what is the purpose of the research study

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is Research? – Purpose of Research

DiscoverPhDs

  • By DiscoverPhDs
  • September 10, 2020

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

What is Research

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

As a more formal definition of research, the following has been extracted from the Code of Federal Regulations :

what is the purpose of the research study

While research can be carried out by anyone and in any field, most research is usually done to broaden knowledge in the physical, biological, and social worlds. This can range from learning why certain materials behave the way they do, to asking why certain people are more resilient than others when faced with the same challenges.

The use of ‘systematic investigation’ in the formal definition represents how research is normally conducted – a hypothesis is formed, appropriate research methods are designed, data is collected and analysed, and research results are summarised into one or more ‘research conclusions’. These research conclusions are then shared with the rest of the scientific community to add to the existing knowledge and serve as evidence to form additional questions that can be investigated. It is this cyclical process that enables scientific research to make continuous progress over the years; the true purpose of research.

What is the Purpose of Research

From weather forecasts to the discovery of antibiotics, researchers are constantly trying to find new ways to understand the world and how things work – with the ultimate goal of improving our lives.

The purpose of research is therefore to find out what is known, what is not and what we can develop further. In this way, scientists can develop new theories, ideas and products that shape our society and our everyday lives.

Although research can take many forms, there are three main purposes of research:

  • Exploratory: Exploratory research is the first research to be conducted around a problem that has not yet been clearly defined. Exploration research therefore aims to gain a better understanding of the exact nature of the problem and not to provide a conclusive answer to the problem itself. This enables us to conduct more in-depth research later on.
  • Descriptive: Descriptive research expands knowledge of a research problem or phenomenon by describing it according to its characteristics and population. Descriptive research focuses on the ‘how’ and ‘what’, but not on the ‘why’.
  • Explanatory: Explanatory research, also referred to as casual research, is conducted to determine how variables interact, i.e. to identify cause-and-effect relationships. Explanatory research deals with the ‘why’ of research questions and is therefore often based on experiments.

Characteristics of Research

There are 8 core characteristics that all research projects should have. These are:

  • Empirical  – based on proven scientific methods derived from real-life observations and experiments.
  • Logical  – follows sequential procedures based on valid principles.
  • Cyclic  – research begins with a question and ends with a question, i.e. research should lead to a new line of questioning.
  • Controlled  – vigorous measures put into place to keep all variables constant, except those under investigation.
  • Hypothesis-based  – the research design generates data that sufficiently meets the research objectives and can prove or disprove the hypothesis. It makes the research study repeatable and gives credibility to the results.
  • Analytical  – data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimising potential errors and anomalies.
  • Objective  – sound judgement is used by the researcher to ensure that the research findings are valid.
  • Statistical treatment  – statistical treatment is used to transform the available data into something more meaningful from which knowledge can be gained.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Types of Research

Research can be divided into two main types: basic research (also known as pure research) and applied research.

Basic Research

Basic research, also known as pure research, is an original investigation into the reasons behind a process, phenomenon or particular event. It focuses on generating knowledge around existing basic principles.

Basic research is generally considered ‘non-commercial research’ because it does not focus on solving practical problems, and has no immediate benefit or ways it can be applied.

While basic research may not have direct applications, it usually provides new insights that can later be used in applied research.

Applied Research

Applied research investigates well-known theories and principles in order to enhance knowledge around a practical aim. Because of this, applied research focuses on solving real-life problems by deriving knowledge which has an immediate application.

Methods of Research

Research methods for data collection fall into one of two categories: inductive methods or deductive methods.

Inductive research methods focus on the analysis of an observation and are usually associated with qualitative research. Deductive research methods focus on the verification of an observation and are typically associated with quantitative research.

Research definition

Qualitative Research

Qualitative research is a method that enables non-numerical data collection through open-ended methods such as interviews, case studies and focus groups .

It enables researchers to collect data on personal experiences, feelings or behaviours, as well as the reasons behind them. Because of this, qualitative research is often used in fields such as social science, psychology and philosophy and other areas where it is useful to know the connection between what has occurred and why it has occurred.

Quantitative Research

Quantitative research is a method that collects and analyses numerical data through statistical analysis.

It allows us to quantify variables, uncover relationships, and make generalisations across a larger population. As a result, quantitative research is often used in the natural and physical sciences such as engineering, biology, chemistry, physics, computer science, finance, and medical research, etc.

What does Research Involve?

Research often follows a systematic approach known as a Scientific Method, which is carried out using an hourglass model.

A research project first starts with a problem statement, or rather, the research purpose for engaging in the study. This can take the form of the ‘ scope of the study ’ or ‘ aims and objectives ’ of your research topic.

Subsequently, a literature review is carried out and a hypothesis is formed. The researcher then creates a research methodology and collects the data.

The data is then analysed using various statistical methods and the null hypothesis is either accepted or rejected.

In both cases, the study and its conclusion are officially written up as a report or research paper, and the researcher may also recommend lines of further questioning. The report or research paper is then shared with the wider research community, and the cycle begins all over again.

Although these steps outline the overall research process, keep in mind that research projects are highly dynamic and are therefore considered an iterative process with continued refinements and not a series of fixed stages.

MBA vs PhD

Considering whether to do an MBA or a PhD? If so, find out what their differences are, and more importantly, which one is better suited for you.

PhD Imposter Syndrome

Impostor Syndrome is a common phenomenon amongst PhD students, leading to self-doubt and fear of being exposed as a “fraud”. How can we overcome these feelings?

List of Abbreviations Thesis

Need to write a list of abbreviations for a thesis or dissertation? Read our post to find out where they go, what to include and how to format them.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what is the purpose of the research study

Browse PhDs Now

what is the purpose of the research study

Choosing a good PhD supervisor will be paramount to your success as a PhD student, but what qualities should you be looking for? Read our post to find out.

Types of Research Design

There are various types of research that are classified by objective, depth of study, analysed data and the time required to study the phenomenon etc.

what is the purpose of the research study

Dr Ayres completed her PhD at the University of Warwick in 2017, researching the use of diamond to make electrochemical sensors. She is now a research scientists in the water industry, developing different analytical techniques and sensors to help keep our water systems safe.

Amy-Tucker-Profile

Amy recently entered her third and final year of her PhD at the University of Strathclyde. Her research has focussed on young people’s understanding of mental health stigma in Scotland.

Join Thousands of Students

  • Chapter 1: Home
  • Narrowing Your Topic
  • Problem Statement

Purpose Statement Overview

Best practices for writing your purpose statement, writing your purpose statement, sample purpose statements.

  • Student Experience Feedback Buttons
  • Conceptual Framework
  • Theoretical Framework
  • Quantitative Research Questions This link opens in a new window
  • Qualitative Research Questions This link opens in a new window
  • Qualitative & Quantitative Research Support with the ASC This link opens in a new window
  • Library Research Consultations This link opens in a new window

Jump to DSE Guide

The purpose statement succinctly explains (on no more than 1 page) the objectives of the research study. These objectives must directly address the problem and help close the stated gap. Expressed as a formula:

what is the purpose of the research study

Good purpose statements:

  • Flow from the problem statement and actually address the proposed problem
  • Are concise and clear
  • Answer the question ‘Why are you doing this research?’
  • Match the methodology (similar to research questions)
  • Have a ‘hook’ to get the reader’s attention
  • Set the stage by clearly stating, “The purpose of this (qualitative or quantitative) study is to ...

In PhD studies, the purpose usually involves applying a theory to solve the problem. In other words, the purpose tells the reader what the goal of the study is, and what your study will accomplish, through which theoretical lens. The purpose statement also includes brief information about direction, scope, and where the data will come from.

A problem and gap in combination can lead to different research objectives, and hence, different purpose statements. In the example from above where the problem was severe underrepresentation of female CEOs in Fortune 500 companies and the identified gap related to lack of research of male-dominated boards; one purpose might be to explore implicit biases in male-dominated boards through the lens of feminist theory. Another purpose may be to determine how board members rated female and male candidates on scales of competency, professionalism, and experience to predict which candidate will be selected for the CEO position. The first purpose may involve a qualitative ethnographic study in which the researcher observes board meetings and hiring interviews; the second may involve a quantitative regression analysis. The outcomes will be very different, so it’s important that you find out exactly how you want to address a problem and help close a gap!

The purpose of the study must not only align with the problem and address a gap; it must also align with the chosen research method. In fact, the DP/DM template requires you to name the  research method at the very beginning of the purpose statement. The research verb must match the chosen method. In general, quantitative studies involve “closed-ended” research verbs such as determine , measure , correlate , explain , compare , validate , identify , or examine ; whereas qualitative studies involve “open-ended” research verbs such as explore , understand , narrate , articulate [meanings], discover , or develop .

A qualitative purpose statement following the color-coded problem statement (assumed here to be low well-being among financial sector employees) + gap (lack of research on followers of mid-level managers), might start like this:

In response to declining levels of employee well-being, the purpose of the qualitative phenomenology was to explore and understand the lived experiences related to the well-being of the followers of novice mid-level managers in the financial services industry. The levels of follower well-being have been shown to correlate to employee morale, turnover intention, and customer orientation (Eren et al., 2013). A combined framework of Leader-Member Exchange (LMX) Theory and the employee well-being concept informed the research questions and supported the inquiry, analysis, and interpretation of the experiences of followers of novice managers in the financial services industry.

A quantitative purpose statement for the same problem and gap might start like this:

In response to declining levels of employee well-being, the purpose of the quantitative correlational study was to determine which leadership factors predict employee well-being of the followers of novice mid-level managers in the financial services industry. Leadership factors were measured by the Leader-Member Exchange (LMX) assessment framework  by Mantlekow (2015), and employee well-being was conceptualized as a compound variable consisting of self-reported turnover-intent and psychological test scores from the Mental Health Survey (MHS) developed by Johns Hopkins University researchers.

Both of these purpose statements reflect viable research strategies and both align with the problem and gap so it’s up to the researcher to design a study in a manner that reflects personal preferences and desired study outcomes. Note that the quantitative research purpose incorporates operationalized concepts  or variables ; that reflect the way the researcher intends to measure the key concepts under study; whereas the qualitative purpose statement isn’t about translating the concepts under study as variables but instead aim to explore and understand the core research phenomenon.  

Always keep in mind that the dissertation process is iterative, and your writing, over time, will be refined as clarity is gradually achieved. Most of the time, greater clarity for the purpose statement and other components of the Dissertation is the result of a growing understanding of the literature in the field. As you increasingly master the literature you will also increasingly clarify the purpose of your study.

The purpose statement should flow directly from the problem statement. There should be clear and obvious alignment between the two and that alignment will get tighter and more pronounced as your work progresses.

The purpose statement should specifically address the reason for conducting the study, with emphasis on the word specifically. There should not be any doubt in your readers’ minds as to the purpose of your study. To achieve this level of clarity you will need to also insure there is no doubt in your mind as to the purpose of your study.

Many researchers benefit from stopping your work during the research process when insight strikes you and write about it while it is still fresh in your mind. This can help you clarify all aspects of a dissertation, including clarifying its purpose.

Your Chair and your committee members can help you to clarify your study’s purpose so carefully attend to any feedback they offer.

