• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

final step of problem solving approach of learning

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

final step of problem solving approach of learning

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Course Design

Problem-Based Learning: Six Steps to Design, Implement, and Assess

  • November 30, 2015
  • Vincent R. Genareo PhD and Renee Lyons

T wenty-first century skills necessitate the implementation of instruction that allows students to apply course content, take ownership of their learning, use technology meaningfully, and collaborate. Problem-Based Learning (PBL) is one pedagogical approach that might fit in your teaching toolbox.

PBL is a student-centered, inquiry-based instructional model in which learners engage with an authentic, ill-structured problem that requires further research (Jonassen & Hung, 2008). Students identify gaps in their knowledge, conduct research, and apply their learning to develop solutions and present their findings (Barrows, 1996). Through collaboration and inquiry, students can cultivate problem solving (Norman & Schmidt, 1992), metacognitive skills (Gijbels et al., 2005), engagement in learning (Dochy et al., 2003), and intrinsic motivation. Despite PBL’s potential benefits, many instructors lack the confidence or knowledge to utilize it (Ertmer & Simons, 2006; Onyon, 2005). By breaking down the PBL cycle into six steps, you can begin to design, implement, and assess PBL in your own courses.

Step One: Identify Outcomes/Assessments

PBL fits best with process-oriented course outcomes such as collaboration, research, and problem solving. It can help students acquire content or conceptual knowledge, or develop disciplinary habits such as writing or communication. After determining whether your course has learning outcomes that fit with PBL, you will develop formative and summative assessments to measure student learning. Group contracts, self/peer-evaluation forms, learning reflections, writing samples, and rubrics are potential PBL assessments.

Step Two: Design the Scenario

Next you design the PBL scenario with an embedded problem that will emerge through student brainstorming. Think of a real, complex issue related to your course content. It’s seldom difficult to identify lots of problems in our fields; the key is writing a scenario for our students that will elicit the types of thinking, discussion, research, and learning that need to take place to meet the learning outcomes. Scenarios should be motivating, interesting, and generate good discussion. Check out the websites below for examples of PBL problems and scenarios.

Problem-Based Learning at University of Delaware

Problem-Based Learning in Biology

Science PBL

Step Three: Introduce PBL

If PBL is new to your students, you can practice with an “easy problem,” such as a scenario about long lines in the dining hall. After grouping students and allowing time to engage in an abbreviated version of PBL, introduce the assignment expectations, rubrics, and timelines. Then let groups read through the scenario(s). You might develop a single scenario and let each group tackle it in their own way, or you could design multiple scenarios addressing a unique problem for each group to discuss and research.

Step Four: Research

PBL research begins with small-group brainstorming sessions where students define the problem and determine what they know about the problem (background knowledge), what they need to learn more about (topics to research), and where they need to look to find data (databases, interviews, etc.). Groups should write the problem as a statement or research question. They will likely need assistance. Think about your own research: without good research questions, the process can be unguided or far too specific. Students should decide upon group roles and assign responsibility for researching topics necessary for them to fully understand their problems. Students then develop an initial hypothesis to “test” as they research a solution. Remember: research questions and hypotheses can change after students find information disconfirming their initial beliefs.

Step Five: Product Performance

After researching, the students create products and presentations that synthesize their research, solutions, and learning. The format of the summative assessment is completely up to you. We treat this step like a research fair. Students find resources to develop background knowledge that informs their understanding, and then they collaboratively present their findings, including one or more viable solutions, as research posters to the class.

Step Six: Assessment

During the PBL assessment step, evaluate the groups’ products and performances. Use rubrics to determine whether students have clearly communicated the problem, background, research methods, solutions (feasible and research-based), and resources, and to decide whether all group members participated meaningfully. You should consider having your students fill out reflections about their learning (including what they’ve learned about the content and the research process) every day, and at the conclusion of the process.

Although we presented PBL as steps, it really functions cyclically. For example, you might teach an economics course and develop a scenario about crowded campus sidewalks. After the groups have read the scenario, they develop initial hypotheses about why the sidewalks are crowded and how to solve the problem. If one group believes they are crowded because they are too narrow and the solution is widening the sidewalks, their subsequent research on the economic and environmental impacts might inform them that sidewalk widening isn’t feasible. They should jump back to step four, discuss another hypothesis, and begin a different research path.

This type of process-oriented, self-directed, and collaborative pedagogical strategy can prepare our students for successful post-undergraduate careers. Is it time to put PBL to work in your courses?

References Barrows, H.S. (1996). Problem-based learning in medicine and beyond: A brief overview. In L. Wilkerson, & W. H. Gijselaers (Eds.), New directions for teaching and learning, No.68 (pp. 3-11). San Francisco: Jossey-Bass.

Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problem-based learning: A meta-analysis. Learning and instruction, 13(5), 533-568.

Ertmer, P. A., & Simons, K. D. (2006). Jumping the PBL implementation hurdle: Supporting the efforts of K–12 teachers. Interdisciplinary Journal of Problem-based Learning, 1(1), 5.

Gijbels, D., Dochy, F., Van den Bossche, P., & Segers, M. (2005). Effects of problem-based learning: A meta-analysis from the angle of assessment. Review of Educational Research, 75(1), 27-61.

Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 2(2), 4.

Norman, G. R., & Schmidt, H. G. (1992). The psychological basis of problem-based learning: A review of the evidence. Academic Medicine, 67(9), 557-565.

Onyon, C. (2012). Problem-based learning: A review of the educational and psychological theory. The Clinical Teacher, 9(1), 22-26.

