The Classroom | Empowering Students in Their College Journey

The Relationship Between Scientific Method & Critical Thinking

Scott Neuffer

What Is the Function of the Hypothesis?

Critical thinking, that is the mind’s ability to analyze claims about the world, is the intellectual basis of the scientific method. The scientific method can be viewed as an extensive, structured mode of critical thinking that involves hypothesis, experimentation and conclusion.

Critical Thinking

Broadly speaking, critical thinking is any analytical thought aimed at determining the validity of a specific claim. It can be as simple as a nine-year-old questioning a parent’s claim that Santa Claus exists, or as complex as physicists questioning the relativity of space and time. Critical thinking is the point when the mind turns in opposition to an accepted truth and begins analyzing its underlying premises. As American philosopher John Dewey said, it is the “active, persistent and careful consideration of a belief or supposed form of knowledge in light of the grounds that support it, and the further conclusions to which it tends.”

Critical thinking initiates the act of hypothesis. In the scientific method, the hypothesis is the initial supposition, or theoretical claim about the world, based on questions and observations. If critical thinking asks the question, then the hypothesis is the best attempt at the time to answer the question using observable phenomenon. For example, an astrophysicist may question existing theories of black holes based on his own observation. He may posit a contrary hypothesis, arguing black holes actually produce white light. It is not a final conclusion, however, as the scientific method requires specific forms of verification.

Experimentation

The scientific method uses formal experimentation to analyze any hypothesis. The rigorous and specific methodology of experimentation is designed to gather unbiased empirical evidence that either supports or contradicts a given claim. Controlled variables are used to provide an objective basis of comparison. For example, researchers studying the effects of a certain drug may provide half the test population with a placebo pill and the other half with the real drug. The effects of the real drug can then be assessed relative to the control group.

In the scientific method, conclusions are drawn only after tested, verifiable evidence supports them. Even then, conclusions are subject to peer review and often retested before general consensus is reached. Thus, what begins as an act of critical thinking becomes, in the scientific method, a complex process of testing the validity of a claim. English philosopher Francis Bacon put it this way: “If a man will begin with certainties, he shall end in doubts; but if he will be content to begin with doubts, he shall end in certainties.”

Related Articles

According to the Constitution, What Power Is Denied to the Judicial Branch?

According to the Constitution, What Power Is Denied to the Judicial ...

How to Evaluate Statistical Analysis

How to Evaluate Statistical Analysis

The Disadvantages of Qualitative & Quantitative Research

The Disadvantages of Qualitative & Quantitative Research

Qualitative and Quantitative Research Methods

Qualitative and Quantitative Research Methods

What Is Experimental Research Design?

What Is Experimental Research Design?

The Parts of an Argument

The Parts of an Argument

What Is a Confirmed Hypothesis?

What Is a Confirmed Hypothesis?

The Formula for T Scores

The Formula for T Scores

  • How We Think: John Dewey
  • The Advancement of Learning: Francis Bacon

Scott Neuffer is an award-winning journalist and writer who lives in Nevada. He holds a bachelor's degree in English and spent five years as an education and business reporter for Sierra Nevada Media Group. His first collection of short stories, "Scars of the New Order," was published in 2014.

Accelerate Learning

  • MISSION / VISION
  • DIVERSITY STATEMENT
  • CAREER OPPORTUNITIES
  • Kide Science
  • STEMscopes Science
  • Collaborate Science
  • STEMscopes Math
  • Math Nation
  • STEMscopes Coding
  • Mastery Coding
  • DIVE-in Engineering
  • STEMscopes Streaming
  • Tuva Data Literacy
  • NATIONAL INSTITUTE FOR STEM EDUCATION
  • STEMSCOPES PROFESSIONAL LEARNING
  • RESEARCH & EFFICACY STUDIES
  • STEM EDUCATION WEBINARS
  • LEARNING EQUITY
  • DISTANCE LEARNING
  • PRODUCT UPDATES
  • LMS INTEGRATIONS
  • STEMSCOPES BLOG
  • FREE RESOURCES
  • TESTIMONIALS

Critical Thinking in Science: Fostering Scientific Reasoning Skills in Students

ALI Staff | Published  July 13, 2023

Thinking like a scientist is a central goal of all science curricula.

As students learn facts, methodologies, and methods, what matters most is that all their learning happens through the lens of scientific reasoning what matters most is that it’s all through the lens of scientific reasoning.

That way, when it comes time for them to take on a little science themselves, either in the lab or by theoretically thinking through a solution, they understand how to do it in the right context.

One component of this type of thinking is being critical. Based on facts and evidence, critical thinking in science isn’t exactly the same as critical thinking in other subjects.

Students have to doubt the information they’re given until they can prove it’s right.

They have to truly understand what’s true and what’s hearsay. It’s complex, but with the right tools and plenty of practice, students can get it right.

What is critical thinking?

This particular style of thinking stands out because it requires reflection and analysis. Based on what's logical and rational, thinking critically is all about digging deep and going beyond the surface of a question to establish the quality of the question itself.

It ensures students put their brains to work when confronted with a question rather than taking every piece of information they’re given at face value.

It’s engaged, higher-level thinking that will serve them well in school and throughout their lives.

Why is critical thinking important?

Critical thinking is important when it comes to making good decisions.

It gives us the tools to think through a choice rather than quickly picking an option — and probably guessing wrong. Think of it as the all-important ‘why.’

Why is that true? Why is that right? Why is this the only option?

Finding answers to questions like these requires critical thinking. They require you to really analyze both the question itself and the possible solutions to establish validity.

Will that choice work for me? Does this feel right based on the evidence?

How does critical thinking in science impact students?

Critical thinking is essential in science.

It’s what naturally takes students in the direction of scientific reasoning since evidence is a key component of this style of thought.

It’s not just about whether evidence is available to support a particular answer but how valid that evidence is.

It’s about whether the information the student has fits together to create a strong argument and how to use verifiable facts to get a proper response.

Critical thinking in science helps students:

  • Actively evaluate information
  • Identify bias
  • Separate the logic within arguments
  • Analyze evidence

4 Ways to promote critical thinking

Figuring out how to develop critical thinking skills in science means looking at multiple strategies and deciding what will work best at your school and in your class.

Based on your student population, their needs and abilities, not every option will be a home run.

These particular examples are all based on the idea that for students to really learn how to think critically, they have to practice doing it. 

Each focuses on engaging students with science in a way that will motivate them to work independently as they hone their scientific reasoning skills.

Project-Based Learning

Project-based learning centers on critical thinking.

Teachers can shape a project around the thinking style to give students practice with evaluating evidence or other critical thinking skills.

Critical thinking also happens during collaboration, evidence-based thought, and reflection.

For example, setting students up for a research project is not only a great way to get them to think critically, but it also helps motivate them to learn.

Allowing them to pick the topic (that isn’t easy to look up online), develop their own research questions, and establish a process to collect data to find an answer lets students personally connect to science while using critical thinking at each stage of the assignment.

They’ll have to evaluate the quality of the research they find and make evidence-based decisions.

Self-Reflection

Adding a question or two to any lab practicum or activity requiring students to pause and reflect on what they did or learned also helps them practice critical thinking.

At this point in an assignment, they’ll pause and assess independently. 

You can ask students to reflect on the conclusions they came up with for a completed activity, which really makes them think about whether there's any bias in their answer.

Addressing Assumptions

One way critical thinking aligns so perfectly with scientific reasoning is that it encourages students to challenge all assumptions. 

Evidence is king in the science classroom, but even when students work with hard facts, there comes the risk of a little assumptive thinking.

Working with students to identify assumptions in existing research or asking them to address an issue where they suspend their own judgment and simply look at established facts polishes their that critical eye.

They’re getting practice without tossing out opinions, unproven hypotheses, and speculation in exchange for real data and real results, just like a scientist has to do.

Lab Activities With Trial-And-Error

Another component of critical thinking (as well as thinking like a scientist) is figuring out what to do when you get something wrong.

Backtracking can mean you have to rethink a process, redesign an experiment, or reevaluate data because the outcomes don’t make sense, but it’s okay.

The ability to get something wrong and recover is not only a valuable life skill, but it’s where most scientific breakthroughs start. Reminding students of this is always a valuable lesson.

Labs that include comparative activities are one way to increase critical thinking skills, especially when introducing new evidence that might cause students to change their conclusions once the lab has begun.

For example, you provide students with two distinct data sets and ask them to compare them.

With only two choices, there are a finite amount of conclusions to draw, but then what happens when you bring in a third data set? Will it void certain conclusions? Will it allow students to make new conclusions, ones even more deeply rooted in evidence?

Thinking like a scientist

When students get the opportunity to think critically, they’re learning to trust the data over their ‘gut,’ to approach problems systematically and make informed decisions using ‘good’ evidence.

When practiced enough, this ability will engage students in science in a whole new way, providing them with opportunities to dig deeper and learn more.

It can help enrich science and motivate students to approach the subject just like a professional would.

New call-to-action

Share this post!

Related articles.

STEMscopes Texas Math Meets TEKS and ELP Standards!

STEMscopes Texas Math Meets TEKS and ELP Standards!

There is quite a bit of uncertainty out there about the newly established Instructional Materials Review and Approval...

10 Quick, Fun Math Warm-Up Activities

10 Quick, Fun Math Warm-Up Activities

Creating an environment that allows students to engage with fun math activities, versus rote memorization, helps...

Overview of Instructional Materials Review and Approval (IMRA) and House Bill 1605

Overview of Instructional Materials Review and Approval (IMRA) and House Bill 1605

In May 2023, Texas approved a transformative bill (House Bill 1605) that significantly impacts educational funding for...

STAY INFORMED ON THE LATEST IN STEM. SUBSCRIBE TODAY!

Which stem subjects are of interest to you.

STEMscopes Tech Specifications      STEMscopes Security Information & Compliance      Privacy Policy      Terms and Conditions

© 2024 Accelerate Learning

Thinking critically on critical thinking: why scientists’ skills need to spread

what is scientific attitude and why is it important for critical thinking

Lecturer in Psychology, University of Tasmania

Disclosure statement

Rachel Grieve does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

University of Tasmania provides funding as a member of The Conversation AU.

View all partners

what is scientific attitude and why is it important for critical thinking

MATHS AND SCIENCE EDUCATION: We’ve asked our authors about the state of maths and science education in Australia and its future direction. Today, Rachel Grieve discusses why we need to spread science-specific skills into the wider curriculum.

When we think of science and maths, stereotypical visions of lab coats, test-tubes, and formulae often spring to mind.

But more important than these stereotypes are the methods that underpin the work scientists do – namely generating and systematically testing hypotheses. A key part of this is critical thinking.

It’s a skill that often feels in short supply these days, but you don’t necessarily need to study science or maths in order gain it. It’s time to take critical thinking out of the realm of maths and science and broaden it into students’ general education.

What is critical thinking?

Critical thinking is a reflective and analytical style of thinking, with its basis in logic, rationality, and synthesis. It means delving deeper and asking questions like: why is that so? Where is the evidence? How good is that evidence? Is this a good argument? Is it biased? Is it verifiable? What are the alternative explanations?

Critical thinking moves us beyond mere description and into the realms of scientific inference and reasoning. This is what enables discoveries to be made and innovations to be fostered.

For many scientists, critical thinking becomes (seemingly) intuitive, but like any skill set, critical thinking needs to be taught and cultivated. Unfortunately, educators are unable to deposit this information directly into their students’ heads. While the theory of critical thinking can be taught, critical thinking itself needs to be experienced first-hand.

So what does this mean for educators trying to incorporate critical thinking within their curricula? We can teach students the theoretical elements of critical thinking. Take for example working through [statistical problems](http://wdeneys.org/data/COGNIT_1695.pdf](http://wdeneys.org/data/COGNIT_1695.pdf) like this one:

In a 1,000-person study, four people said their favourite series was Star Trek and 996 said Days of Our Lives. Jeremy is a randomly chosen participant in this study, is 26, and is doing graduate studies in physics. He stays at home most of the time and likes to play videogames. What is most likely? a. Jeremy’s favourite series is Star Trek b. Jeremy’s favourite series is Days of Our Lives

Some critical thought applied to this problem allows us to know that Jeremy is most likely to prefer Days of Our Lives.

Can you teach it?

It’s well established that statistical training is associated with improved decision-making. But the idea of “teaching” critical thinking is itself an oxymoron: critical thinking can really only be learned through practice. Thus, it is not surprising that student engagement with the critical thinking process itself is what pays the dividends for students.

As such, educators try to connect students with the subject matter outside the lecture theatre or classroom. For example, problem based learning is now widely used in the health sciences, whereby students must figure out the key issues related to a case and direct their own learning to solve that problem. Problem based learning has clear parallels with real life practice for health professionals.

Critical thinking goes beyond what might be on the final exam and life-long learning becomes the key. This is a good thing, as practice helps to improve our ability to think critically over time .

Just for scientists?

For those engaging with science, learning the skills needed to be a critical consumer of information is invaluable. But should these skills remain in the domain of scientists? Clearly not: for those engaging with life, being a critical consumer of information is also invaluable, allowing informed judgement.

Being able to actively consider and evaluate information, identify biases, examine the logic of arguments, and tolerate ambiguity until the evidence is in would allow many people from all backgrounds to make better decisions. While these decisions can be trivial (does that miracle anti-wrinkle cream really do what it claims?), in many cases, reasoning and decision-making can have a substantial impact, with some decisions have life-altering effects. A timely case-in-point is immunisation.

Pushing critical thinking from the realms of science and maths into the broader curriculum may lead to far-reaching outcomes. With increasing access to information on the internet, giving individuals the skills to critically think about that information may have widespread benefit, both personally and socially.

The value of science education might not always be in the facts, but in the thinking.

This is the sixth part of our series Maths and Science Education .

  • Maths and science education

what is scientific attitude and why is it important for critical thinking

Business Development Manager, MDHS

what is scientific attitude and why is it important for critical thinking

Newsletter and Deputy Social Media Producer

what is scientific attitude and why is it important for critical thinking

College Director and Principal | Curtin College

what is scientific attitude and why is it important for critical thinking

Head of School: Engineering, Computer and Mathematical Sciences

what is scientific attitude and why is it important for critical thinking

Educational Designer

Advertisement

Advertisement

Scientific Thinking and Critical Thinking in Science Education 

Two Distinct but Symbiotically Related Intellectual Processes

  • Open access
  • Published: 05 September 2023

Cite this article

You have full access to this open access article

what is scientific attitude and why is it important for critical thinking

  • Antonio García-Carmona   ORCID: orcid.org/0000-0001-5952-0340 1  

7468 Accesses

4 Citations

Explore all metrics

Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one or the other indistinctly to refer to the same cognitive and metacognitive skills, usually leaving unclear what are their differences and what are their common aspects. The present work therefore was aimed at elucidating what the differences and relationships between these two types of thinking are. The conclusion reached was that, while they differ in regard to the purposes of their application and some skills or processes, they also share others and are related symbiotically in a metaphorical sense; i.e., each one makes sense or develops appropriately when it is nourished or enriched by the other. Finally, an orientative proposal is presented for an integrated development of the two types of thinking in science classes.

Similar content being viewed by others

what is scientific attitude and why is it important for critical thinking

Philosophical Inquiry and Critical Thinking in Primary and Secondary Science Education

Fostering scientific literacy and critical thinking in elementary science education.

what is scientific attitude and why is it important for critical thinking

Enhancing Scientific Thinking Through the Development of Critical Thinking in Higher Education

Avoid common mistakes on your manuscript.

Education is not the learning of facts, but the training of the mind to think. Albert Einstein

1 Introduction

In consulting technical reports, theoretical frameworks, research, and curricular reforms related to science education, one commonly finds appeals to scientific thinking and critical thinking as essential educational processes or objectives. This is confirmed in some studies that include exhaustive reviews of the literature in this regard such as those of Bailin ( 2002 ), Costa et al. ( 2020 ), and Santos ( 2017 ) on critical thinking, and of Klarh et al. ( 2019 ) and Lehrer and Schauble ( 2006 ) on scientific thinking. However, conceptualizing and differentiating between both types of thinking based on the above-mentioned documents of science education are generally difficult. In many cases, they are referred to without defining them, or they are used interchangeably to represent virtually the same thing. Thus, for example, the document A Framework for K-12 Science Education points out that “Critical thinking is required, whether in developing and refining an idea (an explanation or design) or in conducting an investigation” (National Research Council (NRC), 2012 , p. 46). The same document also refers to scientific thinking when it suggests that basic scientific education should “provide students with opportunities for a range of scientific activities and scientific thinking , including, but not limited to inquiry and investigation, collection and analysis of evidence, logical reasoning, and communication and application of information” (NRC, 2012 , p. 251).

A few years earlier, the report Science Teaching in Schools in Europe: Policies and Research (European Commission/Eurydice, 2006 ) included the dimension “scientific thinking” as part of standardized national science tests in European countries. This dimension consisted of three basic abilities: (i) to solve problems formulated in theoretical terms , (ii) to frame a problem in scientific terms , and (iii) to formulate scientific hypotheses . In contrast, critical thinking was not even mentioned in such a report. However, in subsequent similar reports by the European Commission/Eurydice ( 2011 , 2022 ), there are some references to the fact that the development of critical thinking should be a basic objective of science teaching, although these reports do not define it at any point.

The ENCIENDE report on early-year science education in Spain also includes an explicit allusion to critical thinking among its recommendations: “Providing students with learning tools means helping them to develop critical thinking , to form their own opinions, to distinguish between knowledge founded on the evidence available at a certain moment (evidence which can change) and unfounded beliefs” (Confederation of Scientific Societies in Spain (COSCE), 2011 , p. 62). However, the report makes no explicit mention to scientific thinking. More recently, the document “ Enseñando ciencia con ciencia ” (Teaching science with science) (Couso et al., 2020 ), sponsored by Spain’s Ministry of Education, also addresses critical thinking:

(…) with the teaching approach through guided inquiry students learn scientific content, learn to do science (procedures), learn what science is and how it is built, and this (...) helps to develop critical thinking , that is, to question any statement that is not supported by evidence. (Couso et al., 2020 , p. 54)

On the other hand, in referring to what is practically the same thing, the European report Science Education for Responsible Citizenship speaks of scientific thinking when it establishes that one of the challenges of scientific education should be: “To promote a culture of scientific thinking and inspire citizens to use evidence-based reasoning for decision making” (European Commission, 2015 , p. 14). However, the Pisa 2024 Strategic Vision and Direction for Science report does not mention scientific thinking but does mention critical thinking in noting that “More generally, (students) should be able to recognize the limitations of scientific inquiry and apply critical thinking when engaging with its results” (Organization for Economic Co-operation and Development (OECD), 2020 , p. 9).

The new Spanish science curriculum for basic education (Royal Decree 217/ 2022 ) does make explicit reference to scientific thinking. For example, one of the STEM (Science, Technology, Engineering, and Mathematics) competency descriptors for compulsory secondary education reads:

Use scientific thinking to understand and explain the phenomena that occur around them, trusting in knowledge as a motor for development, asking questions and checking hypotheses through experimentation and inquiry (...) showing a critical attitude about the scope and limitations of science. (p. 41,599)

Furthermore, when developing the curriculum for the subjects of physics and chemistry, the same provision clarifies that “The essence of scientific thinking is to understand what are the reasons for the phenomena that occur in the natural environment to then try to explain them through the appropriate laws of physics and chemistry” (Royal Decree 217/ 2022 , p. 41,659). However, within the science subjects (i.e., Biology and Geology, and Physics and Chemistry), critical thinking is not mentioned as such. Footnote 1 It is only more or less directly alluded to with such expressions as “critical analysis”, “critical assessment”, “critical reflection”, “critical attitude”, and “critical spirit”, with no attempt to conceptualize it as is done with regard to scientific thinking.

The above is just a small sample of the concepts of scientific thinking and critical thinking only being differentiated in some cases, while in others they are presented as interchangeable, using one or the other indistinctly to talk about the same cognitive/metacognitive processes or practices. In fairness, however, it has to be acknowledged—as said at the beginning—that it is far from easy to conceptualize these two types of thinking (Bailin, 2002 ; Dwyer et al., 2014 ; Ennis, 2018 ; Lehrer & Schauble, 2006 ; Kuhn, 1993 , 1999 ) since they feed back on each other, partially overlap, and share certain features (Cáceres et al., 2020 ; Vázquez-Alonso & Manassero-Mas, 2018 ). Neither is there unanimity in the literature on how to characterize each of them, and rarely have they been analyzed comparatively (e.g., Hyytinen et al., 2019 ). For these reasons, I believed it necessary to address this issue with the present work in order to offer some guidelines for science teachers interested in deepening into these two intellectual processes to promote them in their classes.

2 An Attempt to Delimit Scientific Thinking in Science Education

For many years, cognitive science has been interested in studying what scientific thinking is and how it can be taught in order to improve students’ science learning (Klarh et al., 2019 ; Zimmerman & Klarh, 2018 ). To this end, Kuhn et al. propose taking a characterization of science as argument (Kuhn, 1993 ; Kuhn et al., 2008 ). They argue that this is a suitable way of linking the activity of how scientists think with that of the students and of the public in general, since science is a social activity which is subject to ongoing debate, in which the construction of arguments plays a key role. Lehrer and Schauble ( 2006 ) link scientific thinking with scientific literacy, paying especial attention to the different images of science. According to those authors, these images would guide the development of the said literacy in class. The images of science that Leherer and Schauble highlight as characterizing scientific thinking are: (i) science-as-logical reasoning (role of domain-general forms of scientific reasoning, including formal logic, heuristic, and strategies applied in different fields of science), (ii) science-as-theory change (science is subject to permanent revision and change), and (iii) science-as-practice (scientific knowledge and reasoning are components of a larger set of activities that include rules of participation, procedural skills, epistemological knowledge, etc.).

Based on a literature review, Jirout ( 2020 ) defines scientific thinking as an intellectual process whose purpose is the intentional search for information about a phenomenon or facts by formulating questions, checking hypotheses, carrying out observations, recognizing patterns, and making inferences (a detailed description of all these scientific practices or competencies can be found, for example, in NRC, 2012 ; OECD, 2019 ). Therefore, for Jirout, the development of scientific thinking would involve bringing into play the basic science skills/practices common to the inquiry-based approach to learning science (García-Carmona, 2020 ; Harlen, 2014 ). For other authors, scientific thinking would include a whole spectrum of scientific reasoning competencies (Krell et al., 2022 ; Moore, 2019 ; Tytler & Peterson, 2004 ). However, these competences usually cover the same science skills/practices mentioned above. Indeed, a conceptual overlap between scientific thinking, scientific reasoning, and scientific inquiry is often found in science education goals (Krell et al., 2022 ). Although, according to Leherer and Schauble ( 2006 ), scientific thinking is a broader construct that encompasses the other two.