The purpose statement should reflect the research questions and vice versa. The chain of alignment that began with the research problem description and continues on to the research purpose, research questions, and methodology must be respected at all times during dissertation development. You are to succinctly describe the overarching goal of the study that reflects the research questions. Each research question narrows and focuses the purpose statement. Conversely, the purpose statement encompasses all of the research questions.

Identify in the purpose statement the research method as quantitative, qualitative or mixed (i.e., “The purpose of this [qualitative/quantitative/mixed] study is to ...)

Avoid the use of the phrase “research study” since the two words together are redundant.

Follow the initial declaration of purpose with a brief overview of how, with what instruments/data, with whom and where (as applicable) the study will be conducted. Identify variables/constructs and/or phenomenon/concept/idea. Since this section is to be a concise paragraph, emphasis must be placed on the word brief. However, adding these details will give your readers a very clear picture of the purpose of your research.

Developing the purpose section of your dissertation is usually not achieved in a single flash of insight. The process involves a great deal of reading to find out what other scholars have done to address the research topic and problem you have identified. The purpose section of your dissertation could well be the most important paragraph you write during your academic career, and every word should be carefully selected. Think of it as the DNA of your dissertation. Everything else you write should emerge directly and clearly from your purpose statement. In turn, your purpose statement should emerge directly and clearly from your research problem description. It is good practice to print out your problem statement and purpose statement and keep them in front of you as you work on each part of your dissertation in order to insure alignment.

It is helpful to collect several dissertations similar to the one you envision creating. Extract the problem descriptions and purpose statements of other dissertation authors and compare them in order to sharpen your thinking about your own work.  Comparing how other dissertation authors have handled the many challenges you are facing can be an invaluable exercise. Keep in mind that individual universities use their own tailored protocols for presenting key components of the dissertation so your review of these purpose statements should focus on content rather than form.

Once your purpose statement is set it must be consistently presented throughout the dissertation. This may require some recursive editing because the way you articulate your purpose may evolve as you work on various aspects of your dissertation. Whenever you make an adjustment to your purpose statement you should carefully follow up on the editing and conceptual ramifications throughout the entire document.

In establishing your purpose you should NOT advocate for a particular outcome. Research should be done to answer questions not prove a point. As a researcher, you are to inquire with an open mind, and even when you come to the work with clear assumptions, your job is to prove the validity of the conclusions reached. For example, you would not say the purpose of your research project is to demonstrate that there is a relationship between two variables. Such a statement presupposes you know the answer before your research is conducted and promotes or supports (advocates on behalf of) a particular outcome. A more appropriate purpose statement would be to examine or explore the relationship between two variables.

Your purpose statement should not imply that you are going to prove something. You may be surprised to learn that we cannot prove anything in scholarly research for two reasons. First, in quantitative analyses, statistical tests calculate the probability that something is true rather than establishing it as true. Second, in qualitative research, the study can only purport to describe what is occurring from the perspective of the participants. Whether or not the phenomenon they are describing is true in a larger context is not knowable. We cannot observe the phenomenon in all settings and in all circumstances.

It is important to distinguish in your mind the differences between the Problem Statement and Purpose Statement.

The Problem Statement is why I am doing the research

The Purpose Statement is what type of research I am doing to fit or address the problem

The Purpose Statement includes:

  • Method of Study
  • Specific Population

Remember, as you are contemplating what to include in your purpose statement and then when you are writing it, the purpose statement is a concise paragraph that describes the intent of the study, and it should flow directly from the problem statement.  It should specifically address the reason for conducting the study, and reflect the research questions.  Further, it should identify the research method as qualitative, quantitative, or mixed.  Then provide a brief overview of how the study will be conducted, with what instruments/data collection methods, and with whom (subjects) and where (as applicable). Finally, you should identify variables/constructs and/or phenomenon/concept/idea.

Qualitative Purpose Statement

Creswell (2002) suggested for writing purpose statements in qualitative research include using deliberate phrasing to alert the reader to the purpose statement. Verbs that indicate what will take place in the research and the use of non-directional language that do not suggest an outcome are key. A purpose statement should focus on a single idea or concept, with a broad definition of the idea or concept. How the concept was investigated should also be included, as well as participants in the study and locations for the research to give the reader a sense of with whom and where the study took place. 

Creswell (2003) advised the following script for purpose statements in qualitative research:

“The purpose of this qualitative_________________ (strategy of inquiry, such as ethnography, case study, or other type) study is (was? will be?) to ________________ (understand? describe? develop? discover?) the _________________(central phenomenon being studied) for ______________ (the participants, such as the individual, groups, organization) at __________(research site). At this stage in the research, the __________ (central phenomenon being studied) will be generally defined as ___________________ (provide a general definition)” (pg. 90).

Quantitative Purpose Statement

Creswell (2003) offers vast differences between the purpose statements written for qualitative research and those written for quantitative research, particularly with respect to language and the inclusion of variables. The comparison of variables is often a focus of quantitative research, with the variables distinguishable by either the temporal order or how they are measured. As with qualitative research purpose statements, Creswell (2003) recommends the use of deliberate language to alert the reader to the purpose of the study, but quantitative purpose statements also include the theory or conceptual framework guiding the study and the variables that are being studied and how they are related. 

Creswell (2003) suggests the following script for drafting purpose statements in quantitative research:

“The purpose of this _____________________ (experiment? survey?) study is (was? will be?) to test the theory of _________________that _________________ (compares? relates?) the ___________(independent variable) to _________________________(dependent variable), controlling for _______________________ (control variables) for ___________________ (participants) at _________________________ (the research site). The independent variable(s) _____________________ will be generally defined as _______________________ (provide a general definition). The dependent variable(s) will be generally defined as _____________________ (provide a general definition), and the control and intervening variables(s), _________________ (identify the control and intervening variables) will be statistically controlled in this study” (pg. 97).

  • The purpose of this qualitative study was to determine how participation in service-learning in an alternative school impacted students academically, civically, and personally.  There is ample evidence demonstrating the failure of schools for students at-risk; however, there is still a need to demonstrate why these students are successful in non-traditional educational programs like the service-learning model used at TDS.  This study was unique in that it examined one alternative school’s approach to service-learning in a setting where students not only serve, but faculty serve as volunteer teachers.  The use of a constructivist approach in service-learning in an alternative school setting was examined in an effort to determine whether service-learning participation contributes positively to academic, personal, and civic gain for students, and to examine student and teacher views regarding the overall outcomes of service-learning.  This study was completed using an ethnographic approach that included observations, content analysis, and interviews with teachers at The David School.
  • The purpose of this quantitative non-experimental cross-sectional linear multiple regression design was to investigate the relationship among early childhood teachers’ self-reported assessment of multicultural awareness as measured by responses from the Teacher Multicultural Attitude Survey (TMAS) and supervisors’ observed assessment of teachers’ multicultural competency skills as measured by the Multicultural Teaching Competency Scale (MTCS) survey. Demographic data such as number of multicultural training hours, years teaching in Dubai, curriculum program at current school, and age were also examined and their relationship to multicultural teaching competency. The study took place in the emirate of Dubai where there were 14,333 expatriate teachers employed in private schools (KHDA, 2013b).
  • The purpose of this quantitative, non-experimental study is to examine the degree to which stages of change, gender, acculturation level and trauma types predicts the reluctance of Arab refugees, aged 18 and over, in the Dearborn, MI area, to seek professional help for their mental health needs. This study will utilize four instruments to measure these variables: University of Rhode Island Change Assessment (URICA: DiClemente & Hughes, 1990); Cumulative Trauma Scale (Kira, 2012); Acculturation Rating Scale for Arabic Americans-II Arabic and English (ARSAA-IIA, ARSAA-IIE: Jadalla & Lee, 2013), and a demographic survey. This study will examine 1) the relationship between stages of change, gender, acculturation levels, and trauma types and Arab refugees’ help-seeking behavior, 2) the degree to which any of these variables can predict Arab refugee help-seeking behavior.  Additionally, the outcome of this study could provide researchers and clinicians with a stage-based model, TTM, for measuring Arab refugees’ help-seeking behavior and lay a foundation for how TTM can help target the clinical needs of Arab refugees. Lastly, this attempt to apply the TTM model to Arab refugees’ condition could lay the foundation for future research to investigate the application of TTM to clinical work among refugee populations.
  • The purpose of this qualitative, phenomenological study is to describe the lived experiences of LLM for 10 EFL learners in rural Guatemala and to utilize that data to determine how it conforms to, or possibly challenges, current theoretical conceptions of LLM. In accordance with Morse’s (1994) suggestion that a phenomenological study should utilize at least six participants, this study utilized semi-structured interviews with 10 EFL learners to explore why and how they have experienced the motivation to learn English throughout their lives. The methodology of horizontalization was used to break the interview protocols into individual units of meaning before analyzing these units to extract the overarching themes (Moustakas, 1994). These themes were then interpreted into a detailed description of LLM as experienced by EFL students in this context. Finally, the resulting description was analyzed to discover how these learners’ lived experiences with LLM conformed with and/or diverged from current theories of LLM.
  • The purpose of this qualitative, embedded, multiple case study was to examine how both parent-child attachment relationships are impacted by the quality of the paternal and maternal caregiver-child interactions that occur throughout a maternal deployment, within the context of dual-military couples. In order to examine this phenomenon, an embedded, multiple case study was conducted, utilizing an attachment systems metatheory perspective. The study included four dual-military couples who experienced a maternal deployment to Operation Iraqi Freedom (OIF) or Operation Enduring Freedom (OEF) when they had at least one child between 8 weeks-old to 5 years-old.  Each member of the couple participated in an individual, semi-structured interview with the researcher and completed the Parenting Relationship Questionnaire (PRQ). “The PRQ is designed to capture a parent’s perspective on the parent-child relationship” (Pearson, 2012, para. 1) and was used within the proposed study for this purpose. The PRQ was utilized to triangulate the data (Bekhet & Zauszniewski, 2012) as well as to provide some additional information on the parents’ perspective of the quality of the parent-child attachment relationship in regards to communication, discipline, parenting confidence, relationship satisfaction, and time spent together (Pearson, 2012). The researcher utilized the semi-structured interview to collect information regarding the parents' perspectives of the quality of their parental caregiver behaviors during the deployment cycle, the mother's parent-child interactions while deployed, the behavior of the child or children at time of reunification, and the strategies or behaviors the parents believe may have contributed to their child's behavior at the time of reunification. The results of this study may be utilized by the military, and by civilian providers, to develop proactive and preventive measures that both providers and parents can implement, to address any potential adverse effects on the parent-child attachment relationship, identified through the proposed study. The results of this study may also be utilized to further refine and understand the integration of attachment theory and systems theory, in both clinical and research settings, within the field of marriage and family therapy.

Was this resource helpful?

  • << Previous: Problem Statement
  • Next: Alignment >>
  • Last Updated: Apr 24, 2023 1:37 PM
  • URL: https://resources.nu.edu/c.php?g=1006886

NCU Library Home

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is the purpose of the research study

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods.

