Essay on Greenhouse Effect for Students and Children

500 words essay on greenhouse effect.

The past month, July of 2019, has been the hottest month in the records of human history. This means on a global scale, the average climate and temperatures are now seen a steady rise year-on-year. The culprits of this climate change phenomenon are mainly pollution , overpopulation and general disregard for the environment by the human race. However, we can specifically point to two phenomenons that contribute to the rising temperatures – global warming and the greenhouse effect. Let us see more about them in this essay on the greenhouse effect.

The earth’s surface is surrounded by an envelope of the air we call the atmosphere. Gasses in this atmosphere trap the infrared radiation of the sun which generates heat on the surface of the earth. In an ideal scenario, this effect causes the temperature on the earth to be around 15c. And without such a phenomenon life could not sustain on earth.

However, due to rapid industrialization and rising pollution, the emission of greenhouse gases has increased multifold over the last few centuries. This, in turn, causes more radiation to be trapped in the earth’s atmosphere. And as a consequence, the temperature on the surface of the planet steadily rises. This is what we refer to when we talk about the man-made greenhouse effect.

Essay on Greenhouse Effect

Causes of Greenhouse Effect

As we saw earlier in this essay on the greenhouse effect, the phenomenon itself is naturally occurring and an important one to sustain life on our planet. However, there is an anthropogenic part of this effect. This is caused due to the activities of man.

The most prominent among this is the burning of fossil fuels . Our industries, vehicles, factories, etc are overly reliant on fossil fuels for their energy and power. This has caused an immense increase in emissions of harmful greenhouse gasses such as carbon dioxide, carbon monoxide, sulfides, etc. This has multiplied the greenhouse effect and we have seen a steady rise in surface temperatures.

Other harmful activities such as deforestation, excessive urbanization, harmful agricultural practices, etc. have also led to the release of excess carbon dioxide and made the greenhouse effect more prominent. Another harmful element that causes harm to the environment is CFC (chlorofluorocarbon).

Get the huge list of more than 500 Essay Topics and Ideas

Some Effects of Greenhouse Effect

Even after overwhelming proof, there are still people who deny the existence of climate change and its devastating pitfalls. However, there are so many effects and pieces of evidence of climate change it is now undeniable. The surface temperature of the planet has risen by 1c since the 19th century. This change is largely due to the increased emissions of carbon dioxide. The most harm has been seen in the past 35 years in particular.

The oceans and the seas have absorbed a lot of this increased heat. The surfaces of these oceans have seen a rise in temperatures of 0.4c. The ice sheets and glaciers are also rapidly shrinking. The rate at which the ice caps melt in Antartica has tripled in the last decade itself. These alarming statistics and facts are proof of the major disaster we face in the form of climate change.

600 Words Essay on Greenhouse Effect

A Greenhouse , as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the atmosphere of the Earth trap the heat of the Sun. This is what we know as the Greenhouse effect.

greenhouse effect essay

Greenhouse Gases

These gases or molecules are naturally present in the atmosphere of the Earth. However, they are also released due to human activities. These gases play a vital role in trapping the heat of the Sun and thereby gradually warming the temperature of Earth. The Earth is habitable for humans due to the equilibrium of the energy it receives and the energy that it reflects back to space.

Global Warming and the Greenhouse Effect

The trapping and emission of radiation by the greenhouse gases present in the atmosphere is known as the Greenhouse effect. Without this process, Earth will either be very cold or very hot, which will make life impossible on Earth.

The greenhouse effect is a natural phenomenon. Due to wrong human activities such as clearing forests, burning fossil fuels, releasing industrial gas in the atmosphere, etc., the emission of greenhouse gases is increasing.

Thus, this has, in turn, resulted in global warming . We can see the effects due to these like extreme droughts, floods, hurricanes, landslides, rise in sea levels, etc. Global warming is adversely affecting our biodiversity, ecosystem and the life of the people. Also, the Himalayan glaciers are melting due to this.

There are broadly two causes of the greenhouse effect:

I. Natural Causes

  • Some components that are present on the Earth naturally produce greenhouse gases. For example, carbon dioxide is present in the oceans, decaying of plants due to forest fires and the manure of some animals produces methane , and nitrogen oxide is present in water and soil.
  • Water Vapour raises the temperature by absorbing energy when there is a rise in the humidity.
  • Humans and animals breathe oxygen and release carbon dioxide in the atmosphere.

II. Man-made Causes

  • Burning of fossil fuels such as oil and coal emits carbon dioxide in the atmosphere which causes an excessive greenhouse effect. Also, while digging a coal mine or an oil well, methane is released from the Earth, which pollutes it.
  • Trees with the help of the process of photosynthesis absorb the carbon dioxide and release oxygen. Due to deforestation the carbon dioxide level is continuously increasing. This is also a major cause of the increase in the greenhouse effect.
  • In order to get maximum yield, the farmers use artificial nitrogen in their fields. This releases nitrogen oxide in the atmosphere.
  • Industries release harmful gases in the atmosphere like methane, carbon dioxide , and fluorine gas. These also enhance global warming.

All the countries of the world are facing the ill effects of global warming. The Government and non-governmental organizations need to take appropriate and concrete measures to control the emission of toxic greenhouse gases. They need to promote the greater use of renewable energy and forestation. Also, it is the duty of every individual to protect the environment and not use such means that harm the atmosphere. It is the need of the hour to protect our environment else that day is not far away when life on Earth will also become difficult.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essays Samples >
  • Essay Types >
  • Argumentative Essay Example

Greenhouse Effect Argumentative Essays Samples For Students

6 samples of this type

Regardless of how high you rate your writing skills, it's always a worthy idea to check out a competently written Argumentative Essay example, especially when you're handling a sophisticated Greenhouse Effect topic. This is exactly the case when WowEssays.com database of sample Argumentative Essays on Greenhouse Effect will come in useful. Whether you need to think up an original and meaningful Greenhouse Effect Argumentative Essay topic or inspect the paper's structure or formatting peculiarities, our samples will provide you with the required material.

Another activity area of our write my paper website is providing practical writing assistance to students working on Greenhouse Effect Argumentative Essays. Research help, editing, proofreading, formatting, plagiarism check, or even crafting completely unique model Greenhouse Effect papers upon your request – we can do that all! Place an order and buy a research paper now.

Argumentative Essay On Global Warming

What is global warming.

What is global warming, and how is it affecting the Earth and its inhabitants? Global warming is sometimes referred to as the greenhouse effect. The greenhouse effect is the absorption of energy radiated from the Earth's surface by carbon dioxide and other gases in the atmosphere, causing the atmosphere to become warmer. The greenhouse effect is what is causing the temperature on the Earth to rise, and creating many problems that will begin to occur in the coming decades.

Effects of Global Warming

Global warming argumentative essay samples, the myth of global cooling argumentative essay examples.

<Student’s name> <Professor’s name>

Don't waste your time searching for a sample.

Get your argumentative essay done by professional writers!

Just from $10/page

Example Of Argumentative Essay On Increased Release Of Carbon Dioxide To The Atmosphere

Introduction.

In the recent past, the increased release of carbon dioxide has been a very controversial issue in the world. This is due to the adverse effects of this gas to the atmosphere. Human activities have driven the concentration of carbon dioxide in the atmosphere upwards over the last 50 years. For instance, it is estimated that U.S. releases 1.4 billion tons of carbon dioxide every year. The increased carbon dioxide has enhanced the natural 'greenhouse effect' causing climate change and global warming.

Thesis statement

Example of is climate change man-made argumentative essay, climate change argument essay: it's happening and fast.