It could be said that scientific thinking is a particular way of searching for information using science practices Footnote 2 (Klarh et al., 2019 ; Zimmerman & Klarh, 2018 ; Vázquez-Alonso & Manassero-Mas, 2018 ). This intellectual process provides the individual with the ability to evaluate the robustness of evidence for or against a certain idea, in order to explain a phenomenon (Clouse, 2017 ). But the development of scientific thinking also requires metacognition processes. According to what Kuhn ( 2022 ) argues, metacognition is fundamental to the permanent control or revision of what an individual thinks and knows, as well as that of the other individuals with whom it interacts, when engaging in scientific practices. In short, scientific thinking demands a good connection between reasoning and metacognition (Kuhn, 2022 ). Footnote 3

From that perspective, Zimmerman and Klarh ( 2018 ) have synthesized a taxonomy categorizing scientific thinking, relating cognitive processes with the corresponding science practices (Table 1 ). It has to be noted that this taxonomy was prepared in line with the categorization of scientific practices proposed in the document A Framework for K-12 Science Education (NRC, 2012 ). This is why one needs to understand that, for example, the cognitive process of elaboration and refinement of hypotheses is not explicitly associated with the scientific practice of hypothesizing but only with the formulation of questions. Indeed, the K-12 Framework document does not establish hypothesis formulation as a basic scientific practice. Lederman et al. ( 2014 ) justify it by arguing that not all scientific research necessarily allows or requires the verification of hypotheses, for example, in cases of exploratory or descriptive research. However, the aforementioned document (NRC, 2012 , p. 50) does refer to hypotheses when describing the practice of developing and using models , appealing to the fact that they facilitate the testing of hypothetical explanations .

In the literature, there are also other interesting taxonomies characterizing scientific thinking for educational purposes. One of them is that of Vázquez-Alonso and Manassero-Mas ( 2018 ) who, instead of science practices, refer to skills associated with scientific thinking . Their characterization basically consists of breaking down into greater detail the content of those science practices that would be related to the different cognitive and metacognitive processes of scientific thinking. Also, unlike Zimmerman and Klarh’s ( 2018 ) proposal, Vázquez-Alonso and Manassero-Mas’s ( 2018 ) proposal explicitly mentions metacognition as one of the aspects of scientific thinking, which they call meta-process . In my opinion, the proposal of the latter authors, which shells out scientific thinking into a broader range of skills/practices, can be more conducive in order to favor its approach in science classes, as teachers would have more options to choose from to address components of this intellectual process depending on their teaching interests, the educational needs of their students and/or the learning objectives pursued. Table 2 presents an adapted characterization of the Vázquez-Alonso and Manassero-Mas’s ( 2018 ) proposal to address scientific thinking in science education.

3 Contextualization of Critical Thinking in Science Education

Theorization and research about critical thinking also has a long tradition in the field of the psychology of learning (Ennis, 2018 ; Kuhn, 1999 ), and its application extends far beyond science education (Dwyer et al., 2014 ). Indeed, the development of critical thinking is commonly accepted as being an essential goal of people’s overall education (Ennis, 2018 ; Hitchcock, 2017 ; Kuhn, 1999 ; Willingham, 2008 ). However, its conceptualization is not simple and there is no unanimous position taken on it in the literature (Costa et al., 2020 ; Dwyer et al., 2014 ); especially when trying to relate it to scientific thinking. Thus, while Tena-Sánchez and León-Medina ( 2022 ) Footnote 4 and McBain et al. ( 2020 ) consider critical thinking to be the basis of or forms part of scientific thinking, Dowd et al. ( 2018 ) understand scientific thinking to be just a subset of critical thinking. However, Vázquez-Alonso and Manassero-Mas ( 2018 ) do not seek to determine whether critical thinking encompasses scientific thinking or vice versa. They consider that both types of knowledge share numerous skills/practices and the progressive development of one fosters the development of the other as a virtuous circle of improvement. Other authors, such as Schafersman ( 1991 ), even go so far as to say that critical thinking and scientific thinking are the same thing. In addition, some views on the relationship between critical thinking and scientific thinking seem to be context-dependent. For example, Hyytine et al. ( 2019 ) point out that in the perspective of scientific thinking as a component of critical thinking, the former is often used to designate evidence-based thinking in the sciences, although this view tends to dominate in Europe but not in the USA context. Perhaps because of this lack of consensus, the two types of thinking are often confused, overlapping, or conceived as interchangeable in education.

Even with such a lack of unanimous or consensus vision, there are some interesting theoretical frameworks and definitions for the development of critical thinking in education. One of the most popular definitions of critical thinking is that proposed by The National Council for Excellence in Critical Thinking (1987, cited in Inter-American Teacher Education Network, 2015 , p. 6). This conceives of it as “the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action”. In other words, critical thinking can be regarded as a reflective and reasonable class of thinking that provides people with the ability to evaluate multiple statements or positions that are defensible to then decide which is the most defensible (Clouse, 2017 ; Ennis, 2018 ). It thus requires, in addition to a basic scientific competency, notions about epistemology (Kuhn, 1999 ) to understand how knowledge is constructed. Similarly, it requires skills for metacognition (Hyytine et al., 2019 ; Kuhn, 1999 ; Magno, 2010 ) since critical thinking “entails awareness of one’s own thinking and reflection on the thinking of self and others as objects of cognition” (Dean & Kuhn, 2003 , p. 3).

In science education, one of the most suitable scenarios or resources, but not the only one, Footnote 5 to address all these aspects of critical thinking is through the analysis of socioscientific issues (SSI) (Taylor et al., 2006 ; Zeidler & Nichols, 2009 ). Without wishing to expand on this here, I will only say that interesting works can be found in the literature that have analyzed how the discussion of SSIs can favor the development of critical thinking skills (see, e.g., López-Fernández et al., 2022 ; Solbes et al., 2018 ). For example, López-Fernández et al. ( 2022 ) focused their teaching-learning sequence on the following critical thinking skills: information analysis, argumentation, decision making, and communication of decisions. Even some authors add the nature of science (NOS) to this framework (i.e., SSI-NOS-critical thinking), as, for example, Yacoubian and Khishfe ( 2018 ) in order to develop critical thinking and how this can also favor the understanding of NOS (Yacoubian, 2020 ). In effect, as I argued in another work on the COVID-19 pandemic as an SSI, in which special emphasis was placed on critical thinking, an informed understanding of how science works would have helped the public understand why scientists were changing their criteria to face the pandemic in the light of new data and its reinterpretations, or that it was not possible to go faster to get an effective and secure medical treatment for the disease (García-Carmona, 2021b ).

In the recent literature, there have also been some proposals intended to characterize critical thinking in the context of science education. Table 3 presents two of these by way of example. As can be seen, both proposals share various components for the development of critical thinking (respect for evidence, critically analyzing/assessing the validity/reliability of information, adoption of independent opinions/decisions, participation, etc.), but that of Blanco et al. ( 2017 ) is more clearly contextualized in science education. Likewise, that of these authors includes some more aspects (or at least does so more explicitly), such as developing epistemological Footnote 6 knowledge of science (vision of science…) and on its interactions with technology, society, and environment (STSA relationships), and communication skills. Therefore, it offers a wider range of options for choosing critical thinking skills/processes to promote it in science classes. However, neither proposal refers to metacognitive skills, which are also essential for developing critical thinking (Kuhn, 1999 ).

3.1 Critical thinking vs. scientific thinking in science education: differences and similarities

In accordance with the above, it could be said that scientific thinking is nourished by critical thinking, especially when deciding between several possible interpretations and explanations of the same phenomenon since this generally takes place in a context of debate in the scientific community (Acevedo-Díaz & García-Carmona, 2017 ). Thus, the scientific attitude that is perhaps most clearly linked to critical thinking is the skepticism with which scientists tend to welcome new ideas (Normand, 2008 ; Sagan, 1987 ; Tena-Sánchez and León-Medina, 2022 ), especially if they are contrary to well-established scientific knowledge (Bell, 2009 ). A good example of this was the OPERA experiment (García-Carmona & Acevedo-Díaz, 2016a ), which initially seemed to find that neutrinos could move faster than the speed of light. This finding was supposed to invalidate Albert Einstein’s theory of relativity (the finding was later proved wrong). In response, Nobel laureate in physics Sheldon L. Glashow went so far as to state that:

the result obtained by the OPERA collaboration cannot be correct. If it were, we would have to give up so many things, it would be such a huge sacrifice... But if it is, I am officially announcing it: I will shout to Mother Nature: I’m giving up! And I will give up Physics. (BBVA Foundation, 2011 )

Indeed, scientific thinking is ultimately focused on getting evidence that may support an idea or explanation about a phenomenon, and consequently allow others that are less convincing or precise to be discarded. Therefore when, with the evidence available, science has more than one equally defensible position with respect to a problem, the investigation is considered inconclusive (Clouse, 2017 ). In certain cases, this gives rise to scientific controversies (Acevedo-Díaz & García-Carmona, 2017 ) which are not always resolved based exclusively on epistemic or rational factors (Elliott & McKaughan, 2014 ; Vallverdú, 2005 ). Hence, it is also necessary to integrate non-epistemic practices into the framework of scientific thinking (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ), practices that transcend the purely rational or cognitive processes, including, for example, those related to emotional or affective issues (Sinatra & Hofer, 2021 ). From an educational point of view, this suggests that for students to become more authentically immersed in the way of working or thinking scientifically, they should also learn to feel as scientists do when they carry out their work (Davidson et al., 2020 ). Davidson et al. ( 2020 ) call it epistemic affect , and they suggest that it could be approach in science classes by teaching students to manage their frustrations when they fail to achieve the expected results; Footnote 7 or, for example, to moderate their enthusiasm with favorable results in a scientific inquiry by activating a certain skepticism that encourages them to do more testing. And, as mentioned above, for some authors, having a skeptical attitude is one of the actions that best visualize the application of critical thinking in the framework of scientific thinking (Normand, 2008 ; Sagan, 1987 ; Tena-Sánchez and León-Medina, 2022 ).

On the other hand, critical thinking also draws on many of the skills or practices of scientific thinking, as discussed above. However, in contrast to scientific thinking, the coexistence of two or more defensible ideas is not, in principle, a problem for critical thinking since its purpose is not so much to invalidate some ideas or explanations with respect to others, but rather to provide the individual with the foundations on which to position themself with the idea/argument they find most defensible among several that are possible (Ennis, 2018 ). For example, science with its methods has managed to explain the greenhouse effect, the phenomenon of the tides, or the transmission mechanism of the coronavirus. For this, it had to discard other possible explanations as they were less valid in the investigations carried out. These are therefore issues resolved by the scientific community which create hardly any discussion at the present time. However, taking a position for or against the production of energy in nuclear power plants transcends the scope of scientific thinking since both positions are, in principle, equally defensible. Indeed, within the scientific community itself there are supporters and detractors of the two positions, based on the same scientific knowledge. Consequently, it is critical thinking, which requires the management of knowledge and scientific skills, a basic understanding of epistemic (rational or cognitive) and non-epistemic (social, ethical/moral, economic, psychological, cultural, ...) aspects of the nature of science, as well as metacognitive skills, which helps the individual forge a personal foundation on which to position themself in one place or another, or maintain an uncertain, undecided opinion.

In view of the above, one can summarize that scientific thinking and critical thinking are two different intellectual processes in terms of purpose, but are related symbiotically (i.e., one would make no sense without the other or both feed on each other) and that, in their performance, they share a fair number of features, actions, or mental skills. According to Cáceres et al. ( 2020 ) and Hyytine et al. ( 2019 ), the intellectual skills that are most clearly common to both types of thinking would be searching for relationships between evidence and explanations , as well as investigating and logical thinking to make inferences . To this common space, I would also add skills for metacognition in accordance with what has been discussed about both types of knowledge (Khun, 1999 , 2022 ).

In order to compile in a compact way all that has been argued so far, in Table 4 , I present my overview of the relationship between scientific thinking and critical thinking. I would like to point out that I do not intend to be extremely extensive in the compilation, in the sense that possibly more elements could be added in the different sections, but rather to represent above all the aspects that distinguish and share them, as well as the mutual enrichment (or symbiosis) between them.

4 A Proposal for the Integrated Development of Critical Thinking and Scientific Thinking in Science Classes

Once the differences, common aspects, and relationships between critical thinking and scientific thinking have been discussed, it would be relevant to establish some type of specific proposal to foster them in science classes. Table 5 includes a possible script to address various skills or processes of both types of thinking in an integrated manner. However, before giving guidance on how such skills/processes could be approached, I would like to clarify that while all of them could be dealt within the context of a single school activity, I will not do so in this way. First, because I think that it can give the impression that the proposal is only valid if it is applied all at once in a specific learning situation, which can also discourage science teachers from implementing it in class due to lack of time or training to do so. Second, I think it can be more interesting to conceive the proposal as a set of thinking skills or actions that can be dealt with throughout the different science contents, selecting only (if so decided) some of them, according to educational needs or characteristics of the learning situation posed in each case. Therefore, in the orientations for each point of the script or grouping of these, I will use different examples and/or contexts. Likewise, these orientations in the form of comments, although founded in the literature, should be considered only as possibilities to do so, among many others possible.

Motivation and predisposition to reflect and discuss (point i ) demands, on the one hand, that issues are chosen which are attractive for the students. This can be achieved, for example, by asking the students directly what current issues, related to science and its impact or repercussions, they would like to learn about, and then decide on which issue to focus on (García-Carmona, 2008 ). Or the teacher puts forward the issue directly in class, trying for it be current, to be present in the media, social networks, etc., or what they think may be of interest to their students based on their teaching experience. In this way, each student is encouraged to feel questioned or concerned as a citizen because of the issue that is going to be addressed (García-Carmona, 2008 ). Also of possible interest is the analysis of contemporary, as yet unresolved socioscientific affairs (Solbes et al., 2018 ), such as climate change, science and social justice, transgenic foods, homeopathy, and alcohol and drug use in society. But also, everyday questions can be investigated which demand a decision to be made, such as “What car to buy?” (Moreno-Fontiveros et al., 2022 ), or “How can we prevent the arrival of another pandemic?” (Ushola & Puig, 2023 ).

On the other hand, it is essential that the discussion about the chosen issue is planned through an instructional process that generates an environment conducive to reflection and debate, with a view to engaging the students’ participation in it. This can be achieved, for example, by setting up a role-play game (Blanco-López et al., 2017 ), especially if the issue is socioscientific, or by critical and reflective reading of advertisements with scientific content (Campanario et al., 2001 ) or of science-related news in the daily media (García-Carmona, 2014 , 2021a ; Guerrero-Márquez & García-Carmona, 2020 ; Oliveras et al., 2013 ), etc., for subsequent discussion—all this, in a collaborative learning setting and with a clear democratic spirit.

Respect for scientific evidence (point ii ) should be the indispensable condition in any analysis and discussion from the prisms of scientific and of critical thinking (Erduran, 2021 ). Although scientific knowledge may be impregnated with subjectivity during its construction and is revisable in the light of new evidence ( tentativeness of scientific knowledge), when it is accepted by the scientific community it is as objective as possible (García-Carmona & Acevedo-Díaz, 2016b ). Therefore, promoting trust and respect for scientific evidence should be one of the primary educational challenges to combating pseudoscientists and science deniers (Díaz & Cabrera, 2022 ), whose arguments are based on false beliefs and assumptions, anecdotes, and conspiracy theories (Normand, 2008 ). Nevertheless, it is no simple task to achieve the promotion or respect for scientific evidence (Fackler, 2021 ) since science deniers, for example, consider that science is unreliable because it is imperfect (McIntyre, 2021 ). Hence the need to promote a basic understanding of NOS (point iii ) as a fundamental pillar for the development of both scientific thinking and critical thinking. A good way to do this would be through explicit and reflective discussion about controversies from the history of science (Acevedo-Díaz & García-Carmona, 2017 ) or contemporary controversies (García-Carmona, 2021b ; García-Carmona & Acevedo-Díaz, 2016a ).

Also, with respect to point iii of the proposal, it is necessary to manage basic scientific knowledge in the development of scientific and critical thinking skills (Willingham, 2008 ). Without this, it will be impossible to develop a minimally serious and convincing argument on the issue being analyzed. For example, if one does not know the transmission mechanism of a certain disease, it is likely to be very difficult to understand or justify certain patterns of social behavior when faced with it. In general, possessing appropriate scientific knowledge on the issue in question helps to make the best interpretation of the data and evidence available on this issue (OECD, 2019 ).

The search for information from reliable sources, together with its analysis and interpretation (points iv to vi ), are essential practices both in purely scientific contexts (e.g., learning about the behavior of a given physical phenomenon from literature or through enquiry) and in the application of critical thinking (e.g., when one wishes to take a personal, but informed, position on a particular socio-scientific issue). With regard to determining the credibility of information with scientific content on the Internet, Osborne et al. ( 2022 ) propose, among other strategies, to check whether the source is free of conflicts of interest, i.e., whether or not it is biased by ideological, political or economic motives. Also, it should be checked whether the source and the author(s) of the information are sufficiently reputable.

Regarding the interpretation of data and evidence, several studies have shown the difficulties that students often have with this practice in the context of enquiry activities (e.g., Gobert et al., 2018 ; Kanari & Millar, 2004 ; Pols et al., 2021 ), or when analyzing science news in the press (Norris et al., 2003 ). It is also found that they have significant difficulties in choosing the most appropriate data to support their arguments in causal analyses (Kuhn & Modrek, 2022 ). However, it must be recognized that making interpretations or inferences from data is not a simple task; among other reasons, because their construction is influenced by multiple factors, both epistemic (prior knowledge, experimental designs, etc.) and non-epistemic (personal expectations, ideology, sociopolitical context, etc.), which means that such interpretations are not always the same for all scientists (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ). For this reason, the performance of this scientific practice constitutes one of the phases or processes that generate the most debate or discussion in a scientific community, as long as no consensus is reached. In order to improve the practice of making inferences among students, Kuhn and Lerman ( 2021 ) propose activities that help them develop their own epistemological norms to connect causally their statements with the available evidence.

Point vii refers, on the one hand, to an essential scientific practice: the elaboration of evidence-based scientific explanations which generally, in a reasoned way, account for the causality, properties, and/or behavior of the phenomena (Brigandt, 2016 ). In addition, point vii concerns the practice of argumentation . Unlike scientific explanations, argumentation tries to justify an idea, explanation, or position with the clear purpose of persuading those who defend other different ones (Osborne & Patterson, 2011 ). As noted above, the complexity of most socioscientific issues implies that they have no unique valid solution or response. Therefore, the content of the arguments used to defend one position or another are not always based solely on purely rational factors such as data and scientific evidence. Some authors defend the need to also deal with non-epistemic aspects of the nature of science when teaching it (García-Carmona, 2021a ; García-Carmona & Acevedo-Díaz, 2018 ) since many scientific and socioscientific controversies are resolved by different factors or go beyond just the epistemic (Vallverdú, 2005 ).

To defend an idea or position taken on an issue, it is not enough to have scientific evidence that supports it. It is also essential to have skills for the communication and discussion of ideas (point viii ). The history of science shows how the difficulties some scientists had in communicating their ideas scientifically led to those ideas not being accepted at the time. A good example for students to become aware of this is the historical case of Semmelweis and puerperal fever (Aragón-Méndez et al., 2019 ). Its reflective reading makes it possible to conclude that the proposal of this doctor that gynecologists disinfect their hands, when passing from one parturient to another to avoid contagions that provoked the fever, was rejected by the medical community not only for epistemic reasons, but also for the difficulties that he had to communicate his idea. The history of science also reveals that some scientific interpretations were imposed on others at certain historical moments due to the rhetorical skills of their proponents although none of the explanations would convincingly explain the phenomenon studied. An example is the case of the controversy between Pasteur and Liebig about the phenomenon of fermentation (García-Carmona & Acevedo-Díaz, 2017 ), whose reading and discussion in science class would also be recommended in this context of this critical and scientific thinking skill. With the COVID-19 pandemic, for example, the arguments of some charlatans in the media and on social networks managed to gain a certain influence in the population, even though scientifically they were muddled nonsense (García-Carmona, 2021b ). Therefore, the reflective reading of news on current SSIs such as this also constitutes a good resource for the same educational purpose. In general, according to Spektor-Levy et al. ( 2009 ), scientific communication skills should be addressed explicitly in class, in a progressive and continuous manner, including tasks of information seeking, reading, scientific writing, representation of information, and representation of the knowledge acquired.

Finally (point ix ), a good scientific/critical thinker must be aware of what they know, of what they have doubts about or do not know, to this end continuously practicing metacognitive exercises (Dean & Kuhn, 2003 ; Hyytine et al., 2019 ; Magno, 2010 ; Willingham, 2008 ). At the same time, they must recognize the weaknesses and strengths of the arguments of their peers in the debate in order to be self-critical if necessary, as well as to revising their own ideas and arguments to improve and reorient them, etc. ( self-regulation ). I see one of the keys of both scientific and critical thinking being the capacity or willingness to change one’s mind, without it being frowned upon. Indeed, quite the opposite since one assumes it to occur thanks to the arguments being enriched and more solidly founded. In other words, scientific and critical thinking and arrogance or haughtiness towards the rectification of ideas or opinions do not stick well together.

5 Final Remarks

For decades, scientific thinking and critical thinking have received particular attention from different disciplines such as psychology, philosophy, pedagogy, and specific areas of this last such as science education. The two types of knowledge represent intellectual processes whose development in students, and in society in general, is considered indispensable for the exercise of responsible citizenship in accord with the demands of today’s society (European Commission, 2006 , 2015 ; NRC, 2012 ; OECD, 2020 ). As has been shown however, the task of their conceptualization is complex, and teaching students to think scientifically and critically is a difficult educational challenge (Willingham, 2008 ).