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

Resident Experience

Resident Experience: What It Is and How to Improve It 

Mar 27, 2024

employee onboarding and training software

11 Best Employee Onboarding and Training Software in 2024

team engagement software

Top 11 Team Engagement Software in 2024

Brand Health Tracker

8 Leading Brand Health Tracker to Track Your Brand Reputation

Mar 26, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Book cover

Doing Research: A New Researcher’s Guide pp 1–15 Cite as

What Is Research, and Why Do People Do It?

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  
  • Open Access
  • First Online: 03 December 2022

14k Accesses

Part of the book series: Research in Mathematics Education ((RME))

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Cite this chapter.

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.1 The Purpose of Research Writing

Learning objectives.

  • Identify reasons to research writing projects.
  • Outline the steps of the research writing process.

Why was the Great Wall of China built? What have scientists learned about the possibility of life on Mars? What roles did women play in the American Revolution? How does the human brain create, store, and retrieve memories? Who invented the game of football, and how has it changed over the years?

You may know the answers to these questions off the top of your head. If you are like most people, however, you find answers to tough questions like these by searching the Internet, visiting the library, or asking others for information. To put it simply, you perform research.

Whether you are a scientist, an artist, a paralegal, or a parent, you probably perform research in your everyday life. When your boss, your instructor, or a family member asks you a question that you do not know the answer to, you locate relevant information, analyze your findings, and share your results. Locating, analyzing, and sharing information are key steps in the research process, and in this chapter, you will learn more about each step. By developing your research writing skills, you will prepare yourself to answer any question no matter how challenging.

Reasons for Research

When you perform research, you are essentially trying to solve a mystery—you want to know how something works or why something happened. In other words, you want to answer a question that you (and other people) have about the world. This is one of the most basic reasons for performing research.

But the research process does not end when you have solved your mystery. Imagine what would happen if a detective collected enough evidence to solve a criminal case, but she never shared her solution with the authorities. Presenting what you have learned from research can be just as important as performing the research. Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper . A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

If you are curious about the possibility of life on Mars, for example, you might choose to research the topic. What will you do, though, when your research is complete? You will need a way to put your thoughts together in a logical, coherent manner. You may want to use the facts you have learned to create a narrative or to support an argument. And you may want to show the results of your research to your friends, your teachers, or even the editors of magazines and journals. Writing a research paper is an ideal way to organize thoughts, craft narratives or make arguments based on research, and share your newfound knowledge with the world.

Write a paragraph about a time when you used research in your everyday life. Did you look for the cheapest way to travel from Houston to Denver? Did you search for a way to remove gum from the bottom of your shoe? In your paragraph, explain what you wanted to research, how you performed the research, and what you learned as a result.

Research Writing and the Academic Paper

No matter what field of study you are interested in, you will most likely be asked to write a research paper during your academic career. For example, a student in an art history course might write a research paper about an artist’s work. Similarly, a student in a psychology course might write a research paper about current findings in childhood development.

Having to write a research paper may feel intimidating at first. After all, researching and writing a long paper requires a lot of time, effort, and organization. However, writing a research paper can also be a great opportunity to explore a topic that is particularly interesting to you. The research process allows you to gain expertise on a topic of your choice, and the writing process helps you remember what you have learned and understand it on a deeper level.

Research Writing at Work

Knowing how to write a good research paper is a valuable skill that will serve you well throughout your career. Whether you are developing a new product, studying the best way to perform a procedure, or learning about challenges and opportunities in your field of employment, you will use research techniques to guide your exploration. You may even need to create a written report of your findings. And because effective communication is essential to any company, employers seek to hire people who can write clearly and professionally.

Writing at Work

Take a few minutes to think about each of the following careers. How might each of these professionals use researching and research writing skills on the job?

  • Medical laboratory technician
  • Small business owner
  • Information technology professional
  • Freelance magazine writer

A medical laboratory technician or information technology professional might do research to learn about the latest technological developments in either of these fields. A small business owner might conduct research to learn about the latest trends in his or her industry. A freelance magazine writer may need to research a given topic to write an informed, up-to-date article.

Think about the job of your dreams. How might you use research writing skills to perform that job? Create a list of ways in which strong researching, organizing, writing, and critical thinking skills could help you succeed at your dream job. How might these skills help you obtain that job?

Steps of the Research Writing Process

How does a research paper grow from a folder of brainstormed notes to a polished final draft? No two projects are identical, but most projects follow a series of six basic steps.

These are the steps in the research writing process:

  • Choose a topic.
  • Plan and schedule time to research and write.
  • Conduct research.
  • Organize research and ideas.
  • Draft your paper.
  • Revise and edit your paper.

Each of these steps will be discussed in more detail later in this chapter. For now, though, we will take a brief look at what each step involves.

Step 1: Choosing a Topic

As you may recall from Chapter 8 “The Writing Process: How Do I Begin?” , to narrow the focus of your topic, you may try freewriting exercises, such as brainstorming. You may also need to ask a specific research question —a broad, open-ended question that will guide your research—as well as propose a possible answer, or a working thesis . You may use your research question and your working thesis to create a research proposal . In a research proposal, you present your main research question, any related subquestions you plan to explore, and your working thesis.

Step 2: Planning and Scheduling

Before you start researching your topic, take time to plan your researching and writing schedule. Research projects can take days, weeks, or even months to complete. Creating a schedule is a good way to ensure that you do not end up being overwhelmed by all the work you have to do as the deadline approaches.

During this step of the process, it is also a good idea to plan the resources and organizational tools you will use to keep yourself on track throughout the project. Flowcharts, calendars, and checklists can all help you stick to your schedule. See Chapter 11 “Writing from Research: What Will I Learn?” , Section 11.2 “Steps in Developing a Research Proposal” for an example of a research schedule.

Step 3: Conducting Research

When going about your research, you will likely use a variety of sources—anything from books and periodicals to video presentations and in-person interviews.

Your sources will include both primary sources and secondary sources . Primary sources provide firsthand information or raw data. For example, surveys, in-person interviews, and historical documents are primary sources. Secondary sources, such as biographies, literary reviews, or magazine articles, include some analysis or interpretation of the information presented. As you conduct research, you will take detailed, careful notes about your discoveries. You will also evaluate the reliability of each source you find.

Step 4: Organizing Research and the Writer’s Ideas

When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper. You may decide to adjust your thesis or conduct additional research to ensure that your thesis is well supported.

Remember, your working thesis is not set in stone. You can and should change your working thesis throughout the research writing process if the evidence you find does not support your original thesis. Never try to force evidence to fit your argument. For example, your working thesis is “Mars cannot support life-forms.” Yet, a week into researching your topic, you find an article in the New York Times detailing new findings of bacteria under the Martian surface. Instead of trying to argue that bacteria are not life forms, you might instead alter your thesis to “Mars cannot support complex life-forms.”

Step 5: Drafting Your Paper

Now you are ready to combine your research findings with your critical analysis of the results in a rough draft. You will incorporate source materials into your paper and discuss each source thoughtfully in relation to your thesis or purpose statement.

When you cite your reference sources, it is important to pay close attention to standard conventions for citing sources in order to avoid plagiarism , or the practice of using someone else’s words without acknowledging the source. Later in this chapter, you will learn how to incorporate sources in your paper and avoid some of the most common pitfalls of attributing information.

Step 6: Revising and Editing Your Paper

In the final step of the research writing process, you will revise and polish your paper. You might reorganize your paper’s structure or revise for unity and cohesion, ensuring that each element in your paper flows into the next logically and naturally. You will also make sure that your paper uses an appropriate and consistent tone.

Once you feel confident in the strength of your writing, you will edit your paper for proper spelling, grammar, punctuation, mechanics, and formatting. When you complete this final step, you will have transformed a simple idea or question into a thoroughly researched and well-written paper you can be proud of!

Review the steps of the research writing process. Then answer the questions on your own sheet of paper.

  • In which steps of the research writing process are you allowed to change your thesis?
  • In step 2, which types of information should you include in your project schedule?
  • What might happen if you eliminated step 4 from the research writing process?

Key Takeaways

  • People undertake research projects throughout their academic and professional careers in order to answer specific questions, share their findings with others, increase their understanding of challenging topics, and strengthen their researching, writing, and analytical skills.
  • The research writing process generally comprises six steps: choosing a topic, scheduling and planning time for research and writing, conducting research, organizing research and ideas, drafting a paper, and revising and editing the paper.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Study Site Homepage

  • Request new password
  • Create a new account

Doing Research in Education: Theory and Practice

Student resources, 1. the purpose of research: why do we do it.

Select SAGE Journal articles are available to give you even more insight into chapter topics. These are also an ideal resource to help support your literature reviews, dissertations and assignments.

Click on the following links which will open in a new window.

Brace, M., Herriotts, P., Mccullagh, A. and Nzegwu, F. (2007) ‘Why research — what research should be done?: Report of a collaborative workshop in the UK to discuss social research priorities on visual impairment’, British Journal of Visual Impairment , 25(2): 178–189.

Hannah, D.R. and Lautsch, B.A. (2010) ‘Counting in Qualitative Research: Why to Conduct it, When to Avoid it, and When to Closet it’, in Journal of Management Inquiry , 20(1): 14–22.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved March 26, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

what is the purpose of the research study

Purpose of Research

The purpose of research can be a complicated issue and varies across different scientific fields and disciplines. At the most basic level, science can be split, loosely, into two types, 'pure research' and 'applied research'.

This article is a part of the guide:

  • Definition of Research
  • Research Basics
  • What is Research?
  • Steps of the Scientific Method
  • What is the Scientific Method?

Browse Full Outline

  • 1 Research Basics
  • 2.1 What is Research?
  • 2.2 What is the Scientific Method?
  • 2.3 Empirical Research
  • 3.1 Definition of Research
  • 3.2 Definition of the Scientific Method
  • 3.3 Definition of Science
  • 4 Steps of the Scientific Method
  • 5 Scientific Elements
  • 6 Aims of Research
  • 7 Purpose of Research
  • 8 Science Misconceptions

Both of these types follow the same structures and protocols for propagating and testing hypotheses and predictions, but vary slightly in their ultimate purpose.

An excellent example for illustrating the difference is by using pure and applied mathematics. Pure maths is concerned with understanding underlying abstract principles and describing them with elegant theories. Applied maths, by contrast, uses these equations to explain real life phenomena, such as mechanics, ecology and gravity.

what is the purpose of the research study

Pure Scientific Research

Some science, often referred to as 'pure science', is about explaining the world around us and trying to understand how the universe operates. It is about finding out what is already there without any greater purpose of research than the explanation itself. It is a direct descendent of philosophy, where philosophers and scientists try to understand the underlying principles of existence.

Whilst offering no direct benefits, pure research often has indirect benefits, which can contribute greatly to the advancement of humanity.

For example, pure research into the structure of the atom has led to x-rays, nuclear power and silicon chips.

what is the purpose of the research study

Applied Scientific Research

Applied scientists might look for answers to specific questions that help humanity, for example medical research or environmental studies. Such research generally takes a specific question and tries to find a definitive and comprehensive answer.

The purpose of research is about testing theories, often generated by pure science, and applying them to real situations, addressing more than just abstract principles.

Applied scientific research can be about finding out the answer to a specific problem, such as 'Is global warming avoidable?' or 'Does a new type of medicine really help the patients?'

