  • Find a Sales Representative
  • International Distributors
  • International Programs
  • Online Catalogs
  • Sadlier School Site Map
  • Pricing & Ordering Information
  • Sadlier’s W-9
  • Sadlier’s Sole Source Letter
  • Sadlier’s Credit Application
  • Privacy Policy
  • Return Policy
  • Terms & Conditions

Sadlier's Math Blog

polya's 4 method of problem solving

  • Counting and Cardinality
  • Operations and Algebraic Thinking
  • Number and Operations in Base 10
  • Measurement and Data
  • Math Practices
  • Number and Operations Fractions
  • Statistics and Probability
  • The Number System
  • Ratios and Proportional Relationships
  • Expressions and Equations
  • MP1—Problem Solving
  • MP2—Abstract <−>Quantitative
  • MP3—Reasoning
  • MP4—Modeling
  • MP5—Using Tools
  • MP6—Precision
  • MP7—Structure
  • MP8—Repeated Reasoning
  • Kindergarten Math Activities
  • First Grade Math Activities
  • Second Grade Math Activities
  • Third Grade Math Activities
  • Fourth Grade Math Activities
  • Fifth Grade Math Activities
  • Sixth Grade Math Activities
  • Seventh Grade Math Activities
  • Eighth Grade Math Activities
  • Professional Development
  • Test-Taking Strategies
  • Classroom Posters
  • Writing In Mathematics

April 19, 2023 3-5-operations-and-algebraic-thinking , k-2-operations-and-algebraic-thinking , 6-8-expressions-and-equations

Polya’s problem-solving process: finding unknowns elementary & middle school, by: jeff todd.

In this article, we'll explore how a focus on finding “unknowns” in math will lead to active problem-solving strategies for Kindergarten to Grade 8 classrooms. Through the lens of George Polya and his four-step problem-solving heuristic, I will discuss how you can apply the concept of finding unknowns to your classroom. Plus, download my Finding Unknowns in Elementary and Middle School Math Classes Tip Sheet .

polyas-problem-solving-steps-to-solve-unknowns-in-elementary-and-middle-school-classes

It is unfortunate that in the United States mathematics has a reputation for being dry and uninteresting. I hear this more from adults than I do from children—in fact, I find that children are naturally curious about how math works and how it relates to the world around them. It is from adults that they get the idea that math is dry, boring, and unrelated to their lives. Despite what children may or may not hear about math, I focus on making instruction exciting and showing my students that math applicable to their lives.

Problem solving is a fundamental means of developing students' mathematical knowledge and it also shows them that math concepts apply to real-world concepts.

Problem solving is one way I show my students that math relates to their lives! Problem solving is a fundamental means of developing students' mathematical knowledge and it also shows them that math concepts apply to real-world concepts.

Who Is George Polya?

George Polya was a European-born scholar and mathematician who moved to the U.S in 1940, to work at Stanford University. When considering the his classroom experience of teaching mathematics, he noticed that students were not presented with a view of mathematics that excited and energized them. I know that I have felt this way many times in my teaching career and have often asked: How can I make this more engaging and yet still maintain rigor?

Polya suggested that math should be presented in the light of being able to solve problems. His 1944 book,  How to Solve It  contains his famous four-step problem solving heuristic. Polya suggests that by presenting mathematical thinking as a way to find “unknowns,” it becomes more engaging for students.

He even goes as far as to say that his general four-step problem-solving heuristic can be applied to any field of human endeavor—to any opportunity where a problem exists.

Polya suggested that math should be presented in the light of being able to solve problems...that by presenting mathematical thinking as a way to find “unknowns,” it becomes more engaging for students.

Polya specifically wrote about problem-solving at the high school mathematics level. For those of us teaching students in the elementary and middle school levels, finding ways to apply Polya’s problem-solving process as he intended forces us to rethink the way we teach.

Particularly in the lower grade levels, finding “unknowns” can be relegated to prealgebra and algebra courses in the later grades. Nonetheless, today’s standards call for algebra and algebraic thinking at early grade levels. The  download  for today’s post presents one way you can find unknowns at each grade level.

This table lists “unknown situations” from modern math standards and suggests a problem-solving challenge for each grade level. Use this list to apply Polya’s Four-Step Problem-Solving Process in the lower grades!