Aware of this, and after many years dedicated to science education, I felt the need to organize my ideas regarding the aforementioned two types of thinking. In consulting the literature about these, I found that, in many publications, scientific thinking and critical thinking are presented or perceived as being interchangeable or indistinguishable; a conclusion also shared by Hyytine et al. ( 2019 ). Rarely have their differences, relationships, or common features been explicitly studied. So, I considered that it was a matter needing to be addressed because, in science education, the development of scientific thinking is an inherent objective, but, when critical thinking is added to the learning objectives, there arise more than reasonable doubts about when one or the other would be used, or both at the same time. The present work came about motivated by this, with the intention of making a particular contribution, but based on the relevant literature, to advance in the question raised. This converges in conceiving scientific thinking and critical thinking as two intellectual processes that overlap and feed into each other in many aspects but are different with respect to certain cognitive skills and in terms of their purpose. Thus, in the case of scientific thinking, the aim is to choose the best possible explanation of a phenomenon based on the available evidence, and it therefore involves the rejection of alternative explanatory proposals that are shown to be less coherent or convincing. Whereas, from the perspective of critical thinking, the purpose is to choose the most defensible idea/option among others that are also defensible, using both scientific and extra-scientific (i.e., moral, ethical, political, etc.) arguments. With this in mind, I have described a proposal to guide their development in the classroom, integrating them under a conception that I have called, metaphorically, a symbiotic relationship between two modes of thinking.

Critical thinking is mentioned literally in other of the curricular provisions’ subjects such as in Education in Civics and Ethical Values or in Geography and History (Royal Decree 217/2022).

García-Carmona ( 2021a ) conceives of them as activities that require the comprehensive application of procedural skills, cognitive and metacognitive processes, and both scientific knowledge and knowledge of the nature of scientific practice .

Kuhn ( 2021 ) argues that the relationship between scientific reasoning and metacognition is especially fostered by what she calls inhibitory control , which basically consists of breaking down the whole of a thought into parts in such a way that attention is inhibited on some of those parts to allow a focused examination of the intended mental content.

Specifically, Tena-Sánchez and León-Medina (2020) assume that critical thinking is at the basis of rational or scientific skepticism that leads to questioning any claim that does not have empirical support.

As discussed in the introduction, the inquiry-based approach is also considered conducive to addressing critical thinking in science education (Couso et al., 2020 ; NRC, 2012 ).

Epistemic skills should not be confused with epistemological knowledge (García-Carmona, 2021a ). The former refers to skills to construct, evaluate, and use knowledge, and the latter to understanding about the origin, nature, scope, and limits of scientific knowledge.

For this purpose, it can be very useful to address in class, with the help of the history and philosophy of science, that scientists get more wrong than right in their research, and that error is always an opportunity to learn (García-Carmona & Acevedo-Díaz, 2018 ).

Acevedo-Díaz, J. A., & García-Carmona, A. (2017). Controversias en la historia de la ciencia y cultura científica [Controversies in the history of science and scientific culture]. Los Libros de la Catarata.

Aragón-Méndez, M. D. M., Acevedo-Díaz, J. A., & García-Carmona, A. (2019). Prospective biology teachers’ understanding of the nature of science through an analysis of the historical case of Semmelweis and childbed fever. Cultural Studies of Science Education , 14 (3), 525–555. https://doi.org/10.1007/s11422-018-9868-y

Bailin, S. (2002). Critical thinking and science education. Science & Education, 11 (4), 361–375. https://doi.org/10.1023/A:1016042608621

Article   Google Scholar  

BBVA Foundation (2011). El Nobel de Física Sheldon L. Glashow no cree que los neutrinos viajen más rápido que la luz [Physics Nobel laureate Sheldon L. Glashow does not believe neutrinos travel faster than light.]. https://www.fbbva.es/noticias/nobel-fisica-sheldon-l-glashow-no-cree-los-neutrinos-viajen-mas-rapido-la-luz/ . Accessed 5 Februray 2023.

Bell, R. L. (2009). Teaching the nature of science: Three critical questions. In Best Practices in Science Education . National Geographic School Publishing.

Google Scholar  

Blanco-López, A., España-Ramos, E., & Franco-Mariscal, A. J. (2017). Estrategias didácticas para el desarrollo del pensamiento crítico en el aula de ciencias [Teaching strategies for the development of critical thinking in the teaching of science]. Ápice. Revista de Educación Científica, 1 (1), 107–115. https://doi.org/10.17979/arec.2017.1.1.2004

Brigandt, I. (2016). Why the difference between explanation and argument matters to science education. Science & Education, 25 (3-4), 251–275. https://doi.org/10.1007/s11191-016-9826-6

Cáceres, M., Nussbaum, M., & Ortiz, J. (2020). Integrating critical thinking into the classroom: A teacher’s perspective. Thinking Skills and Creativity, 37 , 100674. https://doi.org/10.1016/j.tsc.2020.100674

Campanario, J. M., Moya, A., & Otero, J. (2001). Invocaciones y usos inadecuados de la ciencia en la publicidad [Invocations and misuses of science in advertising]. Enseñanza de las Ciencias, 19 (1), 45–56. https://doi.org/10.5565/rev/ensciencias.4013

Clouse, S. (2017). Scientific thinking is not critical thinking. https://medium.com/extra-extra/scientific-thinking-is-not-critical-thinking-b1ea9ebd8b31

Confederacion de Sociedades Cientificas de Espana [COSCE]. (2011). Informe ENCIENDE: Enseñanza de las ciencias en la didáctica escolar para edades tempranas en España [ENCIENDE report: Science education for early-year in Spain] . COSCE.

Costa, S. L. R., Obara, C. E., & Broietti, F. C. D. (2020). Critical thinking in science education publications: the research contexts. International Journal of Development Research, 10 (8), 39438. https://doi.org/10.37118/ijdr.19437.08.2020

Couso, D., Jiménez-Liso, M.R., Refojo, C. & Sacristán, J.A. (coords.) (2020). Enseñando ciencia con ciencia [Teaching science with science]. FECYT & Fundacion Lilly / Penguin Random House

Davidson, S. G., Jaber, L. Z., & Southerland, S. A. (2020). Emotions in the doing of science: Exploring epistemic affect in elementary teachers' science research experiences. Science Education, 104 (6), 1008–1040. https://doi.org/10.1002/sce.21596

Dean, D., & Kuhn, D. (2003). Metacognition and critical thinking. ERIC document. Reproduction No. ED477930 . https://files.eric.ed.gov/fulltext/ED477930.pdf

Díaz, C., & Cabrera, C. (2022). Desinformación científica en España . FECYT/IBERIFIER https://www.fecyt.es/es/publicacion/desinformacion-cientifica-en-espana

Dowd, J. E., Thompson, R. J., Jr., Schiff, L. A., & Reynolds, J. A. (2018). Understanding the complex relationship between critical thinking and science reasoning among undergraduate thesis writers. CBE—Life Sciences . Education, 17 (1), ar4. https://doi.org/10.1187/cbe.17-03-0052

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills and Creativity, 12 , 43–52. https://doi.org/10.1016/j.tsc.2013.12.004

Elliott, K. C., & McKaughan, D. J. (2014). Non-epistemic values and the multiple goals of science. Philosophy of Science, 81 (1), 1–21. https://doi.org/10.1086/674345

Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. Topoi, 37 (1), 165–184. https://doi.org/10.1007/s11245-016-9401-4

Erduran, S. (2021). Respect for evidence: Can science education deliver it? Science & Education, 30 (3), 441–444. https://doi.org/10.1007/s11191-021-00245-8

European Commission. (2015). Science education for responsible citizenship . Publications Office https://op.europa.eu/en/publication-detail/-/publication/a1d14fa0-8dbe-11e5-b8b7-01aa75ed71a1

European Commission / Eurydice. (2011). Science education in Europe: National policies, practices and research . Publications Office. https://op.europa.eu/en/publication-detail/-/publication/bae53054-c26c-4c9f-8366-5f95e2187634

European Commission / Eurydice. (2022). Increasing achievement and motivation in mathematics and science learning in schools . Publications Office. https://eurydice.eacea.ec.europa.eu/publications/mathematics-and-science-learning-schools-2022

European Commission/Eurydice. (2006). Science teaching in schools in Europe. Policies and research . Publications Office. https://op.europa.eu/en/publication-detail/-/publication/1dc3df34-acdf-479e-bbbf-c404fa3bee8b

Fackler, A. (2021). When science denial meets epistemic understanding. Science & Education, 30 (3), 445–461. https://doi.org/10.1007/s11191-021-00198-y

García-Carmona, A. (2008). Relaciones CTS en la educación científica básica. II. Investigando los problemas del mundo [STS relationships in basic science education II. Researching the world problems]. Enseñanza de las Ciencias, 26 (3), 389–402. https://doi.org/10.5565/rev/ensciencias.3750

García-Carmona, A. (2014). Naturaleza de la ciencia en noticias científicas de la prensa: Análisis del contenido y potencialidades didácticas [Nature of science in press articles about science: Content analysis and pedagogical potential]. Enseñanza de las Ciencias, 32 (3), 493–509. https://doi.org/10.5565/rev/ensciencias.1307

García-Carmona, A., & Acevedo-Díaz, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content. Science & Education, 25 (5–6), 523–546. https://doi.org/10.1007/s11191-016-9831-9

García-Carmona, A., & Acevedo-Díaz, J. A. (2016b). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo [Preservice elementary teachers' conceptions of the nature of science: a diagnostic evaluation based on team reflections]. Revista Mexicana de Investigación Educativa, 21 (69), 583–610. https://www.redalyc.org/articulo.oa?id=14045395010

García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26 (1–2), 65–91. https://doi.org/10.1007/s11191-017-9876-4

García-Carmona, A., & Acevedo-Díaz, J. A. (2018). The nature of scientific practice and science education. Science & Education, 27 (5–6), 435–455. https://doi.org/10.1007/s11191-018-9984-9

García-Carmona, A. (2020). From inquiry-based science education to the approach based on scientific practices. Science & Education, 29 (2), 443–463. https://doi.org/10.1007/s11191-020-00108-8

García-Carmona, A. (2021a). Prácticas no-epistémicas: ampliando la mirada en el enfoque didáctico basado en prácticas científicas [Non-epistemic practices: extending the view in the didactic approach based on scientific practices]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18 (1), 1108. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1108

García-Carmona, A. (2021b). Learning about the nature of science through the critical and reflective reading of news on the COVID-19 pandemic. Cultural Studies of Science Education, 16 (4), 1015–1028. https://doi.org/10.1007/s11422-021-10092-2

Guerrero-Márquez, I., & García-Carmona, A. (2020). La energía y su impacto socioambiental en la prensa digital: temáticas y potencialidades didácticas para una educación CTS [Energy and its socio-environmental impact in the digital press: issues and didactic potentialities for STS education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(3), 3301. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i3.3301

Gobert, J. D., Moussavi, R., Li, H., Sao Pedro, M., & Dickler, R. (2018). Real-time scaffolding of students’ online data interpretation during inquiry with Inq-ITS using educational data mining. In M. E. Auer, A. K. M. Azad, A. Edwards, & T. de Jong (Eds.), Cyber-physical laboratories in engineering and science education (pp. 191–217). Springer.

Chapter   Google Scholar  

Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1 (1), 5–19. https://ipsejournal.files.wordpress.com/2015/03/3-ipse-volume-1-no-1-wynne-harlen-p-5-19.pdf

Hitchcock, D. (2017). Critical thinking as an educational ideal. In On reasoning and argument (pp. 477–497). Springer.

Hyytinen, H., Toom, A., & Shavelson, R. J. (2019). Enhancing scientific thinking through the development of critical thinking in higher education. In M. Murtonen & K. Balloo (Eds.), Redefining scientific thinking for higher education . Palgrave Macmillan.

Jiménez-Aleixandre, M. P., & Puig, B. (2022). Educating critical citizens to face post-truth: the time is now. In B. Puig & M. P. Jiménez-Aleixandre (Eds.), Critical thinking in biology and environmental education, Contributions from biology education research (pp. 3–19). Springer.

Jirout, J. J. (2020). Supporting early scientific thinking through curiosity. Frontiers in Psychology, 11 , 1717. https://doi.org/10.3389/fpsyg.2020.01717

Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41 (7), 748–769. https://doi.org/10.1002/tea.20020

Klahr, D., Zimmerman, C., & Matlen, B. J. (2019). Improving students’ scientific thinking. In J. Dunlosky & K. A. Rawson (Eds.), The Cambridge handbook of cognition and education (pp. 67–99). Cambridge University Press.

Krell, M., Vorholzer, A., & Nehring, A. (2022). Scientific reasoning in science education: from global measures to fine-grained descriptions of students’ competencies. Education Sciences, 12 , 97. https://doi.org/10.3390/educsci12020097

Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science education, 77 (3), 319–337. https://doi.org/10.1002/sce.3730770306

Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28 (2), 16–46. https://doi.org/10.3102/0013189X028002016

Kuhn, D. (2022). Metacognition matters in many ways. Educational Psychologist, 57 (2), 73–86. https://doi.org/10.1080/00461520.2021.1988603

Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23 (4), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006

Kuhn, D., & Lerman, D. (2021). Yes but: Developing a critical stance toward evidence. International Journal of Science Education, 43 (7), 1036–1053. https://doi.org/10.1080/09500693.2021.1897897

Kuhn, D., & Modrek, A. S. (2022). Choose your evidence: Scientific thinking where it may most count. Science & Education, 31 (1), 21–31. https://doi.org/10.1007/s11191-021-00209-y

Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51 (1), 65–83. https://doi.org/10.1002/tea.21125

Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy. In K. A. Renninger, I. E. Sigel, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Child psychology in practice (pp. 153–196). John Wiley & Sons, Inc.

López-Fernández, M. D. M., González-García, F., & Franco-Mariscal, A. J. (2022). How can socio-scientific issues help develop critical thinking in chemistry education? A reflection on the problem of plastics. Journal of Chemical Education, 99 (10), 3435–3442. https://doi.org/10.1021/acs.jchemed.2c00223

Magno, C. (2010). The role of metacognitive skills in developing critical thinking. Metacognition and Learning, 5 , 137–156. https://doi.org/10.1007/s11409-010-9054-4

McBain, B., Yardy, A., Martin, F., Phelan, L., van Altena, I., McKeowen, J., Pembertond, C., Tosec, H., Fratuse, L., & Bowyer, M. (2020). Teaching science students how to think. International Journal of Innovation in Science and Mathematics Education, 28 (2), 28–35. https://openjournals.library.sydney.edu.au/CAL/article/view/14809/13480

McIntyre, L. (2021). Talking to science deniers and sceptics is not hopeless. Nature, 596 (7871), 165–165. https://doi.org/10.1038/d41586-021-02152-y

Moore, C. (2019). Teaching science thinking. Using scientific reasoning in the classroom . Routledge.

Moreno-Fontiveros, G., Cebrián-Robles, D., Blanco-López, A., & y España-Ramos, E. (2022). Decisiones de estudiantes de 14/15 años en una propuesta didáctica sobre la compra de un coche [Fourteen/fifteen-year-old students’ decisions in a teaching proposal on the buying of a car]. Enseñanza de las Ciencias, 40 (1), 199–219. https://doi.org/10.5565/rev/ensciencias.3292

National Research Council [NRC]. (2012). A framework for K-12 science education . National Academies Press.

Network, I.-A. T. E. (2015). Critical thinking toolkit . OAS/ITEN.

Normand, M. P. (2008). Science, skepticism, and applied behavior analysis. Behavior Analysis in Practice, 1 (2), 42–49. https://doi.org/10.1007/BF03391727

Norris, S. P., Phillips, L. M., & Korpan, C. A. (2003). University students’ interpretation of media reports of science and its relationship to background knowledge, interest, and reading difficulty. Public Understanding of Science, 12 (2), 123–145. https://doi.org/10.1177/09636625030122001

Oliveras, B., Márquez, C., & Sanmartí, N. (2013). The use of newspaper articles as a tool to develop critical thinking in science classes. International Journal of Science Education, 35 (6), 885–905. https://doi.org/10.1080/09500693.2011.586736

Organisation for Economic Co-operation and Development [OECD]. (2019). PISA 2018. Assessment and Analytical Framework . OECD Publishing. https://doi.org/10.1787/b25efab8-en

Book   Google Scholar  

Organisation for Economic Co-operation and Development [OECD]. (2020). PISA 2024: Strategic Vision and Direction for Science. https://www.oecd.org/pisa/publications/PISA-2024-Science-Strategic-Vision-Proposal.pdf

Osborne, J., Pimentel, D., Alberts, B., Allchin, D., Barzilai, S., Bergstrom, C., Coffey, J., Donovan, B., Kivinen, K., Kozyreva, A., & Wineburg, S. (2022). Science Education in an Age of Misinformation . Stanford University.

Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95 (4), 627–638. https://doi.org/10.1002/sce.20438

Pols, C. F. J., Dekkers, P. J. J. M., & De Vries, M. J. (2021). What do they know? Investigating students’ ability to analyse experimental data in secondary physics education. International Journal of Science Education, 43 (2), 274–297. https://doi.org/10.1080/09500693.2020.1865588

Royal Decree 217/2022. (2022). of 29 March, which establishes the organisation and minimum teaching of Compulsory Secondary Education (Vol. 76 , pp. 41571–41789). Spanish Official State Gazette. https://www.boe.es/eli/es/rd/2022/03/29/217

Sagan, C. (1987). The burden of skepticism. Skeptical Inquirer, 12 (1), 38–46. https://skepticalinquirer.org/1987/10/the-burden-of-skepticism/

Santos, L. F. (2017). The role of critical thinking in science education. Journal of Education and Practice, 8 (20), 160–173. https://eric.ed.gov/?id=ED575667

Schafersman, S. D. (1991). An introduction to critical thinking. https://facultycenter.ischool.syr.edu/wp-content/uploads/2012/02/Critical-Thinking.pdf . Accessed 10 May 2023.

Sinatra, G. M., & Hofer, B. K. (2021). How do emotions and attitudes influence science understanding? In Science denial: why it happens and what to do about it (pp. 142–180). Oxford Academic.

Solbes, J., Torres, N., & Traver, M. (2018). Use of socio-scientific issues in order to improve critical thinking competences. Asia-Pacific Forum on Science Learning & Teaching, 19 (1), 1–22. https://www.eduhk.hk/apfslt/

Spektor-Levy, O., Eylon, B. S., & Scherz, Z. (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7 (5), 875–903. https://doi.org/10.1007/s10763-009-9150-6

Taylor, P., Lee, S. H., & Tal, T. (2006). Toward socio-scientific participation: changing culture in the science classroom and much more: Setting the stage. Cultural Studies of Science Education, 1 (4), 645–656. https://doi.org/10.1007/s11422-006-9028-7

Tena-Sánchez, J., & León-Medina, F. J. (2022). Y aún más al fondo del “bullshit”: El papel de la falsificación de preferencias en la difusión del oscurantismo en la teoría social y en la sociedad [And even deeper into “bullshit”: The role of preference falsification in the difussion of obscurantism in social theory and in society]. Scio, 22 , 209–233. https://doi.org/10.46583/scio_2022.22.949

Tytler, R., & Peterson, S. (2004). From “try it and see” to strategic exploration: Characterizing young children's scientific reasoning. Journal of Research in Science Teaching, 41 (1), 94–118. https://doi.org/10.1002/tea.10126

Uskola, A., & Puig, B. (2023). Development of systems and futures thinking skills by primary pre-service teachers for addressing epidemics. Research in Science Education , 1–17. https://doi.org/10.1007/s11165-023-10097-7

Vallverdú, J. (2005). ¿Cómo finalizan las controversias? Un nuevo modelo de análisis: la controvertida historia de la sacarina [How does controversies finish? A new model of analysis: the controversial history of saccharin]. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 2 (5), 19–50. http://www.revistacts.net/wp-content/uploads/2020/01/vol2-nro5-art01.pdf

Vázquez-Alonso, A., & Manassero-Mas, M. A. (2018). Más allá de la comprensión científica: educación científica para desarrollar el pensamiento [Beyond understanding of science: science education for teaching fair thinking]. Revista Electrónica de Enseñanza de las Ciencias, 17 (2), 309–336. http://reec.uvigo.es/volumenes/volumen17/REEC_17_2_02_ex1065.pdf

Willingham, D. T. (2008). Critical thinking: Why is it so hard to teach? Arts Education Policy Review, 109 (4), 21–32. https://doi.org/10.3200/AEPR.109.4.21-32

Yacoubian, H. A. (2020). Teaching nature of science through a critical thinking approach. In W. F. McComas (Ed.), Nature of Science in Science Instruction (pp. 199–212). Springer.

Yacoubian, H. A., & Khishfe, R. (2018). Argumentation, critical thinking, nature of science and socioscientific issues: a dialogue between two researchers. International Journal of Science Education, 40 (7), 796–807. https://doi.org/10.1080/09500693.2018.1449986

Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of elementary science education, 21 (2), 49–58. https://doi.org/10.1007/BF03173684

Zimmerman, C., & Klahr, D. (2018). Development of scientific thinking. In J. T. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (Vol. 4 , pp. 1–25). John Wiley & Sons, Inc..

Download references

Conflict of Interest

The author declares no conflict of interest.

Funding for open access publishing: Universidad de Sevilla/CBUA

Author information

Authors and affiliations.

Departamento de Didáctica de las Ciencias Experimentales y Sociales, Universidad de Sevilla, Seville, Spain

Antonio García-Carmona

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Antonio García-Carmona .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

García-Carmona, A. Scientific Thinking and Critical Thinking in Science Education . Sci & Educ (2023). https://doi.org/10.1007/s11191-023-00460-5

Download citation

Accepted : 30 July 2023

Published : 05 September 2023

DOI : https://doi.org/10.1007/s11191-023-00460-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cognitive skills
  • Critical thinking
  • Metacognitive skills
  • Science education
  • Scientific thinking
  • Find a journal
  • Publish with us
  • Track your research

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

The scientific attitude and science education: A critical reappraisal

Profile image of Colin Gauld

1982, Science Education

Related Papers

Science & Education

Colin Gauld

what is scientific attitude and why is it important for critical thinking

ranganath a

Science Education

Anita Rampal

Scholars have argued that the history of science might facilitate an understanding of processes of science. Focusing on science education for citizenship and active involvement in debates on socioscientific issues, one might argue that today&#x27;s post-academic science differs from academic science in the past, making the history of academic science irrelevant. However, this article argues that, under certain conditions, cases from the history of science should be included in science curricula for democratic participation. One condition is that the concept of processes is broadened to include science society interactions in a politically sensitive sense. The scope of possibilities of using historical case studies to prepare for citizenship is illustrated by the use of a well-known case from the history of science: Millikan&#x27;s and Ehrenhaft&#x27;s ``Battle over the electron&#x27;&#x27;.