Please note that this essay is an example for you to base your own piece on. You can also get an essay from our  essay writer free of plagiarism.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

The Center for Global Studies

Climate change argumentation.

Carmen Vanderhoof, Curriculum and Instruction, College of Education, Penn State

Carmen Vanderhoof is a doctoral candidate in Science Education at Penn State. Her research employs multimodal discourse analysis of elementary students engaged in a collaborative engineering design challenge in order to examine students’ decision-making practices. Prior to resuming graduate studies, she was a secondary science teacher and conducted molecular biology research. 

  • Subject(s):  Earth Science
  • Topic:  Climate Change and Sustainability
  • Grade/Level:  9-12 (can be adapted to grades 6-8)
  • Objectives:  Students will be able to write a scientific argument using evidence and reasoning to support claims. Students will also be able to reflect on the weaknesses in their own arguments in order to improve their argument and then respond to other arguments.
  • Suggested Time Allotment:  4-5 hours (extra time for extension)

This lesson is derived from Dr. Peter Buckland’s sustainability  presentation for the Center for Global Studies . Dr. Peter Buckland, a Penn State alumnus, is a postdoctoral fellow for the Sustainability Institute. He has drawn together many resources for teaching about climate change, sustainability, and other environmental issues. 

While there are many resources for teaching about climate change and sustainability, it may be tough to figure out where to start. There are massive amounts of data available to the general public and students need help searching for good sources of evidence. Prior to launching into a search, it would be worthwhile figuring out what the students already know about climate change, where they learned it, and how they feel about efforts to reduce our carbon footprint. There are many options for eliciting prior knowledge, including taking online quizzes, whole-class discussion, or drawing concept maps. For this initial step, it is important that students feel comfortable to share, without engaging in disagreements. The main idea is to increase students’ understanding about global warming, rather than focus on the potential controversial nature of this topic.

A major goal of this unit is to engage students in co-constructing evidence-based explanations through individual writing, sharing, re-writing, group discussion, and whole group reflection. The argumentation format presented here contains claims supported by evidence and reasoning (Claims Evidence Reasoning – CER). Argumentation in this sense is different from how the word “argument” is used in everyday language. Argumentation is a collaborative process towards an end goal, rather than a competition to win (Duschl & Osborne, 2002). Scientific argumentation is the process of negotiating and communicating findings through a series of claims supported by evidence from various sources along with a rationale or reasoning linking the claim with the evidence. For students, making the link between claim and evidence can be the most difficult part of the process.

Where does the evidence come from?

Evidence and data are often used synonymously, but there is a difference. Evidence is “the representation of data in a form that undergirds an argument that works to answer the original question” (Hand et al., 2009, p. 129). This explains why even though scientists may use the same data to draw explanations from, the final product may take different forms depending on which parts of the data were used and how. For example, in a court case experts from opposing sides may use the same data to persuade the jury to reach different conclusions. Another way to explain this distinction to students is “the story built from the data that leads to a claim is the evidence” (Hand et al., 2009, p. 129). Evidence can come from many sources – results from controlled experiments, measurements, books, articles, websites, personal observations, etc. It is important to discuss with students the issue of the source’s reliability and accuracy. When using data freely available online, ask yourself: Who conducted the study? Who funded the research? Where was it published or presented? 

What is a claim and how do I find it?

A scientific claim is a statement that answers a question or an inference based on information, rather than just personal opinion.               

How can I connect the claim(s) with the evidence?

That’s where the justification or reasoning comes in. This portion of the argument explains why the evidence is relevant to the claim or how the evidence supports the claim.

Implementation

Learning context and connecting to state standards.

This interdisciplinary unit can be used in an earth science class or adapted to environmental science, chemistry, or physics. The key to adapting the lesson is guiding students to sources of data that fit the discipline they are studying.

For  earth science , students can explain the difference between climate and weather, describe the factors associated with global climate change, and explore a variety of data sources to draw their evidence from.  Pennsylvania Academic Standards  for earth and space science (secondary): 3.3.12.A1, 3.3.12.A6, 3.3.10.A7.    

For  environmental science , students can analyze the costs and benefits of pollution control measures.  Pennsylvania Academic Standards  for Environment and Ecology (secondary): 4.5.12.C.          

For  chemistry  and  physics , students can explain the function of greenhouse gases, construct a model of the greenhouse effect, and model energy flow through the atmosphere.   Pennsylvania Academic Standards  for Physical Sciences (secondary): 3.2.10.B6.      

New Generation Science Standards (NGSS) Connections

Human impacts and global climate change are directly addressed in the NGSS.  Disciplinary Core Ideas  (DCI): HS-ESS3-3, HS-ESS3-4, HS-ESS3-5, HS-ESS3-6.     

Lesson 1: Introduction to climate change

  • What are greenhouse gases and the greenhouse effect? (sample answer: greenhouse gases like carbon dioxide and methane contribute to overall heating of the atmosphere; these gases trap heat just like the glass in a greenhouse or in a car) 
  • What is the difference between weather and climate? (sample answer: weather is the daily temperature and precipitation measurements, while climate is a much longer pattern over multiple years)

Drawing of the greenhouse effect  – as individuals or in pairs, have students look up the greenhouse effect and draw a diagram to represent it; share out with the class

  • Optional: figure out students’ beliefs about global warming using the Yale Six Americas Survey (students answer a series of questions and at the end they are given one of the following categories: alarmed, concerned, cautious, disengaged, doubtful, dismissive).

Lesson 2: Searching for and evaluating evidence

  • Compare different data sources and assess their credibility
  • Temperature
  • Precipitation
  • Storm surge
  • Ask the students to think about what types of claims they can make about climate change using the data they found (Sample claims: human activity is causing global warming or sea-level rise in the next fifty years will affect coastal cities like Amsterdam, Hong Kong, or New Orleans).

Lesson 3: Writing an argument using evidence

  • Claim – an inference or a statement that answers a question
  • Evidence – an outside source of information that supports the claim, often drawn from selected data
  • Reasoning –  the justification/support for the claim; what connects the evidence with the claim
  • Extending arguments –  have students exchange papers and notice the strengths of the other arguments they are reading (can do multiple cycles of reading); ask students to go back to their original argument and expand it with more evidence and/or more justification for why the evidence supports the claim
  • Anticipate Rebuttals  – ask students to think and write about any weaknesses in their own argument

Lesson 4: Argumentation discussion  

  • rebuttal  – challenges a component of someone’s argument – for example, a challenge to the evidence used in the original argument
  • counterargument  – a whole new argument that challenges the original argument
  • respect group members and their ideas
  • wait for group members to finish their turns before speaking
  • be mindful of your own contributions to the discussion (try not to take over the whole discussion so others can contribute too; conversely, if you didn’t already talk, find a way to bring in a new argument, expand on an existing argument, or challenge another argument)  
  • Debate/discussion  – In table groups have students share their arguments and practice rebuttals and counterarguments
  • Whole-group reflection  – ask students to share key points from their discussion

Lesson 5: Argumentation in action case study

Mumbai, india case study.

Rishi is a thirteen year old boy who attends the Gayak Rafi Nagar Urdu Municipal school in Mumbai. There is a massive landfill called Deonar right across from his school. Every day 4,000 tons of waste are piled on top of the existing garbage spanning 132 hectares (roughly half a square mile). Rishi ventures out to the landfill after school to look for materials that he can later trade for a little bit of extra money to help his family. He feels lucky that he gets to go to school during the day; others are not so lucky. One of his friends, Aamir, had to stop going to school and work full time after his dad got injured. They often meet to chat while they dig through the garbage with sticks. Occasionally, they find books in okay shape, which aren’t worth anything in trade, but to them they are valuable.