Generating Testable Data

However, they all involve generating a theory to explain why something is happening and using the full battery of scientific tools and methods to test it rigorously.

This process opens up new areas for further study and a continued refinement of the hypotheses.

Observation is not accurate enough, with statistically testable and analyzable data the only results accepted across all scientific disciplines. The exact nature of the experimental process may vary, but they all adhere to the same basic principles.

Scientists can be opinionated, like anybody else, and often will adhere to their own theories, even if the evidence shows otherwise. Research is a tool by which they can test their own, and each others' theories, by using this antagonism to find an answer and advance knowledge.

The purpose of research is really an ongoing process of correcting and refining hypotheses , which should lead to the acceptance of certain scientific truths .

Whilst no scientific proof can be accepted as ultimate fact, rigorous testing ensures that proofs can become presumptions. Certain basic presumptions are made before embarking on any research project, and build upon this gradual accumulation of knowledge.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Aug 2, 2008). Purpose of Research. Retrieved Mar 26, 2024 from Explorable.com: https://explorable.com/purpose-of-research

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Save this course for later.

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

what is the purpose of the research study

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

National Academies Press: OpenBook

Airport Passenger-Related Processing Rates Guidebook (2009)

Chapter: chapter 3 - defining the research: purpose, focus, and potential uses.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

14 Chapter 3 identifies roles, relationships, and responsibilities of stakeholders. It examines principal steps involved in planning an airport passenger-rate data collection effort. It begins with the ques- tion of whether the potential benefits of the proposed effort outweigh the anticipated cost; describes different types of research (i.e., exploratory, descriptive, inferential); summarizes the questions each type addresses; and notes the ends to which the data might be used. 3.1 Roles and Responsibilities When an airport data collection event is first mentioned, it invariably raises numerous ques- tions: Who is asking for the data? How will it be used? What’s the budget? What’s the schedule? What kind of resources can be made available? Without answers to these fundamental questions, the success of your research is in jeopardy. This section will help the researcher establish the role of key stakeholders and their interrelationships within the team. Many entities can sponsor a data collection study, including airports, airlines, manufacturers, and various agencies. Likewise, there are many ways of managing and staffing the event and pro- moting involvement with stakeholders. There are therefore myriad ways of organizing a study. Exhibit 3-1 is an example of how a study could be arranged with the airport as the sponsor. 3.1.1 Client/Sponsor For airports, oversight is guided by a board, commission, or an authority consisting of appointed or elected officials. While these agencies typically provide oversight to airport man- agement and approve long-term plans and large capital expenditures, usually it is the airport director or manager who makes day-to-day decisions. Depending on the size of the airport, there may be several departments, each having its own manager. In such cases, passenger terminal-related studies would typically fall within the purview of the planning and/or engineering department and would be managed by its director. Regardless of the affiliation of the project sponsor(s), it is essential that the following ques- tions be answered clearly and unambiguously as they pertain to the sponsor at the beginning of any project: • Who has primary responsibility for defining the questions the study is intended to address? • What preference does this person or group have regarding ongoing involvement with the project? – What information would they like to receive, in what format, and with what frequency? – Who should be the principal point-of-contact (POC) on the client’s side for questions that might emerge related to the study’s focus, direction, etc.? C H A P T E R 3 Defining the Research: Purpose, Focus, and Potential Uses

Defining the Research: Purpose, Focus, and Potential Uses 15 • Who is the designated project manager, and what information would he or she like to receive, in what format, and with what frequency? • If the person given responsibility for day-to-day issues pertaining to access, authorizations, etc. is different from the project manager, who is that person, and what is the scope of issues he or she is authorized to address? • If problems or obstacles arise in implementing the study, and the project manager is not able or authorized to resolve them, what is the chain of persons through which the issue should be escalated? 3.1.2 Study Team The size of the study team will depend on the team’s depth and organization, and the size, duration, and complexity of the study itself. For a typical medium- to large-scale study, the roles listed in the following sections are the most typical. Multiple roles might be assumed by a single person or distributed across multiple persons. Titles vary as well, but the functions are largely universal. Project Manager The project manager is typically a mid-level to senior person who has the long-term, day-to- day relationship with his or her client counterpart. The need for the passenger-related process- ing rate study may initially originate from discussions between the project manager and those within the airport or airline. Survey Manager The survey manager is usually a mid-level staff person. His/her role on the project would be to oversee the day-to-day management of the data processing rate study, including leading the development of the scope, schedule, and budget; developing the team; and assigning roles and responsibilities. The survey manager would have the responsibility of ensuring the survey goals were adequately defined and met. Decision Maker Survey Manager Admin. Support Staffing Source (e.g., airport personnel, mkt. research firm) Surveyor Surveyor Surveyor Sponsor/Client (Airport) (Large Airport: Dir./Mgr.) Project Manager (Large Airport: Dir. Planning/Eng.) (Small Airport: Apt. Mgr.) Project Manager (Typ. oversees multiple tasks of which survey is but one part) Study Team (Typically, Consultant) Statistical Technical Expert Survey Assistant Data Analyst IT Analyst Other Stakeholders • Airlines • Agencies • Concessionaires Exhibit 3-1. Typical sponsor and study team roles (assuming an airport is the sponsor).

16 Airport Passenger-Related Processing Rates Guidebook Research and Statistical Expert A person(s) with expertise in research methodology and quantitative/statistical analysis should be consulted to develop, or provide comments and recommendations about, the overall methodology, the sampling plan, and so forth. Most of this person’s input would occur at the project’s initiation. A distinction is sometimes drawn in the consulting literature among differ- ent approaches to consulting. One such approach, generally referred to as process consultation might be of particular appeal.1 When acting in this role, the consultant not only provides tech- nical expertise related to the specific project, but also works with the client to develop expertise. This arrangement has the goal of, over time, reducing the reliance on the consultant. Survey Assistant The survey assistant has primary responsibility for assisting the survey project manager and secondarily to assist others on the project team throughout the duration of the study. Typically, this staff person will be at a junior level. The degree of assistance this person can provide is based on his/her level of education and current skill sets. Data Analyst The data analyst should not only be well-versed in technical analysis, but should also have a strong familiarity with the airport terminal environment. This person could be a terminal or air- port planner or aviation architect. The analyst is often largely responsible for documenting results, and responsibilities might extend to presenting findings to the client. Administrative Support Data collection efforts are inherently complex and, as such, often require a significant level of coordination and administration. The staff person serving this function would be responsible for such things as making travel plans, scheduling visits to the airport’s security office, buying supplies, shipping and receiving materials, scheduling meetings, preparing invoices and con- tracts, and editing/proofing the report. Data Collection Staff For small studies (e.g., small airports where only a few functional elements are being observed for a limited time period), airport/airline or consultant staffing may be used. For larger studies, typically examining multiple functional elements of a medium or large airport over a multi-day period, a market-research firm is frequently employed. The data collection staff reports directly to the survey manager. 3.2 Is the Study Needed? While the need for data collection is often justifiable, the benefit of validating the need, and avoiding what might be a costly, and possibly unjustified, effort well exceeds the relatively minor cost of pausing to consider a few basic questions (see Appendix C for more information). Exhibit 3-2 illustrates these questions. 3.3 Research Fundamentals This section summarizes a number of fundamental issues and terms related to the research process. (Additional detail is included in Appendix C.) 1 Schein, E. H. (1999). Process Consultation Revisited: Building the Helping Relationship. NY: Addison Wesley.

Research is a dynamic process with both deductive and inductive dimensions. This differs in some ways from what some present as the “traditional” approach to research, i.e., that theory drives hypothesis testing. Sometimes it does, but sometimes it doesn’t work this way. 3.3.1 Theory, Hypotheses, and Evidence The word “theory” often implies a formal set of laws, propositions, variables, and the like, whose relationships are clearly defined. A related implication is that theory may not be particu- larly germane to the everyday world of work. This view of theory is not incorrect, but neither is it complete. While theory can be abstract and complex in its detail, it does not necessarily have to be abstract, complex, or formal. It can be thought of more broadly and simply as an explanation of “how the world works.” For exam- ple, an organization might develop a mission or a value statement (or both); engrave the words in a medium intended to last millennia; and prominently display the statement in the workplace with the intent of communicating to all its perspective clients on issues pertinent to its view. In Defining the Research: Purpose, Focus, and Potential Uses 17 Question Things to Consider Have relevant data been collected at this airport in the past that might be used rather than collecting new data? Might you be able to get data from another airport similar in key ways to this airport? Are there data available that might help answer the research question? Might access to the data be blocked due to proprietary or security issues? Sometimes the data are perceived to be so sensitive that the “owner” of the data may not give permission to share it. Has the decision already been made, and the data are being collected to legitimize the decision? Is there anything to suggest that the study is an attempt to “prove” something true or false? What role will the results play in the decision being considered? To what extent will the decision makers be persuaded by the results? What will the decision makers accept as credible evidence? Before collecting data, make certain that the research plan will result in data that the sponsors will accept. It is better to learn beforehand, for example, that the proposed sampling plan does not meet the sponsor’s criteria for rigor. What is the cost of the potential investment that the data will help inform? What is the cost of conducting the research? Does the benefit equal or outweigh the cost? Cost should be considered not only in economic terms, but as safety, inconvenience, and so forth. Exhibit 3-2. Considerations to determine need for data collection.

2008, British Airways announced a new venture: OpenSkies. The “theory” OpenSkies used to define its clients is reflected in its advertising as shown in Exhibit 3-3. So, how does this relate to airport processing rate studies? It relates in the following two ways: 1. The published research literature may well contain formal theories relevant to what data to collect and how to collect it. For example, Appendix B includes a bibliography of recent research articles related to passenger and baggage processing in airports. It is intended to illustrate the scope and diversity of research available on a given topic. Before embarking on an investigation, review the literature to see how it might enhance the quality of the planned research. The Internet provides access to numerous sources for such scholarly documents. 2. Informally, the key decisions about how to go about collecting data are grounded in assump- tions about how things work (i.e., one’s own theory). For example, you might choose to col- lect passenger security screening data between 6:00 a.m. and 8:00 a.m. on a Monday because your experience is that this time period reflects peak checkpoint activity. While this “theory” may be correct in some circumstances, it may also be wrong in others. For example, at many vacation-oriented airports, the peak at the checkpoint occurs in the late morning due to check-out times at hotels. Another common view of research is of the stereotypical scientist, objectively testing hypothe- ses (or an “educated guess”) arising from theory. Exhibit 3-4 reflects this general approach to research. This is certainly one way in which research proceeds, but, similar to theory, it is not the only way. Before considering an “evidence first” approach, we wish to mention a variation on the tra- ditional approach displayed in Exhibit 3-4 that has been gaining dominance in recent years. In particular, this is a confidence interval (CI) approach rather than a hypothesis driven approach. In a hypothesis driven approach, the researcher’s primary interest is in testing a population parameter, and uses a sample drawn from the population. When the researcher takes a CI approach, the intent is to calculate an interval within which the population parameter is likely 18 Airport Passenger-Related Processing Rates Guidebook Exhibit 3-3. OpenSkies advertisement. Question key assumptions, even if they seem to be “common sense,” by checking with informants, look- ing at the literature, etc.