Richard Gunstone , Dorothy Smith

We report on findings from a qualitative study of Australian scientists whose work brings them into contact with the public. This research sought to understand how a school science curriculum could better represent the work of scientists today. We discuss the views expressed by our participant scientists about the importance of openness and open-mindedness in their work, including their engagement with the public. They described openness as an important characteristic of science. Our participants also see open-mindedness on the part of both scientists and members of the public as important for productive relationships. They see the development of such relationships as an essential facet of their work. The views expressed by these scientists provide a provocative insight into the ways in which contemporary scientists see their work and relationships with their communities. Their perspectives have important implications for approaches to teaching science in schools.

William Carlsen , Gregory Kelly

Science Education - SCI EDUC

Renato Schibeci

Journal of Research in Science Teaching

Mansoor Niaz

The Journal of Higher Education

Melissa Anderson , Emily Ronning

Eurasia Journal of Mathematics Science and Technology Education

Yalcin Yalaki

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Social science information

Andrea Cerroni

Warren Schmaus

Research in Science Education

Cédric Paternotte , Milena Ivanova

International Journal of Scientific Research in Science and Technology IJSRST

Eurasia J Math Sci Technol Educ

Mark C Lay , Neil Taylor

Interchange

Vinoy Paykatt

Instructional Science

History and philosophy in science teaching

Venkateswaran TV

Science and Education

michael matthews

International Handbook of Research in History, Philosophy and Science Teaching, (Ed.) M. Matthews. Springer, 2014, pp. 999-1022.

Robert Nola , Gurol Irzik

Nathaniel Warne

International Journal of Science and Mathematics Education

Ornit Spektor-Levy

Journal of Education and Learning (EduLearn)

Theory and Society

Ralph Kilmann

Journal of Education and Practice

Utibe Ataha

Stephen Rowcliffe

International Journal of Science Education

Derek Hodson

David Mercer

Critical Quarterly

Heather Douglas

Interdisciplinary Journal of Environmental and Science Education

Moheeta Khan

Instructional Science an International Journal of Learning and Cognition

Athenea Digital

Margot Pujal Llombart

Nauka i društvo

Maja Korolija

Revista Cientifica

Shondra E. Wygal

Evaluation and Program Planning

Jackson Kytle

Ethical Issues in Science Communication: A Theory-Based Approach

Brent Ranalli

Christopher Lozano

Educational Psychology Review

Tonie Stolberg

Yggdrasil: The Journal of Paraphysics, Vol. 1, Issue 1, Winter Solstice 1996

James (Jim) E Beichler

Joachim Allgaier

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Microb Biotechnol
  • v.16(10); 2023 Oct
  • PMC10527184

Logo of microbiotech

Science, method and critical thinking

Antoine danchin.

1 School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam Hong Kong, China

Science is founded on a method based on critical thinking. A prerequisite for this is not only a sufficient command of language but also the comprehension of the basic concepts underlying our understanding of reality. This constraint implies an awareness of the fact that the truth of the World is not directly accessible to us, but can only be glimpsed through the construction of models designed to anticipate its behaviour. Because the relationship between models and reality rests on the interpretation of founding postulates and instantiations of their predictions (and is therefore deeply rooted in language and culture), there can be no demarcation between science and non‐science. However, critical thinking is essential to ensure that the link between models and reality is gradually made more adequate to reality, based on what has already been established, thus guaranteeing that science progresses on this basis and excluding any form of relativism.

Science understands that we only can reach the truth of the World via creation of models. The method, based on critical thinking, is embedded in the scientific method, named here the Critical Generative Method.

An external file that holds a picture, illustration, etc.
Object name is MBT2-16-1888-g003.jpg

Before illustrating the key requirements for critical thinking, one point must be made clear from the outset: thinking involves using language, and the depth of thought is directly related to the ‘active’ vocabulary (Magyar,  1942 ) used by the thinker. A recent study of young students in France showed that a significant percentage of the population had a very limited vocabulary. This unfortunate situation is shared by many countries (Fournier & Rakocevic,  2023 ). This omnipresent fact, which precludes any attempt to improve critical thinking in the general population, is very visible in a great many texts published on social networks. This is the more concerning because science uses a vocabulary that lies well beyond that available to most people. For example, a word such as ‘metabolism’ is generally not understood. As a consequence, it is essential to agree on a minimal vocabulary before teaching paths to critical thinking. This may look trivial, but this is an essential prerequisite. Typically, words such as analysis and synthesis must be understood (and the idea of what a ‘concept’ is not widely shared). It must also be remembered that the way the scientific vocabulary kept creating neologisms in the most creative times of science was based on using the Ancient Greek language, and for a good reason: a considerable advantage of that unsaid rule is that this makes scientific objects and concepts prominent for scientists from all over the world, while precluding implicit domination by any country over the others when science is at stake (Iliopoulos et al.,  2019 ). Unfortunately, and this demonstrates how the domination of an ignorant subset of the research community gains ground, this rule is now seldom followed. This also highlights the lack of extensive scientific background of the majority of researchers: the creation of new words now follows the rule of the self‐assertive. Interestingly, the very observation that a neologism in a scientific paper does not follow the traditional rule provides us with a critical way to identify either ignorance of the scientific background of the work or the presence in the text of hidden agendas that have nothing to do with science.

In practice, the initiation of the process of critical thinking ought to begin with a step similar to the ‘due diligence’ required by investors when they study whether they will invest, or not, in a start‐up company. The first expected action should be ‘verify’, ‘verify’, ‘verify’… any statement which is used as a basis for the reasoning that follows. This asks not only for understanding what is said or written (hence the importance of language), but also for checking the origins of the statement, not only by investigating who is involved but also by checking that the historical context is well known.

Of course, nobody has complete knowledge of everything, not even anything in fact, which means that at some point people have to accept that they will base their reasoning on some kind of ‘belief’. This inevitable imperative forces future scientists asking a question about reality to resort to a set of assertions called ‘postulates’ in conventional science, that is, beliefs temporarily accepted without further discussion but understood as such. The way in which postulates are formulated is therefore key to their subsequent role in science. Similarly, the fact that they are temporary is essential to understanding their role. A fundamental feature of critical thinking is to be able to identify these postulates and then remember that they are provisional in nature. When needed this enables anyone to return to the origins of reasoning and then decide whether it is reasonable to retain the postulates or modify or even abandon them.

Here is an example illustrated with the famous greenhouse effect that allows our planet not to be a snowball (Arrhenius,  1896 ). Note that understanding this phenomenon requires a fair amount of basic physics, as well as a trait that is often forgotten: common sense. There is no doubt that carbon dioxide is a greenhouse gas (this is based on well‐established physics, which, nevertheless must be accepted as a postulate by the majority, as they would not be able to demonstrate that). However, a straightforward question arises, which is almost never asked in its proper details. There are many gases in the atmosphere, and the obvious preliminary question should be to ask what they all are, and each of their relative contribution to greenhouse effect. This is partially understood by a fraction of the general public as asking for the contribution of methane, and sometimes N 2 O and ozone. However, this is far from enough, because the gas which contributes the most to the greenhouse effect on our planet is … water vapour (about 60% of the total effect: https://www.acs.org/climatescience/climatesciencenarratives/its‐water‐vapor‐not‐the‐co2.html )! This fact is seldom highlighted. Yet it is extremely important because water is such a strange molecule. Around 300 K water can evolve rapidly to form a liquid, a gas, or a solid (ice). The transitions between these different states (with only the gas having a greenhouse effect, while water droplets in clouds have generally a cooling effect) make that water is unable to directly control the Earth's temperature. Worse, in fact, these phase transitions will amplify the fluctuations around a given temperature, generally in a feedforward way. We know very well the situation in deserts, where the night temperature is very low, with a very high temperature during the day. In fact, this explains why ‘global warming’ (i.e. shifting upwards the average temperature of the planet) is also parallel with an amplification of weather extremes. It is quite remarkable that the role of water, which is well established, does not belong to popular knowledge. Standard ‘due diligence’ would have made this knowledge widely shared.

Another straightforward example of the need to have a clear knowledge of the thought of our predecessors is illustrated in the following. When we see expressions such as ‘paradigm change’, ‘change of paradigm’, ‘paradigm shift’ or ‘shift of paradigm’ (12,424 articles listed in PubMed as of June 26, 2023), we should be aware that the subject of interest of these articles has nothing to do with a paradigm shift, simply because such a change in paradigm is extremely rare, being distributed over centuries, at best (Kuhn,  1962 ). Worse, the use of the word implies that the authors of the works have most probably never read Thomas Kuhn's work, and are merely using a fashionable hearsay. As a consequence, critical thinking should lead authentic scientists to put aside all these works before further developing their investigation (Figure  1 ).

An external file that holds a picture, illustration, etc.
Object name is MBT2-16-1888-g002.jpg

Number of articles identified in the PubMed database with the keywords ‘paradigm change’ or ‘change of paradigm’ or ‘paradigm shift’ or ‘shift of paradigm’. A very low number of articles, generally reporting information consistent with the Kuhnian view of scientific revolutions is published before 1993. Between 1993 and 2000 a looser view of the term paradigm begins to be used in a metaphoric way. Since then the word has become fashionable while losing entirely its original meaning, while carrying over lack of epistemological knowledge. This example of common behaviour illustrates the decadence of contemporary science.

This being understood, we can now explore the general way science proceeds. This has been previously discussed at a conference meant to explain the scientific method to an audience of Chinese philosophers, anthropologists and scientists and held at Sun Yat Sen (Zhong Shan) University in Canton (Guangzhou) in 1991. This discussion is expanded in The Delphic Boat (Danchin,  2002 ). For a variety of reasons, it would be useful to anticipate the future of our world. This raises an unlimited number of questions and the aim of the scientific method is to try and answer those. The way in which questions emerge is a subject in itself. This is not addressed here, but this should also be the subject of critical thinking (Yanai & Lercher,  2019 ).

The basis for scientific investigation accepts that, while the truth of the world exists in itself (‘relativism’ is foreign to scientific knowledge, as science keeps building up its progresses on previous knowledge, even when changing its paradigms), we can only access it through the mediation of a representation. This has been extensively debated at the time, 2500 years ago, when science and philosophy designed the common endeavour meant to generate knowledge (Frank,  1952 ). It was then apparent that we cannot escape this omnipresent limitation of human rationality, as Xenophanes of Colophon explicitly stated at the time [discussed in Popper,  1968 ]. This limitation comes from an inevitable constraint: contrary to what many keep saying, data do not speak . Reality must be interpreted within the frame of a particular representation that critical thinking aims at making visible. A sentence that we all forget to reject, such as ‘results show…’ is meaningless: results are interpreted as meaning this or that.

Accepting this limitation is a difficult attribute of scientific judgement. Yet the quality of thought progresses as the understanding of this constraint becomes more effective: to answer our questions we have to build models of the world, and be satisfied with this perspective. It is through our knowledge of the world's models that we are able to explore and act upon it. We can even become the creators of new behaviours of reality, including new artefacts such as a laser beam, a physics‐based device that is unlikely to exist in the universe except in places where agents with an ability similar to ours would exist. Indeed, to create models is to introduce a distance, a mediation through some kind of symbolic coding (via the construction of a model), between ourselves and the world. It is worth pointing out that this feature highlights how science builds its strength from its very radical weakness, which is to know that it is incapable, in principle, of attaining truth. Furthermore and fortunately, we do not have to begin with a tabula rasa . Science keeps progressing. The ideas and the models we have received from our fathers form the basis of our first representation of the world. The critical question we all face, then, is: how well these models match up with reality? how do they fare in answering our questions?

Many, over time, think they achieve ultimate understanding of reality (or force others to think so) and abide by the knowledge reached at the time, precluding any progress. A few persist in asking questions about what remains enigmatic in the way things behave. Until fairly recently (and this can still be seen in the fashion for ‘organic’ things, or the idea, similar to that of the animating ‘phlogiston’ of the Middle Ages, that things spontaneously organize themselves in certain elusive circumstances usually represented by fancy mathematical models), things were thought to combine four elements: fire, air, water, and earth, in a variety of proportions and combinations. In China, wood, a fifth element that had some link to life was added to the list. Later on, the world was assumed to result from the combination of 10 categories (Danchin,  2009 ). It took time to develop a physic of reality involving space, time, mass, and energy. What this means is still far from fully understood. How, in our times when the successes of the applications of science are so prominent, is it still possible to question the generally accepted knowledge, to progress in the construction of a new representation of reality?

This is where critical thinking comes in. The first step must be to try and simplify the problem, to abstract from the blurred set of inherited ideas a few foundational concepts that will not immediately be called into question, at least as a preliminary stage of investigation. We begin by isolating a phenomenon whose apparent clarity contrasts with its environment. A key point in the process is to be aware of the fact that the links between correlation and causation are not trivial (Altman & Krzywinski,  2015 ). The confusion between both properties results probably in the major anti‐science behaviour that prevents the development of knowledge. In our time, a better understanding of what causality is is essential to understand the present development of Artificial Intelligence (Schölkopf et al.,  2021 ) as this is directly linked to the process of rational decision (Simon,  1996 ).

Subsequently, a set of undisputed rules, phenomenological criteria and postulates is associated with the phenomenon. It constitutes temporarily the founding dogma of the theory, made up of the phenomenon of interest, the postulates, the model and the conditions and results of its application to reality. This epistemological attitude can legitimately be described as ‘dogmatic’ and it remains unchanged for a long time in the progression of scientific knowledge. This is well illustrated by the fact that the word ‘dogma’, a religious word par excellence, is often misused when referring to a scientific theory. Many still refer, for example, to the expression ‘the central dogma of molecular biology’ to describe the rules for rewriting the genetic program from DNA to RNA and then proteins (Crick,  1970 ). Of course, critical thinking understands that this is no dogma, and variations on the theme are omnipresent, as seen for instance in the role of the enzyme reverse transcriptase which allows RNA to be rewritten into a DNA sequence.

Yet, whereas isolating postulates is an important step, it does not permit one to give explanations or predictions. To go further, one must therefore initiate a constructive process. The essential step there will be the constitution of a model (or in weaker instances, a simulation) of the phenomenon (Figure  2 ).

An external file that holds a picture, illustration, etc.
Object name is MBT2-16-1888-g001.jpg

The Critical Generative Method. Science is based on the premises that while we can look for the truth of reality, this is in principle impossible. The only way out is to build up models of reality (‘realistic models’) and find ways to compare their outcome to the behaviour of reality [see an explicit example for genome sequences in Hénaut et al.,  1996 ]. The ultimate model is mathematical model, but this is rarely possible to achieve. Other models are based on simulations, that is, models that mimic the behaviour of reality without trying to propose an explanation of that behaviour. A primitive attempt of this endeavour is illustrated when people use figurines that they manipulate hoping that this will anticipate the behaviour of their environment (e.g. ‘voodoo’). This is also frequent in borderline science (Friedman & Brown,  2018 ).

To this aim, the postulates will be interpreted in the form of entities (concrete or abstract) or of relationships between entities, which will be further manipulated by an independent set of processes. The perfect stage, generally considered as the ultimate one, associates the manipulation of abstract entities, interpreting postulates into axioms and definitions, manipulable according to the rules of logic. In the construction of a model, one assists therefore first to a process of abstraction , which allows one to go from the postulates to the axioms. Quite often, however, one will not be able to axiomatize the postulates. It will only be possible to represent them using analogies involving the founding elements of another phenomenon, better known and considered as analogous. One could also change the scales of a phenomenon (this is the case when one uses mock‐ups as models). In these families of approaches, the model is considered as a simulation. For example, it will be possible to simulate an electromagnetic phenomenon using a hydrodynamic phenomenon [for a general example in physics (Vives & Ricou,  1985 )]. In recent times the simulation is generally performed numerically, using (super)computers [e.g. the mesoscopic scale typical for cells (Huber & McCammon,  2019 )]. While all these approaches have important implications in terms of diagnostic, for example, they are generally purely phenomenological and descriptive. This is understood by critical thinking, despite the general tendency to mistake the mimic for what it represents. Recent artificial intelligence approaches that use ‘neuronal networks’ are not, at least for the time being, models of the brain.

However useful and effective, the simulation of a phenomenon is clearly an admission of failure. A simulation represents behaviour that conforms to reality, but does not explain it. Yet science aims to do more than simply represent a phenomenon; it aims to anticipate what will happen in the near and distant future. To get closer to the truth, we need to understand and explain, that is, reduce the representation to simpler elementary principles (and as few as possible) in order to escape the omnipresent anecdotes that parasitize our vision of the future. In the case of the study of genomes, for example, this will lead us to question their origin and evolution. It will also require us to understand the formal nature of the control processes (of which feedback, e.g. is one) that they encode. As soon as possible, therefore, we would like to translate the postulates that enabled the model's construction into well‐formed statements that will constitute the axioms and definitions of an explanatory model. At a later stage, the axioms and definitions will be linked together to create a demonstration leading to a theorem or, more often than not, a simple conjecture.

When based on mathematics, the model is made up of its axioms and definitions, and the demonstrations and theorems it conveys. It is an entirely autonomous entity, which can only be justified by its own rules. To be valid, it must necessarily be true according to the rules of mathematical logic. So here we have an essential truth criterion, but one that can say nothing about the truth of the phenomenon. A key feature of critical thinking is the understanding that the truth of the model is not the truth of the phenomenon. The amalgam of these two truths, common in magical thinking, often results in the model (identified as a portion of the world) being given a sacred value, and changes the role of the scientist to that of a priest.

Having started from the phenomenon of interest to build the model, we now need to return from the model to the real world. A process symmetrical to that which provided the basis for the model, an instantiation of the conclusions summarized in the theorem, is now required. This can take the form of predictions, observations or experiments, for which at least two types can be broadly identified. These predictions are either existential (the object, process, or relations predicted by the instantiation of the theorem must be discovered), or phenomenological, and therefore subject to verification and deniability. An experimental set‐up will have to be constructed to explore what has been predicted by the instantiations of the model theorems and to support or falsify the predictions. In the case of hypotheses based on genes, for example, this will lead to synthetic biology constructs experiments (Danchin & Huang,  2023 ), where genes are replaced by counterparts, even made of atoms that differ from the canonical ones.

The reaction of reality, either to simple (passive) observation or to the observation of phenomena triggered by the experiments, will validate the model and measure the degree of adequacy between the model and the reality. This follows a constructive path when the model's shortcomings are identified, and when are discovered the predicted new objects that must now be included in further models of reality. This process imposes the falsification of certain instantiated conclusions that have been falsified as a major driving force for the progression of the model in line with reality. This part of the thought process is essential to escape infinite regression in a series of confirmation experiments, one after the other, ad infinitum. Identifying this type of situation, based on the understanding that the behaviour of the model is not reality but an interpretation of reality, is essential to promote critical thinking.

It must also be stressed that, of course, the weight of the proof of the model's adequacy to reality belongs to the authors of the model. It would be both contrary to the simplest rules of logic (the proof of non‐existence is only possible for finite sets), and also totally inefficient, as well as sterile, to produce an unfalsifiable model. This is indeed a critical way to identify the many pretenders who plague science. They are easy to recognize since they identify themselves precisely by the fact that they ask the others: ‘repeat my experiments again and show me that they are wrong!’. Unfortunately, this old conjuring trick is still well spread, especially in a world dominated by mass media looking for scoops, not for truth.

When certain predictions of the model are not verified, critical thinking forces us to study its relationship with reality, and we must proceed in reverse, following the path that led to these inadequate predictions (Figure  2 ). In this reverse process, we go backwards until we reach the postulates on which the model was built, at which point we modify, refine and, if necessary, change them. The explanatory power of the model will increase each time we can reduce the number of postulates on which it is built. This is another way of developing critical thinking skills: the more factors there are underlying an explanation, the less reliable the model. As an example in molecular biology, the selective model used by Monod and coworkers to account for allostery (Monod et al.,  1965 ) used far fewer adjustable parameters than Koshland's induced‐fit model (Koshland,  1959 ).

In real‐life situations, this reverse path is long and difficult to build. The model's resistance to change is quickly organized, if only because, lacking critical thinking, its creators cannot help thinking that, in fact, the model manifests, rather than represents, the truth of the world. It is only natural, then, to think that the lack of predictive power is primarily due not to the model's inadequacy, but to the inappropriate way in which its broad conclusions have been instantiated. This corresponds, in effect, to a stage where formal terms have been interpreted in terms of real behaviour, which involves a great deal of fine‐tuning. Because it is inherently difficult to identify the inadequacy of the model or its links with the phenomenon of interest, it is often the case that a model persists, sometimes for a very long time, despite numerous signs of imperfection.

During this critical process, the very nature of the model is questioned, and its construction, the meaning it represents, is clarified and refined under the constraint of contradictions. The very terms of the instantiations of predictions, or of the abstraction of founding postulates, are made finer and finer. This is why this dogmatic stage plays such an essential role: a model that was too inadequate would have been quickly discarded, and would not have been able to generate and advance knowledge, whereas a succession of improvements leads to an ever finer understanding, and hence better representation of the phenomenon of interest. Then comes a time when the very axioms on which the model is based are called into question, and when the most recent abstractions made from the initial postulates lead to them being called into question. This is of course very rare and difficult, and is the source of those genuine scientific revolutions, those paradigm shifts (to use Thomas Kuhn's word), from which new models are born, develop and die, based on assumptions that differ profoundly from those of their predecessors. This manifests an ultimate, but extremely rare, success of critical thinking.

A final comment. Karl Popper in his Logik der Forschung ( The Logic of Scientific Discovery ) tried to show that there was a demarcation separating science from non‐science (Keuth and Popper,  1934 ). This resulted from the implementation of a refutation process that he named falsification that was sufficient to tell the observer that a model was failing. However, as displayed in Figure  2 , refutation does not work directly on the model of interest, but on the interpretation of its predictions . This means that while science is associated with a method, its implementation in practice is variable, and its borders fuzzy. In fact, trying to match models with reality allows us to progress by producing better adequacy with reality (Putnam,  1991 ). Nevertheless, because the separation between models and reality rests on interpretations (processes rooted in culture and language), establishing an explicit demarcation is impossible. This intrinsic difficulty, which is associated with a property that we could name ‘context associated with a research programme’ (Lakatos,  1976 , 1978 ), shows that the demarcation between science and non‐science is dominated by a particular currency of reality, which we have to consider under the name information , using the word with all its common (and accordingly fuzzy) connotations, and which operates in addition to the standard categories, mass, energy, space and time.