One day Rishi was out to the market with his mom and saw the sky darken with a heavy smoke that blocked out the sun. They both hurried home and found out there was a state of emergency and the schools closed for two days. It took many days to put out the fire at Deonar. He heard his dad say that the fire was so bad that it could be seen from space. He wonders what it would be like to see Mumbai from up there. Some days he wishes the government would close down Deonar and clean it up. Other days he wonders what would happen to all the people that depend on it to live if the city shuts down Deonar.

Mumbai is one of the coastal cities that are considered vulnerable with increasing global temperature and sea level rise. The urban poor are most affected by climate change. Their shelter could be wiped out by a tropical storm and rebuilding would be very difficult.

Write a letter to a public official who may be able to influence policy in Mumbai.

What would you recommend they do? Should they close Deonar? What can they do to reduce air pollution in the city and prepare for possible storms? Remember to use evidence in your argument.  

If students want to read the articles that inspired the case study direct them to: http://unhabitat.org/urban-themes/climate-change/

http://www.bloomberg.com/slideshow/2012-07-06/top-20-cities-with-billions-at-risk-from-climate-change.html#slide16

http://www.bloomberg.com/news/articles/2015-07-26/smelly-dumps-drive-away-affordable-homes-in-land-starved-mumbai

http://www.cnn.com/2016/02/05/asia/mumbai-giant-garbage-dump-fire/

Resources:    

  • Lines of Evidence  video  from the National Academies of Sciences, Engineering, and Medicine  http://nas-sites.org/americasclimatechoices/videos-multimedia/climate-change-lines-of-evidence-videos/  
  • Climate Literacy and Energy Awareness Network  (CLEAN) 
  • Climate maps  from the National Oceanic and Atmospheric Administration
  • Sources of data from  NASA
  • Explore the original source of the  Proceedings of the National Academies of Sciences (PNAS) study

Differentiated Instruction

  • For visual learners – use diagrams, encourage students to map out their arguments prior to writing them
  • For auditory learners – use the lines of evidence video
  • For ESL students – provide them with a variety of greenhouse gases diagrams, allow for a more flexible argument format and focus on general meaning-making – ex. using arrows to connect their sources of evidence to claims
  • For advanced learners – ask them to search through larger data sets and make comparisons between data from different sources; they can also research environmental policies and why they stalled out in congress 
  • For learners that need more support – print out excerpts from articles; pinpoint the main ideas to help with the research; help students connect their evidence with their claims; consider allowing students to work in pairs to accomplish the writing task 

Argument write-up  – check that students’ arguments contain claims supported by evidence and reasoning and that they thought about possible weaknesses in their own arguments. 

Case study letter  – check that students included evidence in their letter.

References:

Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education.

Hand, B. et al. (2009) Negotiating Science: The Critical Role of Argumentation in Student Inquiry. Portsmouth, NH: Heinemann.

McNeill, K. L., & Krajcik, J. (2012). Claim, evidence and reasoning: Supporting grade 5 – 8 students in constructing scientific explanations. New York, NY: Pearson Allyn & Bacon.

Sawyer, R. K. (Ed.). (2014). The Cambridge handbook of the learning sciences. New York, NY: Cambridge University Press.

https://www3.epa.gov/climatechange/kids/basics/today/greenhouse-gases.html

http://unhabitat.org/urban-themes/climate-change/

  • Liberty Fund
  • Adam Smith Works
  • Law & Liberty
  • Browse by Author
  • Browse by Topic
  • Browse by Date
  • Search EconLog
  • Latest Episodes
  • Browse by Guest
  • Browse by Category
  • Browse Extras
  • Search EconTalk
  • Latest Articles
  • Liberty Classics
  • Book Reviews
  • Search Articles
  • Books by Date
  • Books by Author
  • Search Books
  • Browse by Title
  • Biographies
  • Search Encyclopedia
  • #ECONLIBREADS
  • College Topics
  • High School Topics
  • Subscribe to QuickPicks
  • Search Guides
  • Search Videos
  • Library of Law & Liberty
  • Home   /  

ECONLIB CEE

Greenhouse Effect

By thomas schelling.

Greenhouse Effect

By Thomas Schelling,

What Is It?

The “greenhouse effect” is a complicated process by which the earth is becoming progressively warmer. The earth is bathed in sunlight, some of it reflected back into space and some absorbed. If the absorption is not matched by radiation back into space, the earth will get warmer until the intensity of that radiation matches the incoming sunlight. Some atmospheric gases absorb outward infrared radiation, warming the atmosphere. Carbon dioxide is one of these gases; so are methane, nitrous oxide, and the chlorofluorocarbons (CFCs). The concentrations of these gases are increasing, with the result that the earth is absorbing more sunlight and getting warmer.

This greenhouse phenomenon is truly the result of a “global common” (see The Tragedy of the Commons ). Because no one owns the atmosphere, no one has a sufficient incentive to take account of the change to the atmosphere caused by his or her emission of carbon. Also, carbon emitted has the same effect no matter where on earth it happens.

How Serious Is It?

The expected change in global average temperature for a doubling of CO 2 is 1.5 to 4.5 degrees centigrade. But translating a change in temperature into a change in climates is full of uncertainties. Meteorologists predict greater temperature change in the polar regions than near the equator. This change could cause changes in circulation of air and water. The results may be warmer temperatures in some places and colder in others, wetter climates in some places and drier in others.

Temperature is useful as an index of climate change. A band of about one degree covers variations in average temperatures since the last ice age. This means that climates will change more in the next one hundred years than in the last ten thousand. But to put this in perspective, remember that people have been migrating great distances for thousands of years, experiencing changes in climate greater than any being forecast.

The models of global warming project only gradual changes. Climates will “migrate” slowly. The climate of Kansas may become like Oklahoma’s, but not like that of Oregon or Massachusetts. But a caveat is in order: the models probably cannot project discontinuities because nothing goes into them that will produce drastic change. There may be phenomena that could produce drastic changes, but they are not known with enough confidence to introduce into the models.

Carbon dioxide has increased about 25 percent since the onset of the industrial revolution. The global average temperature rose almost half a degree during the first forty years of this century, was level for the next forty, and rose during the eighties. Yet whether or not we are witnessing the greenhouse effect is unknown because other decades-long influences such as changes in solar intensity and in the atmosphere’s particulate matter can obscure any smooth greenhouse trend. In other words, the increase in carbon dioxide will, by itself, cause the greenhouse effect, but other changes in the universe may offset it.

Even if we had confident estimates of climate change for different regions of the world, there would be uncertainties about the kind of world we will have fifty or a hundred years from now. Suppose the kind of climate change expected between now and, say, 2080 had already taken place, since 1900. Ask a seventy-five-year-old farm couple living on the same farm where they were born: would the change in the climate be among the most dramatic changes in either their farming or their lifestyle? The answer most likely would be no. Changes from horses to tractors and from kerosene to electricity would be much more important.

Climate change would have made a vastly greater difference to the way people lived and earned their living in 1900 than today. Today, little of our gross domestic product is produced outdoors, and therefore, little is susceptible to climate. Agriculture and forestry are less than 3 percent of total output, and little else is much affected. Even if agricultural productivity declined by a third over the next half-century, the per capita GNP we might have achieved by 2050 we would still achieve in 2051. Considering that agricultural productivity in most parts of the world continues to improve (and that many crops may benefit directly from enhanced photosynthesis due to increased carbon dioxide), it is not at all certain that the net impact on agriculture will be negative or much noticed in the developed world.