Presenting Mathematics  As A Way To Find "Unknowns" In Real-Life Situations

I would like to share a conversation I had recently with my friend Stu. I have been spending my summers volunteering for a charitable organization in Central America that provides medical services for the poor, runs ESL classes, and operates a Pre-K to Grade 6 school. We were talking about the kind of professional development that I might provide the teachers, and he was intrigued by the thought that we could connect mathematical topics to real life. We specifically talked about the fact that he remembers little or nothing about how to find the area of a figure and never learned in school why it might be important to know about area. Math was presented to him as a set of rules and procedures rather than as a way to find unknowns in real-life situations.

That’s what I am talking about here, and it’s what I believe Polya was talking about. How can we create classrooms where students are able to use their mathematical knowledge to solve problems, whether real-life or purely mathematical?

As Polya noted, there are two ways that mathematics can be presented, either as deductive system of rules and procedures or as an inductive method of making mathematics. Both ways of thinking about mathematics have endured through the centuries, but at least in American education, there has been an emphasis on a procedural approach to math. Polya noticed this in the 1940s, and I think that although we have made progress, there is still an over-emphasis on skill and procedure at the expense of problem-solving and application.

I recently reread Polya’s book. I can’t say that it is an “easy” read, but I would say that it was valuable for me to revisit his own words in order to be sure I understood what he was advocating. As a result, I made the following outline of his problem-solving process and the questions he suggests we use with students.

Polya's Problem-Solving Process

1. understand the problem, and desiring the solution .

  • Restate the problem
  • Identify the principal parts of the problem
  • Essential questions
  • What is unknown?
  • What data are available?
  • What is the condition?

2. Devising a Problem-Solving Plan 

  • Look at the unknown and try to think of a familiar problem having the same or similar unknown
  • Here is a problem related to yours and solved before. Can you use it?
  • Can you restate the problem?
  • Did you use all the data?
  • Did you use the whole condition?

3. Carrying Out the Problem-Solving Plan 

  • Can you see that each step is correct?
  • Can you prove that each step is correct?

4. Looking Back

  • Can you check the result?
  • Can you check the argument?
  • Can you derive the result differently?
  • Can you see the result in a glance?
  • Can you use the result, or the method, for some other problem?

Polya's Suggestions For Helping Students Solve Problems

I also found four suggestions from Polya about what teachers can do to help students solve problems:

Suggestion One In order for students to understand the problem, the teacher must focus on fostering in students the desire to find a solution. Absent this motivation, it will always be a fight to get students to solve problems when they are not sure what to do.

Suggestion Two A second key feature of this first phase of problem-solving is giving students strategies forgetting acquainted with problems.

Suggestion Three Another suggestion is that teachers should help students learn strategies to be able to work toward a better understanding of any problem through experimentation.

Suggestion Four Finally, when students are not sure how to solve a problem, they need strategies to “hunt for the helpful idea.”

Whether you are thinking of problem-solving in a traditional sense (solving computational problems and geometric proofs, as illustrated in Polya’s book) or you are thinking of the kind of problem-solving students can do through STEAM activities, I can’t help but hear echoes of Polya in Standard for Math Practice 1: Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary.

In Conclusion

We all know we should be fostering students’ problem-solving ability in our math classes. Polya’s focus on “finding unknowns” in math has wide applicability to problems whether they are purely mathematical or more general.

Grab my  download  and start  applying Polya’s Four-Step Problem-Solving Process in the lower grades!

polya's 4 method of problem solving

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

2.1: George Polya's Four Step Problem Solving Process

  • Last updated
  • Save as PDF
  • Page ID 132871

Step 1: Understand the Problem

  • Do you understand all the words?
  • Can you restate the problem in your own words?
  • Do you know what is given?
  • Do you know what the goal is?
  • Is there enough information?
  • Is there extraneous information?
  • Is this problem similar to another problem you have solved?

Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.)

logo

Have an account?

Suggestions for you See more

Quiz image

8th -  10th  

Factors and multiples, 19.8k plays, 4th -  5th  , 285.8k plays, kg -  1st  .

pencil-icon

Problem Solving Plan (Polya's Method)

7th - 9th grade, mathematics.