Vincent R. Genareo is a postdoctoral research associate at Iowa State University, Research Institute for Studies of Education (RISE). Renee Lyons is a PhD candidate at Clemson University, Department of Education.

Stay Updated with Faculty Focus!

Get exclusive access to programs, reports, podcast episodes, articles, and more!

  • Opens in a new tab

Welcome Back

Username or Email

Remember Me

Already a subscriber? log in here.

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • 2024 Celebration of College Teaching
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

Weekly dose of self-improvement

The easy 4 step problem-solving process (+ examples)

This is the 4 step problem-solving process that I taught to my students for math problems, but it works for academic and social problems as well.

Ed Latimore

Every problem may be different, but effective problem solving asks the same four questions and follows the same method.

  • What’s the problem? If you don’t know exactly what the problem is, you can’t come up with possible solutions. Something is wrong. What are we going to do about this? This is the foundation and the motivation.
  • What do you need to know? This is the most important part of the problem. If you don’t know exactly what the problem is, you can’t come up with possible solutions.
  • What do you already know? You already know something related to the problem that will help you solve the problem. It’s not always obvious (especially in the real world), but you know (or can research) something that will help.
  • What’s the relationship between the two? Here is where the heavy brainstorming happens. This is where your skills and abilities come into play. The previous steps set you up to find many potential solutions to your problem, regardless of its type.

When I used to tutor kids in math and physics , I would drill this problem-solving process into their heads. This methodology works for any problem, regardless of its complexity or difficulty. In fact, if you look at the various advances in society, you’ll see they all follow some variation of this problem-solving technique.

“The gap between understanding and misunderstanding can best be bridged by thought!” ― Ernest Agyemang Yeboah

Generally speaking, if you can’t solve the problem then your issue is step 3 or step 4; you either don’t know enough or you’re missing the connection.

Good problem solvers always believe step 3 is the issue. In this case, it’s a simple matter of learning more. Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills.

This is a fixed versus growth mindset and it makes a huge difference in the effort you put forth and the belief you have in yourself to make use of this step-by-step process. These two mindsets make a big difference in your learning because, at its core, learning is problem-solving.

Let’s dig deeper into the 4 steps. In this way, you can better see how to apply them to your learning journey.

Step 1: What’s the problem?

The ability to recognize a specific problem is extremely valuable.

Most people only focus on finding solutions. While a “solutions-oriented” mindset is a good thing, sometimes it pays to focus on the problem. When you focus on the problem, you often make it easier to find a viable solution to it.

When you know the exact nature of the problem, you shorten the time frame needed to find a solution. This reminds me of a story I was once told.

When does the problem-solving process start?

The process starts after you’ve identified the exact nature of the problem.

Homeowners love a well-kept lawn but hate mowing the grass.

Many companies and inventors raced to figure out a more time-efficient way to mow the lawn. Some even tried to design robots that would do the mowing. They all were chasing the solution, but only one inventor took the time to understand the root cause of the problem.

Most people figured that the problem was the labor required to maintain a lawn. The actual problem was just the opposite: maintaining a lawn was labor-intensive. The rearrangement seems trivial, but it reveals the true desire: a well-maintained lawn.

The best solution? Remove maintenance from the equation. A lawn made of artificial grass solved the problem . Hence, an application of Astroturf was discovered.

This way, the law always looked its best. Taking a few moments to apply critical thinking identified the true nature of the problem and yielded a powerful solution.

An example of choosing the right problem to work the problem-solving process on

One thing I’ve learned from tutoring high school students in math : they hate word problems.

This is because they make the student figure out the problem. Finding the solution to a math problem is already stressful. Forcing the student to also figure out what problem needs solving is another level of hell.

Word problems are not always clear about what needs to be solved. They also have the annoying habit of adding extraneous information. An ordinary math problem does not do this. For example, compare the following two problems:

What’s the height of h?

solving simple trig problem

A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the top of the first section is 25º, and the angle of elevation of the top of the second section is 40º. To the nearest foot, what is the height of the top section of the tower?

solving complex trig problem

The first is a simple problem. The second is a complex problem. The end goal in both is the same.

The questions require the same knowledge (trigonometric functions), but the second is more difficult for students. Why? The second problem does not make it clear what the exact problem is. Before mathematics can even begin, you must know the problem, or else you risk solving the wrong one.

If you understand the problem, finding the solution is much easier. Understanding this, ironically, is the biggest problem for people.

Problem-solving is a universal language

Speaking of people, this method also helps settle disagreements.

When we disagree, we rarely take the time to figure out the exact issue. This happens for many reasons, but it always results in a misunderstanding. When each party is clear with their intentions, they can generate the best response.

Education systems fail when they don’t consider the problem they’re supposed to solve. Foreign language education in America is one of the best examples.

The problem is that students can’t speak the target language. It seems obvious that the solution is to have students spend most of their time speaking. Unfortunately, language classes spend a ridiculous amount of time learning grammar rules and memorizing vocabulary.

The problem is not that the students don’t know the imperfect past tense verb conjugations in Spanish. The problem is that they can’t use the language to accomplish anything. Every year, kids graduate from American high schools without the ability to speak another language, despite studying one for 4 years.

Well begun is half done

Before you begin to learn something, be sure that you understand the exact nature of the problem. This will make clear what you need to know and what you can discard. When you know the exact problem you’re tasked with solving, you save precious time and energy. Doing this increases the likelihood that you’ll succeed.

Step 2: What do you need to know?

All problems are the result of insufficient knowledge. To solve the problem, you must identify what you need to know. You must understand the cause of the problem. If you get this wrong, you won’t arrive at the correct solution.