Its Effects on Developing Countries

Climate changes would have greater impact in underdeveloped countries. Agriculture provides the livelihoods of 30 percent or more of the population in much of the developing world. While there is no strong presumption that the climates prevailing in different regions fifty or a hundred years from now will be less conducive to food production, those people are vulnerable in a way that Americans and west Europeans are not. Nor can the impact on their health be dismissed. Parasitic and other vectorborne diseases affecting hundreds of millions of people are sensitive to climate.

Yet the trend in developing countries is to be less dependent on agriculture. If per capita income in such countries grows in the next forty years as rapidly as it has in the forty just past, vulnerability to climate change should diminish. This is pertinent to whether developing countries should make sacrifices to minimize the emission of gases that may change climate to their disadvantage. Their best defense against climate change will be their own continued development.

Population is an important factor. Carbon emissions in developing countries rise with population. For instance, if China holds population growth to near zero for the next couple of generations, it may do as much for the earth’s atmosphere as would a heroic anticarbon program coupled with 2 percent annual population growth. Furthermore, the most likely adverse impact of climate change would be on food production, and in the poorest parts of the world the adequacy of food depends on the number of mouths.

Why Should Developed Countries Do Anything?

Why might developed countries care enough about climate to do anything about it? The answer depends on how much people in developed countries care about people in developing countries and on how expensive it is to do something worthwhile. Abatement programs in a number of econometric models suggest that doing something worthwhile would cost about 2 percent of GNP in perpetuity. Two percent of the U.S. GNP is over $100 billion a year, and that is an annual cost that would continue forever.

One argument for doing something is that the developing countries are vulnerable, and we care about their well-being. But if the developed countries were prepared to invest, say, $200 billion a year in greenhouse gas abatement, explicitly for the benefit of developing countries fifty years or more from now, the developing countries would probably clamor, understandably, to receive the resources immediately in support of their continued development.

A second argument is that our natural environment may be severely damaged. This is the crux of the political debate over the greenhouse effect, but it is an issue that no one really understands. It is difficult to know how to value what is at risk, and difficult even to know just what is at risk. The benefits of slowing climate change by some particular amount are even more uncertain.

A third argument is that the conclusion I reported earlier—that climates will change slowly and not much—may be wrong. The models do not produce surprises. The possibility has to be considered that some atmospheric or oceanic circulatory systems may flip to alternative equilibria, producing regional changes that are sudden and extreme. A currently discussed possibility is in the way oceans behave. If the gulf stream flipped into a new pattern, the climatic consequences might be sudden and severe. (Paradoxically, global warming might severely cool western Europe.)

Is 2 percent of GNP forever, to postpone the doubling of carbon in the atmosphere, a big number or a small one? That depends on what the comparison is. A better question—assuming we were prepared to spend 2 percent of GNP to reduce the damage from climate change—is whether we might find better uses for the money.

I mentioned one such use—directly investing to improve the economies of the poorer countries. Another would be direct investment in preserving species or ecosystems or wilderness areas, if the alternative is to invest trillions in the reduction of carbon emissions.

What Solutions Are Proposed?

What can be done to reduce or offset carbon emissions? Reducing energy use and the carbon content of energy have received most of the attention. There are other possibilities. Trees store carbon. A new forest will absorb carbon until it reaches maturity; it then holds its carbon but does not absorb more. The area available for reforestation throughout the world suggests that reforestation can contribute, but not much.

Stopping or slowing deforestation is important for other reasons but is quantitatively more important than reforestation, partly because forest subsoils typically contain carbon greater than the amount in the trees themselves, and this carbon is subject to oxidation when the trees are removed.

Also, substances or objects can be put in orbit or in the stratosphere to reflect incoming sunlight. Some of these are as apparently innocuous as stimulating cloud formation and some as dramatic as huge mylar balloons in low earth orbit. If in decades to come the greenhouse impact confirms the more alarmist expectations, and if the costs of reducing emissions prove unmanageable, some of these “geoengineering” options will invite attention.

The main responses will be to adapt as the climate changes and to reduce carbon emissions. (CFCs are potent greenhouse gases and, if unchecked, might have rivaled carbon dioxide in decades to come. International actions to reduce or eliminate CFCs are making progress and are among the cheapest ways of reducing greenhouse emissions.)

It is improbable that the developing world, at least for the next several decades, will incur any significant sacrifice in the interest of reduced carbon, nor would it be advisable. Financing energy conservation, energy efficiency, and a switch from high-carbon to lower-carbon or noncarbon fuels in Asia and Africa would not only be a major economic enterprise, but also a complex effort in international diplomacy and politics. If successful, it would increase the costs to the developed world by at least another percent or two on top of the 2 percent I mentioned.

A universal carbon tax is a popular proposal among economists because it promises an efficient solution. A carbon tax set equally for all users worldwide would achieve a given reduction in the use of carbon at the lowest cost. If user A values his use of one ton of carbon at two thousand dollars more than its net-of-tax price, and if the tax is four hundred dollars per ton, he will continue to use the carbon because doing so is worthwhile. If user B values his use of one ton at only three hundred dollars more than the net-of-tax price, the tax will induce him to end his use. Thus the tax would eliminate the lowest-valued uses of carbon and would leave the highest-valued ones in place. A carbon tax would require no negotiation except over a tax rate and a formula for distributing the proceeds. But a tax rate that made a big dent in the greenhouse problem would have to be equivalent to around a dollar per gallon on motor fuel, and for the United States alone such a tax on coal, petroleum, and natural gas would currently yield close to half a trillion dollars per year in revenue, almost 10 percent of our GNP. It is doubtful that any greenhouse taxing agency would be allowed to collect that kind of revenue, or that a treaty requiring the United States to levy internal carbon taxation at that level would be ratified.

Tradable permits have been proposed as an alternative to the tax. The main possibilities are estimating “reasonable” emissions country by country and establishing commensurate quotas, or distributing tradable rights in accordance with some “equitable” criterion. Depending on how restrictive the emission rights might be, the latter amounts to distributing trillions of dollars (in present value terms), an unlikely prospect. If quotas are negotiated to correspond to countries’ currently “reasonable” emissions levels, they will surely be renegotiated every few years, and selling an emissions right will be perceived as evidence that a quota was initially too generous.

A helpful model for conceptualizing a greenhouse regime among the richer countries is the negotiations among the nations of Western Europe for distributing Marshall Plan aid after World War II. There was never a formula or explicit criterion, such as equalizing living standards, maximizing aggregate growth, or establishing a floor under levels of living. Baseline dollar-balance-of-payments deficits were a point of departure, but the negotiations took into account other factors such as investment needs and traditional consumption levels. The United States insisted that the recipients argue out and agree on shares. In the end they did not quite make it, the United States having to make the final allocation. But all the submission of data and open argument led, if not to consensus, to a reasonable appreciation of each nation’s needs. Distribution of Marshall Plan funds is the only model of multilateral negotiation involving resources commensurate with the cost of greenhouse abatement. (In the first year Marshall Plan funds were about 1.5 percent of U.S. GNP and—adjusting for overvalued currencies—probably 5 percent of recipient countries’ GNP.)

What the Marshall Plan model suggests is that the participants in a greenhouse regime would submit for each other’s scrutiny and cross-examination plans for reducing carbon emissions. The plans would be accompanied by estimates of emissions, but any commitments would be to the policies, not the emissions.