The first attempts to solve contradictions between model predictions and observed phenomena do not immediately discard the model, as Popper would have it. The common practice is for the authors of a model to re‐interpret the instantiation process that has coupled the theorem to reality. Typically: ‘exceptions make the rule’, or ‘this is not exactly what we meant, we need to focus more on this or that feature’, etc. This polishing step is essential, it allows the frontiers of the model and its associated phenomena to be defined as accurately as possible. It marks the moment when technically arid efforts such as defining a proper nomenclature, a database data schema, etc., have a central role. In contrast to the hopes of Popper, who sought for a principle telling us whether a particular creation of knowledge can be named Science, using refutation as principle, there is no ultimate demarcation between science and non‐science. Then comes a time when, despite all efforts to reconcile predictions and phenomena, the inadequacy between the model and reality becomes insoluble. Assuming no mistake in the demonstration (within the model), this contradiction implies that we need to reconsider the axioms and definitions upon which the model has been constructed. This is the time when critical thinking becomes imperative.

AUTHOR CONTRIBUTIONS

Antoine Danchin: Conceptualization (lead); writing – original draft (lead); writing – review and editing (lead).

CONFLICT OF INTEREST STATEMENT

This work belongs to efforts pertaining to epistemological thinking and does not imply any conflict of interest.

ACKNOWLEDGEMENTS

The general outline of the Critical Generative Method presented at Zhong Shan University in Guangzhou, China in 1991, and discussed over the years in the Stanislas Noria seminar ( https://www.normalesup.org/~adanchin/causeries/causeries‐en.html ) has previously been published in Danchin ( 2009 ) and in a variety of texts. Because scientific knowledge results from accumulation of knowledge painstakingly created by the generations that preceded us, the present text purposely makes reference to work which is seldom cited at a moment when scientists become amnesiac and tend to reinvent the wheel.

Danchin, A. (2023) Science, method and critical thinking . Microbial Biotechnology , 16 , 1888–1894. Available from: 10.1111/1751-7915.14315 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

  • Altman, N. & Krzywinski, M. (2015) Association, correlation and causation . Nature Methods , 12 , 899–900. [ PubMed ] [ Google Scholar ]
  • Arrhenius, S. (1896) XXXI. On the influence of carbonic acid in the air upon the temperature of the ground . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 41 , 237–276. [ Google Scholar ]
  • Crick, F. (1970) Central dogma of molecular biology . Nature , 227 , 561–563. [ PubMed ] [ Google Scholar ]
  • Danchin, A. (2002) The Delphic boat: what genomes tell us . Cambridge, MA: Harvard University Press. [ Google Scholar ]
  • Danchin, A. (2009) Information of the chassis and information of the program in synthetic cells . Systems and Synthetic Biology , 3 , 125–134. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Danchin, A. & Huang, J.D. (2023) synbio 2.0, a new era for synthetic life: neglected essential functions for resilience . Environmental Microbiology , 25 , 64–78. [ PubMed ] [ Google Scholar ]
  • Fournier, Y. & Rakocevic, R. (2023) Objectifs éducation et formation 2030 de l'UE: où en est la France en 2023? Note d'Information , 23 , 20. [ Google Scholar ]
  • Frank, P. (1952) The origin of the separation between science and philosophy . Proceedings of the American Academy of Arts and Sciences , 80 , 115–139. [ Google Scholar ]
  • Friedman, H.L. & Brown, N.J.L. (2018) Implications of debunking the “critical positivity ratio” for humanistic psychology: introduction to special issue . Journal of Humanistic Psychology , 58 , 239–261. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hénaut, A. , Rouxel, T. , Gleizes, A. , Moszer, I. & Danchin, A. (1996) Uneven distribution of GATC motifs in the Escherichia coli chromosome, its plasmids and its phages . Journal of Molecular Biology , 257 , 574–585. [ PubMed ] [ Google Scholar ]
  • Huber, G.A. & McCammon, J.A. (2019) Brownian dynamics simulations of biological molecules . Trends in Chemistry , 1 , 727–738. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Iliopoulos, I. , Ananiadou, S. , Danchin, A. , Ioannidis, J.P. , Katsikis, P.D. , Ouzounis, C.A. et al. (2019) Hypothesis, analysis and synthesis, it's all Greek to me . eLife , 8 , e43514. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Koshland, D.E. (1959) Enzyme flexibility and enzyme action . Journal of Cellular and Comparative Physiology , 54 , 245–258. [ PubMed ] [ Google Scholar ]
  • Kuhn, T.S. (1962) The structure of scientific revolutions , 3rd edition. Chicago, IL: University of Chicago Press. [ Google Scholar ]
  • Lakatos, I. (1976) Proofs and refutations: the logic of mathematical discovery . Cambridge: Cambridge University Press. [ Google Scholar ]
  • Lakatos, I. (1978) The methodology of scientific research programmes . Cambridge: Cambridge University Press. [ Google Scholar ]
  • Magyar, F. (1942) The compilation of an active vocabulary . The German Quarterly , 15 , 214–217. [ Google Scholar ]
  • Monod, J. , Wyman, J. & Changeux, J.P. (1965) On the nature of allosteric transitions: a plausible model . Journal of Molecular Biology , 12 , 88–118. [ PubMed ] [ Google Scholar ]
  • Popper, K.R. (1934) Logik der Forschung, 4., bearbeitete Auflage . Berlin: Akademie Verlag. Translation prepared by the author (1959): The logic of scientific discovery . London: Hutchinson & Co. [ Google Scholar ]
  • Popper, K.R. (1968) Conjectures and refutations: the growth of scientific knowledge . London; New York, NY: Routledge. [ Google Scholar ]
  • Putnam, H. (1991) Representation and reality . Cambridge, MA: MIT Press. [ Google Scholar ]
  • Schölkopf, B. , Locatello, F. , Bauer, S. , Ke, N.R. , Kalchbrenner, N. , Goyal, A. et al. (2021) Towards causal representation learning . arXiv , 2021 , 11107. [ Google Scholar ]
  • Simon, H.A. (1996) The sciences of the artificial , 3rd edition. Cambridge, MA: MIT Press. [ Google Scholar ]
  • Vives, C. & Ricou, R. (1985) Experimental study of continuous electromagnetic casting of aluminum alloys . Metallurgical Transactions B , 16 , 377–384. [ Google Scholar ]
  • Yanai, I. & Lercher, M. (2019) What is the question? Genome Biology , 20 , 1314–1315. [ PMC free article ] [ PubMed ] [ Google Scholar ]

PERSPECTIVE article

Supporting early scientific thinking through curiosity.

\r\nJamie J. Jirout*

  • Curry School of Education and Human Development, University of Virginia, Charlottesville, VA, United States

Curiosity and curiosity-driven questioning are important for developing scientific thinking and more general interest and motivation to pursue scientific questions. Curiosity has been operationalized as preference for uncertainty ( Jirout and Klahr, 2012 ), and engaging in inquiry-an essential part of scientific reasoning-generates high levels of uncertainty ( Metz, 2004 ; van Schijndel et al., 2018 ). This perspective piece begins by discussing mechanisms through which curiosity can support learning and motivation in science, including motivating information-seeking behaviors, gathering information in response to curiosity, and promoting deeper understanding through connection-making related to addressing information gaps. In the second part of the article, a recent theory of how to promote curiosity in schools is discussed in relation to early childhood science reasoning. Finally, potential directions for research on the development of curiosity and curiosity-driven inquiry in young children are discussed. Although quite a bit is known about the development of children’s question asking specifically, and there are convincing arguments for developing scientific curiosity to promote science reasoning skills, there are many important areas for future research to address how to effectively use curiosity to support science learning.

Scientific Thinking and Curiosity

Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002 ; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through questioning behaviors and exploration. In fact, children are quite capable and effective in gathering needed information through their questions, and can reason about the effectiveness of questions, use probabilistic information to guide their questioning, and evaluate who they should question to get information, among other related skills (see Ronfard et al., 2018 for review). Although formal educational contexts typically give students questions to explore or steps to follow to “do science,” young children’s scientific thinking is driven by natural curiosity about the world around them, and the desire to understand it and generate their own questions about the world ( Chouinard et al., 2007 ; Duschl et al., 2007 ; French et al., 2013 ; Jirout and Zimmerman, 2015 ).

What Does Scientific Curiosity Look Like?

Curiosity is defined here as the desire to seek information to address knowledge gaps resulting from uncertainty or ambiguity ( Loewenstein, 1994 ; Jirout and Klahr, 2012 ). Curiosity is often seen as ubiquitous within early childhood. Simply observing children can provide numerous examples of the bidirectional link between curiosity and scientific reasoning, such as when curiosity about a phenomenon leads to experimentation, which, in turn, generates new questions and new curiosities. For example, an infant drops a toy to observe what will happen. When an adult stoops to pick it up, the infant becomes curious about how many times an adult will hand it back before losing interest. Or, a child might observe a butterfly over a period of time, and wonder why it had its wings folded or open at different points, how butterflies fly, why different butterflies are different colors, and so on (see Figure 1 ). Observations lead to theories, which may be immature, incomplete, or even inaccurate, but so are many early scientific theories. Importantly, theories can help identify knowledge gaps, leading to new instances of curiosity and motivating children’s information seeking to acquire new knowledge and, gradually, correct misconceptions. Like adults, children learn from their experiences and observations and use information about the probability of events to revise their theories ( Gopnik, 2012 ).

www.frontiersin.org

Figure 1. A child looks intently at a butterfly, becoming curious about the many things she wonders based on her observations.

Although this type of reasoning is especially salient in science, curiosity can manifest in many different types of information seeking in response to uncertainty, and is similar to critical thinking in other domains of knowledge and to active learning and problem solving more generally ( Gopnik, 2012 ; Klahr et al., 2013 ; Saylor and Ganea, 2018 ). The development of scientific thinking begins as the senses develop and begin providing information about the world ( Inhelder and Piaget, 1958 ; Gopnik et al., 1999 ). When they are not actively discouraged, children need no instruction to ask questions and explore, and the information they get often leads to further information seeking. In fact, observational research suggests that children can ask questions at the rate of more than 100 per hour ( Chouinard et al., 2007 )! Although the adults in a child’s life might tire of what seems like relentless questioning ( Turgeon, 2015 ), even young children can modify their beliefs and learn from the information they receive ( Ronfard et al., 2018 ). More generally, children seek to understand their world through active exploration, especially in response to recognizing a gap in their understanding ( Schulz and Bonawitz, 2007 ). The active choice of what to learn, driven by curiosity, can provide motivation and meaning to information and instill a lasting positive approach to learning in formal educational contexts.

How Does Curiosity Develop and Support Scientific Thinking?

There are several mechanisms through which children’s curiosity can support the development and persistence of scientific thinking. Three of these are discussed below, in sequence: that curiosity can (1) motivate information-seeking behavior, which leads to (2) question-asking and other information-seeking behaviors, which can (3) activate related previous knowledge and support deeper learning. Although we discuss these as independent, consecutive steps for the sake of clarity, it is much more likely that curiosity, question asking and information seeking, and cognitive processing of information and learning are all interrelated processes that support each other ( Oudeyer et al., 2016 ). For example, information seeking that is not a result of curiosity can lead to new questions, and as previous knowledge is activated it may influence the ways in which a child seeks information.

Curiosity as a Motivation for Information Seeking

Young children’s learning is driven by exploration to make sense of the world around them (e.g., Piaget, 1926 ). This exploration can result from curiosity ( Loewenstein, 1994 ; Jirout and Klahr, 2012 ) and lead to active engagement in learning ( Saylor and Ganea, 2018 ). In the example given previously, the child sees that some butterflies have open wings and some have closed wings, and may be uncertain about why, leading to more careful observations that provide potential for learning. Several studies demonstrate that the presence of uncertainty or ambiguity leads to higher engagement ( Howard-Jones and Demetriou, 2009 ) and more exploration and information seeking ( Berlyne, 1954 ; Lowry and Johnson, 1981 ; Loewenstein, 1994 ; Litman et al., 2005 ; Jirout and Klahr, 2012 ). For example, when children are shown ambiguous demonstrations for how a novel toy works, they prefer and play longer with that toy than with a new toy that was demonstrated without ambiguity ( Schulz and Bonawitz, 2007 ). Similar to ambiguity, surprising or unexpected observations can create uncertainty and lead to curiosity-driven questions or explanations through adult–child conversations ( Frazier et al., 2009 ; Danovitch and Mills, 2018 ; Jipson et al., 2018 ). This curiosity can promote lasting effects; Shah et al. (2018) show that young children’s curiosity, reported by parents at the start of kindergarten, relates to academic school readiness. In one of the few longitudinal studies including curiosity, research shows that parents’ promotion of curiosity early in childhood leads to science intrinsic motivation years later and science achievement in high school ( Gottfried et al., 2016 ). More generally, curiosity can provide a remedy to boredom, giving children a goal to direct their behavior and the motivation to act on their curiosity ( Litman and Silvia, 2006 ).

Curiosity as Support for Directing Information-Seeking Behavior

Gopnik et al. (2015) suggest that adults are efficient in their attention allocation, developed through extensive experience, but this attentional control comes at the cost of missing much of what is going on around them unrelated to their goals. Children have less experience and skill in focusing their attention, and more exploration-oriented goals, resulting in more open-ended exploratory behavior but also more distraction. Curiosity can help focus children’s attention on the specific information being sought (e.g., Legare, 2014 ). For example, when 7–9-year-old children completed a discovery-learning task in a museum, curiosity was related to more efficient learning-more curious children were quicker and learned more from similar exploration than less-curious children ( van Schijndel et al., 2018 ). Although children are quite capable of using questions to express curiosity and request specific information ( Berlyne, 1954 ; Chin and Osborne, 2010 ; Jirout and Zimmerman, 2015 ; Kidd and Hayden, 2015 ; Luce and Hsi, 2015 ), these skills can and should be strategically supported, as question asking plays a fundamental role in science and is important to develop ( Chouinard et al., 2007 ; Dewey, 1910 ; National Governors Association, 2010 ; American Association for the Advancement of Science [AAAS], 1993 ; among others). Indeed, the National Resource Council (2012) National Science Education Standards include question asking as the first of eight scientific and engineering practices that span all grade levels and content areas.

Children are proficient in requesting information from quite early ages ( Ronfard et al., 2018 ). Yet, there are limitations to children’s question asking; it can be “inefficient.” For example, to identify a target object from an array, young children often ask confirmation questions or make guesses rather than using more efficient “constraint-seeking” questions ( Mills et al., 2010 ; Ruggeri and Lombrozo, 2015 ). However, this behavior is observed in highly structured problem-solving tasks, during which children likely are not very curious. In fact, if the environment contains other things that children are curious about, it could be more efficient to use a simplistic strategy, freeing up cognitive resources for the true target of their curiosity. More research is needed to better understand children’s use of curiosity-driven questioning behavior as well as exploration, but naturalistic observations show that children do ask questions spontaneously to gain information, and that their questions (and follow-up questions) are effective in obtaining desired information ( Nelson et al., 2004 ; Kelemen et al., 2005 ; Chouinard et al., 2007 ).

Curiosity as Support for Deeper Learning

Returning to the definition of curiosity as information seeking to address knowledge gaps, becoming curious-by definition-involves the activation of previous knowledge, which enhances learning ( VanLehn et al., 1992 ; Conati and Carenini, 2001 ). The active learning that results from curiosity-driven information seeking involves meaningful cognitive engagement and constructive processing that can support deeper learning ( Bonwell and Eison, 1991 ; King, 1994 ; Loyens and Gijbels, 2008 ). The constructive process of seeking information to generate new thinking or new knowledge in response to curiosity is a more effective means of learning than simply receiving information ( Chi and Wylie, 2014 ). Even if information is simply given to a child as a result of their asking a question, the mere process of recognizing the gap in one’s knowledge to have a question activates relevant previous knowledge and leads to more effective storage of the new information within a meaningful mental representation; the generation of the question is a constructive process in itself. Further, learning more about a topic allows children to better recognize their related knowledge and information gaps ( Danovitch et al., 2019 ). This metacognitive reasoning supports learning through the processes of activating, integrating, and inferring involved in the constructive nature of curiosity-drive information seeking ( Chi and Wylie, 2014 ). Consistent with this theory, Lamnina and Chase (2019) showed that higher curiosity, which increased with the amount of uncertainty in a task, related to greater transfer of middle school students’ learning about specific science topics.

Promoting Curiosity in Young Children

Curiosity is rated by early childhood educators as “very important” or “essential” for school readiness and considered to be even more important than discrete academic skills like counting and knowing the alphabet ( Heaviside et al., 1993 ; West et al., 1993 ), behind only physical health and communication skills in importance ( Harradine and Clifford, 1996 ). Engel (2011 , 2013) finds that curiosity declines with development and suggests that understanding how to promote or at least sustain it is important. Although children’s curiosity is considered a natural characteristic that is present at birth, interactions with and responses from others can likely influence curiosity, both at a specific moment and context and as a more stable disposition ( Jirout et al., 2018 ). For example, previous work suggests that curiosity can be promoted by encouraging children to feel comfortable with and explore uncertainty ( Jirout et al., 2018 ); experiences that create uncertainty lead to higher levels of curious behavior (e.g., Bonawitz et al., 2011 ; Engel and Labella, 2011 ; Gordon et al., 2015 ).

One strategy for promoting curiosity is through classroom climate; children should feel safe and be encouraged to be curious and exploration and questions should be valued ( Pianta et al., 2008 ). This is accomplished by de-emphasizing being “right” or all-knowing, and instead embracing uncertainty and gaps in one’s own knowledge as opportunities to learn. Another strategy to promote curiosity is to provide support for the information-seeking behaviors that children use to act on their curiosity. There are several specific strategies that may promote children’s curiosity (see Jirout et al., 2018 , for additional strategies), including:

1. Encourage and provide opportunities for children to explore and “figure out,” emphasizing the value of the process (exploration) over the outcome (new knowledge or skills). Children cannot explore if opportunities are not provided to them, and they will not ask questions if they do not feel that their questions are welcomed. Even if opportunities and encouragement are provided, the fear of being wrong can keep children from trying to learn new things ( Martin and Marsh, 2003 ; Martin, 2011 ). Active efforts to discover or “figure out” are more effective at supporting learning than simply telling children something or having them practice learned procedures ( Schwartz and Martin, 2004 ). Children can explore when they have guidance and support to engage in think-aloud problem solving, instead of being told what to try or getting questions answered directly ( Chi et al., 1994 ).

2. Model curiosity for children, allowing them to see that others have things that they do not know and want to learn about, and that others also enjoy information-seeking activities like asking questions and researching information. Technology makes information seeking easier than it has ever been. For example, children are growing up surrounded by internet-connected devices (more than 8 per capita in 2018), and asking questions is reported to be one of the most frequent uses of smart speakers ( NPR-Edison Research Spring, 2019 ). Observing others seeking information as a normal routine can encourage children’s own question asking ( McDonald, 1992 ).

3. Children spontaneously ask questions, but adults can encourage deeper questioning by using explicit prompts and then supporting children to generate questions ( King, 1994 ; Rosenshine et al., 1996 ). This is different from asking “Do you have any questions?,” which may elicit a simple “yes” or “no” response from the child. Instead, asking, “What questions do you have?” is more likely to provide a cue for children to practice analyzing what they do not know and generating questions. The ability to evaluate one’s knowledge develops through practice, and scaffolding this process by helping children recognize questions to ask can effectively support development ( Kuhn and Pearsall, 2000 ; Chin and Brown, 2002 ).

4. Other methods to encourage curiosity include promoting and reinforcing children’s thinking about alternative ideas, which could also support creativity. Part of being curious is recognizing questions that can be asked, and if children understand that there are often multiple solutions or ways to do something they will be more likely to explore to learn “ how we know and why we believe; e.g., to expose science as a way of knowing” ( Duschl and Osborne, 2002 , p. 40). Children who learn to “think outside the box” will question what they and others know and better understand the dynamic nature of knowledge, supporting a curious mindset ( Duschl and Osborne, 2002 ).

Although positive interactions can promote and sustain curiosity in young children, curiosity can also be suppressed or discouraged through interactions that emphasize performance or a focus on explicit instruction ( Martin and Marsh, 2003 ; Martin, 2011 ; Hulme et al., 2013 ). Performance goals, which are goals that are focused on demonstrating the attainment of a skill, can lead to lower curiosity to avoid distraction or risk to achieving the goal ( Hulme et al., 2013 ). Mastery goals, which focus on understanding and the learning process, support learning for its own sake ( Ames, 1993 ). When children are older and attend school, they experience expectations that prioritize performance metrics over academic and intellectual exploration, such as through tests and state-standardized assessments, which discourages curiosity ( Engel, 2011 ; Jirout et al., 2018 ). In my own recent research, we observed a positive association between teachers’ use of mastery-focused language and their use of curiosity-promoting instructional practices in preschool math and science lessons ( Jirout and Vitiello, 2019 ). Among 5th graders, student ratings of teacher emphasis on standardized testing was associated with lower observed curiosity-promotion by teachers ( Jirout and Vitiello, 2019 ). It is likely that learning orientations influence children’s curiosity even before children begin formal schooling, and de-emphasizing performance is a way to support curiosity.

In summary, focusing on the process of “figuring out” something children do not know, modeling and explicitly prompting exploration and question asking, and supporting metacognitive and creative thinking are all ways to promote curiosity and support effective cognitive engagement during learning. These methods are consistent with inquiry-based and active learning, which both are grounded in constructivism and information gaps similar to the current operationalization of curiosity ( Jirout and Klahr, 2012 ; Saylor and Ganea, 2018 ; van Schijndel et al., 2018 ). Emphasizing performance, such as academic climates focused on teaching rote procedures and doing things the “correct” way to get the right answer, can suppress or discourage curiosity. Instead, creating a supportive learning climate and responding positively to curiosity are likely to further reinforce children’s information seeking, and to sustain their curiosity so that it can support scientific thinking and learning.

Conclusion: a Call for Research

In this article, I describe evidence from the limited existing research showing that curiosity is important and relates to science learning, and I suggest several mechanisms through which curiosity can support science learning. The general perspective presented here is that science learning can and should be supported by promoting curiosity, and I provide suggestions for promoting (and avoiding the suppression of) curiosity in early childhood. However, much more research is needed to address the complex challenge of educational applications of this work. Specifically, the suggested mechanisms through which curiosity promotes learning need to be studied to tease apart questions of directionality, the influence of related factors such as interest, the impact of context and learning domain on these relations, and the role of individual differences. Both the influence of curiosity on learning and effective ways to promote it likely change in interesting and important ways across development, and research is needed to understand this development-especially through studying change in individuals over time. Finally, it is important to acknowledge that learning does not happen in isolation, and one’s culture and environment have important roles in shaping one’s development. Thus, application of research on curiosity and science learning must include studies of the influence of social factors such as socioeconomic status and contexts, the influence of peers, teachers, parents, and others in children’s environments, and the many ways that culture may play a role, both in the broad values and beliefs instilled in children and the adults interacting with them, and in the influences of behavior expectations and norms. For example, parents across cultures might respond differently to children’s questions, so cross-cultural differences in questions likely indicate something other than differences in curiosity ( Ünlütabak et al., 2019 ). Although curiosity likely promotes science learning across cultures and contexts, the ways in which it does so and effective methods of promoting it may differ, which is an important area for future research to explore. Despite the benefits I present, curiosity seems to be rare or even absent from formal learning contexts ( Engel, 2013 ), even as children show curiosity about things outside of school ( Post and Walma van der Molen, 2018 ). Efforts to promote science learning should focus on the exciting potential for curiosity in supporting children’s learning, as promoting young children’s curiosity in science can start children on a positive trajectory for later learning.