Either you’ll solve what you thought was the problem, only to find out this wasn’t the real issue and now you’ve still got trouble or you won’t and you still have trouble. Either way, the problem persists.

If you solve a different problem than the correct one, you’ll get a solution that you can’t use. The only thing that wastes more time than an unsolved problem is solving the wrong one.

Imagine that your car won’t start. You replace the alternator, the starter, and the ignition switch. The car still doesn’t start. You’ve explored all the main solutions, so now you consider some different solutions.

Now you replace the engine, but you still can’t get it to start. Your replacements and repairs solved other problems, but not the main one: the car won’t start.

Then it turns out that all you needed was gas.

This example is a little extreme, but I hope it makes the point. For something more relatable, let’s return to the problem with language learning.

You need basic communication to navigate a foreign country you’re visiting; let’s say Mexico. When you enroll in a Spanish course, they teach you a bunch of unimportant words and phrases. You stick with it, believing it will eventually click.

When you land, you can tell everyone your name and ask for the location of the bathroom. This does not help when you need to ask for directions or tell the driver which airport terminal to drop you off at.

Finding the solution to chess problems works the same way

The book “The Amateur Mind” by IM Jeremy Silman improved my chess by teaching me how to analyze the board.

It’s only with a proper analysis of imbalances that you can make the best move. Though you may not always choose the correct line of play, the book teaches you how to recognize what you need to know . It teaches you how to identify the problem—before you create an action plan to solve it.

Chess book to help learn problem solving

The problem-solving method always starts with identifying the problem or asking “What do you need to know?”. It’s only after you brainstorm this that you can move on to the next step.

Learn the method I used to earn a physics degree, learn Spanish, and win a national boxing title

  • I was a terrible math student in high school who wrote off mathematics. I eventually overcame my difficulties and went on to earn a B.A. Physics with a minor in math
  • I pieced together the best works on the internet to teach myself Spanish as an adult
  • *I didn’t start boxing until the very old age of 22, yet I went on to win a national championship, get a high-paying amateur sponsorship, and get signed by Roc Nation Sports as a profession.

I’ve used this method to progress in mentally and physically demanding domains.

While the specifics may differ, I believe that the general methods for learning are the same in all domains.

This free e-book breaks down the most important techniques I’ve used for learning.

final step of problem solving approach of learning

Step 3: What do you already know?

The only way to know if you lack knowledge is by gaining some in the first place. All advances and solutions arise from the accumulation and implementation of prior information. You must first consider what it is that you already know in the context of the problem at hand.

Isaac Newton once said, “If I have seen further, it is by standing on the shoulders of giants.” This is Newton’s way of explaining that his advancements in physics and mathematics would be impossible if it were not for previous discoveries.

Mathematics is a great place to see this idea at work. Consider the following problem:

What is the domain and range of y=(x^2)+6?

This simple algebra problem relies on you knowing a few things already. You must know:

  • The definition of “domain” and “range”
  • That you can never square any real number and get a negative

Once you know those things, this becomes easy to solve. This is also how we learn languages.

An example of the problem-solving process with a foreign language

Anyone interested in serious foreign language study (as opposed to a “crash course” or “survival course”) should learn the infinitive form of verbs in their target language. You can’t make progress without them because they’re the root of all conjugations. It’s only once you have a grasp of the infinitives that you can completely express yourself. Consider the problem-solving steps applied in the following example.

I know that I want to say “I don’t eat eggs” to my Mexican waiter. That’s the problem.

I don’t know how to say that, but last night I told my date “No bebo alcohol” (“I don’t drink alcohol”). I also know the infinitive for “eat” in Spanish (comer). This is what I already know.

Now I can execute the final step of problem-solving.

Step 4: What’s the relationship between the two?

I see the connection. I can use all of my problem-solving strategies and methods to solve my particular problem.

I know the infinitive for the Spanish word “drink” is “beber” . Last night, I changed it to “bebo” to express a similar idea. I should be able to do the same thing to the word for “eat”.

“No como huevos” is a pretty accurate guess.

In the math example, the same process occurs. You don’t know the answer to “What is the domain and range of y=(x^2)+6?” You only know what “domain” and “range” mean and that negatives aren’t possible when you square a real number.

A domain of all real numbers and a range of all numbers equal to and greater than six is the answer.

This is relating what you don’t know to what you already do know. The solutions appear simple, but walking through them is an excellent demonstration of the process of problem-solving.

In most cases, the solution won’t be this simple, but the process or finding it is the same. This may seem trivial, but this is a model for thinking that has served the greatest minds in history.

A recap of the 4 steps of the simple problem-solving process

  • What’s the problem? There’s something wrong. There’s something amiss.
  • What do you need to know? This is how to fix what’s wrong.
  • What do you already know? You already know something useful that will help you find an effective solution.
  • What’s the relationship between the previous two? When you use what you know to help figure out what you don’t know, there is no problem that won’t yield.

Learning is simply problem-solving. You’ll learn faster if you view it this way.

What was once complicated will become simple.

What was once convoluted will become clear.

Ed Latimore

Ed Latimore

I’m a writer, competitive chess player, Army veteran, physicist, and former professional heavyweight boxer. My work focuses on self-development, realizing your potential, and sobriety—speaking from personal experience, having overcome both poverty and addiction.

Follow me on Twitter.

Pimsleur language system review—old but still good

Pimsleur language system review—old but still good

The Pimsleur language program offers a framework you can use to learn a language. I’ve used the program. Here are my experiences.