The alternative is commitments to specific levels of emissions. Because target dates would be a decade or two in the future, monitoring a country’s progress would be more ambiguous than monitoring the implementation of policies.

______________________________________________________________________________________________________________________________

Thomas C. Schelling is a professor of economics at the University of Maryland School of Public Affairs in College Park. For most of his professional life he was an economics professor at Harvard University. In 1991 he was president of the American Economic Association. He is an elected member of the National Academy of Sciences.

Ausubel, Jesse. “Does Climate Still Matter?” Nature 350, April 25, 1991, 649-52.

Cline, William R. The Greenhouse Effect: Global Economic Consequences. 1992.

Congressional Budget Office. Carbon Charges as a Response to Global Warming: The Effects of Taxing Fossil Fuels. 1990.

Dornbush, Rudiger, and James M. Poterba. Global Warming: Economic Policy Responses. 1991.

Nordhaus, William D. “The Cost of Slowing Climate Change: A Survey.” Energy Journal 12, no. 1 (1991): 37-66.

_______________________________________________________________________________________________________________________________

Related Links

Environmental Quality

Free Market Environmentalism

Global Warming: A Balance Sheet

Pollution Controls

Robert Bradley and Richard Fulmer, Those Old Oil Company Ads: Misleading, False, or Simply Reasonable? at Econlib, March 2, 2022.

Bryan Caplan, The Moral Case for Fossil Fuels: We Can Live With Warming , at EconLog, December 12, 2014.

Robert Murphy, The Economics of Climate Change , at Econlib, July 2009.

Pedro Schwartz, Climate Change: A Tragedy of the Commons? at Econlib, March 2020.

Pedro Schwartz, Climate Change: What is (Not) To Be Done , at Econlib, April 2020.

Judith Curry on Climate Change , EconTak podcast, December 23, 2013.

Martin Weitzman on Climate Change , EconTalk podcast, June 1, 2015.

RELATED CONTENT By Amy Willis

Data versus drama.

24/7 writing help on your phone

To install StudyMoose App tap and then “Add to Home Screen”

Understanding and Addressing Global Warming

Save to my list

Remove from my list

The Essence of Global Warming

Writer Lyla

The Human Footprint: Combating Global Warming

The role of reforestation and recycling, conclusion: a call to environmental stewardship.

Understanding and Addressing Global Warming. (2016, Sep 10). Retrieved from https://studymoose.com/impact-of-global-warming-essay

"Understanding and Addressing Global Warming." StudyMoose , 10 Sep 2016, https://studymoose.com/impact-of-global-warming-essay

StudyMoose. (2016). Understanding and Addressing Global Warming . [Online]. Available at: https://studymoose.com/impact-of-global-warming-essay [Accessed: 3 Jul. 2024]

"Understanding and Addressing Global Warming." StudyMoose, Sep 10, 2016. Accessed July 3, 2024. https://studymoose.com/impact-of-global-warming-essay

"Understanding and Addressing Global Warming," StudyMoose , 10-Sep-2016. [Online]. Available: https://studymoose.com/impact-of-global-warming-essay. [Accessed: 3-Jul-2024]

StudyMoose. (2016). Understanding and Addressing Global Warming . [Online]. Available at: https://studymoose.com/impact-of-global-warming-essay [Accessed: 3-Jul-2024]

  • Addressing Global Warming: Strategies and Their Impact Pages: 3 (825 words)
  • Role of Corporations in Addressing the Global Warming Pages: 2 (343 words)
  • Understanding Global Warming and Its Implications Pages: 5 (1280 words)
  • Major Global Problems: Global Warming's Impact on Climate Change Pages: 3 (737 words)
  • Understanding and Addressing Homelessness in America Pages: 4 (1172 words)
  • Tackling the Taboo: Understanding and Addressing Suicide in Today's World Pages: 2 (301 words)
  • Understanding and Addressing Cancer: A Comprehensive Overview Pages: 2 (534 words)
  • Understanding and Addressing Various Aspects of Nursing Pages: 3 (858 words)
  • Addressing the Global Water Crisis: Rights, Challenges, and Solutions Pages: 3 (687 words)
  • Rethinking Global Security: Addressing Emerging Challenges Pages: 5 (1489 words)

Understanding and Addressing Global Warming essay

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

NASA Logo

What is the greenhouse effect?

The greenhouse effect is the process through which heat is trapped near Earth's surface by substances known as 'greenhouse gases.' Imagine these gases as a cozy blanket enveloping our planet, helping to maintain a warmer temperature than it would have otherwise. Greenhouse gases consist of carbon dioxide, methane, ozone, nitrous oxide, chlorofluorocarbons, and water vapor. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially caused the warming.

Scientists have determined that carbon dioxide plays a crucial role in maintaining the stability of Earth's atmosphere. If carbon dioxide were removed, the terrestrial greenhouse effect would collapse, and Earth's surface temperature would drop significantly, by approximately 33°C (59°F).

Greenhouse gases are part of Earth's atmosphere. This is why Earth is often called the 'Goldilocks' planet – its conditions are just right, not too hot or too cold, allowing life to thrive. Part of what makes Earth so amenable is its natural greenhouse effect, which maintains an average temperature of 15 ° C (59 ° F) . However, in the last century, human activities, primarily from burning fossil fuels that have led to the release of carbon dioxide and other greenhouse gases into the atmosphere, have disrupted Earth's energy balance. This has led to an increase in carbon dioxide in the atmosphere and ocean. The level of carbon dioxide in Earth’s atmosphere has been rising consistently for decades and traps extra heat near Earth's surface, causing temperatures to rise.

  • The Greenhouse Effect (UCAR)
  • NASA's Climate Kids: Meet the Greenhouse Gases! (downloadable and printable cards)
  • NASA's Climate Kids: What Is the Greenhouse Effect?

Discover More Topics From NASA

Explore Earth Science

write an argumentative essay about greenhouse effect

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

write an argumentative essay about greenhouse effect

Illustration of a question mark that links to the Climate Kids Big Questions menu.

What Is the Greenhouse Effect?

Watch this video to learn about the greenhouse effect! Click here to download this video (1920x1080, 105 MB, video/mp4). Click here to download this video about the greenhouse effect in Spanish (1920x1080, 154 MB, video/mp4).

How does the greenhouse effect work?

As you might expect from the name, the greenhouse effect works … like a greenhouse! A greenhouse is a building with glass walls and a glass roof. Greenhouses are used to grow plants, such as tomatoes and tropical flowers.

A greenhouse stays warm inside, even during the winter. In the daytime, sunlight shines into the greenhouse and warms the plants and air inside. At nighttime, it's colder outside, but the greenhouse stays pretty warm inside. That's because the glass walls of the greenhouse trap the Sun's heat.

write an argumentative essay about greenhouse effect

A greenhouse captures heat from the Sun during the day. Its glass walls trap the Sun's heat, which keeps plants inside the greenhouse warm — even on cold nights. Credit: NASA/JPL-Caltech

The greenhouse effect works much the same way on Earth. Gases in the atmosphere, such as carbon dioxide , trap heat similar to the glass roof of a greenhouse. These heat-trapping gases are called greenhouse gases .

During the day, the Sun shines through the atmosphere. Earth's surface warms up in the sunlight. At night, Earth's surface cools, releasing heat back into the air. But some of the heat is trapped by the greenhouse gases in the atmosphere. That's what keeps our Earth a warm and cozy 58 degrees Fahrenheit (14 degrees Celsius), on average.

write an argumentative essay about greenhouse effect

Earth's atmosphere traps some of the Sun's heat, preventing it from escaping back into space at night. Credit: NASA/JPL-Caltech

How are humans impacting the greenhouse effect?