Ethics Statement

Written informed consent was obtained from the individual(s) and/or minor(s)’ legal guardian/next of kin publication of any potentially identifiable images or data included in this article.

Author Contributions

JJ conceived of the manuscript topic and wrote the manuscript.

This publication was made possible through the support of grants from the John Templeton Foundation, the Spencer Foundation, and the Center for Curriculum Redesign. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the John Templeton Foundation or other funders.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

American Association for the Advancement of Science [AAAS] (1993). Benchmarks for Science Literacy. Oxford: Oxford University Press.

Google Scholar

Ames, C. (1993). Classrooms: goals, structures, and student motivation. J. Educ. Psychol. 84, 261–271. doi: 10.1037/0022-0663.84.3.261

CrossRef Full Text | Google Scholar

Berlyne, D. E. (1954). An experimental study of human curiosity. Br. J. Psychol. 45, 256–265. doi: 10.1111/j.2044-8295.1954.tb01253.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., and Schulz, L. (2011). The double-edged sword of pedagogy: instruction limits spontaneous exploration and discovery. Cognition 120, 322–330. doi: 10.1016/j.cognition.2010.10.001

Bonwell, C. C., and Eison, J. A. (1991). Active Learning: Creating Excitement in the Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC Clearinghouse on Higher Education. Washington, DC: The George Washington University.

Chi, M. T. H., Leeuw, N. D., Chiu, M.-H., and Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cogn. Sci. 18, 439–477. doi: 10.1207/s15516709cog1803_3

Chi, M. T. H., and Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educ. Psychol. 49, 219–243. doi: 10.1080/00461520.2014.965823

Chin, C., and Brown, D. E. (2002). Student-generated questions: a meaningful aspect of learning in science. Int. J. Sci. Educ. 24, 521–549. doi: 10.1080/09500690110095249

Chin, C., and Osborne, J. (2010). Supporting argumentation through students’. Questions: case studies in science classrooms. J. Learn. Sci. 19, 230–284. doi: 10.1080/10508400903530036

Chouinard, M. M., Harris, P. L., and Maratsos, M. P. (2007). Children’s questions: a mechanism for cognitive development. Monogr. Soc. Res. Child Dev. 72, i–129.

Conati, C., and Carenini, G. (2001). “Generating tailored examples to support learning via self-explanation,” in Proceedings of IJCAI’01, 17th International Joint Conference on Artificial Intelligence , Seattle, WA, 1301–1306.

Danovitch, J. H., Fisher, M., Schroder, H., Hambrick, D. Z., and Moser, J. (2019). Intelligence and neurophysiological markers of error monitoring relate to Children’s intellectual humility. Child Dev. 90, 924–939. doi: 10.1111/cdev.12960

Danovitch, J. H., and Mills, C. M. (2018). “Understanding when and how explanation promotes exploration,” in Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms , eds M. M. Saylor and P. A. Ganea (Berlin: Springer), 95–112. doi: 10.1007/978-3-319-77182-3_6

Dewey, J. (1910). How We Think. Lexington, MA: D.C. Heath and Company. doi: 10.1037/10903-000

Duschl, R. A., and Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Stud. Sci. Educ. 38, 39–72. doi: 10.1080/03057260208560187

Duschl, R. A., Schweingruber, H. A., and Shouse, A. W. (eds) (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies Press. doi: 10.17226/11625

Engel, S. (2011). Children’s need to know: curiosity in schools. Harv. Educ. Rev. 81, 625–645. doi: 10.17763/haer.81.4.h054131316473115

Engel, S. (2013). The Case for CURIOSITY. Educ. Leadersh. 70, 36–40.

Engel, S., and Labella, M. (2011). Encouraging exploration: the effects of teaching behavior on student expressions of curiosity, as cited in Engel, S. (2011). Children’s Need to Know: curiosity in Schools. Harv. Educ. Rev. 81, 625–645. doi: 10.17763/haer.81.4.h054131316473115

Frazier, B. N., Gelman, S. A., and Wellman, H. M. (2009). Preschoolers’ search for explanatory information within adult–child conversation. Child Dev. 80, 1592–1611. doi: 10.1111/j.1467-8624.2009.01356.x

French, L. A., Woodring, S. D., and Woodring, S. D. (2013). Science Education in the Early Years. Handbook of Research on the Education of Young Children. Available online at: http://www.taylorfrancis.com/ (accessed February 29, 2020).

Gopnik, A. (2012). Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337, 1623–1627. doi: 10.1126/science.1223416

Gopnik, A., Griffiths, T. L., and Lucas, C. G. (2015). When younger learners can be better (or at least more open-minded) than older ones. Curr. Dir. Psychol. Sci. 24, 87–92. doi: 10.1177/0963721414556653

Gopnik, A., Meltzoff, A. N., and Kuhl, P. K. (1999). The Scientist in the Crib: Minds, Brains, and How Children Learn. New York, NY: William Morrow & Co.

Gordon, G., Breazeal, C., and Engel, S. (2015). Can children catch curiosity from a social robot? Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction , New York, NY, 91–98. doi: 10.1145/2696454.2696469

Gottfried, A. E., Preston, K. S. J., Gottfried, A. W., Oliver, P. H., Delany, D. E., and Ibrahim, S. M. (2016). Pathways from parental stimulation of children’s curiosity to high school science course accomplishments and science career interest and skill. Int. J. Sci. Educ. 38, 1972–1995. doi: 10.1080/09500693.2016.1220690

Harradine, C. C., and Clifford, R. M. (1996). When are children ready for kindergarten? Views of families, kindergarten teachers, and child care providers. Paper Presented at the Annual Meeting of the American Educational Research Association , New York, NY.

Howard-Jones, P. A., and Demetriou, S. (2009). Uncertainty and engagement with learning games. Inst. Sci. 37, 519–536. doi: 10.1007/s11251-008-9073-6

Heaviside, S., Farris, E., and Carpenter, J. M. (1993). Public School Kindergarten Teachers’ Views on Children’s Readiness for School. US Department of Education, Office of Educational Research and Improvement, National Center for Education Statistics.

Hulme, E., Green, D. T., and Ladd, K. S. (2013). Fostering student engagement by cultivating curiosity: fostering student engagement by cultivating curiosity. New Dir. Stud. Serv. 2013, 53–64. doi: 10.1002/ss.20060

Inhelder, B., and Piaget, J. (1958). The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures. London: Routledge.

Jipson, J. L., Labotka, D., Callanan, M. A., and Gelman, S. A. (2018). “How conversations with parents may help children learn to separate the sheep from the goats (and the Robots),” in Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms , eds M. M. Saylor and P. A. Ganea (Berlin: Springer), 189–212. doi: 10.1007/978-3-319-77182-3_11

Jirout, J., and Klahr, D. (2012). Children’s scientific curiosity: in search of an operational definition of an elusive concept. Dev. Rev. 32, 125–160. doi: 10.1016/j.dr.2012.04.002

Jirout, J., and Vitiello, V. (2019). “uriosity in the classroom through supportive instruction. Paper Presented at the SRCD Biennial Meeting , Baltimore, MD.

Jirout, J., Vitiello, V., and Zumbrunn, S. (2018). “Curiosity in schools,” in The New Science of Curiosity , ed. G. Gordon (Hauppauge, NY: Nova).

Jirout, J., and Zimmerman, C. (2015). “Development of science process skills in the early childhood years,” in Research in Early Childhood Science Education , eds K. Cabe Trundle and M. Saçkes (Berlin: Springer), 143–165. doi: 10.1007/978-94-017-9505-0_7

Kelemen, D., Callanan, M. A., Casler, K., and Pérez-Granados, D. R. (2005). Why things happen: teleological explanation in parent-child conversations. Dev. Psychol. 41, 251–264. doi: 10.1037/0012-1649.41.1.251

Kidd, C., and Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron 88, 449–460. doi: 10.1016/j.neuron.2015.09.010

King, A. (1994). Guiding knowledge construction in the classroom: effects of teaching children how to question and how to explain. Am. Educ. Res. J. 31, 338–368. doi: 10.2307/1163313

Klahr, D., Matlen, B., and Jirout, J. (2013). “Children as scientific thinkers,” in Handbook of the Psychology of Science , eds G. Feist and M. Gorman (New York, NY: Springer), 223–248.

Kuhn, D. (2002). “What is scientific thinking, and how does it develop?” in Blackwell Handbook of Childhood Cognitive Development , ed. U. Goswami (Oxford: Blackwell Publishing.), 371–393. doi: 10.1002/9780470996652.ch17

Kuhn, D., and Pearsall, S. (2000). Developmental Origins of Scientific Thinking. J. Cogn. Dev. 1, 113–129. doi: 10.1207/S15327647JCD0101N_11

Lamnina, M., and Chase, C. C. (2019). Developing a thirst for knowledge: how uncertainty in the classroom influences curiosity, affect, learning, and transfer. Contemp. Educ. Psychol. 59:101785. doi: 10.1016/j.cedpsych.2019.101785

Legare, C. H. (2014). The contributions of explanation and exploration to children’s scientific reasoning. Child Dev. Perspect. 8, 101–106. doi: 10.1111/cdep.12070

Litman, J., Hutchins, T., and Russon, R. (2005). Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cogn. Emot. 19, 559–582. doi: 10.1080/02699930441000427

Litman, J. A., and Silvia, P. J. (2006). The latent structure of trait curiosity: evidence for interest and deprivation curiosity dimensions. J. Pers. Assess. 86, 318–328. doi: 10.1207/s15327752jpa8603_07

Loewenstein, G. (1994). The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116, 75–98. doi: 10.1037/0033-2909.116.1.75

Lowry, N., and Johnson, D. W. (1981). Effects of controversy on epistemic curiosity, achievement, and attitudes. J. Soc. Psychol. 115, 31–43. doi: 10.1080/00224545.1981.9711985

Loyens, S. M., and Gijbels, D. (2008). Understanding the effects of constructivist learning environments: introducing a multi-directional approach. Inst. Sci. 36, 351–357. doi: 10.1007/s11251-008-9059-4

Luce, M. R., and Hsi, S. (2015). Science-relevant curiosity expression and interest in science: an exploratory study: CURIOSITY AND SCIENCE INTEREST. Sci. Educ. 99, 70–97. doi: 10.1002/sce.21144

Martin, A. J. (2011). Courage in the classroom: exploring a new framework predicting academic performance and engagement. Sch. Psychol. Q. 26, 145–160. doi: 10.1037/a0023020

Martin, A. J., and Marsh, H. W. (2003). Fear of Failure: Friend or Foe? Aust. Psychol. 38, 31–38. doi: 10.1080/00050060310001706997

McDonald, J. P. (1992). Teaching: Making Sense of an Uncertain Craft. New York, NY: Teachers College Press.

Metz, K. E. (2004). Children’s understanding of scientific inquiry: their conceptualization of uncertainty in investigations of their own design. Cogn. Instr. 22, 219–290. doi: 10.1207/s1532690xci2202_3

Mills, C. M., Legare, C. H., Bills, M., and Mejias, C. (2010). Preschoolers use questions as a tool to acquire knowledge from different sources. J. Cogn. Dev. 11, 533–560. doi: 10.1080/15248372.2010.516419

Morris, B. J., Croker, S., Masnick, A., and Zimmerman, C. (2012). “The emergence of scientific reasoning,” in Current Topics in Children’s Learning and Cognition , eds H. Kloos, B. J. Morris, and J. L. Amaral (Rijeka: IntechOpen). doi: 10.5772/53885

National Governors Association (2010). Common Core State Standards. Washington, DC: National Governors Association.

National Resource Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academy Press.

Nelson, D. G. K., Chan, L. E., and Holt, M. B. (2004). When Children Ask, “What Is It? “What Do They Want to Know About Artifacts? Psychol. Sci. 15, 384–389. doi: 10.1111/j.0956-7976.2004.00689.x

NPR-Edison Research Spring (2019). The Smart Audio Report. Available online at: https://www.nationalpublicmedia.com/uploads/2019/10/The_Smart_Audio_Report_Spring_2019.pdf (accessed February 23, 2020).

Oudeyer, P.-Y., Gottlieb, J., and Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: theory and applications in educational technologies. Prog. Brain Res. 229, 257–284. doi: 10.1016/bs.pbr.2016.05.005

Piaget, J. (1926). The Thought and Language of the Child. New York, NY: Harcourt, Brace, and Company.

Pianta, R. C., La Paro, K. M., and Hamre, B. K. (2008). Classroom Assessment Scoring SystemTM: Manual K-3. Baltimore, MD: Paul H Brookes Publishing.

Post, T., and Walma van der Molen, J. H. (2018). Do children express curiosity at school? Exploring children’s experiences of curiosity inside and outside the school context. Learn. Cult. Soc. Interact. 18, 60–71. doi: 10.1016/j.lcsi.2018.03.005

Ronfard, S., Zambrana, I. M., Hermansen, T. K., and Kelemen, D. (2018). Question-asking in childhood: a review of the literature and a framework for understanding its development. Dev. Rev. 49, 101–120. doi: 10.1016/j.dr.2018.05.002

Rosenshine, B., Meister, C., and Chapman, S. (1996). Teaching students to generate questions: a review of the intervention studies. Rev. Educ. Res. 66, 181–221. doi: 10.2307/1170607

Ruggeri, A., and Lombrozo, T. (2015). Children adapt their questions to achieve efficient search. Cognition 143, 203–216. doi: 10.1016/j.cognition.2015.07.004

Saylor, M. M., and Ganea, P. A. (eds) (2018). Active Learning from Infancy to Childhood: Social Motivation, Cognition, and Linguistic Mechanisms. Berlin: Springer. doi: 10.1007/978-3-319-77182-3

Schulz, L. E., and Bonawitz, E. B. (2007). Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Dev. Psychol. 43, 1045–1050. doi: 10.1037/0012-1649.43.4.1045

Schwartz, D. L., and Martin, T. (2004). Inventing to prepare for future learning: the hidden efficiency of encouraging original student production in statistics instruction. Cogn. Inst. 22, 129–184. doi: 10.1207/s1532690xci2202_1

Shah, P. E., Weeks, H. M., Richards, B., and Kaciroti, N. (2018). Early childhood curiosity and kindergarten reading and math academic achievement. Pediatr. Res. 84, 380–386. doi: 10.1038/s41390-018-0039-3

Turgeon, W. C. (2015). The art and danger of the question: its place within philosophy for children and its philosophical history. Mind Cult. Act. 22, 284–298. doi: 10.1080/10749039.2015.1079919

Ünlütabak, B., Nicolopoulou, A., and Aksu-Koç, A. (2019). Questions asked by Turkish preschoolers from middle-SES and low-SES families. Cogn. Dev. 52:100802. doi: 10.1016/j.cogdev.2019.100802

van Schijndel, T. J. P., Jansen, B. R. J., and Raijmakers, M. E. J. (2018). Do individual differences in children’s curiosity relate to their inquiry-based learning? Int. J. Sci. Educ. 40, 996–1015. doi: 10.1080/09500693.2018.1460772

VanLehn, K., Jones, R. M., and Chi, M. T. H. (1992). A model of the self-explanation effect. J. Learn. Sci. 2, 1–59. doi: 10.1207/s15327809jls0201_1

West, J., Hausken, E. G., and Collins, M. (1993). Readiness for Kindergarten: Parent and Teacher Beliefs. Statistics in Brief. Available online at: https://eric.ed.gov/?id=ED363429 (accessed February 29, 2020).

Keywords : curiosity, scientific reasoning, scientific thinking, information seeking, exploration, learning

Citation: Jirout JJ (2020) Supporting Early Scientific Thinking Through Curiosity. Front. Psychol. 11:1717. doi: 10.3389/fpsyg.2020.01717

Received: 28 February 2020; Accepted: 23 June 2020; Published: 05 August 2020.

Reviewed by:

Copyright © 2020 Jirout. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jamie J. Jirout, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Science-Based Medicine

Science-Based Medicine

Exploring issues and controversies in the relationship between science and medicine

what is scientific attitude and why is it important for critical thinking

The Scientific Attitude, Not the Scientific Method, Is the Key

A philosopher of science argues that science is not characterized by a specific scientific method but by the scientific attitude. Scientists value empirical evidence and follow the evidence wherever it leads. They are open to changing their mind rather than stubbornly clinging to an ideological belief system.

what is scientific attitude and why is it important for critical thinking

There’s no such thing as “the scientific method”. The simplistic “observe, hypothesize, predict, test, analyze, and revise” model does not describe how most scientific discoveries are actually made. Penicillin was not discovered by systematically applying a “scientific method”, but by serendipitously profiting from an accidental contamination. The demarcation problem (drawing a line between science and non-science) has never been satisfactorily solved. Criteria like falsifiability showed promise but were flawed. McIntyre’s goal is to provide a way to show what is distinctive about science without solving the demarcation problem.

No matter how good the evidence, science can never prove the truth of any empirical theory. Theories are always tentative and subject to revision based on better evidence. But this doesn’t mean we have no grounds for believing a scientific theory. Evidence counts. Predictability is compelling. Good theories don’t require knowing the mechanism; we knew penicillin worked long before we understood how it worked. He draws a distinction between truth and warrant. A theory has warrant if it has a credible claim to believability given the evidence , even though we can’t prove it’s true in any absolute sense. We can be comfortable accepting a warranted theory even though we realize it might eventually be proven wrong. We can celebrate uncertainty, and we can require denialists and conspiracy theorists to defend the warrant of their beliefs rather than simply attacking our science.

Einstein had the true scientific attitude. He said experimental confirmation would not establish the truth of his theory, but he would have to accept that his theory was untenable if it failed certain tests. Specific methodology is less important than the values of honesty and openness. Individuals must be willing to critique their own ideas, but criticism is also a communal and institutional self-correcting enterprise. We try to find failure. Science can never be purely objective; it is value-laden. “It is a myth that we choose our beliefs and theories based only on the evidence.”

The scientific attitude transformed modern medicine

Semmelweis had the scientific attitude far ahead of his time; his ideas were met with unreasoned opposition. “Until quite recently in the history of medicine, patients often had just as much to fear from their doctor as they did from whatever disease they were trying to cure.” Benjamin Rush was a strong advocate of bloodletting to balance the humors; perhaps it was fitting that he died of bloodletting when it was used to treat his typhus fever. In his day, patients treated by a doctor for compound fracture had only a 50% chance of survival. Gradually doctors accepted that they could learn from experiments, the scientific attitude prevailed, and modern medicine was born.

According to the myth, penicillin was discovered by accident. It was no accident. Fleming responded to a chance contamination with a prepared mind, understood that it showed antibiotic properties, published his findings, and others tested and developed the drug. The individuals involved all had the scientific attitude.

Science gone wrong: errors and fraud

Science can go wrong in many ways: p-hacking, cherry-picking, sloppiness, laziness, cognitive bias, unintentional errors, intentional falsification or fabrication of data (sometimes with “good intentions” because they are sure they are right and want to speed the process along), and deliberate fraud, as in the case of Andrew Wakefield, whose now-retracted study on autism led to vaccine refusals and measles resurgence.

Denialists and pseudoscience

The most valuable chapter of the book is “Science Gone Sideways: Denialists, Pseudoscientists, and Other Charlatans.” Those people either misunderstand or don’t care about the standards of scientific evidence, or if they do care, they don’t care enough to modify or abandon their ideological beliefs. He defines denialism as “the refusal to believe in well-warranted scientific theories even when the evidence is overwhelming” and pseudoscience as when someone seeks the mantle of science to promote a fringe theory but refuses to change their beliefs in the face of refutatory evidence or methodological criticism. This is dangerous because people who have an economic, religious, or political interest in contradicting certain scientific findings “have resorted to a public relations campaign that has made great strides in undermining the public’s understanding of and respect for science.”

Denialists and pseudoscientists may believe that they are living up to the highest standards of the scientific attitude, but they are not. When the evidence conflicts with a sacred belief, people who believe they already know the answer will reject science. Superstition and willful ignorance are not new, but what is new is “the extent to which people can find a ready supply of ‘evidence’ to support their conspiracy-based, pseudoscientific, denialist, or other outright irrational beliefs in a community of like-minded people on the Internet.” It is easy to avoid conflicting views and to live in a fact-free alternative reality. Group consensus works well in science as a check against error, but outside of science charlatans use consensus as a way to reinforce prejudice.

Denialists like to call themselves skeptics, and claim to be open to new ideas, but true skeptics reject new ideas that are believed without sufficient evidence and change their minds to adopt new ideas that are based on good evidence. “For denialists, no evidence ever seems sufficient for them to change their minds.” This is not a scientific attitude; it is the opposite of having an open mind. They demand impossibly high standards for disconfirming evidence but demonstrate complete gullibility for any claim that supports their belief system; for instance, they don’t need evidence to believe the claim that the CDC paid the Institute of Medicine to suppress the data on thimerosal.

Denialists and pseudoscientists like to point out that cranks can sometimes get it right. They laughed at Galileo, but Galileo was not a crank; he had evidence to support his assertions. The book tells the story of J. Harlen Bretz, a maverick geologist who found evidence that a massive flood had created the channeled scablands of Eastern Washington. He realized that what he saw could not be explained by uniformitarianism, the generally accepted dogma that geologic processes acted gradually over time. He didn’t know what could have caused such a mega-flood, but others found the explanation: the failure of a giant ice dam at prehistoric Lake Missoula. He was long considered a heretic, but his evidence was overwhelming. Others could see the evidence for themselves. Bretz was vindicated in 1965 when geologists went on an official field trip and sent him a telegram saying, “We are all catastrophists now.” It took a while, but the scientific attitude eventually triumphed.

“The crucial question for pseudoscientists is this: if your theories are true, where is the evidence?” If you have good answers, you will not be persecuted or ignored; science will eventually beat a path to your door.