Pimsleur vs Duolingo— Choosing the best language learning app

Pimsleur vs Duolingo: Choosing the best language learning app

Pimsleur and Duolingo are two popular language-learning apps to help you learn a new language. This guide will help you decide which app will work best for you.

My Chess.com Chess Improvement Plan

My Chess.com Chess Improvement Plan

This is a plan that I’ll be implementing to improve my rating on Chess.com in the rapid and daily games. Not for OTB but could work.

Life-Skills-Advocate logo header

  • Meet Our Team
  • Discover The LSA Difference
  • Coaching Process
  • Core Values
  • What is Executive Functioning?
  • Understanding the EF Ripple Effect
  • For Daily Life
  • ND-Friendly Tools
  • Executive Functioning Assessment
  • Executive Functioning Meal Plan
  • Executive Functioning 101 Resource Hub
  • Executive Functioning IEP Goal Resource Hub
  • How To Make Stuff More EF Friendly

Teaching the IDEAL Problem-Solving Method to Diverse Learners

Written by:

  Amy Sippl

Filed under: EF 101 Series , Executive Functioning , Problem Solving

Published:  January 21, 2021

Last Reviewed: April 10, 2023

READING TIME:  ~ minutes

We may assume that teens and young adults come equipped with a strong sense of approaching difficult or uncertain situations. For many of the individuals we work with, problem-solving needs to be practiced and developed in the same way as academic and social skills. The IDEAL Problem Solving Method is one option to teach problem-solving to diverse learners.

What is problem-solving?

Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it .

Problem-solving involves other executive functioning behaviors as well, including attentional control, planning , and task initiation . Individuals might use time management , emotional control, or organization skills to solve problems as well. Over time, learners can observe their behavior, use working memory , and self-monitor behaviors to influence how we solve future issues.

Why are problem-solving strategies important?

Not all diverse learners develop adequate problem-solving. Learners with a history of behavioral and learning challenges may not always use good problem-solving skills to manage stressful situations. Some students use challenging behaviors like talking back, arguing, property destruction, and aggression when presented with challenging tasks. Others might shut down, check out, or struggle to follow directions when encountering new or unknown situations.

Without a step-by-step model for problem-solving , including identifying a problem and choosing a replacement behavior to solve it, many of our children and students use challenging behaviors instead. The IDEAL Problem-Solving Method is one option to teach diverse learners to better approach difficult situations.

IDEAL Problem-Solving Method

In 1984, Bransford and Stein published one of the most popular and well-regarded problem-solving methods. It’s used both in industry and in education to help various learners establish a problem, generate solutions, and move forward quickly and efficiently. By teaching your learner each step of the IDEAL model, you can provide them with a set of steps to approach a problem with confidence.

The IDEAL Problem-Solving Method includes:

Word Image 2 Teaching The Ideal Problem-Solving Method To Diverse Learners

I – Identify the problem.

There’s no real way to create a solution to a problem unless you first know the scope of the problem. Encourage your learner to identify the issue in their own words. Outline the facts and the unknowns. Foster an environment where your learner is praised and supported for identifying and taking on new problems.

Examples of identifying problems:

  • “I have a math quiz next week and don’t know how to do the problems.”
  • “I can’t access my distance learning course website.”
  • “The trash needs to be taken out, and I can’t find any trash bags.”

D – Define an outcome

The second step in the IDEAL problem-solving process is to define an outcome or goal for problem-solving. Multiple people can agree that a problem exists but have very different ideas on goals or outcomes. By deciding on an outlined objective first, it can speed up the process of identifying solutions.

Defining outcomes and goals may be a difficult step for some diverse learners. The results don’t need to be complicated, but just clear for everyone involved.

Examples of defining outcomes:

  • “I want to do well on my math quiz.”
  • “I get access to the course website.”
  • “The trash gets taken out before the trash pickup day tomorrow.”

E – Explore possible strategies.

Once you have an outcome, encourage your learner to brainstorm possible strategies. All possible solutions should be on the table during this stage, so encourage learners to make lists, use sticky notes, or voice memos to record any ideas. If your learner struggles with creative idea generation, help them develop a plan of resources for who they might consult in the exploration stage.

Examples of possible strategies to solve a problem:

  • “I review the textbook; I ask for math help from a friend; I look up the problems online; I email my teacher.”
  • “I email my teacher for the course access; I ask for help from a classmate; I try to reset my password.”
  • “I use something else for a trash bag; I place an online order for bags; I take the trash out without a bag; I ask a neighbor for a bag; I go shopping for trash bags.”

A – Anticipate Outcomes & Act

Once we generate a list of strategies, the next step in the IDEAL problem-solving model recommends that you review the potential steps and decide which one is the best option to use first. Helping learners to evaluate the pros and cons of action steps can take practice. Ask questions like, “What might happen if you take this step?” or “Does that step make you feel good about moving forward or uncertain?”

After evaluating the outcomes, the next step is to take action. Encourage your learner to move forward even if they may not know the full result of taking action. Support doing something, even if it might not be the same strategy, you might take to solve a problem or the ‘best’ solution.

L – Look and Learn

The final step in the IDEAL problem-solving model is to look and learn from an attempt to solve a problem. Many parents and teachers forget this critical step in helping diverse learners to stop and reflect when problem-solving goes well and doesn’t go well. Helping our students and children learn from experience can make problem-solving more efficient and effective in the future. Ask questions like “How did that go?” and “What do you think you’ll do differently next time?”

