Hungarian Method

The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term “Hungarian method” to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let’s go through the steps of the Hungarian method with the help of a solved example.

Hungarian Method to Solve Assignment Problems

The Hungarian method is a simple way to solve assignment problems. Let us first discuss the assignment problems before moving on to learning the Hungarian method.

What is an Assignment Problem?

A transportation problem is a type of assignment problem. The goal is to allocate an equal amount of resources to the same number of activities. As a result, the overall cost of allocation is minimised or the total profit is maximised.

Because available resources such as workers, machines, and other resources have varying degrees of efficiency for executing different activities, and hence the cost, profit, or loss of conducting such activities varies.

Assume we have ‘n’ jobs to do on ‘m’ machines (i.e., one job to one machine). Our goal is to assign jobs to machines for the least amount of money possible (or maximum profit). Based on the notion that each machine can accomplish each task, but at variable levels of efficiency.

Hungarian Method Steps

Check to see if the number of rows and columns are equal; if they are, the assignment problem is considered to be balanced. Then go to step 1. If it is not balanced, it should be balanced before the algorithm is applied.

Step 1 – In the given cost matrix, subtract the least cost element of each row from all the entries in that row. Make sure that each row has at least one zero.

Step 2 – In the resultant cost matrix produced in step 1, subtract the least cost element in each column from all the components in that column, ensuring that each column contains at least one zero.

Step 3 – Assign zeros

  • Analyse the rows one by one until you find a row with precisely one unmarked zero. Encircle this lonely unmarked zero and assign it a task. All other zeros in the column of this circular zero should be crossed out because they will not be used in any future assignments. Continue in this manner until you’ve gone through all of the rows.
  • Examine the columns one by one until you find one with precisely one unmarked zero. Encircle this single unmarked zero and cross any other zero in its row to make an assignment to it. Continue until you’ve gone through all of the columns.

Step 4 – Perform the Optimal Test

  • The present assignment is optimal if each row and column has exactly one encircled zero.
  • The present assignment is not optimal if at least one row or column is missing an assignment (i.e., if at least one row or column is missing one encircled zero). Continue to step 5. Subtract the least cost element from all the entries in each column of the final cost matrix created in step 1 and ensure that each column has at least one zero.

Step 5 – Draw the least number of straight lines to cover all of the zeros as follows:

(a) Highlight the rows that aren’t assigned.

(b) Label the columns with zeros in marked rows (if they haven’t already been marked).

(c) Highlight the rows that have assignments in indicated columns (if they haven’t previously been marked).

(d) Continue with (b) and (c) until no further marking is needed.

(f) Simply draw the lines through all rows and columns that are not marked. If the number of these lines equals the order of the matrix, then the solution is optimal; otherwise, it is not.

Step 6 – Find the lowest cost factor that is not covered by the straight lines. Subtract this least-cost component from all the uncovered elements and add it to all the elements that are at the intersection of these straight lines, but leave the rest of the elements alone.

Step 7 – Continue with steps 1 – 6 until you’ve found the highest suitable assignment.

Hungarian Method Example

Use the Hungarian method to solve the given assignment problem stated in the table. The entries in the matrix represent each man’s processing time in hours.

\(\begin{array}{l}\begin{bmatrix} & I & II & III & IV & V \\1 & 20 & 15 & 18 & 20 & 25 \\2 & 18 & 20 & 12 & 14 & 15 \\3 & 21 & 23 & 25 & 27 & 25 \\4 & 17 & 18 & 21 & 23 & 20 \\5 & 18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

With 5 jobs and 5 men, the stated problem is balanced.

\(\begin{array}{l}A = \begin{bmatrix}20 & 15 & 18 & 20 & 25 \\18 & 20 & 12 & 14 & 15 \\21 & 23 & 25 & 27 & 25 \\17 & 18 & 21 & 23 & 20 \\18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

Subtract the lowest cost element in each row from all of the elements in the given cost matrix’s row. Make sure that each row has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 5 & 10 \\6 & 8 & 0 & 2 & 3 \\0 & 2 & 4 & 6 & 4 \\0 & 1 & 4 & 6 & 3 \\2 & 2 & 0 & 3 & 4 \\\end{bmatrix}\end{array} \)

Subtract the least cost element in each Column from all of the components in the given cost matrix’s Column. Check to see if each column has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 3 & 7 \\6 & 8 & 0 & 0 & 0 \\0 & 2 & 4 & 4 & 1 \\0 & 1 & 4 & 4 & 0 \\2 & 2 & 0 & 1 & 1 \\\end{bmatrix}\end{array} \)

When the zeros are assigned, we get the following:

Hungarian Method

The present assignment is optimal because each row and column contain precisely one encircled zero.

Where 1 to II, 2 to IV, 3 to I, 4 to V, and 5 to III are the best assignments.

Hence, z = 15 + 14 + 21 + 20 + 16 = 86 hours is the optimal time.

Practice Question on Hungarian Method

Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

\(\begin{array}{l}\begin{bmatrix}J/M & I & II & III & IV & V \\1 & 9 & 22 & 58 & 11 & 19 \\2 & 43 & 78 & 72 & 50 & 63 \\3 & 41 & 28 & 91 & 37 & 45 \\4 & 74 & 42 & 27 & 49 & 39 \\5 & 36 & 11 & 57 & 22 & 25 \\\end{bmatrix}\end{array} \)

Stay tuned to BYJU’S – The Learning App and download the app to explore all Maths-related topics.

Frequently Asked Questions on Hungarian Method

What is hungarian method.

The Hungarian method is defined as a combinatorial optimization technique that solves the assignment problems in polynomial time and foreshadowed subsequent primal–dual approaches.

What are the steps involved in Hungarian method?