User image

10 questions

Player avatar

Introducing new   Paper mode

No student devices needed.   Know more

Which step is NOT part of the problem solving plan learned about in the lesson?

Understand the Problem

Devise A Plan

Carry out the Plan

Write an Equation

Which step of the problem solving plan is first ?

Devise a Plan

Carry Out the Plan

Which step best completes this statement: In the _____ step of the problem solving plan, you check to make sure you've answered the question.

The seventh grade class at Silver Star Academy is taking a field trip. Mr. Johnson is going to rent minivans for the students to get to their destination. The minivans hold 8 people and there are 128 people going. How many minivans does Mr. Johnson need to rent?

16 minivans

120 minivans

136 minivans

1,024 minivans

A toy store sold 75 video games in one day. If each game cost $40, how much money did the toy store make on video game sales?

Sue bought 3 tee-shirts for $8 each. She paid with a $50-bill. How much change should she get back?

There are 15 chapters in a book you are reading. Each chapter has 24 pages. How many pages are in your book?

Find the next term in this set of numbers: 2, 6, 18, 54, ___

GEOMETRY . What is the next figure in the pattern shown?

At a bookstore, a ballpoint pen costs $0.28 and a notepad costs $0.23. What could you buy and spend for exactly $0.74?

two ballpoint pens and two notepads

one ballpoint pen and two notepads

two ballpoint pens and one notepad

one notepad and one ballpoint pen

Explore all questions with a free account

Google Logo

Continue with email

Continue with phone

IMAGES

  1. POLYA's 4 Step Problem Solving

    polya's 4 method of problem solving

  2. Digital Tools To Teach Problem Solving

    polya's 4 method of problem solving

  3. what is the 4 step problem solving process

    polya's 4 method of problem solving

  4. Problem Solving with Polya's Four Steps by Miss Benjamin

    polya's 4 method of problem solving

  5. Polya's Four Steps in Problem Solving

    polya's 4 method of problem solving

  6. George Polya and Mathematical Problem Solving

    polya's 4 method of problem solving

VIDEO

  1. PYQ Complex No. 27 th Jan(M) JEE Main 2024

  2. CHP 3 Lesson 2, Polya's 4 steps in problem solving

  3. POLYA'S PROBLEM-SOLVING TECHNIQUE || COLLEGE MATH

  4. Polya's theorem part 1

  5. Ex # 1.2 Q # 6 Number of Games: In a Basketball league consisting of 12 teams Polya's Strategies

  6. સંપૂર્ણ ગણિત એક જ લેક્ચરમાં

COMMENTS

  1. PDF Polya's Problem Solving Techniques

    Polya's Problem Solving Techniques In 1945 George Polya published the book How To Solve It which quickly became his most prized publication. It sold over one million copies and has been translated ... Can you use the result, or the method, for some other problem? 4. Created Date:

  2. Polya's Problem Solving Process

    What is Polya's 4 steps in problem solving? Polya's four step method for problem solving is. 1) Understand the Problem-Make sure you understand what the question is asking and what information ...

  3. PDF 1. Understand Polya's problem-solving method. 2. State and apply

    tice problem solving, the better you become at it. Much of the advice presented in this section is based on a problem-solving process developed by the eminent Hungarian mathematician George Polya (see the historical high-light at the end of this section). We will now outline Polya's method. George Polya's Problem-Solving Method

  4. PDF Polya's Four Phases of Problem Solving

    Polya's Four Phases of Problem Solving ... 4. Looking Back. Examine the solution obtained. Can you check the result? Can you check the argument? Can you derive the result differently? Can you see it at a glance? Can you use the result, or the method, for some other problem? 2.

  5. Mastering Problem-Solving: A Guide to Polya's Four-Step Approach

    The four steps of the Polya method are as follows: Understand the problem. Devise a plan. Carry out the plan. Evaluate the solution. Let's take a closer look at each step. Step 1: Understand the ...

  6. 2.3.1: George Polya's Four Step Problem Solving Process

    Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1. Guess and test.

  7. Polya's four steps to solving a problem

    Polya's four steps to solving a problem. George Polya (1887-1985), a Hungarian mathematician, wrote "How to solve it." for high school students in 1957. ... Use variables and write an equation-- the method of algebra. Very useful in a lot of problems. Carry out the plan: ...