Examples of Look and Learn statements:

  • “I didn’t learn the problems from looking at the textbook, but it did help to call a friend. I’ll start there next time.”
  • “When I didn’t have access to the course website, resetting my password worked.”
  • “I ran out of trash bags because I forgot to put them on the shopping list . I’ll buy an extra box of trash bags to have them on hand, so I don’t run out next time.”

Practice Problem-Solving

For ideas on common problems, download our deck of problem-solving practice cards. Set aside time to practice, role-play, give feedback, and rehearse again if needed.

How to teach the IDEAL problem-solving method

Top businesses and corporations spend thousands of dollars on training teams to implement problem-solving strategies like the IDEAL method. Employees practice and role-play common problems in the workplace . Coaches give supportive feedback until everyone feels confident in each of the steps.

Teachers and parents can use the same process to help students and children use the IDEAL problem-solving method. Set aside time to review common problems or social scenarios your learner might encounter. Practice using the IDEAL method when emotions and tensions aren’t running as high. Allow your learner to ask questions, work through problems, and receive feedback and praise for creating logical action plans.

Further Reading

  • Bransford, J., and Stein, B., “The Ideal Problem Solver” (1993). Centers for Teaching and Technology – Book Library . 46. https://digitalcommons.georgiasouthern.edu/ct2-library/4
  • Executive Functioning 101: Planning Skills
  • Executive Functioning: Task Initiation
  • Executive Functioning Skills by Age: What to Expect
  • Kern, L., George, M. P., & Weist, M. D. (2016). Supporting students with emotional and behavioral problems. Baltimore, MD: Paul H. Brookes.

About The Author

Amy Sippl is a Minnesota-based Board Certified Behavior Analyst (BCBA) and freelance content developer specializing in helping individuals with autism and their families reach their best possible outcomes. Amy earned her Master's Degree in Applied Behavior Analysis from St. Cloud State University and also holds undergraduate degrees in Psychology and Family Social Science from University of Minnesota – Twin Cities. Amy has worked with children with autism and related developmental disabilities for over a decade in both in-home and clinical settings. Her content focuses on parents, educators, and professionals in the world of autism—emphasizing simple strategies and tips to maximize success. To see more of her work visit amysippl.com .

Related Posts

10-minute tips to improve self-monitoring skills, how to make studying executive function friendly, 25 board games that promote executive functioning skills, how to make riding public transit executive function friendly, how to make school more executive function friendly, 5 executive functioning strategies to create more free time.

Life Skills Advocate is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com. Some of the links in this post may be Amazon.com affiliate links, which means if you make a purchase, Life Skills Advocate will earn a commission. However, we only promote products we actually use or those which have been vetted by the greater community of families and professionals who support individuals with diverse learning needs.

Session expired

Please log in again. The login page will open in a new tab. After logging in you can close it and return to this page.

Menu Trigger

New Designs for School 5 Steps to Teaching Students a Problem-Solving Routine

final step of problem solving approach of learning

Jeff Heyck-Williams (He, His, Him) Director of the Two Rivers Learning Institute in Washington, DC

Two Rivers and joyful math

We’ve all had the experience of truly purposeful, authentic learning and know how valuable it is. Educators are taking the best of what we know about learning, student support, effective instruction, and interpersonal skill-building to completely reimagine schools so that students experience that kind of purposeful learning all day, every day.

Students can use the 5 steps in this simple routine to solve problems across the curriculum and throughout their lives.

When I visited a fifth-grade class recently, the students were tackling the following problem:

If there are nine people in a room and every person shakes hands exactly once with each of the other people, how many handshakes will there be? How can you prove your answer is correct using a model or numerical explanation?

There were students on the rug modeling people with Unifix cubes. There were kids at one table vigorously shaking each other’s hand. There were kids at another table writing out a diagram with numbers. At yet another table, students were working on creating a numeric expression. What was common across this class was that all of the students were productively grappling around the problem.

On a different day, I was out at recess with a group of kindergarteners who got into an argument over a vigorous game of tag. Several kids were arguing about who should be “it.” Many of them insisted that they hadn’t been tagged. They all agreed that they had a problem. With the assistance of the teacher they walked through a process of identifying what they knew about the problem and how best to solve it. They grappled with this very real problem to come to a solution that all could agree upon.

Then just last week, I had the pleasure of watching a culminating showcase of learning for our 8th graders. They presented to their families about their project exploring the role that genetics plays in our society. Tackling the problem of how we should or should not regulate gene research and editing in the human population, students explored both the history and scientific concerns about genetics and the ethics of gene editing. Each student developed arguments about how we as a country should proceed in the burgeoning field of human genetics which they took to Capitol Hill to share with legislators. Through the process students read complex text to build their knowledge, identified the underlying issues and questions, and developed unique solutions to this very real problem.

Problem-solving is at the heart of each of these scenarios, and an essential set of skills our students need to develop. They need the abilities to think critically and solve challenging problems without a roadmap to solutions. At Two Rivers Public Charter School in Washington, D.C., we have found that one of the most powerful ways to build these skills in students is through the use of a common set of steps for problem-solving. These steps, when used regularly, become a flexible cognitive routine for students to apply to problems across the curriculum and their lives.

The Problem-Solving Routine

At Two Rivers, we use a fairly simple routine for problem solving that has five basic steps. The power of this structure is that it becomes a routine that students are able to use regularly across multiple contexts. The first three steps are implemented before problem-solving. Students use one step during problem-solving. Finally, they finish with a reflective step after problem-solving.

Problem Solving from Two Rivers Public Charter School

Before Problem-Solving: The KWI

The three steps before problem solving: we call them the K-W-I.