The following is a quick overview of the Hungarian method: Step 1: Subtract the row minima. Step 2: Subtract the column minimums. Step 3: Use a limited number of lines to cover all zeros. Step 4: Add some more zeros to the equation.

What is the purpose of the Hungarian method?

When workers are assigned to certain activities based on cost, the Hungarian method is beneficial for identifying minimum costs.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

explain the hungarian method for solving assignment problem can also be used to solve

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

  • Data Structures
  • Linked List
  • Binary Tree
  • Binary Search Tree
  • Segment Tree
  • Disjoint Set Union
  • Fenwick Tree
  • Red-Black Tree
  • Advanced Data Structures
  • Hungarian Algorithm for Assignment Problem | Set 2 (Implementation)
  • Clustering Coefficient in Graph Theory
  • Maximum number of edges in Bipartite graph
  • Types of Graphs with Examples
  • Count of nodes with maximum connection in an undirected graph
  • Erdos Renyl Model (for generating Random Graphs)
  • Program to find the number of region in Planar Graph
  • Maximize count of nodes disconnected from all other nodes in a Graph
  • Find node having maximum number of common nodes with a given node K
  • Convert the undirected graph into directed graph such that there is no path of length greater than 1
  • Ways to Remove Edges from a Complete Graph to make Odd Edges
  • Cost of painting n * m grid
  • Number of Simple Graph with N Vertices and M Edges
  • Count of Disjoint Groups by grouping points that are at most K distance apart
  • Program to check if N is a Concentric Hexagonal Number
  • Program to check if N is a Octagonal Number
  • Graph Data Structure And Algorithms
  • Program to check if N is a Icosidigonal Number
  • Program to check if N is a Octadecagon number

Hungarian Algorithm for Assignment Problem | Set 1 (Introduction)

hungarian1

  • For each row of the matrix, find the smallest element and subtract it from every element in its row.
  • Do the same (as step 1) for all columns.
  • Cover all zeros in the matrix using minimum number of horizontal and vertical lines.
  • Test for Optimality: If the minimum number of covering lines is n, an optimal assignment is possible and we are finished. Else if lines are lesser than n, we haven’t found the optimal assignment, and must proceed to step 5.
  • Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row, and then add it to each covered column. Return to step 3.
Try it before moving to see the solution

Explanation for above simple example:

  An example that doesn’t lead to optimal value in first attempt: In the above example, the first check for optimality did give us solution. What if we the number covering lines is less than n.

Time complexity : O(n^3), where n is the number of workers and jobs. This is because the algorithm implements the Hungarian algorithm, which is known to have a time complexity of O(n^3).

Space complexity :   O(n^2), where n is the number of workers and jobs. This is because the algorithm uses a 2D cost matrix of size n x n to store the costs of assigning each worker to a job, and additional arrays of size n to store the labels, matches, and auxiliary information needed for the algorithm.

In the next post, we will be discussing implementation of the above algorithm. The implementation requires more steps as we need to find minimum number of lines to cover all 0’s using a program. References: http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf https://www.youtube.com/watch?v=dQDZNHwuuOY

Please Login to comment...

Similar reads.

  • Mathematical
  • 10 Ways to Use Slack for Effective Communication
  • 10 Ways to Use Google Docs for Collaborative Writing
  • NEET MDS 2024 Result: Toppers List, Category-wise Cutoff, and Important Dates
  • NDA Admit Card 2024 Live Updates: Download Your Hall Ticket Soon on upsc.gov.in!
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Implementation of the Hungarian algorithm
  • Connection to the Successive Shortest Path Algorithm
  • Task examples
  • Practice Problems

Hungarian algorithm for solving the assignment problem ¶

Statement of the assignment problem ¶.

There are several standard formulations of the assignment problem (all of which are essentially equivalent). Here are some of them:

There are $n$ jobs and $n$ workers. Each worker specifies the amount of money they expect for a particular job. Each worker can be assigned to only one job. The objective is to assign jobs to workers in a way that minimizes the total cost.

Given an $n \times n$ matrix $A$ , the task is to select one number from each row such that exactly one number is chosen from each column, and the sum of the selected numbers is minimized.

Given an $n \times n$ matrix $A$ , the task is to find a permutation $p$ of length $n$ such that the value $\sum A[i]\left[p[i]\right]$ is minimized.

Consider a complete bipartite graph with $n$ vertices per part, where each edge is assigned a weight. The objective is to find a perfect matching with the minimum total weight.

It is important to note that all the above scenarios are " square " problems, meaning both dimensions are always equal to $n$ . In practice, similar " rectangular " formulations are often encountered, where $n$ is not equal to $m$ , and the task is to select $\min(n,m)$ elements. However, it can be observed that a "rectangular" problem can always be transformed into a "square" problem by adding rows or columns with zero or infinite values, respectively.

We also note that by analogy with the search for a minimum solution, one can also pose the problem of finding a maximum solution. However, these two problems are equivalent to each other: it is enough to multiply all the weights by $-1$ .

Hungarian algorithm ¶

Historical reference ¶.

The algorithm was developed and published by Harold Kuhn in 1955. Kuhn himself gave it the name "Hungarian" because it was based on the earlier work by Hungarian mathematicians Dénes Kőnig and Jenő Egerváry. In 1957, James Munkres showed that this algorithm runs in (strictly) polynomial time, independently from the cost. Therefore, in literature, this algorithm is known not only as the "Hungarian", but also as the "Kuhn-Mankres algorithm" or "Mankres algorithm". However, it was recently discovered in 2006 that the same algorithm was invented a century before Kuhn by the German mathematician Carl Gustav Jacobi . His work, About the research of the order of a system of arbitrary ordinary differential equations , which was published posthumously in 1890, contained, among other findings, a polynomial algorithm for solving the assignment problem. Unfortunately, since the publication was in Latin, it went unnoticed among mathematicians.