to fall. Hypotheses are stated before data collection; CIs are calculated after data are collected.2 In conducting passenger-processing rate research in airport environments, the CI approach is going to be the most appropriate in most instances. A markedly different approach to those described above is shown in Exhibit 3-5. In contrast to beginning with a theory and then collecting evidence to test the theory or estimate a popula- tion parameter within some CI, this approach begins with evidence for which one seeks poten- tial explanations, or “theories” to explain the evidence. This approach is subsumed under the broad heading of Bayesian Law, so named after the 18th Century English clergyman, Thomas Bayes, credited with developing the approach. Depending on where one begins can result in potentially dramatic conclusions (see Exhibit 3-6). This is important because limiting oneself to a particular perspective of how research should be conducted and how data ought to be gathered may impose unnecessary constraints. What is important is that the research is executed systematically and with rigor. The documented ways in which science proceeds are often idealized: portraying what is inherently a very dynamic and nonlinear process as logical and linear. 3.3.2 Research Questions and Purposes A basic issue in research is specifying the question the research will help answer. Penning a specific question also helps in determining what approach might be best used in seeking an Defining the Research: Purpose, Focus, and Potential Uses 19 Theory Drives questions & hypotheses Hypothesis: Installing n kiosks will reduce the average time of passengers waiting in line by 10% over check-in agents. Leading to a conclusion Drives data collection Followed by analysis Exhibit 3-4. Hypothesis driven approach. Evidence leads to speculation about possible explanations Which may or may not drive more data collection & analysis Theory Exhibit 3-5. Bayesian approach. 2 While these approaches are presented here as mutually exclusive, they might be integrated in practice.

answer. One classic text in research methodology5 suggests that a research question should express a relationship between two or more variables, and it should imply an empirical approach, that is, it should lend itself to being measured using data. A variable is, not surprisingly, some- thing that can vary, or assume different values. In the next section, illustrative questions are given, categorized by the purpose of research with which they are best matched. The five research purposes are presented as the following: 1. Explore, 2. Describe, 3. Test, 4. Evaluate, and 5. Predict. The distinctions among these purposes are not absolute, nor are they necessarily exclusive of one another. A research initiative might be directed at answering questions with multiple pur- poses. Indeed, this is but one of many ways of classifying research. In addition, the reader whose practice lies primarily in the arena of modeling and simulation might note their absence from this list. Although modeling and simulation applications require input data, for example, to gen- erate distributions and parameters for use as stochastic varieties in modeling, the techniques used to collect data are largely independent of specific applications (such as simulation and model- ing). Those issues unique to modeling are beyond the scope of this guidebook. Explore (Exploratory Research) Exploratory research is sometimes defined as “what to do when you don’t know what you don’t know.” Its aim is discovery and to develop an understanding of relevant variables and their interactions in a real (field) environment. Exploratory research, as such, is appropriate when the 20 Airport Passenger-Related Processing Rates Guidebook If your intent is to… And take action based on… Use… Example Test a hypothesis regarding a population parameter Whether you reject or fail to reject the null hypothesis Hypothesis testing approach The proportion of coach passengers checking in more than 60 min prior to scheduled departure is 80% H A : p > .80 3 H 0 : p .804 Estimate a population parameter The confidence interval selected CI approach Plus or minus 5%, what is the average time coach passengers check in prior to scheduled departure? Determine the likelihood of an event given some evidence The calculated probability Bayesian approach What is the probability that a passenger’s carry on- luggage will be subject to secondary security screening given that the passenger is boarding an international flight? Exhibit 3-6. Research approaches. 3 This is the research, or Alternative, hypothesis. It reads: The proportion is greater than 80%. 4 This is the null hypothesis. It is what is tested, and reads: The proportion is less than or equal to 80%. 5 Kerlinger F. & Lee, H. (2000). Foundations of Behavioral Research, 4th ed. NY: Harcourt Brace.

problem is not well defined. For example, passenger complaints about signs within a facility might prompt the following exploratory question: • “Where should signage be located to minimize passenger confusion?” As another example, if a new security checkpoint configuration is proposed, it may be too novel to rely on variables used in other studies. The question, therefore, might then be the following: • “How does a given alternative security checkpoint configuration affect capacity?” This type of research is often qualitative rather than quantitative. That is, it employs verbal descriptors of observations, rather than counts of those observations (see Appendix C for more information). Describe (Descriptive Research) Descriptive research, as the name implies, is intended to describe phenomena. While descrip- tive research might involve collecting qualitative data by asking open-ended questions in an interview, it typically employs quantitative methods resulting in reporting frequencies, calculat- ing averages, and the like. The following two questions illustrate the nature of descriptive research. Each implies that the relevant variables have been identified as well as the conditions under which the data should be collected. • “What is the average number of passengers departing on international flights on weekday evenings in July at a given airport?” • “How many men use a given restroom at a particular location at a given time?” Test (Experimental and Quasi-experimental Research and Modeling) Often, the intent of the research is not simply to describe something, but to test the impact of some intervention. In an airport environment, such research might be initiated to evaluate the relative effectiveness of a security screening technology in accurately detecting contraband. It is similar in approach to research conducted to assess the relative effectiveness of an experimental drug in comparison to a control (placebo) or another drug. Variables are often manipulated and controlled. This research lies largely outside the scope of this guidebook and, as such, will not receive much attention. Examples of questions that might be asked in this type of research include the following: • “What is the impact of posting airline personnel near check-in waiting lines on the average passenger waiting time?” In addition to the classic “experiment,” simulation modeling might be used, employing rep- resentative data to help answer questions such as the following: • “What would be the impact on processing time of a new security measure being considered?” • “How many agents are needed to keep passenger waiting time below an average of 10 min?” Evaluate (Evaluative Research) Sometimes, the intent of the research is to assess performance against some standard or stated requirement. Basically, evaluation research is concerned with seeing how well something is work- ing, with an eye toward improving performance, as illustrated by the following two questions: • “Is the performance of a given piece of equipment in the field consistent with manufacturer’s specifications?” • “On average, what proportion of passengers waits in a security checkpoint line longer than the 10-minute maximum threshold specified by an airline?” Defining the Research: Purpose, Focus, and Potential Uses 21

Predict Finally, research might be initiated to attempt to predict or anticipate potential emerging pat- terns before they occur. This is related to environmental scanning, insofar as it represents a delib- erate attempt to monitor potential trends and their impact. For example, in the early 1970s, one might have posed the following question: • “What would be the impact of an increase in the number of women in the workforce on air- port design?” There are numerous documented approaches to answering questions such as these. While well beyond the scope of this guidebook, here is one as illustrative: scenario planning. This method involves convening persons with relevant expertise to identify those areas that might most impact the industry (e.g., regulation, fuel costs, demographic changes), and then to systemati- cally consider what the best, worst, and might likely scenarios might be. The principal value of such an approach is that it facilitates deliberate consideration of future trends, and in so doing, presumably leaves people better prepared. When the goal of the research is to predict, data from multiple sources might be sought. The scenario planning example relies, to an extent, on the judgments of experts. Probabilities can also be drawn from historical data to help identify patterns and trends. Exhibit 3-7 is a summary of the key characteristics of each research type. 3.4 Developing the Research Plan Large research studies, particularly when funding is being requested, often require the researchers to adhere to a specific set of technical requirements. The Research Team is aware that the ad hoc and short timeline of many airport-planning research efforts makes developing a “for- mal” research plan impracticable. Nonetheless, even though you might not have the “luxury” of 22 Airport Passenger-Related Processing Rates Guidebook Research Purpose Characteristics Explore Primary purpose: to better define or understand a situation. Data will help answer the research question. The benefit of conducting the research justifies the cost. Qualitative data are recorded, using observation. Describe Primary purpose: to provide descriptive information about something. Test Primary purpose: to assess the impact of a proposed change in procedure or policy. Evaluate Primary purpose: to assess performance against requirements. Predict Primary purpose: to consider possible future circumstances with the purpose of being better prepared for emerging trends. Exhibit 3-7. Summary of research types.

developing such a plan, there are benefits to considering the issues described in this section, as well as documenting basic information. The following are the three major elements the Research Team believes worth documenting, regardless of the size of the research endeavor.6 1. Goals or aims. 2. Background and significance. 3. Research design and methods. Each is described in the sections that follow. 3.4.1 Goals or Aims Specify the question the research is intended to help answer or the specific purpose of the research. The experience of having to translate an intended purpose into words can help clarify your intent. In addition, a written statement can serve as a way of ensuring that your understand- ing of the purpose of the research is consistent with that of the sponsor and other stakeholders. Two examples follow: Statement of Purpose—Example 1 The purpose of this study is to aid decision makers in determining if extending the dwell time of the airport’s automated guideway transit system (AGTS) vehicles from 30 sec to 35 sec at the Concourse C station might improve overall system capacity by providing more boarding time for passengers. Statement of Purpose—Example 2 The goal of this study is to provide airport management with recent data showing the percent- age of arriving flights whose first checked bag reaches the claim device within the airport’s goal of 15 min. 3.4.2 Background and Significance Document what is already known, and specify how the proposed research initiative will add to this knowledge. Consider a “devil’s advocate” perspective by asking what the consequences of not doing the research might be. 3.4.3 Research Design and Methods In this section, describe how you will go about collecting and analyzing data. Additional infor- mation about these issues, including sampling strategies and sample size, is presented in Chapter 5 and in Appendix C. The research plan does not need be lengthy. It should, however, capture key information that, were it not documented and those familiar with the research were not available, would be diffi- cult to ascertain. Defining the Research: Purpose, Focus, and Potential Uses 23 6 This section is partly based on guidelines published by the Agency for Healthcare Research and Quality, Department of Health and Human Services. http://www.ahrq.gov/fund/esstplan.htm.

TRB’s Airport Cooperative Research Program (ACRP) Report 23: Airport Passenger-Related Processing Rates Guidebook provides guidance on how to collect accurate passenger-related processing data for evaluating facility requirements to promote efficient and cost-effective airport terminal design.

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

My Dissertation Editor

  • Code of Ethics
  • Dissertation Editing
  • Dissertation Coaching
  • Free Consultation

Purpose of the Study: Common Errors in Writing Your Purpose Statement

The Purpose of the Study is perhaps the single most important sentence in your dissertation. In conjunction with the Problem Statement, it guides the focus of your research. Your research questions, methodology, and data analysis are all guided by the purpose of the study.

The “Purpose of the Study” section consists of a few short paragraphs describing, aptly, the purpose of your study. Within this section is the “Purpose Statement,” which is a single sentence.

It’s the distillation of your study’s purpose, and that particular sentence will show up again and again in your paper. It generally includes (a) the research paradigm, (b) the intent of the study (such as describe, develop, explore, etc.), and (c) the phenomenon of interest.

It’s also a sentence that many students struggle with, and find themselves revising multiple times before it’s finally accepted. My goal here is to give you all the information you need to create a stellar purpose statement the first time around.

Purpose of the Study in a Single Sentence

african american woman writing in a notebook outdoors

Your purpose statement distills the purpose of your study into a single sentence. It indicates the study’s method and overarching goal. This sentence is contained in the “Purpose of the Study” section. It should be a logical, explicit research response to the stated problem (more on that later). 