The “K” stands for “know” and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem. For example, in the math problem above students identify that they know there are nine people and each person must shake hands with each other person. Second, the student needs to activate their background knowledge about that context or other similar problems. In the case of the handshake problem, students may recognize that this seems like a situation in which they will need to add or multiply.

The “W” stands for “what” a student needs to find out to solve the problem. At this point in the routine the student always must identify the core question that is being asked in a problem or task. However, it may also include other questions that help a student access and understand a problem more deeply. For example, in addition to identifying that they need to determine how many handshakes in the math problem, students may also identify that they need to determine how many handshakes each individual person has or how to organize their work to make sure that they count the handshakes correctly.

The “I” stands for “ideas” and refers to ideas that a student brings to the table to solve a problem effectively. In this portion of the routine, students list the strategies that they will use to solve a problem. In the example from the math class, this step involved all of the different ways that students tackled the problem from Unifix cubes to creating mathematical expressions.

This KWI routine before problem solving sets students up to actively engage in solving problems by ensuring they understand the problem and have some ideas about where to start in solving the problem. Two remaining steps are equally important during and after problem solving.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them.

During Problem-Solving: The Metacognitive Moment

The step that occurs during problem solving is a metacognitive moment. We ask students to deliberately pause in their problem-solving and answer the following questions: “Is the path I’m on to solve the problem working?” and “What might I do to either stay on a productive path or readjust my approach to get on a productive path?” At this point in the process, students may hear from other students that have had a breakthrough or they may go back to their KWI to determine if they need to reconsider what they know about the problem. By naming explicitly to students that part of problem-solving is monitoring our thinking and process, we help them become more thoughtful problem solvers.

After Problem-Solving: Evaluating Solutions

As a final step, after students solve the problem, they evaluate both their solutions and the process that they used to arrive at those solutions. They look back to determine if their solution accurately solved the problem, and when time permits they also consider if their path to a solution was efficient and how it compares to other students’ solutions.

The power of teaching students to use this routine is that they develop a habit of mind to analyze and tackle problems wherever they find them. This empowers students to be the problem solvers that we know they can become.

Jeff Heyck-Williams (He, His, Him)

Director of the two rivers learning institute.

Jeff Heyck-Williams is the director of the Two Rivers Learning Institute and a founder of Two Rivers Public Charter School. He has led work around creating school-wide cultures of mathematics, developing assessments of critical thinking and problem-solving, and supporting project-based learning.

Read More About New Designs for School

ELA teacher with middle school students

My Students Aren't Lazy but Labeling Them Lazy Is

Laura Domingo (she/her)

June 27, 2024

reimagine school space and time

Un Empujoncito en la Práctica Docente

Perla Luján (she/her)

June 20, 2024

A Slight Push for Our Teaching Practice

final step of problem solving approach of learning

7.5 Problem-Solving

Estimated completion time: 12 minutes.

Questions to Consider:

  • How can determining the best approach to solve a problem help you generate solutions?
  • Why do thinkers create multiple solutions to problems?

When we’re solving a problem, whether at work, school, or home, we are being asked to perform multiple, often complex, tasks. The most effective problem-solving approach includes some variation of the following steps:

  • Determine the issue(s)
  • Recognize other perspectives
  • Think of multiple possible results
  • Research and evaluate the possibilities
  • Select the best result(s)
  • Communicate your findings
  • Establish logical action items based on your analysis

Determining the best approach to any given problem and generating more than one possible solution to the problem constitutes the complicated process of problem-solving. People who are good at these skills are highly marketable because many jobs consist of a series of problems that need to be solved for production, services, goods, and sales to continue smoothly. Think about what happens when a worker at your favorite coffee shop slips on a wet spot behind the counter, dropping several drinks she just prepared. One problem is the employee may be hurt, in need of attention, and probably embarrassed; another problem is that several customers do not have the drinks they were waiting for; and another problem is that stopping production of drinks (to care for the hurt worker, to clean up her spilled drinks, to make new drinks) causes the line at the cash register to back up. A good manager has to juggle all of these elements to resolve the situation as quickly and efficiently as possible. That resolution and return to standard operations doesn’t happen without a great deal of thinking: prioritizing needs, shifting other workers off one station onto another temporarily, and dealing with all the people involved, from the injured worker to the impatient patrons.

Determining the Best Approach

Faced with a problem-solving opportunity, you must assess the skills you will need to create solutions. Problem-solving can involve many different types of thinking. You may have to call on your creative, analytical, or critical thinking skills—or more frequently, a combination of several different types of thinking—to solve a problem satisfactorily. When you approach a situation, how can you decide what is the best type of thinking to employ? Sometimes the answer is obvious; if you are working a scientific challenge, you likely will use analytical thinking; if you are a design student considering the atmosphere of a home, you may need to tap into creative thinking skills; and if you are an early childhood education major outlining the logistics involved in establishing a summer day camp for children, you may need a combination of critical, analytical, and creative thinking to solve this challenge.

What sort of thinking do you imagine initially helped in the following scenarios? How would the other types of thinking come into resolving these problems?

  • Analytical thinking
  • Creative thinking
  • Critical thinking

Write a one- to two-sentence rationale for why you chose the answers you did on the above survey.

Generating Multiple Solutions

Why do you think it is important to provide multiple solutions when you’re going through the steps to solve problems? Typically, you’ll end up only using one solution at a time, so why expend the extra energy to create alternatives? If you planned a wonderful trip to Europe and had all the sites you want to see planned out and reservations made, you would think that your problem-solving and organizational skills had quite a workout. But what if when you arrived, the country you’re visiting is enmeshed in a public transportation strike experts predict will last several weeks if not longer? A back-up plan would have helped you contemplate alternatives you could substitute for the original plans. You certainly cannot predict every possible contingency—sick children, weather delays, economic downfalls—but you can be prepared for unexpected issues to come up and adapt more easily if you plan for multiple solutions.