It is also worth noting that Kuhn's original algorithm had an asymptotic complexity of $\mathcal{O}(n^4)$ , and only later Jack Edmonds and Richard Karp (and independently Tomizawa ) showed how to improve it to an asymptotic complexity of $\mathcal{O}(n^3)$ .

The $\mathcal{O}(n^4)$ algorithm ¶

To avoid ambiguity, we note right away that we are mainly concerned with the assignment problem in a matrix formulation (i.e., given a matrix $A$ , you need to select $n$ cells from it that are in different rows and columns). We index arrays starting with $1$ , i.e., for example, a matrix $A$ has indices $A[1 \dots n][1 \dots n]$ .

We will also assume that all numbers in matrix A are non-negative (if this is not the case, you can always make the matrix non-negative by adding some constant to all numbers).

Let's call a potential two arbitrary arrays of numbers $u[1 \ldots n]$ and $v[1 \ldots n]$ , such that the following condition is satisfied:

(As you can see, $u[i]$ corresponds to the $i$ -th row, and $v[j]$ corresponds to the $j$ -th column of the matrix).

Let's call the value $f$ of the potential the sum of its elements:

On one hand, it is easy to see that the cost of the desired solution $sol$ is not less than the value of any potential.

Lemma. $sol\geq f.$

The desired solution of the problem consists of $n$ cells of the matrix $A$ , so $u[i]+v[j]\leq A[i][j]$ for each of them. Since all the elements in $sol$ are in different rows and columns, summing these inequalities over all the selected $A[i][j]$ , you get $f$ on the left side of the inequality, and $sol$ on the right side.

On the other hand, it turns out that there is always a solution and a potential that turns this inequality into equality . The Hungarian algorithm described below will be a constructive proof of this fact. For now, let's just pay attention to the fact that if any solution has a cost equal to any potential, then this solution is optimal .

Let's fix some potential. Let's call an edge $(i,j)$ rigid if $u[i]+v[j]=A[i][j].$

Recall an alternative formulation of the assignment problem, using a bipartite graph. Denote with $H$ a bipartite graph composed only of rigid edges. The Hungarian algorithm will maintain, for the current potential, the maximum-number-of-edges matching $M$ of the graph $H$ . As soon as $M$ contains $n$ edges, then the solution to the problem will be just $M$ (after all, it will be a solution whose cost coincides with the value of a potential).

Let's proceed directly to the description of the algorithm .

Step 1. At the beginning, the potential is assumed to be zero ( $u[i]=v[i]=0$ for all $i$ ), and the matching $M$ is assumed to be empty.

Step 2. Further, at each step of the algorithm, we try, without changing the potential, to increase the cardinality of the current matching $M$ by one (recall that the matching is searched in the graph of rigid edges $H$ ). To do this, the usual Kuhn Algorithm for finding the maximum matching in bipartite graphs is used. Let us recall the algorithm here. All edges of the matching $M$ are oriented in the direction from the right part to the left one, and all other edges of the graph $H$ are oriented in the opposite direction.

Recall (from the terminology of searching for matchings) that a vertex is called saturated if an edge of the current matching is adjacent to it. A vertex that is not adjacent to any edge of the current matching is called unsaturated. A path of odd length, in which the first edge does not belong to the matching, and for all subsequent edges there is an alternating belonging to the matching (belongs/does not belong) - is called an augmenting path. From all unsaturated vertices in the left part, a depth-first or breadth-first traversal is started. If, as a result of the search, it was possible to reach an unsaturated vertex of the right part, we have found an augmenting path from the left part to the right one. If we include odd edges of the path and remove the even ones in the matching (i.e. include the first edge in the matching, exclude the second, include the third, etc.), then we will increase the matching cardinality by one.

If there was no augmenting path, then the current matching $M$ is maximal in the graph $H$ .

Step 3. If at the current step, it is not possible to increase the cardinality of the current matching, then a recalculation of the potential is performed in such a way that, at the next steps, there will be more opportunities to increase the matching.

Denote by $Z_1$ the set of vertices of the left part that were visited during the last traversal of Kuhn's algorithm, and through $Z_2$ the set of visited vertices of the right part.

Let's calculate the value $\Delta$ :

Lemma. $\Delta > 0.$

Suppose $\Delta=0$ . Then there exists a rigid edge $(i,j)$ with $i\in Z_1$ and $j\notin Z_2$ . It follows that the edge $(i,j)$ must be oriented from the right part to the left one, i.e. $(i,j)$ must be included in the matching $M$ . However, this is impossible, because we could not get to the saturated vertex $i$ except by going along the edge from j to i. So $\Delta > 0$ .

Now let's recalculate the potential in this way:

for all vertices $i\in Z_1$ , do $u[i] \gets u[i]+\Delta$ ,

for all vertices $j\in Z_2$ , do $v[j] \gets v[j]-\Delta$ .

Lemma. The resulting potential is still a correct potential.

We will show that, after recalculation, $u[i]+v[j]\leq A[i][j]$ for all $i,j$ . For all the elements of $A$ with $i\in Z_1$ and $j\in Z_2$ , the sum $u[i]+v[j]$ does not change, so the inequality remains true. For all the elements with $i\notin Z_1$ and $j\in Z_2$ , the sum $u[i]+v[j]$ decreases by $\Delta$ , so the inequality is still true. For the other elements whose $i\in Z_1$ and $j\notin Z_2$ , the sum increases, but the inequality is still preserved, since the value $\Delta$ is, by definition, the maximum increase that does not change the inequality.