Human activities are changing Earth's natural greenhouse effect. Burning fossil fuels like coal and oil puts more carbon dioxide into our atmosphere.

NASA has observed increases in the amount of carbon dioxide and some other greenhouse gases in our atmosphere. Too much of these greenhouse gases can cause Earth's atmosphere to trap more and more heat. This causes Earth to warm up.

What reduces the greenhouse effect on Earth?

Just like a glass greenhouse, Earth's greenhouse is also full of plants! Plants can help to balance the greenhouse effect on Earth. All plants — from giant trees to tiny phytoplankton in the ocean — take in carbon dioxide and give off oxygen.

The ocean also absorbs a lot of excess carbon dioxide in the air. Unfortunately, the increased carbon dioxide in the ocean changes the water, making it more acidic. This is called ocean acidification .

More acidic water can be harmful to many ocean creatures, such as certain shellfish and coral. Warming oceans — from too many greenhouse gases in the atmosphere — can also be harmful to these organisms. Warmer waters are a main cause of coral bleaching .

write an argumentative essay about greenhouse effect

This photograph shows a bleached brain coral. A main cause of coral bleaching is warming oceans. Ocean acidification also stresses coral reef communities. Credit: NOAA

Illustration of a video game controller.

Jump to main content.

A student's guide to Global Climate Change

  • Climate Concepts
  • Today's Climate Change
  • The Earth's Climate in the Past
  • The Signs of Climate Change
  • Effects on People and the Environment
  • Clues of Climate Change
  • The Proof Is in the Atmosphere
  • Putting the Pieces Together
  • You Can Be a Scientist, Too!
  • Technologies
  • What You Can Do
  • Preparing for the Future
  • Home »
  • Learn the Basics »
  • Today's Climate Change »

The Greenhouse Effect

  • Greenhouse Gases
  • All About Carbon Dioxide

Navigation- the Greenhouse Effect

If it were not for greenhouse gases trapping heat in the atmosphere, the Earth would be a very cold place. Greenhouse gases keep the Earth warm through a process called the greenhouse effect. Play the video to learn more » ( Alternative version )

write an argumentative essay about greenhouse effect

The Earth gets energy from the sun in the form of sunlight. The Earth's surface absorbs some of this energy and heats up. That's why the surface of a road can feel hot even after the sun has gone down—because it has absorbed a lot of energy from the sun. The Earth cools down by giving off a different form of energy, called infrared radiation. But before all this radiation can escape to outer space, greenhouse gases in the atmosphere absorb some of it, which makes the atmosphere warmer. As the atmosphere gets warmer, it makes the Earth's surface warmer, too.

Learn more about radiation . ( Alternative version )

Learn where the term “greenhouse effect” comes from . ( Alternative version )

Greenhouse gases keep the Earth warm through a process called the greenhouse effect.

What Is Radiation?

You might hear the word radiation and think that it's a bad thing. It's true that there are certain types of radiation that are bad for you, but other types of radiation are important parts of your life. When you feel heat from the sun, see all the colors around you, or listen to the radio, you are actually experiencing different types of radiation.

These types of radiation are all part of the electromagnetic spectrum, which means they involve energy traveling in the form of a wave. Different types of radiation have different wavelengths.

What's in a Name? The “Greenhouse Effect”

write an argumentative essay about greenhouse effect

A greenhouse is a building made of glass that allows sunlight to enter but traps heat inside, so the building stays warm even when it's cold outside. Because gases in the Earth's atmosphere also let in light but trap heat, many people call this phenomenon the “greenhouse effect.” The greenhouse effect works somewhat differently from an actual greenhouse, but the name stuck, so that's how we still refer to it today.

Top of page

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

greenhouse effect on Earth

  • What does Earth look like?
  • When did science begin?
  • Where was science invented?
  • How does global warming work?
  • Where does global warming occur in the atmosphere?

Brown layer of Los Angeles smog; photo taken on November 10, 2016.(California, environment, smog)

greenhouse effect

Our editors will review what you’ve submitted and determine whether to revise the article.

  • National Geographic - Education - Greenhouse Effect
  • Natural Resources Defense Council - Greenhouse Effect
  • UCAR Center for Science Education - The Greenhouse Effect
  • University of California Museum of Paleontology - Understanding Global Change - Greenhouse effect
  • Library of Economics and Liberty - Greenhouse Effect
  • greenhouse effect - Children's Encyclopedia (Ages 8-11)
  • greenhouse effect - Student Encyclopedia (Ages 11 and up)

greenhouse effect on Earth

greenhouse effect , a warming of Earth ’s surface and troposphere (the lowest layer of the atmosphere ) caused by the presence of water vapour, carbon dioxide , methane , and certain other gases in the air. Of those gases, known as greenhouse gases , water vapour has the largest effect.

The origins of the term greenhouse effect are unclear. French mathematician Joseph Fourier is sometimes given credit as the first person to coin the term greenhouse effect based on his conclusion in 1824 that Earth’s atmosphere functioned similarly to a “hotbox”—that is, a heliothermometer (an insulated wooden box whose lid was made of transparent glass) developed by Swiss physicist Horace Bénédict de Saussure , which prevented cool air from mixing with warm air. Fourier, however, neither used the term greenhouse effect nor credited atmospheric gases with keeping Earth warm. Swedish physicist and physical chemist Svante Arrhenius is credited with the origins of the term in 1896, with the publication of the first plausible climate model that explained how gases in Earth’s atmosphere trap heat . Arrhenius first refers to this “hot-house theory” of the atmosphere—which would be known later as the greenhouse effect—in his work Worlds in the Making (1903).

Combination shot of Grinnell Glacier taken from the summit of Mount Gould, Glacier National Park, Montana in the years 1938, 1981, 1998 and 2006.

The atmosphere allows most of the visible light from the Sun to pass through and reach Earth’s surface. As Earth’s surface is heated by sunlight , it radiates part of this energy back toward space as infrared radiation . This radiation, unlike visible light, tends to be absorbed by the greenhouse gases in the atmosphere, raising its temperature. The heated atmosphere in turn radiates infrared radiation back toward Earth’s surface. (Despite its name, the greenhouse effect is different from the warming in a greenhouse , where panes of glass transmit visible sunlight but hold heat inside the building by trapping warmed air.)

Without the heating caused by the greenhouse effect, Earth’s average surface temperature would be only about −18 °C (0 °F). On Venus the very high concentration of carbon dioxide in the atmosphere causes an extreme greenhouse effect resulting in surface temperatures as high as 450 °C (840 °F).

Study the effects of increasing concentrations of carbon dioxide on Earth's atmosphere and plant life

Although the greenhouse effect is a naturally occurring phenomenon, it is possible that the effect could be intensified by the emission of greenhouse gases into the atmosphere as the result of human activity. From the beginning of the Industrial Revolution through the end of the 20th century, the amount of carbon dioxide in the atmosphere increased by roughly 30 percent and the amount of methane more than doubled. A number of scientists have predicted that human-related increases in atmospheric carbon dioxide and other greenhouse gases could lead by the end of the 21st century to an increase in the global average temperature of 3–4 °C (5.4–7.2 °F) relative to the 1986–2005 average. This global warming could alter Earth’s climates and thereby produce new patterns and extremes of drought and rainfall and possibly disrupt food production in certain regions.

Greenhouse Effect Essays

Research proposal on green marketing: aspect of recycling attitudes and/or….