Write out at least two possible solutions to these dilemmas:

  • Your significant other wants a birthday present—you have no cash.
  • You have three exams scheduled on a day when you also need to work.
  • Your car needs new tires, an oil change, and gas—you have no cash. (Is there a trend here?)
  • You have to pass a running test for your physical education class, but you’re out of shape.

Providing more than one solution to a problem gives people options. You may not need several options, but having more than one solution will allow you to feel more in control and part of the problem-solving process.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-success/pages/1-introduction
  • Authors: Amy Baldwin
  • Publisher/website: OpenStax
  • Book title: College Success
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-success/pages/1-introduction
  • Section URL: https://openstax.org/books/college-success/pages/7-5-problem-solving

© Sep 20, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Module 5: Thinking and Analysis

Problem-solving with critical thinking, learning outcomes.

  • Describe how critical thinking skills can be used in problem-solving

Most of us face problems that we must solve every day. While some problems are more complex than others, we can apply critical thinking skills to every problem by asking questions like, what information am I missing? Why and how is it important? What are the contributing factors that lead to the problem? What resources are available to solve the problem? These questions are just the start of being able to think of innovative and effective solutions. Read through the following critical thinking, problem-solving process to identify steps you are already familiar with as well as opportunities to build a more critical approach to solving problems.

Problem-Solving Process

Step 1: define the problem.

Albert Einstein once said, “If I had an hour to solve a problem, I’d spend 55 minutes thinking about the problem and five minutes thinking about solutions.”

Often, when we first hear of or learn about a problem, we do not have all the information. If we immediately try to find a solution without having a thorough understanding of the problem, then we may only be solving a part of the problem.  This is called a “band-aid fix,” or when a symptom is addressed, but not the actual problem. While these band-aid fixes may provide temporary relief, if the actual problem is not addressed soon, then the problem will continue and likely get worse. Therefore, the first step when using critical thinking to solve problems is to identify the problem. The goal during this step is to gather enough research to determine how widespread the problem is, its nature, and its importance.

Step 2: Analyze the Causes

This step is used to uncover assumptions and underlying problems that are at the root of the problem. This step is important since you will need to ensure that whatever solution is chosen addresses the actual cause, or causes, of the problem.

Asking “why” questions to uncover root causes

A common way to uncover root causes is by asking why questions. When we are given an answer to a why question, we will often need to question that answer itself. Thus the process of asking “why” is an  iterative process —meaning that it is a process that we can repeatedly apply. When we stop asking why questions depends on what information we need and that can differ depending on what the goals are. For a better understanding, see the example below:

Problem: The lamp does not turn on.

  • Why doesn’t the lamp turn on? The fuse is blown.
  • Why is the fuse blown? There was overloaded circuit.
  • Why was the circuit overloaded? The hair dryer was on.

If one is simply a homeowner or tenant, then it might be enough to simply know that if the hair dryer is on, the circuit will overload and turn off.  However, one can always ask further why questions, depending on what the goal is. For example, suppose someone wants to know if all hair dryers overload circuits or just this one. We might continue thus:

  • Why did this hair dryer overload the circuit? Because hair dryers in general require a lot of electricity.

But now suppose we are an electrical engineer and are interested in designing a more environmentally friendly hair dryer. In that case, we might ask further:

  • Why do hair dryers require so much energy?

As you can see from this example, what counts as a root cause depends on context and interests. The homeowner will not necessarily be interested in asking the further why questions whereas others might be.

Step 3: Generate Solutions

The goal of this step is to generate as many solutions as possible. In order to do so, brainstorm as many ideas as possible, no matter how outrageous or ineffective the idea might seem at the time. During your brainstorming session, it is important to generate solutions freely without editing or evaluating any of the ideas. The more solutions that you can generate, the more innovative and effective your ultimate solution might become upon later review.

You might find that setting a timer for fifteen to thirty minutes will help you to creatively push past the point when you think you are done. Another method might be to set a target for how many ideas you will generate. You might also consider using categories to trigger ideas. If you are brainstorming with a group, consider brainstorming individually for a while and then also brainstorming together as ideas can build from one idea to the next.

Step 4: Select a Solution

Once the brainstorming session is complete, then it is time to evaluate the solutions and select the more effective one.  Here you will consider how each solution will address the causes determined in step 2. It is also helpful to develop the criteria you will use when evaluating each solution, for instance, cost, time, difficulty level, resources needed, etc. Once your criteria for evaluation is established, then consider ranking each criterion by importance since some solutions might meet all criteria, but not to equally effective degrees.

In addition to evaluating by criteria, ensure that you consider possibilities and consequences of all serious contenders to address any drawbacks to a solution. Lastly, ensure that the solutions are actually feasible.

Step 6: Put Solution into Action

While many problem-solving models stop at simply selecting a solution, in order to actually solve a problem, the solution must be put into action. Here, you take responsibility to create, communicate, and execute the plan with detailed organizational logistics by addressing who will be responsible for what, when, and how.

Step 7: Evaluate progress

The final step when employing critical thinking to problem-solving is to evaluate the progress of the solution. Since critical thinking demands open-mindedness, analysis, and a willingness to change one’s mind, it is important to monitor how well the solution has actually solved the problem in order to determine if any course correction is needed.