Lemma. The old matching $M$ of rigid edges is valid, i.e. all edges of the matching will remain rigid.

For some rigid edge $(i,j)$ to stop being rigid as a result of a change in potential, it is necessary that equality $u[i] + v[j] = A[i][j]$ turns into inequality $u[i] + v[j] < A[i][j]$ . However, this can happen only when $i \notin Z_1$ and $j \in Z_2$ . But $i \notin Z_1$ implies that the edge $(i,j)$ could not be a matching edge.

Lemma. After each recalculation of the potential, the number of vertices reachable by the traversal, i.e. $|Z_1|+|Z_2|$ , strictly increases.

First, note that any vertex that was reachable before recalculation, is still reachable. Indeed, if some vertex is reachable, then there is some path from reachable vertices to it, starting from the unsaturated vertex of the left part; since for edges of the form $(i,j),\ i\in Z_1,\ j\in Z_2$ the sum $u[i]+v[j]$ does not change, this entire path will be preserved after changing the potential. Secondly, we show that after a recalculation, at least one new vertex will be reachable. This follows from the definition of $\Delta$ : the edge $(i,j)$ which $\Delta$ refers to will become rigid, so vertex $j$ will be reachable from vertex $i$ .

Due to the last lemma, no more than $n$ potential recalculations can occur before an augmenting path is found and the matching cardinality of $M$ is increased. Thus, sooner or later, a potential that corresponds to a perfect matching $M^*$ will be found, and $M^*$ will be the answer to the problem. If we talk about the complexity of the algorithm, then it is $\mathcal{O}(n^4)$ : in total there should be at most $n$ increases in matching, before each of which there are no more than $n$ potential recalculations, each of which is performed in time $\mathcal{O}(n^2)$ .

We will not give the implementation for the $\mathcal{O}(n^4)$ algorithm here, since it will turn out to be no shorter than the implementation for the $\mathcal{O}(n^3)$ one, described below.

The $\mathcal{O}(n^3)$ algorithm ¶

Now let's learn how to implement the same algorithm in $\mathcal{O}(n^3)$ (for rectangular problems $n \times m$ , $\mathcal{O}(n^2m)$ ).

The key idea is to consider matrix rows one by one , and not all at once. Thus, the algorithm described above will take the following form:

Consider the next row of the matrix $A$ .

While there is no increasing path starting in this row, recalculate the potential.

As soon as an augmenting path is found, propagate the matching along it (thus including the last edge in the matching), and restart from step 1 (to consider the next line).

To achieve the required complexity, it is necessary to implement steps 2-3, which are performed for each row of the matrix, in time $\mathcal{O}(n^2)$ (for rectangular problems in $\mathcal{O}(nm)$ ).

To do this, recall two facts proved above:

With a change in the potential, the vertices that were reachable by Kuhn's traversal will remain reachable.

In total, only $\mathcal{O}(n)$ recalculations of the potential could occur before an augmenting path was found.

From this follow these key ideas that allow us to achieve the required complexity:

To check for the presence of an augmenting path, there is no need to start the Kuhn traversal again after each potential recalculation. Instead, you can make the Kuhn traversal in an iterative form : after each recalculation of the potential, look at the added rigid edges and, if their left ends were reachable, mark their right ends reachable as well and continue the traversal from them.

Developing this idea further, we can present the algorithm as follows: at each step of the loop, the potential is recalculated. Subsequently, a column that has become reachable is identified (which will always exist as new reachable vertices emerge after every potential recalculation). If the column is unsaturated, an augmenting chain is discovered. Conversely, if the column is saturated, the matching row also becomes reachable.

To quickly recalculate the potential (faster than the $\mathcal{O}(n^2)$ naive version), you need to maintain auxiliary minima for each of the columns:

$minv[j]=\min_{i\in Z_1} A[i][j]-u[i]-v[j].$

It's easy to see that the desired value $\Delta$ is expressed in terms of them as follows:

$\Delta=\min_{j\notin Z_2} minv[j].$

Thus, finding $\Delta$ can now be done in $\mathcal{O}(n)$ .

It is necessary to update the array $minv$ when new visited rows appear. This can be done in $\mathcal{O}(n)$ for the added row (which adds up over all rows to $\mathcal{O}(n^2)$ ). It is also necessary to update the array $minv$ when recalculating the potential, which is also done in time $\mathcal{O}(n)$ ( $minv$ changes only for columns that have not yet been reached: namely, it decreases by $\Delta$ ).

Thus, the algorithm takes the following form: in the outer loop, we consider matrix rows one by one. Each row is processed in time $\mathcal{O}(n^2)$ , since only $\mathcal{O}(n)$ potential recalculations could occur (each in time $\mathcal{O}(n)$ ), and the array $minv$ is maintained in time $\mathcal{O}(n^2)$ ; Kuhn's algorithm will work in time $\mathcal{O}(n^2)$ (since it is presented in the form of $\mathcal{O}(n)$ iterations, each of which visits a new column).

The resulting complexity is $\mathcal{O}(n^3)$ or, if the problem is rectangular, $\mathcal{O}(n^2m)$ .

Implementation of the Hungarian algorithm ¶

The implementation below was developed by Andrey Lopatin several years ago. It is distinguished by amazing conciseness: the entire algorithm consists of 30 lines of code .

The implementation finds a solution for the rectangular matrix $A[1\dots n][1\dots m]$ , where $n\leq m$ . The matrix is ​1-based for convenience and code brevity: this implementation introduces a dummy zero row and zero column, which allows us to write many cycles in a general form, without additional checks.