Section 1: Introduction & Overview of the Issue Green marketing has become a highly debated topic that has attracted not only media attention but also…

Global Warming Argumentative Essay

Introduction Climate change is now a big global issue. There is an increasing amount of evidence that show the gradual decrease in the state of…

  • ♻️ Recycling
  • Air Pollution
  • Animal Rights
  • Animal Testing
  • Climate Change
  • Deforestation
  • Endangered Species
  • Environmental Issues
  • Global Warming

write an argumentative essay about greenhouse effect

The Greenhouse Effect and our Planet

The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth’s atmosphere. Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Biology, Ecology, Earth Science, Geography, Human Geography

Loading ...

Newsela

Greenhouse gases include gases such as carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases. These greenhouse gases allow the sun's light to shine onto Earth's surface. Then the gases, such as ozone, trap the heat that reflects back from the surface inside Earth's atmosphere . The gases act like the glass walls of a greenhouse. In other words, they are warming.

The greenhouse effect happens when these gases gather in Earth's atmosphere. According to scientists, without the greenhouse effect, the average temperature of Earth would drop from 57 degrees Fahrenheit (14 degrees Celsius) to as low as negative 0.4 degrees F (minus 18 degrees C).

Do We Blame the Industrial Revolution ? Some greenhouse gases come from natural sources. For example, evaporation adds water vapor to the atmosphere. Animals and plants release carbon dioxide when they breathe. Methane is released naturally from decomposition, when soils and living things break down. Volcanoes —both on land and under the ocean —release greenhouse gases.

The Industrial Revolution happened in the late 1700s and early 1800s, when factories began producing more. Since then, people have been releasing larger quantities of greenhouse gases into the atmosphere. Greenhouse gas emissions increased 70 percent between 1970 and 2004. Emissions of carbon dioxide (CO 2 ), rose about 80 percent during that time.

The amount of CO 2 in the atmosphere far exceeds Earth's natural amount seen over the last 650,000 years.

Most of the CO 2 that people put into the atmosphere comes from burning fossil fuels . Cars, trucks, t rains and planes all burn fossil fuels. Many electric power plants do, as well. Another way humans release CO 2 into the atmosphere is by cutting down forests , because trees contain large amounts of carbon.

Human Activity + Greenhouse Gases = A Warming Earth People add methane to the atmosphere through livestock farming, landfills and fossil fuel production such as coal mining and natural gas processing. Nitrous oxide comes from agriculture and fossil fuel burning.

Fluorinated gases include chlorofluoro carbons (CFCs), hydro chlorofluoro carbons (HCFCs), and hydrofluorocarbons (HFCs). They are produced during the manufacturing of refrigeration and cooling products. Some come through aerosol cans , such as some hairsprays or spray paint.

As greenhouse gases increase, so does the temperature of Earth. The rise in Earth's average temperature contributed to by human activity is known as global warming .

The Greenhouse Effect and Climate Change Even slight increases in average global temperatures can have huge effects.

Perhaps the biggest effect is that glaciers and ice caps melt faster than usual. The meltwater d rains into the oceans , causing sea levels to rise.

Glaciers and ice caps cover about 10 percent of the world's land. They hold between 70 and 75 percent of the world's freshwater . If all of this ice melted, sea levels would rise about 70 meters (230 feet).

The Intergovernmental Panel on Climate Change says that the global sea level rose about 1.8 millimeters (0.07 inch) per year from 1961 to 1993. It rose about 3.1 millimeters (1/8 inch) per year since 1993.

This seems like only a tiny bit, but rising sea levels can cause flooding in cities along the coasts . This could force millions of people in low-lying areas out of their homes, such as in Bangladesh, the U.S. state of Florida, and the Netherlands.

Millions more people in countries such as Peru and India depend on water from melted glaciers . They use it for drinking, watering crops and hydroelectric power . Rapid loss of these glaciers would greatly hurt those countries.

Predictable Rain is Important to Many Greenhouse gas emissions also affect changes in precipitation , such as rain and snow .

In the 20th century, precipitation increased in eastern parts of North and South America, Northern Europe, and northern and Central Asia. However, it has decreased in parts of Africa, the Mediterranean, and southern Asia.

As climates change, so do the habitats for living things. Animals that are adapted to a certain climates might become threatened. Many humans depend on predictable rain patterns to grow specific crops . If the climate of an area changes, the people who live there may no longer be able to grow the crops they depend on for survival.

Scientists aren't the only Ones Who Can Help

  • Drive less. Use  public transportation , carpool, walk, or ride a bike.
  • Fly less. Airplanes produce huge amounts of greenhouse gas emissions.
  • Reduce, reuse, and  recycle .
  • Plant a tree. Trees absorb carbon dioxide, keeping it out of the atmosphere.
  • Use less  electricity .
  • Eat less meat. Cows are one of the biggest methane producers.
  • Support alternative energy sources that don’t burn fossil fuels.

Artificial Gas

Chlorofluorocarbons (CFCs) are the only greenhouse gases not created by nature. They are created through refrigeration and aerosol cans.

CFCs, used mostly as refrigerants, are chemicals that were developed in the late 19th century and came into wide use in the mid-20th century.

Other greenhouse gases, such as carbon dioxide, are emitted by human activity, at an unnatural and unsustainable level, but the molecules do occur naturally in Earth's atmosphere.

Audio & Video

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Advertisement

Here’s What the Court’s Chevron Ruling Could Mean in Everyday Terms

The decision is expected to prompt a rush of litigation challenging regulations across the entire federal government, from food safety to the environment.

  • Share full article

Gray columns and a white flag on the front of a the Environmental Protection Agency building.

By Coral Davenport ,  Christina Jewett ,  Alan Rappeport ,  Margot Sanger-Katz ,  Noam Scheiber and Noah Weiland

  • June 28, 2024

The Supreme Court’s decision on Friday to limit the broad regulatory authority of federal agencies could lead to the elimination or weakening of thousands of rules on the environment, health care, worker protection, food and drug safety, telecommunications, the financial sector and more.

The decision is a major victory in a decades-long campaign by conservative activists to shrink the power of the federal government, limiting the reach and authority of what those activists call “the administrative state.”

The court’s opinion could make it easier for opponents of federal regulations to challenge them in court, prompting a rush of new litigation, while also injecting uncertainty into businesses and industries.

“If Americans are worried about their drinking water, their health, their retirement account, discrimination on the job, if they fly on a plane, drive a car, if they go outside and breathe the air — all of these day-to-day activities are run through a massive universe of federal agency regulations,” said Lisa Heinzerling, an expert in administrative law at Georgetown University. “And this decision now means that more of those regulations could be struck down by the courts.”

The decision effectively ends a legal precedent known as “Chevron deference,” after a 1984 Supreme Court ruling. That decision held that when Congress passes a law that lacks specificity, courts must give wide leeway to decisions made by the federal agencies charged with implementing that law. The theory was that scientists, economists and other specialists at the agencies have more expertise than judges in determining regulations and that the executive branch is also more accountable to voters.