Conclusion: a worthy project

McIntyre says the core difference between what is science and what is not hinges on the scientific attitude. He hopes that his concept of the scientific attitude will put us in a better place to understand and defend science and to grow it in new fields like the social sciences. Truth matters, and if we care about empirical evidence and use it to shape our theories, we can avoid remaining “mired in the ditch of ideology, superstition, and confusion”. Our very survival as a species may depend on it.

Harriet Hall, MD also known as The SkepDoc, is a retired family physician who writes about pseudoscience and questionable medical practices. She received her BA and MD from the University of Washington, did her internship in the Air Force (the second female ever to do so),  and was the first female graduate of the Air Force family practice residency at Eglin Air Force Base. During a long career as an Air Force physician, she held various positions from flight surgeon to DBMS (Director of Base Medical Services) and did everything from delivering babies to taking the controls of a B-52. She retired with the rank of Colonel.  In 2008 she published her memoirs, Women Aren't Supposed to Fly .

  • Posted in: Book & movie reviews , Critical Thinking
  • Tagged in: denialism , evidence , Lee McIntyre , open mind , pseudoscience , science , the scientific attitude , truth

Posted by Harriet Hall

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Critical Thinking Is About Asking Better Questions

  • John Coleman

what is scientific attitude and why is it important for critical thinking

Six practices to sharpen your inquiry.

Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep, different, and effective questions. For effective questioning, start by holding your hypotheses loosely. Be willing to fundamentally reconsider your initial conclusions — and do so without defensiveness. Second, listen more than you talk through active listening. Third, leave your queries open-ended, and avoid yes-or-no questions. Fourth, consider the counterintuitive to avoid falling into groupthink. Fifth, take the time to stew in a problem, rather than making decisions unnecessarily quickly. Last, ask thoughtful, even difficult, follow-ups.

Are you tackling a new and difficult problem at work? Recently promoted and trying to both understand your new role and bring a fresh perspective? Or are you new to the workforce and seeking ways to meaningfully contribute alongside your more experienced colleagues? If so, critical thinking — the ability to analyze and effectively break down an issue in order to make a decision or find a solution — will be core to your success. And at the heart of critical thinking is the ability to formulate deep, different, and effective questions.

what is scientific attitude and why is it important for critical thinking

  • JC John Coleman is the author of the HBR Guide to Crafting Your Purpose . Subscribe to his free newsletter, On Purpose , or contact him at johnwilliamcoleman.com . johnwcoleman

Partner Center

Greater Good Science Center • Magazine • In Action • In Education

Why Thinking Like a Scientist Is Good for You

In a rapidly changing world, it’s important to be able to adapt and change rather than stubbornly adhering to old ideas and opinions. This was one of the lessons of 2020, a year that forced us to question many of our assumptions about what behaviors are safe, how work and school can be conducted, and how we connect with others.

“In a changing world, you have to be willing and able to change your mind. Otherwise, your expertise can fail, your opinions get out of date, and your ideas fall flat,” says organizational psychologist Adam Grant, author of the new book Think Again: The Power of Knowing What You Don’t Know .

In his book, Grant explains why it’s so important for people to be humbler about their knowledge and stay open to learning and changing their minds. The book is filled with fascinating research and guidance on becoming more flexible in our thinking, while helping others to be more open-minded, too. This skill is crucial not only for facing crises like the pandemic, but also for navigating complex social issues, making good business decisions, and more.

what is scientific attitude and why is it important for critical thinking

I spoke to Grant recently about his book and what we can take away from it. Here is an edited version of our conversation.

Jill Suttie: Your book focuses on the importance of people questioning what they think they know and being open to changing their mind. Why is it so hard to do that?

Adam Grant: It’s hard for a few reasons. One is what psychologists call “cognitive entrenchment,” which is when you have so much knowledge in an area that you start to take for granted assumptions that need to be questioned. There’s evidence, for example, that when you change the rules of the game for expert bridge players, they really struggle, because they don’t realize that the strategies they’ve used for years don’t apply. There’s also evidence that highly experienced accountants are slower to adapt to the new tax laws than novices because they’ve internalized a certain way of doing things.

A second barrier is motivation: I don’t want to rethink; I’m comfortable with the way I’ve always done things. It makes me feel and look stupid if I admit that I was wrong. It’s easier to just stick to my guns (or my gun bans, depending on where I stand ideologically).

The third reason is social. We don’t form beliefs in a vacuum. We generally end up with opinions that are influenced by and pretty much similar to the people in our social circles. So, there’s a risk that if I let go of some of my views, I might be excluded from my tribe, and I don’t want to take that risk.

JS: In your book, you talk about the importance of the “scientific mindset.” What do you mean by a scientific mindset and how does it help us in rethinking?

AG: I think too many of us spend too much time thinking like preachers, prosecutors, and politicians. [Phillip] Tetlock made a very compelling case that when we’re in preacher mode, we’re convinced we’re right; when we’re in prosecutor mode, we’re trying to prove someone else wrong; and when we’re in politician mode, we’re trying to win the approval of our audience. Each of these mental modes can stand in the way of “thinking again,” because in preacher and prosecutor mode, I’m right and you’re wrong, and I don’t need to change my mind. In politician mode, I might tell you what you want to hear, but I’m probably not changing what I really think; I’m posturing as opposed to rethinking.

Thinking like a scientist does not mean you need to own a telescope or a microscope. It just means that you favor humility over pride and curiosity over conviction. You know what you don’t know, and you’re eager to discover new things. You don’t let your ideas become your identity. You look for reasons why you might be wrong, not just reasons why you must be right. You listen to ideas that make you think hard, not just the ones that make you feel good. And you surround yourself with people who can challenge your process, not just the ones who agree with your conclusion.

JS: Why would people ever want to look for reasons to be wrong?

AG: One of the reasons you want to is because if you don’t get good at rethinking, then you end up being wrong more often. I think it’s one of the great paradoxes of life: The quicker you are to recognize when you’re wrong, the less wrong you become.

There’s an experiment where entrepreneurs were being taught to think like scientists that’s such a good demonstration of something we can all practice. Italian startup founders went through a three- to four-month crash course in how to start and run a business. But half of them were randomly assigned to think like scientists, where they’re told that your strategy is a theory. You can do customer interviews to develop specific hypotheses, and then when you launch your first product or service, think of that as an experiment and test your hypothesis.

Those entrepreneurs that we taught to think like scientists brought in more than 40 times the revenue of the control group. The reason for that is they were more than twice as likely to pivot when their first product or service launch didn’t work instead of getting their egos all wrapped up in proving that they were right. To me, that is some of the strongest evidence that being willing to admit you’re wrong can actually accelerate your progress toward being right.

JS: But shouldn’t we be able to embrace our expertise rather than always giving every idea equal weight?

AG: I’m not saying that you shouldn’t have standards. The whole point of rethinking is to change your mind in the face of better logic or stronger evidence—not to just roll the dice and say, I’m going to pick a random new opinion today.

There’s a great way of capturing what I’m after here, which is something Bob Sutton has written about for years. He defines an attitude of wisdom as acting on the best information you have while doubting what you know. That’s what I’m saying here. You need humility.

I think people misunderstand what humility is. When I talk about humility in experts or in leaders, people say, “No, I don’t want to have no self-confidence. I don’t want to have a low opinion of myself.” But, I say, that’s not humility. The Latin root of humility translates to “from the earth.” It’s about being grounded, recognizing that, yes, we have strengths, but we also have weaknesses. You’re fallible. Confident humility is being able to say, “I don’t know and I might be wrong,” or “I haven’t figured it out yet,” which is essentially believing in yourself but doubting your current knowledge or skills.

JS: People often seem to not want to rethink, and they’ll use strategies to shut down conversation, like saying, “I’m entitled to my opinion” or “I don’t care what you say, I’m not changing my mind.” How can you encourage somebody to be more open to rethinking if they’re unmotivated?

AG: Your options are not always going to work. But one option is to show your own openness and admit that you might be wrong or your knowledge might be incomplete. The reason people shut down is often because they’re afraid of being judged. So, they would rather disengage and avoid that. But if you say, “Hey, you know what? I’m not sure about my opinion here,” there’s a possibility they’ll realize that you’re both here to learn from each other.

A second option might be to ask questions that help to consider what would open their mind, which at least encourages them to contemplate situations where they might rethink. If they acknowledged evidence could change their mind, at least it’s a step toward progress.


A third possibility is to do something I’ve been doing since I wrote the book: to acknowledge my own stubbornness at the beginning of these kinds of conversations and admit that I have a bad habit of going into “logic bully mode.” I bombard people with facts and data, but that’s not who I want to be. I want to come into conversations with people who disagree with me in the hopes that I can learn something from them. I don’t want to be a prosecutor.

So, I invite people to catch me doing that and ask them to please let me know. A couple of things happen when I do that. One is sometimes people will call me out and it helps me. Just last week, I was in a debate by email with a colleague and he said, “You’re going into lawyer mode again.” It was a good prompt for me to think, “Uh oh, I’d better rethink the way that I’m having this fight.” The other thing that happens is when I put my cards on the table, often the other person will say, “Oh my gosh, I do that, too. I don’t want to be like that either.” It sets the terms for the conversation a little bit.

JS: At the end of your book, you have 30 practical takeaways for rethinking. Can you mention a few that are particularly important or easier to embrace?

AG: One of my favorites is being a “super-forecaster,” which means, when you form an opinion, you make a list of conditions that would change your mind. That keeps you honest, because once you get attached to an opinion, it’s really hard to let go. But if you identify factors that would change your mind up front, you keep yourself flexible.

For encouraging other people to think again, you can avoid argument dilution. Most of us try to convince people with as many reasons as possible, because we think that giving people more reasons makes it easier for them to change their mind. But we forget that two things happen. (I’m tempted to give you many more, but I’m going to try to avoid diluting my own argument.) The more reasons we give, the more we trigger the other person’s awareness that we’re trying to persuade them, and they put their guard up. Also, if they’re resistant, giving them more reasons allows them to pick the least compelling reason and throw out the whole argument.

The lesson here is, if you have an audience who might be closed to your point of view, sometimes it’s more effective to give two reasons instead of five. Lead with your strongest argument.

“If you can embrace the joy of being wrong, then you get to anchor your identity more in being someone who’s eager to discover new things, than someone who already knows everything”

On the collective side, I love the idea of doing a rethinking checkup. We all go to the doctor for regular checkups, even when nothing is wrong. We should do the same with the important decisions in our lives. I’ve encouraged my students for years to do annual career checkups where they just ask themselves once or twice a year, “Have I reached a learning plateau? Are the interests and values I had when I came in still important to me now?” We can do the same thing with our relationships or pretty much anything that’s important to us.

JS: You write that being wrong is tied to a more joyful life. Why is that?

AG: I had noticed Danny Kahneman [the Nobel prize–winning behavioral economist] just lights up with joy when he finds out that one of his hypotheses is false. So, I asked him, “Why do you look so excited when you find out that you’re wrong?” And he corrected me. He made clear to me that no one enjoys being wrong, but that he takes real joy in finding out that he was wrong, because that means now he’s less wrong than he was before. All of a sudden, it clicked for me: Being wrong means I’ve learned something. If I find out that I was right, there’s no new knowledge or discovery.

In some ways, the joy of being wrong is the freedom to keep learning. If you can embrace the joy of being wrong, then you get to anchor your identity more in being someone who’s eager to discover new things, than someone who already knows everything or is expected to know everything.

JS: Do you have any hopes for people engaging in rethinking as a way of bridging our political divide?

AG: It depends on who’s doing the talking. So many of us fall into binary bias, and we only focus on the most extreme version of the other side, which is a caricature, where we say they’re either dumb or bad. If you let go of that, there’s a whole complex spectrum and many shades of gray between these two political extremes.

Peter Coleman ’s research shows that, instead of introducing a complex topic like abortion or guns or climate change as representing two sides of the coin, if you can encourage people to think about it through the many lenses of a prism, they become more nuanced and less polarized, and they’re more likely to find common ground. Any time you see someone creating an “us versus them” dichotomy, you can ask, “What’s the third angle, what’s the fourth lens on that?” That gives people the chance to belong to multiple belief systems and to open their mind to multiple ideas, as opposed to sticking to one.

JS: What are your hopes for this book?

AG: I hope that it will encourage more people to be more flexible in their own thinking, to say they care more about learning and improving themselves than about proving themselves. Too many of us get trapped in mental prisons of our own making. But if we could be committed to rethinking, we might have a slightly more open-minded society.

About the Author

Headshot of Jill Suttie

Jill Suttie

Jill Suttie, Psy.D. , is Greater Good ’s former book review editor and now serves as a staff writer and contributing editor for the magazine. She received her doctorate of psychology from the University of San Francisco in 1998 and was a psychologist in private practice before coming to Greater Good .

You May Also Enjoy

what is scientific attitude and why is it important for critical thinking

The Paradox of Humility

what is scientific attitude and why is it important for critical thinking

How Humility Can Help Us Bridge Our Political Divides

what is scientific attitude and why is it important for critical thinking

The Benefits of Admitting When You Don’t Know

what is scientific attitude and why is it important for critical thinking

How to Cultivate Humble Leadership

what is scientific attitude and why is it important for critical thinking

How to Infuse Your Company Culture with Humility

what is scientific attitude and why is it important for critical thinking

How Humility Will Make You the Greatest Person Ever

GGSC Logo

jamiefosterscience logo

The Critical Role Of Curiosity And Skepticism In Scientific Discovery

Science is built on a foundation of curiosity and skepticism. But how exactly do these traits contribute to the scientific process and lead to major discoveries that expand our understanding of the world?

In this comprehensive 3000 word guide, we’ll explore the integral role curiosity and skepticism play in fueling scientific advancement. We’ll look at real-world examples of how curiosity drives exploration while skepticism enables validation, and why they must go hand-in-hand for impactful breakthroughs.

The Nature of Curiosity in Science

Defining curiosity and its role in science.

Curiosity can be defined as a strong desire to know or learn something. In the realm of science, curiosity plays a crucial role in driving the discovery process. Scientists are inherently curious individuals who constantly question the world around them, seeking to uncover new knowledge and understand the mysteries of the universe.

It is this innate curiosity that motivates scientists to explore, observe, experiment, and analyze.

Curiosity serves as the foundation for scientific inquiry, leading researchers to ask thought-provoking questions and seek answers through systematic investigation. Without curiosity, scientific progress would be stagnant, as scientists would lack the drive to explore uncharted territories and challenge existing knowledge.

Historical examples of curiosity leading to discoveries

The history of science is replete with examples of how curiosity has paved the way for groundbreaking discoveries. Consider the story of Sir Isaac Newton, who, while sitting under an apple tree, wondered why the apple fell straight down instead of veering off in a different direction.

This curiosity led him to formulate the laws of motion and establish the theory of gravitation.

Another notable example is that of Albert Einstein, whose curiosity about the nature of light and the behavior of matter led him to develop the theory of relativity. Einstein’s relentless pursuit of knowledge and his refusal to accept conventional wisdom allowed him to revolutionize our understanding of the universe.

How curiosity fuels exploration and the development of hypotheses

Curiosity acts as the driving force behind scientific exploration, pushing scientists to venture into unexplored realms in search of answers. When scientists encounter an intriguing phenomenon or an unexplained observation, their curiosity compels them to investigate further, often leading to the formulation of hypotheses.

Within the scientific method, hypotheses are proposed explanations for observed phenomena. They serve as a starting point for further investigation and experimentation. Curiosity fuels the development of these hypotheses, as scientists ask questions, make predictions, and design experiments to test their ideas.

It is through this iterative process of curiosity-driven exploration and hypothesis formulation that scientific discoveries are made. Curiosity sparks the initial inquiry, while skepticism and rigorous testing ensure the validity and reliability of the findings.

Ultimately, curiosity and skepticism go hand in hand in the scientific endeavor. A curious mind propels scientists to explore, question, and seek answers, while a skeptical mindset ensures that the findings are carefully scrutinized and supported by evidence.

The Role of Skepticism in the Scientific Process

Defining scientific skepticism.

Scientific skepticism is a fundamental aspect of the scientific process. It involves questioning and critically evaluating the validity of ideas, hypotheses, and theories before accepting them as true or accurate.

This skepticism is a crucial component of scientific inquiry, as it encourages researchers to approach their work with a questioning mindset and to challenge existing beliefs and assumptions.

Scientists who embrace skepticism understand that it is not a rejection of ideas but rather a commitment to thorough investigation and evidence-based reasoning. They recognize the importance of subjecting their own work, as well as the work of others, to rigorous scrutiny in order to ensure the reliability and validity of scientific findings.

The importance of skepticism in validating ideas

Skepticism plays a vital role in the validation of ideas within the scientific community. By subjecting hypotheses and theories to scrutiny, scientists are able to identify potential flaws, biases, or limitations in their reasoning or methodology.

This process helps to ensure that only the most robust and accurate ideas are accepted as scientific knowledge.

Scientific skepticism helps to guard against confirmation bias, which is the tendency to search for, interpret, and favor information that confirms one’s preexisting beliefs. By actively questioning and challenging assumptions, scientists can minimize the impact of bias on their research and increase the objectivity and reliability of their findings.

Furthermore, skepticism fosters a culture of intellectual humility and open-mindedness within the scientific community. Scientists who approach their work with skepticism are more likely to embrace new ideas and explore alternative explanations, even if they challenge established theories.

This willingness to question and reassess existing knowledge is essential for scientific progress and innovation.

Historical examples of skepticism enabling progress

Throughout history, skepticism has played a pivotal role in enabling scientific progress. Consider the case of Galileo Galilei, who challenged the prevailing belief that the Earth was the center of the universe.

Despite facing significant opposition and even persecution, Galileo’s skepticism led him to observe evidence that supported the heliocentric model, eventually revolutionizing our understanding of the cosmos.

Another example is the skepticism surrounding Ignaz Semmelweis’ theory on the importance of handwashing in preventing the spread of infectious diseases. Initially met with resistance and disbelief, Semmelweis’ persistent skepticism and insistence on evidence eventually led to the acceptance of his groundbreaking idea, saving countless lives in the process.

These historical examples demonstrate that skepticism is not only an essential component of the scientific process but also a catalyst for innovation and paradigm shifts. By encouraging skepticism, the scientific community fosters an environment that values critical thinking, evidence-based reasoning, and the pursuit of truth.

Curiosity and Skepticism in the Scientific Method

Observing phenomena through curiosity.

Curiosity is the driving force behind scientific discovery. Scientists are naturally curious individuals who observe the world around them with a keen eye. They constantly seek to understand the underlying mechanisms and processes that govern the natural world.

By carefully observing phenomena and asking questions, scientists are able to uncover new knowledge and make groundbreaking discoveries.

Questioning and hypothesizing with an open mind

Questioning and hypothesizing are crucial steps in the scientific method. Scientists approach their research with an open mind, willing to explore new possibilities and challenge existing theories. They ask thought-provoking questions that push the boundaries of knowledge and propose hypotheses that can be tested through experimentation.

This open-mindedness allows for innovative thinking and the advancement of scientific understanding.

Rigorously testing hypotheses with skepticism

Skepticism plays a vital role in the scientific method. Scientists approach their hypotheses with a healthy dose of skepticism, constantly questioning their validity and seeking evidence to support or refute them.

They design experiments that are carefully controlled and rigorously executed to ensure the reliability of their results. By subjecting their hypotheses to rigorous testing, scientists can confidently draw conclusions based on solid evidence.

Refining theories based on evidence

Scientific theories are not set in stone; they are constantly evolving based on new evidence. Scientists analyze the data collected from their experiments and observations, and use this information to refine or revise their theories.

This iterative process allows for the continuous improvement of scientific knowledge. It is through this refinement that scientists are able to gain a deeper understanding of the natural world and make significant contributions to their respective fields.

So, the critical role of curiosity and skepticism in scientific discovery cannot be overstated. They are the driving forces behind the scientific method, enabling scientists to observe, question, test, and refine their understanding of the natural world.

By embracing curiosity and skepticism, scientists are able to push the boundaries of knowledge and uncover the mysteries of the universe.

Overcoming Biases Through Skepticism

How personal biases can impede objectivity.

Personal biases can often hinder the objectivity needed for scientific discovery. Our beliefs, experiences, and preconceived notions can influence the way we interpret data and form conclusions. These biases may lead us to selectively accept evidence that supports our existing beliefs while disregarding contradictory evidence.

This confirmation bias can significantly impede scientific progress and hinder the pursuit of truth.

For example, imagine a researcher studying the effects of a new drug. If they have a personal bias towards believing in the efficacy of the drug, they may interpret the data in a way that confirms their initial beliefs, even if the evidence is weak or inconclusive.

This can lead to false conclusions and potentially harmful consequences.

Recognizing and acknowledging our biases is the first step towards overcoming them. By understanding that our personal beliefs can influence our objectivity, we can consciously strive to approach scientific inquiry with a more skeptical mindset.

Using skepticism to challenge assumptions

Skepticism plays a vital role in scientific discovery by challenging assumptions and promoting critical thinking. It encourages researchers to question existing theories, methodologies, and conclusions, fostering a culture of intellectual curiosity and open-mindedness.

By adopting a skeptical attitude, scientists can subject their own work and the work of others to rigorous scrutiny. They may ask questions like: “Is this conclusion supported by solid evidence?” or “Are there alternative explanations that haven’t been considered?”

This critical evaluation helps to uncover errors, biases, and gaps in knowledge, leading to a deeper understanding of the subject matter.

Skepticism also encourages researchers to replicate and reproduce experiments to ensure the reliability of results. This replication process helps to validate or challenge previous findings, ensuring the scientific community can build upon a solid foundation of knowledge.

The role of peer review in reducing bias

Peer review is a crucial step in the scientific process that helps to reduce bias and ensure the quality of research. When a study undergoes peer review, it is evaluated by experts in the field who assess the methodology, results, and interpretations.

By subjecting research to the scrutiny of their peers, scientists can address potential biases and errors before publication. Peers may identify flaws in experimental design, point out alternative explanations, or suggest additional analyses to strengthen the study’s conclusions.

Peer review acts as a checks-and-balances system, helping to prevent the dissemination of biased or flawed research. It is an essential mechanism for maintaining the credibility and integrity of scientific knowledge.

Cultivating Curiosity and Skepticism

Fostering curiosity from an early age.

Cultivating curiosity in children is crucial for their intellectual development and future success. Encouraging children to ask questions, explore their surroundings, and seek answers to their queries helps foster a sense of wonder and inquisitiveness.