Arrays $u[0 \ldots n]$ and $v[0 \ldots m]$ store potential. Initially, they are set to zero, which is consistent with a matrix of zero rows (Note that it is unimportant for this implementation whether or not the matrix $A$ contains negative numbers).

The array $p[0 \ldots m]$ contains a matching: for each column $j = 1 \ldots m$ , it stores the number $p[j]$ of the selected row (or $0$ if nothing has been selected yet). For the convenience of implementation, $p[0]$ is assumed to be equal to the number of the current row.

The array $minv[1 \ldots m]$ contains, for each column $j$ , the auxiliary minima necessary for a quick recalculation of the potential, as described above.

The array $way[1 \ldots m]$ contains information about where these minimums are reached so that we can later reconstruct the augmenting path. Note that, to reconstruct the path, it is sufficient to store only column values, since the row numbers can be taken from the matching (i.e., from the array $p$ ). Thus, $way[j]$ , for each column $j$ , contains the number of the previous column in the path (or $0$ if there is none).

The algorithm itself is an outer loop through the rows of the matrix , inside which the $i$ -th row of the matrix is ​​considered. The first do-while loop runs until a free column $j0$ is found. Each iteration of the loop marks visited a new column with the number $j0$ (calculated at the last iteration; and initially equal to zero - i.e. we start from a dummy column), as well as a new row $i0$ - adjacent to it in the matching (i.e. $p[j0]$ ; and initially when $j0=0$ the $i$ -th row is taken). Due to the appearance of a new visited row $i0$ , you need to recalculate the array $minv$ and $\Delta$ accordingly. If $\Delta$ is updated, then the column $j1$ becomes the minimum that has been reached (note that with such an implementation $\Delta$ could turn out to be equal to zero, which means that the potential cannot be changed at the current step: there is already a new reachable column). After that, the potential and the $minv$ array are recalculated. At the end of the "do-while" loop, we found an augmenting path ending in a column $j0$ that can be "unrolled" using the ancestor array $way$ .

The constant INF is "infinity", i.e. some number, obviously greater than all possible numbers in the input matrix $A$ .

To restore the answer in a more familiar form, i.e. finding for each row $i = 1 \ldots n$ the number $ans[i]$ of the column selected in it, can be done as follows:

The cost of the matching can simply be taken as the potential of the zero column (taken with the opposite sign). Indeed, as you can see from the code, $-v[0]$ contains the sum of all the values of $\Delta$ ​​, i.e. total change in potential. Although several values ​​​​of $u[i]$ and $v[j]$ could change at once, the total change in the potential is exactly equal to $\Delta$ , since until there is an augmenting path, the number of reachable rows is exactly one more than the number of the reachable columns (only the current row $i$ does not have a "pair" in the form of a visited column):

Connection to the Successive Shortest Path Algorithm ¶

The Hungarian algorithm can be seen as the Successive Shortest Path Algorithm , adapted for the assignment problem. Without going into the details, let's provide an intuition regarding the connection between them.

The Successive Path algorithm uses a modified version of Johnson's algorithm as reweighting technique. This one is divided into four steps:

  • Use the Bellman-Ford algorithm, starting from the sink $s$ and, for each node, find the minimum weight $h(v)$ of a path from $s$ to $v$ .

For every step of the main algorithm:

  • Reweight the edges of the original graph in this way: $w(u,v) \gets w(u,v)+h(u)-h(v)$ .
  • Use Dijkstra 's algorithm to find the shortest-paths subgraph of the original network.
  • Update potentials for the next iteration.

Given this description, we can observe that there is a strong analogy between $h(v)$ and potentials: it can be checked that they are equal up to a constant offset. In addition, it can be shown that, after reweighting, the set of all zero-weight edges represents the shortest-path subgraph where the main algorithm tries to increase the flow. This also happens in the Hungarian algorithm: we create a subgraph made of rigid edges (the ones for which the quantity $A[i][j]-u[i]-v[j]$ is zero), and we try to increase the size of the matching.

In step 4, all the $h(v)$ are updated: every time we modify the flow network, we should guarantee that the distances from the source are correct (otherwise, in the next iteration, Dijkstra's algorithm might fail). This sounds like the update performed on the potentials, but in this case, they are not equally incremented.

To deepen the understanding of potentials, refer to this article .

Task examples ¶

Here are a few examples related to the assignment problem, from very trivial to less obvious tasks:

Given a bipartite graph, it is required to find in it the maximum matching with the minimum weight (i.e., first of all, the size of the matching is maximized, and secondly, its cost is minimized). To solve it, we simply build an assignment problem, putting the number "infinity" in place of the missing edges. After that, we solve the problem with the Hungarian algorithm, and remove edges of infinite weight from the answer (they could enter the answer if the problem does not have a solution in the form of a perfect matching).

Given a bipartite graph, it is required to find in it the maximum matching with the maximum weight . The solution is again obvious, all weights must be multiplied by minus one.

The task of detecting moving objects in images : two images were taken, as a result of which two sets of coordinates were obtained. It is required to correlate the objects in the first and second images, i.e. determine for each point of the second image, which point of the first image it corresponded to. In this case, it is required to minimize the sum of distances between the compared points (i.e., we are looking for a solution in which the objects have taken the shortest path in total). To solve, we simply build and solve an assignment problem, where the weights of the edges are the Euclidean distances between points.

The task of detecting moving objects by locators : there are two locators that can't determine the position of an object in space, but only its direction. Both locators (located at different points) received information in the form of $n$ such directions. It is required to determine the position of objects, i.e. determine the expected positions of objects and their corresponding pairs of directions in such a way that the sum of distances from objects to direction rays is minimized. Solution: again, we simply build and solve the assignment problem, where the vertices of the left part are the $n$ directions from the first locator, the vertices of the right part are the $n$ directions from the second locator, and the weights of the edges are the distances between the corresponding rays.