Elements of the Purpose Statement: 

Include the following elements in your purpose statement:

  • Identify the research method (qualitative, quantitative, or mixed-method. Usually this is as simple as saying, “the purpose of this qualitative study is…”).
  • The stated purpose reflects the research questions (make sure to identify variables/constructs and the central phenomenon/concept/idea).
  • Clearly state the research design.
  • Ensure the purpose (as well as the method/design) is aligned with the problem statement.  
  • Identify participants or other data sources. 
  • Identify the geographic location of study (when relevant).

Purpose of the Study Template

woman in a yellow sweater typing on her laptop

For Qualitative Studies

The purpose of this quantitative study is to ___[describe, compare, explore, or develop] ____ [describe the study goal that directly reflects and encompasses the research questions] in [describe the population or data source and geographic location]. [Brief overview of how, with what instruments/data, with whom, and where]

For Quantitative Studies:

The purpose of this quantitative study is to ___[describe, compare, correlate, explore, or develop] ____ [describe the study goal that directly reflects and encompasses the research questions] in [describe the population or data source and geographic location]. [State the independent, dependent, and covariate variables]. [Brief overview of how, with what instruments/data, with whom, and where]

How Long Should the Purpose of the Study Section Be?

african american taking notes from his laptop in a school library

Speaking with a Dissertation Chair about the Purpose of the Study section, he said simply, “Don’t make it too long. State the purpose and go onto something else.” That’s good advice. 

Treat dissertation sections like testifying in court (anything you say can and will be used against you by your committee). If you’re asked, “Do you know what time it is?” the correct answer is “yes” or “no,” not “Oh yes, it’s 11:30 and I have a meeting with Charlie in half an hour.” 

Similarly, in the Statement of the Purpose section, just give the purpose, whatever is required by your university’s template, and not much else. This can be accomplished within a few pages at most.

Aligning the Purpose of the Study With the Rest of Your Paper

Keeping your paper in alignment is an extraordinarily important part of writing your dissertation. What this means is that your Problem Statement, Purpose Statement, and Research Questions all say essentially the same thing (just with different wording).

Aligning the Purpose Statement with the Problem Statement

man taking a rest with his hands on his head in front of the computer

Your problem statement should have two parts–a General Problem and a Specific Problem. The general problem is an overarching view of the problem you’re looking to address–this is what you would tell a curious person asking what you’re studying. The Specific Problem is always a gap in research. “The specific problem is that ___ is not known.”

The language that you use to fill in the blank is the same language you should use for the purpose statement. 

Problem : “The problem is that x isn’t known”

Purpose : “The purpose is to find x out”

  • The problem is that we don’t know what factors influence parent involvement in schools.
  • The purpose is to determine the factors that determine parent involvement in schools.
  • The problem is that we don’t know the impact of Covid-19 unemployment on stock prices.
  • The purpose is to determine the impact of Covid-19 unemployment on stock prices.

The professor I interviewed said, “Your committee wants to see you being consistent. ‘My problem is x. My purpose is to explore the problem.’ Period. Don’t have more than one purpose, and don’t stray from your problem statement.”

Aligning the Purpose Statement with the Research Questions

man focused on his notes next to his laptop

The research questions should arise directly from the purpose statement. For example:

What factors do parents report impact their involvement in schools?

To what degree is there a significant relationship between Covid-19 unemployment and stock prices?

There could be additional research questions for each of these studies, but you get the idea: ensure that your research question arises from the purpose statement and the purpose statement arises from the problem statement.  These steps create the foundation of your study, and doing it this way will ensure there is alignment.

Mistakes People Make When Writing Their Purpose Statement

  • Writing the purpose statement apart from their problem statement, so the purpose doesn’t directly relate to the problem.
  • Trying to take on too much in one study — too big a problem to study while you’re paying tuition. (Save those larger studies for when you’re being paid.)
  • Trying to be creative with wording and thereby veering away from the problem statement.
  • Creating multiple purpose statements. 

In short, you’re trying to find information that will help your field better understand a problem that’s important to you. Your job in your dissertation is to address the problem, and your purpose statement will tell us that.

Related posts:

illustration showing the importance of the oxford comma

Nicholas Tippins

Nicholas Tippins is the Founder & Executive Director of My Dissertation Editor. He has edited more dissertations than he can count. When not managing his business, he can be found playing the guitar or wandering around in the woods.

Comments are closed.

How to Finish Your Dissertation in Half the Time

Learn how to avoid the pitfalls preventing you from finishing your dissertation faster.

what is the purpose of the research study

Subscribe to get the free eBook!

  • Common Errors
  • Dissertation Success
  • Presentation
  • Quantitative Analysis
  • Surviving Grad School

“How to Finish Your Dissertation in Half the Time”

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Background of The Study – Examples and Writing Guide

Background of The Study – Examples and Writing Guide

Table of Contents

Background of The Study

Background of The Study

Definition:

Background of the study refers to the context, circumstances, and history that led to the research problem or topic being studied. It provides the reader with a comprehensive understanding of the subject matter and the significance of the study.

The background of the study usually includes a discussion of the relevant literature, the gap in knowledge or understanding, and the research questions or hypotheses to be addressed. It also highlights the importance of the research topic and its potential contributions to the field. A well-written background of the study sets the stage for the research and helps the reader to appreciate the need for the study and its potential significance.

How to Write Background of The Study

Here are some steps to help you write the background of the study:

Identify the Research Problem

Start by identifying the research problem you are trying to address. This problem should be significant and relevant to your field of study.

Provide Context

Once you have identified the research problem, provide some context. This could include the historical, social, or political context of the problem.

Review Literature

Conduct a thorough review of the existing literature on the topic. This will help you understand what has been studied and what gaps exist in the current research.

Identify Research Gap

Based on your literature review, identify the gap in knowledge or understanding that your research aims to address. This gap will be the focus of your research question or hypothesis.

State Objectives

Clearly state the objectives of your research . These should be specific, measurable, achievable, relevant, and time-bound (SMART).

Discuss Significance

Explain the significance of your research. This could include its potential impact on theory , practice, policy, or society.

Finally, summarize the key points of the background of the study. This will help the reader understand the research problem, its context, and its significance.

How to Write Background of The Study in Proposal

The background of the study is an essential part of any proposal as it sets the stage for the research project and provides the context and justification for why the research is needed. Here are the steps to write a compelling background of the study in your proposal:

  • Identify the problem: Clearly state the research problem or gap in the current knowledge that you intend to address through your research.
  • Provide context: Provide a brief overview of the research area and highlight its significance in the field.
  • Review literature: Summarize the relevant literature related to the research problem and provide a critical evaluation of the current state of knowledge.
  • Identify gaps : Identify the gaps or limitations in the existing literature and explain how your research will contribute to filling these gaps.
  • Justify the study : Explain why your research is important and what practical or theoretical contributions it can make to the field.
  • Highlight objectives: Clearly state the objectives of the study and how they relate to the research problem.
  • Discuss methodology: Provide an overview of the methodology you will use to collect and analyze data, and explain why it is appropriate for the research problem.
  • Conclude : Summarize the key points of the background of the study and explain how they support your research proposal.

How to Write Background of The Study In Thesis

The background of the study is a critical component of a thesis as it provides context for the research problem, rationale for conducting the study, and the significance of the research. Here are some steps to help you write a strong background of the study:

  • Identify the research problem : Start by identifying the research problem that your thesis is addressing. What is the issue that you are trying to solve or explore? Be specific and concise in your problem statement.
  • Review the literature: Conduct a thorough review of the relevant literature on the topic. This should include scholarly articles, books, and other sources that are directly related to your research question.
  • I dentify gaps in the literature: After reviewing the literature, identify any gaps in the existing research. What questions remain unanswered? What areas have not been explored? This will help you to establish the need for your research.
  • Establish the significance of the research: Clearly state the significance of your research. Why is it important to address this research problem? What are the potential implications of your research? How will it contribute to the field?
  • Provide an overview of the research design: Provide an overview of the research design and methodology that you will be using in your study. This should include a brief explanation of the research approach, data collection methods, and data analysis techniques.
  • State the research objectives and research questions: Clearly state the research objectives and research questions that your study aims to answer. These should be specific, measurable, achievable, relevant, and time-bound.
  • Summarize the chapter: Summarize the chapter by highlighting the key points and linking them back to the research problem, significance of the study, and research questions.

How to Write Background of The Study in Research Paper

Here are the steps to write the background of the study in a research paper:

  • Identify the research problem: Start by identifying the research problem that your study aims to address. This can be a particular issue, a gap in the literature, or a need for further investigation.
  • Conduct a literature review: Conduct a thorough literature review to gather information on the topic, identify existing studies, and understand the current state of research. This will help you identify the gap in the literature that your study aims to fill.
  • Explain the significance of the study: Explain why your study is important and why it is necessary. This can include the potential impact on the field, the importance to society, or the need to address a particular issue.
  • Provide context: Provide context for the research problem by discussing the broader social, economic, or political context that the study is situated in. This can help the reader understand the relevance of the study and its potential implications.
  • State the research questions and objectives: State the research questions and objectives that your study aims to address. This will help the reader understand the scope of the study and its purpose.
  • Summarize the methodology : Briefly summarize the methodology you used to conduct the study, including the data collection and analysis methods. This can help the reader understand how the study was conducted and its reliability.

Examples of Background of The Study

Here are some examples of the background of the study:

Problem : The prevalence of obesity among children in the United States has reached alarming levels, with nearly one in five children classified as obese.

Significance : Obesity in childhood is associated with numerous negative health outcomes, including increased risk of type 2 diabetes, cardiovascular disease, and certain cancers.

Gap in knowledge : Despite efforts to address the obesity epidemic, rates continue to rise. There is a need for effective interventions that target the unique needs of children and their families.

Problem : The use of antibiotics in agriculture has contributed to the development of antibiotic-resistant bacteria, which poses a significant threat to human health.

Significance : Antibiotic-resistant infections are responsible for thousands of deaths each year and are a major public health concern.

Gap in knowledge: While there is a growing body of research on the use of antibiotics in agriculture, there is still much to be learned about the mechanisms of resistance and the most effective strategies for reducing antibiotic use.

Edxample 3:

Problem : Many low-income communities lack access to healthy food options, leading to high rates of food insecurity and diet-related diseases.

Significance : Poor nutrition is a major contributor to chronic diseases such as obesity, type 2 diabetes, and cardiovascular disease.

Gap in knowledge : While there have been efforts to address food insecurity, there is a need for more research on the barriers to accessing healthy food in low-income communities and effective strategies for increasing access.

Examples of Background of The Study In Research

Here are some real-life examples of how the background of the study can be written in different fields of study:

Example 1 : “There has been a significant increase in the incidence of diabetes in recent years. This has led to an increased demand for effective diabetes management strategies. The purpose of this study is to evaluate the effectiveness of a new diabetes management program in improving patient outcomes.”

Example 2 : “The use of social media has become increasingly prevalent in modern society. Despite its popularity, little is known about the effects of social media use on mental health. This study aims to investigate the relationship between social media use and mental health in young adults.”