Parents and educators can nurture curiosity by providing opportunities for hands-on learning, exposing children to a variety of experiences, and promoting a growth mindset. By nurturing curiosity, we empower children to become lifelong learners and critical thinkers.

Research has shown that curious individuals tend to have higher levels of intellectual engagement, creativity, and problem-solving skills. In fact, a study conducted by the University of California, Davis, found that curious individuals are more likely to engage in exploratory behaviors, which can lead to novel discoveries and breakthroughs.

Therefore, fostering curiosity from an early age is essential for nurturing future scientists, innovators, and critical thinkers.

Developing critical thinking and skeptical skills

Critical thinking and skepticism are essential skills for evaluating information, analyzing evidence, and making informed decisions. Teaching these skills is crucial in an era where misinformation and fake news are prevalent.

By encouraging individuals to question assumptions, challenge beliefs, and seek evidence, we empower them to think critically and make rational judgments.

One effective way to develop critical thinking and skeptical skills is through formal education. Schools and universities can incorporate critical thinking courses or activities into their curriculum, teaching students how to evaluate information from different sources, identify logical fallacies, and distinguish between fact and opinion.

Additionally, engaging students in debates, group discussions, and research projects can further enhance their ability to think critically and approach new ideas with skepticism.

Creating environments that reward open inquiry

In order to foster curiosity and skepticism, it is important to create environments that reward open inquiry and intellectual curiosity. This can be achieved by promoting a culture of questioning and encouraging individuals to challenge existing knowledge and assumptions.

By creating a safe space for open dialogue and respectful debate, organizations can foster an atmosphere of intellectual curiosity and critical thinking.

Moreover, organizations can also provide incentives for individuals to pursue innovative and unconventional ideas. This can be done through funding research grants, organizing innovation challenges, or recognizing and celebrating individuals who have made significant contributions through their curiosity and skepticism.

By creating such environments, we can inspire scientists, researchers, and thinkers to push the boundaries of knowledge and make groundbreaking discoveries.

Curiosity sparks exploration while skepticism enables validation. Science requires both traits to drive advancements in our understanding of the world. By fostering curiosity and teaching skeptical inquiry, we can continue to push the boundaries of human knowledge.

With a balanced approach of open-minded curiosity and rigorous skepticism, the possibilities for discovery are endless.

Similar Posts

Cornell Computer Science Acceptance Rate

Cornell Computer Science Acceptance Rate

With its Ivy League reputation and highly-ranked computer science program, Cornell University is a dream school for many prospective students. But how difficult is it to gain admission to study computer science at Cornell? If you’re short on time, here’s a quick answer to your question: Cornell’s overall acceptance rate is around 10-15%, but for…

Masters Of Professional Studies Vs. Masters Of Science: Key Differences

Masters Of Professional Studies Vs. Masters Of Science: Key Differences

When researching graduate programs, you may come across both Masters of Professional Studies (MPS) and Masters of Science (MS or MSc) options. But what’s the difference between these two advanced degree paths? If you’re short on time, here’s a quick answer: MPS programs focus on practical skills and experience for careers, while MS degrees concentrate…

Is Ap Computer Science Principles Difficult? Evaluating The Rigor Of This Ap Course

Is Ap Computer Science Principles Difficult? Evaluating The Rigor Of This Ap Course

AP Computer Science Principles is notable for introducing coding basics and computational thinking concepts to high school students. With less programming than the traditional AP Computer Science course, some see it as an easy alternative. But is AP Computer Science Principles actually considered a difficult AP course? In this comprehensive guide, we’ll analyze the academic…

Princeton Computer Science Acceptance Rate: An In-Depth Look

Princeton Computer Science Acceptance Rate: An In-Depth Look

Getting accepted into Princeton University’s renowned computer science program is a dream for many prospective students. But with an exceptionally competitive admissions process, you probably want to know—what are your actual chances of getting in? In this comprehensive guide, we’ll break down everything you need to know about Princeton computer science’s acceptance rate. If you’re…

Is Environmental Science A Physical Science?

Is Environmental Science A Physical Science?

Environmental science is a fascinating field that combines knowledge from multiple scientific disciplines to understand the natural world. But is it considered a physical science? In this comprehensive guide, we’ll analyze environmental science and see how it relates to fields like physics, chemistry, and geology. If you’re short on time, here’s a quick answer: environmental…

Environmental Science Vs. Ecology: Understanding The Distinctions

Environmental Science Vs. Ecology: Understanding The Distinctions

At first glance, environmental science and ecology may seem like interchangeable fields. Both examine the natural world and human impacts. However, ecology represents just one facet of the vast, interdisciplinary umbrella that is environmental science. In brief: Ecology focuses specifically on organisms and their environments, while environmental science encompasses ecology along with earth sciences, chemistry,…

University of the People Logo

Home > Blog > Tips for Online Students > Why Is Critical Thinking Important and How to Improve It

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important and How to Improve It

what is scientific attitude and why is it important for critical thinking

Updated: July 8, 2024

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

Critical thinking is the process of analyzing facts to form a judgment. Essentially, it involves thinking about thinking. Historically, it dates back to the teachings of Socrates , as documented by Plato.

Today, it is seen as a complex concept understood best by philosophers and psychologists. Modern definitions include “reasonable, reflective thinking focused on deciding what to believe or do” and “deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Photo by Marcelo Chagas from Pexels

6. the basis of science & democracy.

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How To Improve Your Critical Thinking

Now that you know the benefits of thinking critically, how do you actually do it?

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do, but much of this essential skill is encouraged and practiced in school. Fostering a culture of inquiry is crucial, encouraging students to ask questions, analyze information, and evaluate evidence.

Teaching strategies like Socratic questioning, problem-based learning, and collaborative discussions help students think for themselves. When teachers ask questions, students can respond critically and reflect on their learning. Group discussions also expand their thinking, making them independent thinkers and effective problem solvers.

How Does Critical Thinking Apply To Your Career?

Critical thinking is a valuable asset in any career. Employers value employees who can think critically, ask insightful questions, and offer creative solutions. Demonstrating critical thinking skills can set you apart in the workplace, showing your ability to tackle complex problems and make informed decisions.

In many careers, from law and medicine to business and engineering, critical thinking is essential. Lawyers analyze cases, doctors diagnose patients, business analysts evaluate market trends, and engineers solve technical issues—all requiring strong critical thinking skills.

Critical thinking also enhances your ability to communicate effectively, making you a better team member and leader. By analyzing and evaluating information, you can present clear, logical arguments and make persuasive presentations.

Incorporating critical thinking into your career helps you stay adaptable and innovative. It encourages continuous learning and improvement, which are crucial for professional growth and success in a rapidly changing job market.

Photo by Oladimeji Ajegbile from Pexels

Critical thinking is a vital skill with far-reaching benefits for personal and professional success. It involves systematic skills such as analysis, evaluation, inference, interpretation, and explanation to assess information and arguments.

By gathering relevant data, considering alternative perspectives, and using logical reasoning, critical thinking enables informed decision-making. Reflecting on and refining these processes further enhances their effectiveness.

The future of critical thinking holds significant importance as it remains essential for adapting to evolving challenges and making sound decisions in various aspects of life.

What are the benefits of developing critical thinking skills?

Critical thinking enhances decision-making, problem-solving, and the ability to evaluate information critically. It helps in making informed decisions, understanding others’ perspectives, and improving overall cognitive abilities.

How does critical thinking contribute to problem-solving abilities?

Critical thinking enables you to analyze problems thoroughly, consider multiple solutions, and choose the most effective approach. It fosters creativity and innovative thinking in finding solutions.

What role does critical thinking play in academic success?

Critical thinking is crucial in academics as it allows you to analyze texts, evaluate evidence, construct logical arguments, and understand complex concepts, leading to better academic performance.

How does critical thinking promote effective communication skills?

Critical thinking helps you articulate thoughts clearly, listen actively, and engage in meaningful discussions. It improves your ability to argue logically and understand different viewpoints.

How can critical thinking skills be applied in everyday situations?

You can use critical thinking to make better personal and professional decisions, solve everyday problems efficiently, and understand the world around you more deeply.

What role does skepticism play in critical thinking?

Skepticism encourages questioning assumptions, evaluating evidence, and distinguishing between facts and opinions. It helps in developing a more rigorous and open-minded approach to thinking.

What strategies can enhance critical thinking?

Strategies include asking probing questions, engaging in reflective thinking, practicing problem-solving, seeking diverse perspectives, and analyzing information critically and logically.

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More

what is scientific attitude and why is it important for critical thinking

MSU Extension

The art of scientific thinking: why science is important for early childhood development.

Brooke Larm, and Alan Jaros, Michigan State University Extension - January 20, 2017

share this on facebook

Ideas for developing the mind of a young scientist.

what is scientific attitude and why is it important for critical thinking

We all utilize scientific thinking as we go about our daily lives, such as when we peer out the window to assist us in deciding what to wear, when we experiment with mixing ingredients to bake a perfectly moist cake or when we attempt to figure out why the tomato plants aren’t thriving this season. In the book, “ The Art of Scientific Investigation ,” W.I.B. Beveridge wrote, “The most important instrument in research must always be the mind of man.” The use of scientific thinking helps us make sense of the world.

Learning skills to support scientific thinking is an important part of a young child’s development. As children progress into adulthood, using scientific thinking truly becomes an art. When encountered with a problem, knowing which skills to utilize, the manner in which to use them and how to work through a process in a logical fashion are essential to growth in understanding. Scientific thinking skills include observing, asking questions, making predictions, testing ideas, documenting data and communicating thoughts.

As parents and educators, we can model scientific thinking and provide opportunities for young children to experiment, explore and engage in science play and practices in order to build a solid foundation for future application of the scientific inquiry process. Michigan State University Extension recommends the following ideas to encourage the development of scientific thinking in young children.

Share in their wonder

The outdoors provides endless experiences for discovery play. Use your senses to feel, listen, smell and taste all nature has to offer. Catch and observe insects, build your insect a home with moss, twigs and special discoveries or lay on your back, close your eyes and make a game of identifying the sounds around you.

Ask open-ended questions and encourage questioning

The goal with questioning during science inquiry will not be to focus on reaching the correct answer, but instead to encourage young children to communicate their thoughts and ideas based on their current level of understanding. Over time, they will slowly build on what they know as they continue to make sense of the world they live in. Young children are naturally curious about science. Asking questions such as, “What do you notice about the pot of water boiling on the stove?” or “What do you know or wonder about that honey bee on the flower?” can often lead to some interesting insights and discussion, which provoke further investigation.

Document discoveries

Art can be a useful method to remember and refer back to previous experiences. Use your camera to capture discoveries and create a book. Provide your child with a nature journal or better yet, each of you keep a journal to share in the experience. Combine natural materials with art materials to create nature collages, paintings or sculptures utilizing your findings. Revisit these works of art and retell the story of the adventures you shared together in creating them.

Provide materials that provoke new ideas and experimentation

The children’s books “What Do You Do with an Idea?” by Kobi Yamada and “ Rosie Revere, Engineer ” by Andrea Beatty are brilliantly written and illustrated to inspire young children to dream up a project while demonstrating what can happen when you believe in and challenge yourself. “ Loose Parts ,” a term coined by architect Simon Nicholson, can lead to hours of creative play and experimentation. Gather materials on a nature hike or browse through your recycling bins for tubes and containers.

Build connections within your local community

Programs in your area that provide young children the opportunity to collaborate with peers can increase content knowledge, as well as support social and emotional growth. Outside programs can supplement and help young children build connections to the learning taking place at home or in the classroom. A variety of exposures to quality science programs and facilities assist in forming positive attitudes towards the field.

Look for science-related programs offered by your local nature center or library. MSU Extension offers a farm and nature-based Farm Sprouts preschool program for 3-to-5-year-old children at MSU Tollgate Farm and Education Center in Novi, Michigan. There are also opportunities for young children to participate in science experiences at the Michigan’s 4-H Children’s Garden , MSU Museum and Abrams Planetarium on the main campus in East Lansing, Michigan.

Engaging young children in scientific thinking can lead to growth and learning not only for the intended audience, but also for those working with them. Be sure to take advantage of those great science moments as they arise or better yet, head outside and create your own!

For more information about early childhood education, environmental and outdoor education and other topics, visit the MSU Extension website. 

This article was published by Michigan State University Extension . For more information, visit https://extension.msu.edu . To have a digest of information delivered straight to your email inbox, visit https://extension.msu.edu/newsletters . To contact an expert in your area, visit https://extension.msu.edu/experts , or call 888-MSUE4MI (888-678-3464).

Did you find this article useful?

Early childhood development resources for early childhood professionals.

new - method size: 3 - Random key: 0, method: tagSpecific - key: 0

You Might Also Be Interested In

what is scientific attitude and why is it important for critical thinking

AC3 podcast Episode #4

Published on August 31, 2021

what is scientific attitude and why is it important for critical thinking

MSU Dairy Virtual Coffee Break: Reduced Lignin alfalfa

Published on April 7, 2021

what is scientific attitude and why is it important for critical thinking

Hemp Pollination Considerations

Published on March 18, 2020

what is scientific attitude and why is it important for critical thinking

Developing Thriving Communities in the Upper Peninsula with Ishpeming City Manager Craig Cugini

Published on March 7, 2022

Dr. Quentin Tyler on the Michigan Ag Today Podcast

Published on July 29, 2021

Flushing phosphorus down the drain: tile lines and disoloved phosphorus

Published on November 12, 2020

  • 4-h engineering & technology
  • 4-h environmental & earth science
  • 4-h environmental & outdoor education
  • approaches to learning
  • child & family development
  • cognition and general knowledge
  • early childhood development
  • environmental & outdoor education
  • msu extension
  • science & engineering
  • 4-h engineering & technology,
  • 4-h environmental & earth science,
  • 4-h environmental & outdoor education,
  • approaches to learning,
  • child & family development,
  • cognition and general knowledge,
  • early childhood development,
  • environmental & outdoor education,
  • msu extension,

Grand Valley State University

  • News & Events
  • Quick Links
  • Majors & Programs
  • People Finder
  • home   site index   contact us

ScholarWorks@GVSU

  • < Previous

Home > Graduate Research and Creative Practice > Culminating Experience Projects > 456

Culminating Experience Projects

The importance of critical thinking skills in secondary classrooms.

Clinton T. Sterkenburg , Grand Valley State University Follow

Date Approved

Graduate degree type, degree name.

Education-Instruction and Curriculum: Secondary Education (M.Ed.)

Degree Program

College of Education

First Advisor

Sherie Klee

Academic Year

According to research, many students lack effective critical thinking skills. The ability to think critically is crucial for individuals to be successful and responsible. Many students have difficulties understanding this important skill and especially lack the ability to initiate and apply the process. Although a difficult task, educators have the responsibility to teach critical skills to students and to discern when certain instructional methods or activities are not helping students. Each student is different, and their needs must be considered, this correlates with how they learn and process information. Research has shown that traditional teaching methods that require students to regurgitate information do not prove helpful in teaching students to apply and understand the critical thinking process. Therefore, effective teachers expand upon traditional teaching methods and differentiate instructional and activity design for imparting critical thinking skills to students. This project presents some of the possible reasons students have difficulties thinking critically and provides examples of instructional and lesson design methods that are proven to help students understand critical thinking. The goal of this project is to provide a guide for secondary teachers to address the lack of critical thinking skills in many students. The ability to think critically will greatly benefit students and help them become productive members of society.

ScholarWorks Citation

Sterkenburg, Clinton T., "The Importance of Critical Thinking Skills in Secondary Classrooms" (2024). Culminating Experience Projects . 456. https://scholarworks.gvsu.edu/gradprojects/456

Since August 05, 2024

Included in

Curriculum and Instruction Commons , Secondary Education Commons

Advanced Search

  • Notify me via email or RSS
  • Collections
  • University Archives
  • Open Textbooks
  • Open Educational Resources
  • Graduate Research and Creative Practice
  • Selected Works Galleries

Author Information

  • Submission Guidelines
  • Submit Research
  • Graduate Student Resources

Grand Valley State University Libraries

Home | About | FAQ | Contact | My Account | Accessibility Statement

Privacy Copyright

IMAGES

  1. Why is Critical Thinking Important

    what is scientific attitude and why is it important for critical thinking

  2. The Scientific Attitude

    what is scientific attitude and why is it important for critical thinking

  3. What is the scientific attitude and why is it important for critical

    what is scientific attitude and why is it important for critical thinking

  4. PPT

    what is scientific attitude and why is it important for critical thinking

  5. why is Importance of Critical Thinking Skills in Education

    what is scientific attitude and why is it important for critical thinking

  6. Why critical thinking is important

    what is scientific attitude and why is it important for critical thinking

VIDEO

  1. Critical Thinking: What Is It & Why Is It Important?

  2. What is Critical Thinking and 7 Reasons Why Critical Thinking is Important

  3. What is Critical Thinking? A Definition

  4. What is Critical Thinking?

  5. Research I Lesson : SCIENTIFIC ATTITUDES

  6. What is critical thinking? An expert psychologist tells

COMMENTS

  1. The Relationship Between Scientific Method & Critical Thinking

    Critical thinking initiates the act of hypothesis. In the scientific method, the hypothesis is the initial supposition, or theoretical claim about the world, based on questions and observations. If critical thinking asks the question, then the hypothesis is the best attempt at the time to answer the question using observable phenomenon.

  2. Critical Thinking in Science: Fostering Scientific Reasoning Skills in

    Critical thinking is essential in science. It's what naturally takes students in the direction of scientific reasoning since evidence is a key component of this style of thought. It's not just about whether evidence is available to support a particular answer but how valid that evidence is. It's about whether the information the student ...

  3. Thinking critically on critical thinking: why scientists' skills need

    Critical thinking moves us beyond mere description and into the realms of scientific inference and reasoning. This is what enables discoveries to be made and innovations to be fostered.

  4. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  5. Understanding the Complex Relationship between Critical Thinking and

    Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. ... The findings support the important role of the critical-thinking skill of inference in scientific reasoning in ...

  6. Scientific Thinking and Critical Thinking in Science Education

    Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one ...

  7. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  8. PDF The Nature of Scientific Thinking

    contemporary scientists are also included. It is important for students to realize that ways of thinking and knowing in science shift over time. It is also important to realize that if we only look back at famous scientists, it presents a distorted picture of how science in everyday life precedes. We are likely to look back and,

  9. PDF What is Scientific Thinking and How Does it Develop?

    The definition of scientific thinking adopted in this chapter is knowledge seeking. This definition encompasses any instance of purposeful thinking that has the objective of enhancing the seeker's knowledge. One consequence that follows from this definition is that scientific thinking is something people do, not something they have.

  10. (PDF) The scientific attitude and science education: A critical

    Some writers label this attitude as "scientific-mindedness" (Burnett, 1944), "the habit of scientific thinking" (Noll, 1933a) or "the spirit of science" (Educational Policies Commission, 1966) and it is most often characterized by a list of component attitudes ("scientific attitudes") such as objectivity, open-mindedness ...

  11. Supporting Early Scientific Thinking Through Curiosity

    Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through ...

  12. Science, method and critical thinking

    Science is founded on a method based on critical thinking. A prerequisite for this is not only a sufficient command of language but also the comprehension of the basic concepts underlying our understanding of reality. This constraint implies an awareness of the fact that the truth of the World is not directly accessible to us, but can only be ...

  13. Frontiers

    Scientific thinking is a type of knowledge seeking involving intentional information seeking, including asking questions, testing hypotheses, making observations, recognizing patterns, and making inferences ( Kuhn, 2002; Morris et al., 2012 ). Much research indicates that children engage in this information-seeking process very early on through ...

  14. The Scientific Attitude, Not the Scientific Method, Is the Key

    He says "there is much to learn from those who have forsaken it.". He argues that "the scientific attitude" is the key, even though it is difficult to pin down. There's no such thing as "the scientific method". The simplistic "observe, hypothesize, predict, test, analyze, and revise" model does not describe how most scientific ...

  15. Scientific Attitude An Overview

    in their actual color and form. A scientific attitude is a thinking that can be acq. ired through science education. One of the most significant results of science and science education is the development of a scientific mentality, whic. allows us to think rationally. It is a person's blend of numerous qualities and virtues as manifest.

  16. Critical Thinking Is About Asking Better Questions

    Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep ...

  17. 35 Scientific Thinking and Reasoning

    From a "Thinking and Reasoning" standpoint the major aspects of scientific thinking that have been most actively investigated are problem solving, analogical reasoning, hypothesis testing, conceptual change, collaborative reasoning, inductive reasoning, and deductive reasoning. Scientific Thinking as Problem Solving.

  18. The Importance Of A Skeptical Attitude In Science

    Skepticism plays a crucial role in the scientific process, as it encourages researchers to ask probing questions and engage in rigorous inquiry. By approaching scientific claims with a skeptical attitude, scientists are able to challenge assumptions, scrutinize evidence, and seek alternative explanations.

  19. Why Thinking Like a Scientist Is Good for You

    Thinking like a scientist does not mean you need to own a telescope or a microscope. It just means that you favor humility over pride and curiosity over conviction. You know what you don't know, and you're eager to discover new things. You don't let your ideas become your identity.

  20. The Critical Role Of Curiosity And Skepticism In Scientific Discovery

    Using skepticism to challenge assumptions. Skepticism plays a vital role in scientific discovery by challenging assumptions and promoting critical thinking. It encourages researchers to question existing theories, methodologies, and conclusions, fostering a culture of intellectual curiosity and open-mindedness.

  21. The Importance Of Critical Thinking, and how to improve it

    Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life. 4. Form Well-Informed Opinions.

  22. The art of scientific thinking: Why science is important for early

    In the book, "The Art of Scientific Investigation," W.I.B. Beveridge wrote, "The most important instrument in research must always be the mind of man." The use of scientific thinking helps us make sense of the world. Learning skills to support scientific thinking is an important part of a young child's development.

  23. How does critical thinking feed a scientific attitude, and ...

    How does critical thinking feed a scientific attitude, and smarter thinking for everyday life? The scientific attitude—curiosity + skepticism + humility—prepares us to think smarter. Smart thinking, called critical thinking, examines assumptions, appraises the source, discerns hidden biases, evaluates evidence, and assesses conclusions.

  24. The Importance of Critical Thinking Skills in Secondary Classrooms

    According to research, many students lack effective critical thinking skills. The ability to think critically is crucial for individuals to be successful and responsible. Many students have difficulties understanding this important skill and especially lack the ability to initiate and apply the process. Although a difficult task, educators have the responsibility to teach critical skills to ...