Covering a directed acyclic graph with paths : given a directed acyclic graph, it is required to find the smallest number of paths (if equal, with the smallest total weight) so that each vertex of the graph lies in exactly one path. The solution is to build the corresponding bipartite graph from the given graph and find the maximum matching of the minimum weight in it. See separate article for more details.

Tree coloring book . Given a tree in which each vertex, except for leaves, has exactly $k-1$ children. It is required to choose for each vertex one of the $k$ colors available so that no two adjacent vertices have the same color. In addition, for each vertex and each color, the cost of painting this vertex with this color is known, and it is required to minimize the total cost. To solve this problem, we use dynamic programming. Namely, let's learn how to calculate the value $d[v][c]$ , where $v$ is the vertex number, $c$ is the color number, and the value $d[v][c]$ itself is the minimum cost needed to color all the vertices in the subtree rooted at $v$ , and the vertex $v$ itself with color $c$ . To calculate such a value $d[v][c]$ , it is necessary to distribute the remaining $k-1$ colors among the children of the vertex $v$ , and for this, it is necessary to build and solve the assignment problem (in which the vertices of the left part are colors, the vertices of the right part are children, and the weights of the edges are the corresponding values of $d$ ). Thus, each value $d[v][c]$ is calculated using the solution of the assignment problem, which ultimately gives the asymptotic $\mathcal{O}(nk^4)$ .

If, in the assignment problem, the weights are not on the edges, but on the vertices, and only on the vertices of the same part , then it's not necessary to use the Hungarian algorithm: just sort the vertices by weight and run the usual Kuhn algorithm (for more details, see a separate article ).

Consider the following special case . Let each vertex of the left part be assigned some number $\alpha[i]$ , and each vertex of the right part $\beta[j]$ . Let the weight of any edge $(i,j)$ be equal to $\alpha[i]\cdot \beta[j]$ (the numbers $\alpha[i]$ and $\beta[j]$ are known). Solve the assignment problem. To solve it without the Hungarian algorithm, we first consider the case when both parts have two vertices. In this case, as you can easily see, it is better to connect the vertices in the reverse order: connect the vertex with the smaller $\alpha[i]$ to the vertex with the larger $\beta[j]$ . This rule can be easily generalized to an arbitrary number of vertices: you need to sort the vertices of the first part in increasing order of $\alpha[i]$ values, the second part in decreasing order of $\beta[j]$ values, and connect the vertices in pairs in that order. Thus, we obtain a solution with complexity of $\mathcal{O}(n\log n)$ .

The Problem of Potentials . Given a matrix $A[1 \ldots n][1 \ldots m]$ , it is required to find two arrays $u[1 \ldots n]$ and $v[1 \ldots m]$ such that, for any $i$ and $j$ , $u[i] + v[j] \leq a[i][j]$ and the sum of elements of arrays $u$ and $v$ is maximum. Knowing the Hungarian algorithm, the solution to this problem will not be difficult: the Hungarian algorithm just finds such a potential $u, v$ that satisfies the condition of the problem. On the other hand, without knowledge of the Hungarian algorithm, it seems almost impossible to solve such a problem.

This task is also called the dual problem of the assignment problem: minimizing the total cost of the assignment is equivalent to maximizing the sum of the potentials.

Literature ¶

Ravindra Ahuja, Thomas Magnanti, James Orlin. Network Flows [1993]

Harold Kuhn. The Hungarian Method for the Assignment Problem [1955]

James Munkres. Algorithms for Assignment and Transportation Problems [1957]

Practice Problems ¶

UVA - Crime Wave - The Sequel

UVA - Warehouse

SGU - Beloved Sons

UVA - The Great Wall Game

UVA - Jogging Trails

  • alemini18 (92.97%)
  • adamant-pwn (7.03%)

Quantitative Techniques: Theory and Problems by P. C. Tulsian, Vishal Pandey

Get full access to Quantitative Techniques: Theory and Problems and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

HUNGARIAN METHOD

Although an assignment problem can be formulated as a linear programming problem, it is solved by a special method known as Hungarian Method because of its special structure. If the time of completion or the costs corresponding to every assignment is written down in a matrix form, it is referred to as a Cost matrix. The Hungarian Method is based on the principle that if a constant is added to every element of a row and/or a column of cost matrix, the optimum solution of the resulting assignment problem is the same as the original problem and vice versa. The original cost matrix can be reduced to another cost matrix by adding constants to the elements of rows and columns where the total cost or the total completion time of an ...

Get Quantitative Techniques: Theory and Problems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

explain the hungarian method for solving assignment problem can also be used to solve

Book cover

Artificial Intelligence and Evolutionary Algorithms in Engineering Systems pp 1–8 Cite as

Improvement in Hungarian Algorithm for Assignment Problem

  • Kartik Shah 5 ,
  • Praveenkumar Reddy 5 &
  • S. Vairamuthu 5  
  • Conference paper
  • First Online: 01 January 2014

2455 Accesses

5 Citations

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 324))

Hungarian method for assignment problem is generally used in parallel environment for the assignment of job to a processor. If the number of processors and number of jobs are same, then we can assign each processor 1 job with less cost using Hungarian method. If the number of jobs is larger compared to number of processors, then this method does not work (another approach is using dummy processors, but it is not implementable). In this paper, we proposed an alternate approach same as Hungarian method for assignment of more jobs to lesser processors.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

W. Kuhn, The hungarian method for assignment problem. Nav. Res. Logistics Q. 2 , 83–87 (1955)

Article   Google Scholar  

D.P. Bertsekas, Linear network optimization algorithms and codes (MIT Press, Cambridge, 1991)