Example 3: “Despite significant advancements in cancer treatment, the survival rate for patients with pancreatic cancer remains low. The purpose of this study is to identify potential biomarkers that can be used to improve early detection and treatment of pancreatic cancer.”

Examples of Background of The Study in Proposal

Here are some real-time examples of the background of the study in a proposal:

Example 1 : The prevalence of mental health issues among university students has been increasing over the past decade. This study aims to investigate the causes and impacts of mental health issues on academic performance and wellbeing.

Example 2 : Climate change is a global issue that has significant implications for agriculture in developing countries. This study aims to examine the adaptive capacity of smallholder farmers to climate change and identify effective strategies to enhance their resilience.

Example 3 : The use of social media in political campaigns has become increasingly common in recent years. This study aims to analyze the effectiveness of social media campaigns in mobilizing young voters and influencing their voting behavior.

Example 4 : Employee turnover is a major challenge for organizations, especially in the service sector. This study aims to identify the key factors that influence employee turnover in the hospitality industry and explore effective strategies for reducing turnover rates.

Examples of Background of The Study in Thesis

Here are some real-time examples of the background of the study in the thesis:

Example 1 : “Women’s participation in the workforce has increased significantly over the past few decades. However, women continue to be underrepresented in leadership positions, particularly in male-dominated industries such as technology. This study aims to examine the factors that contribute to the underrepresentation of women in leadership roles in the technology industry, with a focus on organizational culture and gender bias.”

Example 2 : “Mental health is a critical component of overall health and well-being. Despite increased awareness of the importance of mental health, there are still significant gaps in access to mental health services, particularly in low-income and rural communities. This study aims to evaluate the effectiveness of a community-based mental health intervention in improving mental health outcomes in underserved populations.”

Example 3: “The use of technology in education has become increasingly widespread, with many schools adopting online learning platforms and digital resources. However, there is limited research on the impact of technology on student learning outcomes and engagement. This study aims to explore the relationship between technology use and academic achievement among middle school students, as well as the factors that mediate this relationship.”

Examples of Background of The Study in Research Paper

Here are some examples of how the background of the study can be written in various fields:

Example 1: The prevalence of obesity has been on the rise globally, with the World Health Organization reporting that approximately 650 million adults were obese in 2016. Obesity is a major risk factor for several chronic diseases such as diabetes, cardiovascular diseases, and cancer. In recent years, several interventions have been proposed to address this issue, including lifestyle changes, pharmacotherapy, and bariatric surgery. However, there is a lack of consensus on the most effective intervention for obesity management. This study aims to investigate the efficacy of different interventions for obesity management and identify the most effective one.

Example 2: Antibiotic resistance has become a major public health threat worldwide. Infections caused by antibiotic-resistant bacteria are associated with longer hospital stays, higher healthcare costs, and increased mortality. The inappropriate use of antibiotics is one of the main factors contributing to the development of antibiotic resistance. Despite numerous efforts to promote the rational use of antibiotics, studies have shown that many healthcare providers continue to prescribe antibiotics inappropriately. This study aims to explore the factors influencing healthcare providers’ prescribing behavior and identify strategies to improve antibiotic prescribing practices.

Example 3: Social media has become an integral part of modern communication, with millions of people worldwide using platforms such as Facebook, Twitter, and Instagram. Social media has several advantages, including facilitating communication, connecting people, and disseminating information. However, social media use has also been associated with several negative outcomes, including cyberbullying, addiction, and mental health problems. This study aims to investigate the impact of social media use on mental health and identify the factors that mediate this relationship.

Purpose of Background of The Study

The primary purpose of the background of the study is to help the reader understand the rationale for the research by presenting the historical, theoretical, and empirical background of the problem.

More specifically, the background of the study aims to:

  • Provide a clear understanding of the research problem and its context.
  • Identify the gap in knowledge that the study intends to fill.
  • Establish the significance of the research problem and its potential contribution to the field.
  • Highlight the key concepts, theories, and research findings related to the problem.
  • Provide a rationale for the research questions or hypotheses and the research design.
  • Identify the limitations and scope of the study.

When to Write Background of The Study

The background of the study should be written early on in the research process, ideally before the research design is finalized and data collection begins. This allows the researcher to clearly articulate the rationale for the study and establish a strong foundation for the research.

The background of the study typically comes after the introduction but before the literature review section. It should provide an overview of the research problem and its context, and also introduce the key concepts, theories, and research findings related to the problem.

Writing the background of the study early on in the research process also helps to identify potential gaps in knowledge and areas for further investigation, which can guide the development of the research questions or hypotheses and the research design. By establishing the significance of the research problem and its potential contribution to the field, the background of the study can also help to justify the research and secure funding or support from stakeholders.

Advantage of Background of The Study

The background of the study has several advantages, including:

  • Provides context: The background of the study provides context for the research problem by highlighting the historical, theoretical, and empirical background of the problem. This allows the reader to understand the research problem in its broader context and appreciate its significance.
  • Identifies gaps in knowledge: By reviewing the existing literature related to the research problem, the background of the study can identify gaps in knowledge that the study intends to fill. This helps to establish the novelty and originality of the research and its potential contribution to the field.
  • Justifies the research : The background of the study helps to justify the research by demonstrating its significance and potential impact. This can be useful in securing funding or support for the research.
  • Guides the research design: The background of the study can guide the development of the research questions or hypotheses and the research design by identifying key concepts, theories, and research findings related to the problem. This ensures that the research is grounded in existing knowledge and is designed to address the research problem effectively.
  • Establishes credibility: By demonstrating the researcher’s knowledge of the field and the research problem, the background of the study can establish the researcher’s credibility and expertise, which can enhance the trustworthiness and validity of the research.

Disadvantages of Background of The Study

Some Disadvantages of Background of The Study are as follows:

  • Time-consuming : Writing a comprehensive background of the study can be time-consuming, especially if the research problem is complex and multifaceted. This can delay the research process and impact the timeline for completing the study.
  • Repetitive: The background of the study can sometimes be repetitive, as it often involves summarizing existing research and theories related to the research problem. This can be tedious for the reader and may make the section less engaging.
  • Limitations of existing research: The background of the study can reveal the limitations of existing research related to the problem. This can create challenges for the researcher in developing research questions or hypotheses that address the gaps in knowledge identified in the background of the study.
  • Bias : The researcher’s biases and perspectives can influence the content and tone of the background of the study. This can impact the reader’s perception of the research problem and may influence the validity of the research.
  • Accessibility: Accessing and reviewing the literature related to the research problem can be challenging, especially if the researcher does not have access to a comprehensive database or if the literature is not available in the researcher’s language. This can limit the depth and scope of the background of the study.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

medRxiv

An open-label, parallel-group, randomized clinical trial of different silver diamine fluoride application intervals to arrest dental caries

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Robert J Schroth
  • For correspondence: [email protected]
  • Info/History
  • Preview PDF

Background: Non-surgical interventions are preferred to address the widespread issue of early childhood caries (ECC). Silver diamine fluoride (SDF) is an antimicrobial agent and alternative treatment option that can be used to arrest dental decay. While there is optimism with SDF with regard to caries management, there is no true consensus on the number and frequency of applications for children. The purpose of this study was to examine the effectiveness of 38% SDF to arrest ECC at three different application regimen intervals. Methods: Children with ECC were recruited from community dental clinics into an open-label, parallel-group, randomized clinical trial. Participants were randomized to one of three groups: visits one month, four months, or six months apart. Participants received applications of 38% SDF, along with 5% sodium fluoride varnish (NaFV), at the first two visits to treat cavitated carious lesions. Lesions were followed and arrest rates were calculated. Lesions were considered arrested if they were hard on probing and black in colour. Statistics included descriptive and bivariate analyses. A p -value of ≤ 0.05 was considered significant. Results: Eighty-four children participated in the study (49 males and 35 females, mean age: 44.4 ± 14.2 months). Treatment groups were well matched with 28 participants per group. A total of 374 teeth and 505 lesions were followed. Posterior lesions represented only 29.1% of affected surfaces. Almost all SDF treated lesions were arrested for the one-month (98%) and four-month (95.8%) interval groups at the final visit. The six-month group experienced the lowest arrest rates; only 72% of lesions were arrested ( p < 0.001). The duration of application intervals was inversely associated with improvements in arrest rates for all lesions.

Competing Interest Statement

The authors have declared no competing interest.

Clinical Trial

NCT04054635

Funding Statement

This study was funded by the Children′s Hospital Research Institute of Manitoba and the Dr. Gerald Niznick College of Dentistry. Dr. Robert J. Schroth also held a Canadian Institutes of Health Research Embedded Clinician Researcher Salary Award.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The University of Manitoba′s Biomedical Research Ethics Board gave ethical approval for this work (HS22998/B2019:068)

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

View the discussion thread.

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Addiction Medicine (313)
  • Allergy and Immunology (616)
  • Anesthesia (158)
  • Cardiovascular Medicine (2253)
  • Dentistry and Oral Medicine (278)
  • Dermatology (199)
  • Emergency Medicine (368)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (794)
  • Epidemiology (11542)
  • Forensic Medicine (10)
  • Gastroenterology (676)
  • Genetic and Genomic Medicine (3539)
  • Geriatric Medicine (336)
  • Health Economics (611)
  • Health Informatics (2283)
  • Health Policy (909)
  • Health Systems and Quality Improvement (858)
  • Hematology (333)
  • HIV/AIDS (741)
  • Infectious Diseases (except HIV/AIDS) (13124)
  • Intensive Care and Critical Care Medicine (750)
  • Medical Education (357)
  • Medical Ethics (100)
  • Nephrology (385)
  • Neurology (3322)
  • Nursing (189)
  • Nutrition (504)
  • Obstetrics and Gynecology (647)
  • Occupational and Environmental Health (643)
  • Oncology (1747)
  • Ophthalmology (521)
  • Orthopedics (208)
  • Otolaryngology (283)
  • Pain Medicine (221)
  • Palliative Medicine (66)
  • Pathology (434)
  • Pediatrics (997)
  • Pharmacology and Therapeutics (418)
  • Primary Care Research (398)
  • Psychiatry and Clinical Psychology (3039)
  • Public and Global Health (5965)
  • Radiology and Imaging (1213)
  • Rehabilitation Medicine and Physical Therapy (711)
  • Respiratory Medicine (806)
  • Rheumatology (367)
  • Sexual and Reproductive Health (345)
  • Sports Medicine (309)
  • Surgery (383)
  • Toxicology (50)
  • Transplantation (169)
  • Urology (142)
  • Study Guides
  • Homework Questions

Research Study Proposal- Drug Use Among Teens-PART 2

  • See us on twitter
  • See us on instagram
  • See us on facebook

2024-RR_Email_Flyer_Save-the-Date_v01-EVENT

Stanford Pathology Research Retreat 2024

To be held at David and Joan Traitel Building of Hoover Institution — Present and discuss your work with others. Cash prizes in several categories to be presented.

This year's retreat will be held at David and Joan Traitel Building of Hoover Institution

The purpose of our retreat is to allow Stanford Pathology members to become more familiar with the research conducted in the Department, including basic, translational and clinical projects. We hope this will facilitate new opportunities for collaborative studies, research training and enhance prospects for additional funding of such activities.