Since then, thousands of legal decisions have relied on the Chevron doctrine when challenges have been made to regulations stemming from laws like the 1938 Fair Labor Standards Act, the 1970 Clean Air Act , the 2010 Affordable Care Act and others.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

IMAGES

  1. Greenhouse Effect Paragraph

    write an argumentative essay about greenhouse effect

  2. Greenhouse Effect Paragraph

    write an argumentative essay about greenhouse effect

  3. Issue of Global Warming Argumentative Essay on Samploon.com

    write an argumentative essay about greenhouse effect

  4. Global Warming

    write an argumentative essay about greenhouse effect

  5. A Review Essay : Greenhouse Warming: The Changing Climate in Science

    write an argumentative essay about greenhouse effect

  6. The Greenhouse Effect

    write an argumentative essay about greenhouse effect

VIDEO

  1. Green House Effects Essay In English

  2. Argumentative Essays

  3. Essay||Definition/Types of essay/listing/ comparison and contrast/ cause and effect/for and against

  4. What is an Argumentative Essay? What are the steps to write an Argumentative Essay?

  5. how to write an argumentative essay Nicholas Marcus Michael Layal

  6. Writing Academic English _ Chapter 6 _ Cause and Effect Essays

COMMENTS

  1. Essay on Greenhouse Effect for Students

    600 Words Essay on Greenhouse Effect. A Greenhouse, as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the ...

  2. Greenhouse Effect Argumentative Essays Samples For Students

    The greenhouse effect is the absorption of energy radiated from the Earth's surface by carbon dioxide and other gases in the atmosphere, causing the atmosphere to become warmer. The greenhouse effect is what is causing the temperature on the Earth to rise, and creating many problems that will begin to occur in the coming decades.

  3. Greenhouse Effect

    greenhouse effect. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  4. Climate Change Argumentation

    Summary. Subject (s): Earth Science. Topic: Climate Change and Sustainability. Grade/Level: 9-12 (can be adapted to grades 6-8) Objectives: Students will be able to write a scientific argument using evidence and reasoning to support claims. Students will also be able to reflect on the weaknesses in their own arguments in order to improve their ...

  5. Greenhouse Effect

    The "greenhouse effect" is a complicated process by which the earth is becoming progressively warmer. The earth is bathed in sunlight, some of it reflected back into space and some absorbed. ... A third argument is that the conclusion I reported earlier—that climates will change slowly and not much—may be wrong. The models do not ...

  6. The Impact of Global Warming: An Argumentative Essay Example

    Download. Essay, Pages 3 (597 words) Views. 2902. Planet Earth, with its wealth of natural resources, is a marvel that sustains diverse forms of life. However, the relentless exploitation of these resources has given rise to a pressing issue—global warming. This essay aims to elucidate the concept of global warming, delineate its detrimental ...

  7. The Greenhouse Effect and our Planet

    The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth's atmosphere. Greenhouse gases include carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2 O), ozone (O 3), and fluorinated gases.. Greenhouse gases allow the sun's light to shine onto Earth's surface, and then the gases, such as ozone, trap the heat that reflects back from ...

  8. What is the greenhouse effect?

    The greenhouse effect is the process through which heat is trapped near Earth's surface by substances known as 'greenhouse gases.'. Imagine these gases as a cozy blanket enveloping our planet, helping to maintain a warmer temperature than it would have otherwise. Greenhouse gases consist of carbon dioxide, methane, ozone, nitrous oxide ...

  9. Persuasive Essay: The Greenhouse Effect

    Global warming is a process in which Earths overall temperature gradually increases due to CO2 and other gases. The greenhouse effect is caused by gases in the atmosphere, such as water vapor, carbon dioxide, and methane. These gases trap sunlight in the atmosphere, so when after the Earth absorbs energy from the sunlight the energy left over ...

  10. Persuasive Essay On Green House Effect

    The burning of fossil fuels such as coal and oil has caused gases like carbon dioxide to become trapped in the atmosphere causing a natural greenhouse effect. The greenhouse effect has caused the earth 's average temperature to rise and has resulted in arctic glaciers melting. These glaciers had gases trapped inside them that are now being ...

  11. The Greenhouse Effect Essay

    The Greenhouse Effect Essay. Much like the glass of a greenhouse, gases in our atmosphere sustain life on Earth by trapping the sun 's heat. The Earth's atmosphere contains several different gases that act like a blanket, keeping the Earth warm. Water vapour and some trace gases like CO2, CH4 (methane), O3 (ozone), N2O (nitrous oxide), are ...

  12. What Is the Greenhouse Effect?

    The Short Answer: The greenhouse effect is a process that occurs when gases in Earth's atmosphere trap the Sun's heat. This process makes Earth much warmer than it would be without an atmosphere. The greenhouse effect is one of the things that makes Earth a comfortable place to live.

  13. Steps To Follow While Writing An Essay On Climate Change

    Craft the outline and don't go off-topic. Search for keywords. Make a plan. Avoid the most common mistakes from the start. Write an introduction thinking about what you will write later. Develop your ideas according to the outline. Make a conclusion which is consistent with what you've written in the main paragraphs.

  14. The Greenhouse Effect

    The Greenhouse Effect. If it were not for greenhouse gases trapping heat in the atmosphere, the Earth would be a very cold place. Greenhouse gases keep the Earth warm through a process called the greenhouse effect. Play the video to learn more ». The Earth gets energy from the sun in the form of sunlight. The Earth's surface absorbs some of ...

  15. Greenhouse effect

    greenhouse effect, a warming of Earth's surface and troposphere (the lowest layer of the atmosphere) caused by the presence of water vapour, carbon dioxide, methane, and certain other gases in the air. Of those gases, known as greenhouse gases, water vapour has the largest effect.. The origins of the term greenhouse effect are unclear. French mathematician Joseph Fourier is sometimes given ...

  16. From scientific arguments to scepticism: Humans' place in the Greenhouse

    Through a corpus-based, cognitive and pragmatic analysis of the metaphorical expression greenhouse effect, the research shows that humans' place (s) in the Greenhouse is a significant part of environmental argumentative strategies. Keywords: greenhouse effect, media, online forum, scepticism, science. 1.

  17. Causes, Effects and Solutions to Global Warming

    Greenhouse gases are carbon monoxide and sulphur dioxide it trap the solar heats rays and prevent it from escaping from the surface of the earth. This has cause the temperature of the earth increase. Volcanic eruptions are another issue that causes global warming. For instance, a single volcanic eruption will release amount of carbon dioxide ...

  18. Greenhouse Effect Essay Examples

    Looking for free Greenhouse Effect essay examples? ️ Find high-quality samples in our database. 📚 More than 2 essays on Greenhouse Effect. ... Global Warming Argumentative Essay. Subject: 🌷 Environment. Pages: 4. ... Custom Essay Writing Free Essay Samples Blog Essay Proofreading. Contacts:

  19. Essay On Greenhouse Effect

    Essay On Greenhouse Effect. 1852 Words8 Pages. INTRODUCTION 1.1. What is the Greenhouse Effect? The Earth's climate is determined by the receipt and distribution of the radiation received from the sun (Dunne, 2013). Light from the sun undertakes three corridors: 25% is absorbed by the atmosphere, 30% is reflected back into space and 45% is ...

  20. The Greenhouse Effect and our Planet

    greenhouse effect. noun. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. noun. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  21. How to write an effective climate change thesis statement

    Humans impact the physical environment in many ways: 1. Human activity causes Environmental degradation. 2. Ecosystem disruption which is led by overpopulation 3. Habitat loss due to deforestation ...

  22. The Enhanced Green House Effect Essay example

    As of yet, no sign of climate change has happened yet that can be blamed on the green house effect. The Greenhouse Effect is the roll that the atmosphere plays in insulating and warming the earth's surface. The atmosphere is the part of the earth that is covered by a thin blanket of gasses. Nitrogen and oxygen are the main gasses in our ...

  23. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  24. What the Chevron Ruling Means for the Federal Government

    Others noted the Chevron decision could have a chilling effect, compelling the F.D.A. to proceed quite carefully, given the potential for litigation, if it moves forward with proposals to ban ...