MATH   Google Scholar  

G. Carpaneto, S. Martello, P. Toth, Algorithms and codes for assignment problem. Ann. Oper. Res. 13 , 193–223 (1988)

Article   MathSciNet   Google Scholar  

D.A. Castanon, B. Smith, A. Wilson, Performance of parallel assignment algorithms on different multiprocessor architectures . Alphatech report TP-1245, Burlington, MA, (1989)

Google Scholar  

U. Derigs, The shortest augmenting path method for solving assignment problem-motivation and computational experience. Ann. Oper. Res. 4 , 57–102 (1985)

M. Engqust, A successive shortest path algorithm for the assignment problem. INFRO. 20 , 370–384 (1982)

F. Glover, R. Glover, D. Klingman, Threshold assignment algorithm. Centre for Business Decision analysis report CBDA 107, Graduate School of Business, University of Taxes at Austin (1982)

J.R.M. Hall, An algorithm for distinct representatives. Am. Math. Monthly 51 , 716–717 (1956)

R. Jonkar, A. Volgenant, A shortest augmenting path algorithm for the dense and sparse linear assignment problems. Computing 3 , 92–106 (1987)

E. Lawler, Combinational Optimization: Networks and Matroids (Holt, Rinehart & Winston, New York, 1976), p. 206

L.F. Mcginnis, Implementation and testing of a primal dual algorithm for the assignment problem. Oper. Res. Int. J. 31 , 277–291 (1983)

MATH   MathSciNet   Google Scholar  

C.H. Papadimitriou, K. Steiglitz, Combinational Optimization: Algorithm and complexity (Prentice-Hall, Englewood Cliffs, 1982)

E. Balas, D. Miller, J. Pekny, P. Toth, A parallel shortest path algorithm for assignment problem. J. ACM 38 (4), 985–1004 (1991)

Article   MATH   MathSciNet   Google Scholar  

Download references

Acknowledgments

The authors would like to thank the School of Computer Science and Engineering, VIT University, for giving them the opportunity to carry out this project and also for providing them with the requisite resources and infrastructure for carrying out the research.

Author information

Authors and affiliations.

School of Computing Science and Engineering, VIT University, Vellore, 632014, India

Kartik Shah, Praveenkumar Reddy & S. Vairamuthu

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kartik Shah .

Editor information

Editors and affiliations.

Electrical & Electronics Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India

L. Padma Suresh

Electrical and Electronics Engineering, SRM Engineering College, Kattankulathur, Tamil Nadu, India

Subhransu Sekhar Dash

Electrical Engineering, IIT Delhi, New Delhi, Delhi, India

Bijaya Ketan Panigrahi

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper.

Shah, K., Reddy, P., Vairamuthu, S. (2015). Improvement in Hungarian Algorithm for Assignment Problem. In: Suresh, L., Dash, S., Panigrahi, B. (eds) Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. Advances in Intelligent Systems and Computing, vol 324. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2126-5_1

Download citation

DOI : https://doi.org/10.1007/978-81-322-2126-5_1

Published : 02 November 2014

Publisher Name : Springer, New Delhi

Print ISBN : 978-81-322-2125-8

Online ISBN : 978-81-322-2126-5

eBook Packages : Engineering Engineering (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Captcha Page

We apologize for the inconvenience...

To ensure we keep this website safe, please can you confirm you are a human by ticking the box below.

If you are unable to complete the above request please contact us using the below link, providing a screenshot of your experience.

https://ioppublishing.org/contacts/

IMAGES

  1. How to Solve an Assignment Problem Using the Hungarian Method

    explain the hungarian method for solving assignment problem can also be used to solve

  2. Assignment Problem (Part-3) Hungarian Method to solve Assignment

    explain the hungarian method for solving assignment problem can also be used to solve

  3. Assignment Problem 1

    explain the hungarian method for solving assignment problem can also be used to solve

  4. Assignment problem Hungarian method

    explain the hungarian method for solving assignment problem can also be used to solve

  5. Hungarian Algorithm for Assignment Problem

    explain the hungarian method for solving assignment problem can also be used to solve

  6. [#2]Assignment Problem[Hungarian Method with Optimal Solution-Advance problem] by Prof. Mihir Shah

    explain the hungarian method for solving assignment problem can also be used to solve

VIDEO

  1. 2. Minimal Assignment problem {Hungarian Method}

  2. (2 of 2) Assignment Problem

  3. How to Solve an Assignment Problem Using the Hungarian Method

  4. Assignment Problem

  5. The assignment problem: The Hungarian method Part 1

  6. 03 Assignment Problem Hungarian Method

COMMENTS

  1. Hungarian Method

    The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term "Hungarian method" to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let's go through the steps of the Hungarian method with the help of a solved example.

  2. Hungarian Algorithm for Assignment Problem

    The Hungarian algorithm, aka Munkres assignment algorithm, utilizes the following theorem for polynomial runtime complexity (worst case O(n 3)) and guaranteed optimality: If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an ...

  3. PDF Hungarian method for assignment problem

    Hungarian method for assignment problem Step 1. Subtract the entries of each row by the row minimum. Step 2. Subtract the entries of each column by the column minimum. Step 3. Make an assignment to the zero entries in the resulting matrix. A = M 17 10 15 17 18 M 6 10 20 12 5 M 14 19 12 11 15 M 7 16 21 18 6 M −10

  4. Hungarian algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  5. Hungarian Algorithm

    Solve the assignment problem. To solve it without the Hungarian algorithm, we first consider the case when both parts have two vertices. In this case, as you can easily see, it is better to connect the vertices in the reverse order: connect the vertex with the smaller $\alpha[i]$ to the vertex with the larger $\beta[j]$.