  8. PDF Polya's four-step approach to problem solving

    To begin this task, we now discuss a framework for thinking about problem solving: Polya's four-step approach to problem solving. Polya's four-step approach to problem solving 1. Preparation: Understand the problem Learn the necessary underlying mathematical concepts Consider the terminology and notation used in the problem: 1.

  9. Polya's Problem-Solving Process

    Step 1: Understanding the Problem. The first step of Polya's problem-solving process emphasises the importance of ensuring you thoroughly comprehend the problem. In this step, students learn to read and analyse the problem statement, identify the key information, and clarify any uncertainties. This process encourages critical thinking (Bicer et ...

  10. PDF Polya's four-step approach to problem solving

    3. Carry out the plan— If the plan does not seem to be working, then start over and try another way. Often the first approach does not work. Do not worry, just because an approach does not work, it does not mean you did it wrong. You actually accomplished something, knowing a way does not work is part of the process of elimination.

  11. Problem Solving Strategies & Polya's 4-step Process

    Math in the Modern World Playlist: https://www.youtube.com/watch?v=vb-hDOm3GzU&list=PLbZl6MGLeYnsoaxa2L-xouDPHcoe9z23x&index=3A more logical answer to 13:36 ...

  12. Problem Solving Steps and Strategies

    Polya's 4 Steps of Problem Solving. Understanding the problem. Determine what information is known and what is being asked. (Possibly, what information is unnecessary and/or what information is missing or not known.) Devising a Plan. Think of a strategy that can be used to solve the problem. Carrying Out the Plan. Attempt to solve the problem ...

  13. Polya's Problem-Solving Process: Finding Unknowns ...

    Polya specifically wrote about problem-solving at the high school mathematics level. For those of us teaching students in the elementary and middle school levels, finding ways to apply Polya's problem-solving process as he intended forces us to rethink the way we teach. Particularly in the lower grade levels, finding "unknowns" can be ...

  14. Polya's Four Steps in Problem Solving (1.3)

    Explanation of Polya's Four Step problem solving technique. The four steps are explained in simple terms with an example of applying Polya's method.

  15. PDF Polya'S Four Step Problem Solving Process

    complete move 4. If this move cannot be made, the game is over. 4 A Cover each of the exposed factors of the number that player B just covered. 5 A Cover one of the exposed numbers which remain that allows player B to complete move 6. If this move cannot be made, the game is over.

  16. Beginning Algebra Tutorial 15

    The following formula will come in handy for solving example 3: Perimeter of a rectangle = 2 (length) + 2 (width) Example 3 : In a blueprint of a rectangular room, the length is 1 inch more than 3 times the width. Find the dimensions if the perimeter is to be 26 inches. Step 1: Understand the problem.

  17. (PDF) A Application of G. Polya's Problem-Solving ...

    Abstract and Figures. The study investigates the application of G. Polya's four-step problem-solving process in teaching Physics. This teaching method helps students form and develop problem ...

  18. Solving Any Problem in 4 Steps

    Explore a 4-step solution to problem-solving inspired by George Polya. Learn to understand, plan, execute, and review solutions for any problem.

  19. Polya's 4 step problem solving examples

    - Examples of this method include using a rule of thumb, an educated guess, an intuitive judgment, stereotyping, or common sense. Polya's Problem Solving Techniques - In 1945 George Polya published the book How To Solve It which quickly became his most prized publication. - It sold over one million copies and has been translated into 17 languages.

  20. 2.1: George Polya's Four Step Problem Solving Process

    Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1. Guess and test.

  21. And How It Can Improve Your White Boarding

    Pólya's Four Step Method is an age-old method to solving problems, and its usefulness hasn't deteriorated since it was first written about in 1945. While George Pólya initially laid out this technique as a way to solve math problems, it is incredibly effective on a broader scope for solving basically any type of complex problem one may ...

  22. Problem Solving Plan (Polya's Method)

    Devise a Plan. Understand the Problem. Carry Out the Plan. Look Back. 3. Multiple Choice. 2 minutes. 1 pt. Which step best completes this statement: In the _____ step of the problem solving plan, you check to make sure you've answered the question.