Whether you are presenting or just attending, please take the time to register for this event. REGISTRATION OPENS ON APRIL 1, 2024 .

David and Joan Traitel Building of Hoover Institution

  • Request Info
  • Browse Degrees
  • Life at SLU
  • Give to SLU
  • Search & Directory

SLU, TGI Researcher Part of Team Using Remote Sensing to Study Permafrost

Maggie Rotermund Senior Media Relations Specialist [email protected] 314-977-8018

Reserved for members of the media.

ST. LOUIS – Saint Louis University is one of five universities working together to study permafrost using hyperspectral remote sensing, as part of a grant funded by the Department of Defense (DoD) as part of its Multidisciplinary University Research Initiative (MURI) program.

Vasit Sagan, Ph.D.

Vasit Sagan, Ph.D. is a professor of geospatial science and computer science, associate vice president for geospatial science at Saint Louis University and chief scientist for food security and digital agriculture for Taylor Geospatial Institute (TGI). Photo by Sarah Conroy.

Vasit Sagan, Ph.D. , professor of geospatial science and computer science, associate vice president for geospatial science at Saint Louis University and chief scientist for food security and digital agriculture for Taylor Geospatial Institute (TGI), is SLU’s principal investigator on the project. 

The project, Interdisciplinary Material Science for the Hyperspectral Remote Sensing of Permafrost (I’M SHARP), will explore the physical and chemical properties of permafrost using remote sensing. The permafrost properties will be reviewed under current and potential environmental conditions.

The DoD awarded the highly competitive five-year, $7.5 million overall MURI grants to 30 teams at 73 academic institutions earlier this month after the Army Research Office, Air Force Office of Scientific Research, and Office of Naval Research solicited proposals in areas of strategic importance to the Department.

The multidisciplinary I’M SHARP research team is led by Tugce Baser, Ph.D. , assistant professor of geotechnical engineering at the University of Illinois and a TGI associate. The team also includes Go Iwahana of the International Arctic Research Center at the University of Alaska Fairbanks; Michael Lanagan, The Pennsylvania State University; Joel Johnson, Ohio State University; and Sahin Ozdemir, The Pennsylvania State University.

The team will explore the fundamental physical, chemical, electromagnetic, thermodynamic, hydraulic and mechanical properties of permafrost under current and changing environmental conditions that govern the remote sensing of permafrost at various wavelengths.

The project seeks to understand hyperspectral fingerprints of permafrost material chemistry and its dynamics in the context of climate change. To do this, the team will use simulations, remote sensing from multiple scales (drones, crewed aircraft, and satellite imaging), light polarization, and electromagnetic (EM) theory guided by knowledge of permafrost physical processes. 

SLU will receive $1.3 million to study hyperspectral signatures and light polarization associated with the physical, chemical, electromagnetic, thermodynamic properties of permafrost under current and future climate conditions.

Specifically, Sagan will lead hyperspectral data collection at permafrost test sites; scan simulated permafrost samples created in the lab with various “what if” scenarios with benchtop scanning systems, and develop novel spectral algorithms for characterizing permafrost from multiple scales, wavelengths, and polarizations. 

Since launching in 1985, DOD’s MURI program has allowed teams of investigators from multiple disciplines to generate collective insights, facilitating the growth of cutting-edge technologies to address unique challenges for the Department of Defense.

“Permafrost plays a pivotal role in regulating Earth’s climate and offers a living laboratory to accurately characterize the rate and magnitude of a warming climate,” Sagan said. “This is truly an interdisciplinary science team representing expertise in remote sensing, material chemistry, theoretical modeling, physics, and geotechnical engineering, uniquely positioned to lead this project.” 

About Saint Louis University

Founded in 1818, Saint Louis University is one of the nation’s oldest and most prestigious Catholic institutions. Rooted in Jesuit values and its pioneering history as the first university west of the Mississippi River, SLU offers more than 15,200 students a rigorous, transformative education of the whole person. At the core of the University’s diverse community of scholars is SLU’s service-focused mission, which challenges and prepares students to make the world a better, more just place. For more information, visit slu.edu .

About Taylor Geospatial Institute

TGI is passionate about fueling geospatial science and technology to create the next generation of solutions and policies that the whole world will depend on for sustainability and growth.

The TGI consortium is led by Saint Louis University and includes the Donald Danforth Plant Science Center, Harris-Stowe State University, University of Illinois Urbana-Champaign, Missouri University of Science & Technology, University of Missouri-Columbia, University of Missouri-St. Louis, and Washington University in St. Louis. Collectively, these institutions encompass more than 5,000 faculty and 100,000 students.

For more information, visit taylorgeospatial.org.

IMAGES

  1. Introduction to Research and 10 Purposes of Research

    what is the purpose of the research study

  2. PPT

    what is the purpose of the research study

  3. Purpose of Research

    what is the purpose of the research study

  4. Purpose of Research

    what is the purpose of the research study

  5. PPT

    what is the purpose of the research study

  6. FREE 10+ Sample Purpose Statement Templates in PDF

    what is the purpose of the research study

VIDEO

  1. What is research

  2. Purpose of study

  3. LECTURE 1. THE MEANING OF RESEARCH

  4. What is Research and It's Purpose?

  5. Meaning and purpose of research शोध का अर्थ एवं उद्देश्य

  6. Metho1: What Is Research?

COMMENTS

  1. What is Research?

    The purpose of research is to further understand the world and to learn how this knowledge can be applied to better everyday life. It is an integral part of problem solving. Although research can take many forms, there are three main purposes of research: Exploratory: Exploratory research is the first research to be conducted around a problem ...

  2. Purpose of Research

    The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to: Generate new knowledge and theories. Test existing theories or hypotheses. Identify trends or patterns. Gather information for decision-making. Evaluate the effectiveness of programs, policies ...

  3. Purpose Statement

    In PhD studies, the purpose usually involves applying a theory to solve the problem. In other words, the purpose tells the reader what the goal of the study is, and what your study will accomplish, through which theoretical lens. The purpose statement also includes brief information about direction, scope, and where the data will come from.

  4. Draft your Purpose of the Study

    The Purpose of the Study illustrates what the study will do, which should reflect the statement of the problem. ... The purpose of a research question is to learn something about a phenomenon, problem, or entity in a refined way. Considering you are likely to research a domain or area that has been researched before, there are multiple points ...

  5. Research

    In the simplest of terms, the research definition is a process of seeking out knowledge. This knowledge can be new, or it can support an already known fact. The purpose of research is to inform ...

  6. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  7. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  8. 11.1 The Purpose of Research Writing

    Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper. A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

  9. Research Purpose, Hypotheses, and Questions

    The purpose statement, research questions, hypotheses, and research objectives help a researcher to focus on what he is studying about. With this focus comes a clearer understanding of what to do. Not all forms of study have all components nor are all components always required. The point is that attention to these details will help in the ...

  10. 1. The Purpose of Research: Why do we do it?

    Doing Research in Education: Theory and Practice. by Ioanna Palaiologou, David Needham and Trevor Male. 1. The Purpose of Research: Why do we do it? Select SAGE Journal articles are available to give you even more insight into chapter topics. These are also an ideal resource to help support your literature reviews, dissertations and assignments.

  11. Research Objectives

    A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement, ... Specifics about your population of study, your proposed sample size, and the research methodology you'll pursue; Any inclusion and exclusion criteria;

  12. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  13. What Is a Research Design

    Purpose and characteristics; Case study: Detailed study of a specific subject (e.g., a place, event, organization, etc). Data can be collected using a variety of sources and methods. Focuses on gaining a holistic understanding of the case. Ethnography: Detailed study of the culture of a specific community or group.

  14. Significance of the Study

    Definition: Significance of the study in research refers to the potential importance, relevance, or impact of the research findings. It outlines how the research contributes to the existing body of knowledge, what gaps it fills, or what new understanding it brings to a particular field of study. In general, the significance of a study can be ...

  15. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  16. Purpose of Research

    Research is a tool by which they can test their own, and each others' theories, by using this antagonism to find an answer and advance knowledge. The purpose of research is really an ongoing process of correcting and refining hypotheses, which should lead to the acceptance of certain scientific truths. Whilst no scientific proof can be accepted ...

  17. Chapter 3

    Exhibit 3-7 is a summary of the key characteristics of each research type. 3.4 Developing the Research Plan Large research studies, particularly when funding is being requested, often require the researchers to adhere to a specific set of technical requirements.

  18. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  19. Purpose of the Study: Common Errors in Writing Your Purpose Statement

    The Purpose of the Study is perhaps the single most important sentence in your dissertation. In conjunction with the Problem Statement, it guides the focus of your research. Your research questions, methodology, and data analysis are all guided by the purpose of the study. The "Purpose of the Study" section consists of a few short ...

  20. Research Paper Purpose Statement Examples

    A purpose statement clearly defines the objective of your qualitative or quantitative research. Learn how to create one through unique and real-world examples.

  21. Background of The Study

    Example 1: "There has been a significant increase in the incidence of diabetes in recent years. This has led to an increased demand for effective diabetes management strategies. The purpose of this study is to evaluate the effectiveness of a new diabetes management program in improving patient outcomes.".

  22. (PDF) Research Study and its Purpose

    research is a statement of "why" the study is being conducted, or what is the objective of a certain study. He also stated in his work that the purpose of every

  23. An open-label, parallel-group, randomized clinical trial of different

    The purpose of this study was to examine the effectiveness of 38% SDF to arrest ECC at three different application regimen intervals. Methods: Children with ECC were recruited from community dental clinics into an open-label, parallel-group, randomized clinical trial. ... Yes The details of the IRB/oversight body that provided approval or ...

  24. Interested in Improving Physical Function? Aging and Physical Function

    Research suggests that age-related declines in physical function can be slowed considerably by improving muscular power. The purpose of this study is to better our understanding of the relationship between physical function and muscular power, as well as identify the best way to measure each in research and clinical settings.

  25. Study Summarizes the Rationale and Purpose of Continuing Certification

    Goals and Consequences Motivate Finally, research has found that physicians learn and retain more when they know they will be tested. The expectation that physicians will be required to periodically demonstrate their cognitive expertise over the course of their career increases their motivation to study and update their knowledge competency ...

  26. Research Study Proposal- Drug Use Among Teens-PART 2

    Part 2 Research Methodology The purpose of this research proposal is to cover the topic of teenage drug use and abuse here in the United States. It will include a statement of the problem, review of the literature and the purpose of the study. Also, the research questions will be covered and the definition of terms.

  27. Stanford Pathology Research Retreat 2024

    The purpose of our retreat is to allow Stanford Pathology members to become more familiar with the research conducted in the Department, including basic, translational and clinical projects. We hope this will facilitate new opportunities for collaborative studies, research training and enhance prospects for additional funding of such activities.

  28. SLU, TGI Researcher Part of Team Using Remote Sensing to Study

    Reserved for members of the media. ST. LOUIS - Saint Louis University is one of five universities working together to study permafrost using hyperspectral remote sensing, as part of a grant funded by the Department of Defense (DoD) as part of its Multidisciplinary University Research Initiative ...