  6. Assignment problem

    The Hungarian algorithm can be generalized to solve the problem in (+ ⁡) strongly-polynomial time. In particular, if s=r then the runtime is (+ ⁡). If the weights are integers, then Thorup's method can be used to get a runtime of (+ ⁡ ⁡).: 6 Solution by linear programming. The assignment problem can be solved by presenting it as a ...

  7. The Hungarian Method for the Assignment Problem

    This paper has always been one of my favorite "children," combining as it does elements of the duality of linear programming and combinatorial tools from graph theory. It may be of some interest to tell the story of its origin.

  8. PDF The Hungarian method for the assignment problem

    THE HUNGARIAN METHOD FOR THE ASSIGNMENT. PROBLEM'. H. W. Kuhn. Bryn Y a w College. Assuming that numerical scores are available for the perform- ance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the. n scores so obtained is as large as possible.

  9. PDF The Assignment Problem and the Hungarian Method

    The Hungarian Method: The following algorithm applies the above theorem to a given n × n cost matrix to find an optimal assignment. Step 1. Subtract the smallest entry in each row from all the entries of its row. Step 2. Subtract the smallest entry in each column from all the entries of its column. Step 3.

  10. The Hungarian Algorithm for the Assignment Problem

    The Hungarian method is a combinatorial optimization algorithm which solves the assignment problem in polynomial time . Later it was discovered that it was a primal-dual Simplex method.. It was developed and published by Harold Kuhn in 1955, who gave the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians: Denes Konig and Jeno ...

  11. PDF Chapter 2 The Hungarian Method for the Assignment Problem

    realized that Egervary's paper gave a computationally trivial method for reducing´ the general assignment problem to a 0-1 problem. Thus, by putting the two ideas together, the Hungarian Method was born. I tested the algorithm by solving 12 by 12 problems with random 3-digit ratings by hand. I could do any such problem, with

  12. Assignment Problem and Hungarian Algorithm

    This problem is known as the assignment problem. The assignment problem is a special case of the transportation problem, which in turn is a special case of the min-cost flow problem, so it can be solved using algorithms that solve the more general cases. Also, our problem is a special case of binary integer linear programming problem (which is ...

  13. Hungarian Method

    The Hungarian Method is based on the principle that if a constant is added to every element of a row and/or a column of cost matrix, the optimum solution of the resulting assignment problem is the same as the original problem and vice versa. The original cost matrix can be reduced to another cost matrix by adding constants to the elements of ...

  14. Using the Hungarian Algorithm to Solve Assignment Problems

    Hungarian Algorithm Steps. To use the Hungarian Algorithm, we first arrange the activities and people in a matrix with rows being people, columns being activity, and entries being the costs. Once ...

  15. PDF Parallel Asynchronous Hungarian Methods for The Assignment Problem

    The classical method for solving this problem is Kuhn's Hungarian method [Kuh55]. This method is of major theoretical interest and is still used widely. It maintains a price for each object and an (incomplete) assignment of persons and objects. At each iteration, the method chooses an unassigned person and computes a

  16. PDF Improvement in Hungarian Algorithm for Assignment Problem

    Hungarian method can be used to solve the assignment problems. General algo-rithm for assignment problem is as follows: Steps: 1. Obtain the cost matrix from the past history. 2. Find the row minimum of each row and subtract it from the other elements of the corresponding row. 3. Find the column minimum of the reduced matrix and subtract it ...

  17. Research and Implementation of Hungarian Method Based on the Structure

    Hungarian method is a classical method for solving assignment problems. It also can be widely used in other problems, such as matching problem. This paper researches its application on using structural index reduction method to solve high-index DAEs, based on the combinatorial relaxation theory.

  18. Development of an accelerating hungarian method for assignment problems

    Abstract and Figures. The Hungarian method is a well-known method for solving the assignment problem. This method was developed and published in 1955. It was named the Hungarian method because two ...

  19. Using Interval Operations in the Hungarian Method to Solve the Fuzzy

    Assignment problem (AP) is an entrenched tool for solving engineering and management problems. The Hungarian method is always used to fathom the AP in crisp cases. This paper presents an algorithm of finding the optimum solution of the fuzzy AP by using the modified Hungarian method. This method is utilized to get a minimum assignment cost in the fuzzy environment for a fuzzy AP. Firstly, we ...

  20. Development of an Accelerating Hungarian Method for Assignment Problems

    The Hungarian method is a well-known method for solving the assignment problem. This method was developed and published in 1955. It was named the Hungarian method because two theorems from two Hungarian mathematicians were used. In 1957, it was noticed that this algorithm is strongly polynomial and has a complexity of order O (n4) This is the ...

  21. PDF Assessment of Assignment Problem using Hungarian Method

    Many practitioners and researchers used the Hungarian method in the past to solve assignment problems (Kuhn 1955) ; (Chopra et al. 2017). The existing Hungarian method for solving unbalanced assignment problems is based on the assumption that some jobs should be assigned to dummy or pseudo machines, but those jobs are left unexecuted by

  22. A note on Hungarian method for solving assignment problem

    Jayanta Dutta, Subhas Chandra Pal. Published 2 September 2015. Computer Science, Mathematics. Journal of Information and Optimization Sciences. TLDR. Hungarian method is modified to find out the optimal solution of an assignment problem which reduces the computational cost of the method. Expand.

  23. The Hungarian Method for the Assignment Problem, With Generalized

    In this paper, we focus on the solution procedure for fully interval assignment problem (FIAP), Hungarian method is considered into account. In consideration method the given FIAP is decayed into Interval Assignment Problem, solving it with existing method and by using its optimal solutions, an optimal interval assignment solution to the given FIAP is obtained.