While we solve problems every day, following the process to apply more critical thinking approaches in each step by considering what information might be missing; analyzing the problem and causes; remaining open-minded while brainstorming solutions; and providing criteria for, evaluating, and monitoring solutions can help you to become a better problem-solver and strengthen your critical thinking skills.

iterative process: one that can be repeatedly applied

  • Problem solving. Authored by : Anne Fleischer. Provided by : Lumen Learning. License : CC BY: Attribution
  • College Success. Authored by : Matthew Van Cleave. Provided by : Lumen Learning. License : CC BY: Attribution
  • wocintech stock - 178. Authored by : WOCinTech Chat. Located at : https://flic.kr/p/FiGVWt . License : CC BY-SA: Attribution-ShareAlike
  • Five whys. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Five_whys . License : CC BY-SA: Attribution-ShareAlike

Footer Logo Lumen Waymaker

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

final step of problem solving approach of learning

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Problem-Solving Method in Teaching

The problem-solving method is a highly effective teaching strategy that is designed to help students develop critical thinking skills and problem-solving abilities . It involves providing students with real-world problems and challenges that require them to apply their knowledge, skills, and creativity to find solutions. This method encourages active learning, promotes collaboration, and allows students to take ownership of their learning.

Table of Contents

Definition of problem-solving method.

Problem-solving is a process of identifying, analyzing, and resolving problems. The problem-solving method in teaching involves providing students with real-world problems that they must solve through collaboration and critical thinking. This method encourages students to apply their knowledge and creativity to develop solutions that are effective and practical.

Meaning of Problem-Solving Method

The meaning and Definition of problem-solving are given by different Scholars. These are-

Woodworth and Marquis(1948) : Problem-solving behavior occurs in novel or difficult situations in which a solution is not obtainable by the habitual methods of applying concepts and principles derived from past experience in very similar situations.

Skinner (1968): Problem-solving is a process of overcoming difficulties that appear to interfere with the attainment of a goal. It is the procedure of making adjustments in spite of interference

Benefits of Problem-Solving Method

The problem-solving method has several benefits for both students and teachers. These benefits include:

  • Encourages active learning: The problem-solving method encourages students to actively participate in their own learning by engaging them in real-world problems that require critical thinking and collaboration
  • Promotes collaboration: Problem-solving requires students to work together to find solutions. This promotes teamwork, communication, and cooperation.
  • Builds critical thinking skills: The problem-solving method helps students develop critical thinking skills by providing them with opportunities to analyze and evaluate problems
  • Increases motivation: When students are engaged in solving real-world problems, they are more motivated to learn and apply their knowledge.
  • Enhances creativity: The problem-solving method encourages students to be creative in finding solutions to problems.

Steps in Problem-Solving Method

The problem-solving method involves several steps that teachers can use to guide their students. These steps include

  • Identifying the problem: The first step in problem-solving is identifying the problem that needs to be solved. Teachers can present students with a real-world problem or challenge that requires critical thinking and collaboration.
  • Analyzing the problem: Once the problem is identified, students should analyze it to determine its scope and underlying causes.
  • Generating solutions: After analyzing the problem, students should generate possible solutions. This step requires creativity and critical thinking.
  • Evaluating solutions: The next step is to evaluate each solution based on its effectiveness and practicality
  • Selecting the best solution: The final step is to select the best solution and implement it.

Verification of the concluded solution or Hypothesis

The solution arrived at or the conclusion drawn must be further verified by utilizing it in solving various other likewise problems. In case, the derived solution helps in solving these problems, then and only then if one is free to agree with his finding regarding the solution. The verified solution may then become a useful product of his problem-solving behavior that can be utilized in solving further problems. The above steps can be utilized in solving various problems thereby fostering creative thinking ability in an individual.

The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to succeed in school and in life.

  • Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. Routledge.
  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266.
  • Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of problem-based instruction: A comparative study of instructional methods and student characteristics. Interdisciplinary Journal of Problem-based Learning, 1(2), 49-69.
  • Richey, R. C., Klein, J. D., & Tracey, M. W. (2011). The instructional design knowledge base: Theory, research, and practice. Routledge.
  • Savery, J. R., & Duffy, T. M. (2001). Problem-based learning: An instructional model and its constructivist framework. CRLT Technical Report No. 16-01, University of Michigan. Wojcikowski, J. (2013). Solving real-world problems through problem-based learning. College Teaching, 61(4), 153-156

Micro Teaching Skills

Humor That Works

The 5 Steps of Problem Solving

5-steps-of-problem-solving-humor-that-works-3

Problem solving is a critical skill for success in business – in fact it’s often what you are hired and paid to do. This article explains the five problem solving steps and provides strategies on how to execute each one.

Defining Problem Solving

Before we talk about the stages of problem solving, it’s important to have a definition of what it is. Let’s look at the two roots of problem solving — problems and solutions.

Problem – a state of desire for reaching a definite goal from a present condition [1] Solution – the management of a problem in a way that successfully meets the goals set for treating it

[1] Problem solving on Wikipedia

One important call-out is the importance of having a goal. As defined above, the solution may not completely solve problem, but it does meet the goals you establish for treating it–you may not be able to completely resolve the problem (end world hunger), but you can have a goal to help it (reduce the number of starving children by 10%).

The Five Steps of Problem Solving

With that understanding of problem solving, let’s talk about the steps that can get you there. The five problem solving steps are shown in the chart below:

problem solving steps

However this chart as is a little misleading. Not all problems follow these steps linearly, especially for very challenging problems. Instead, you’ll likely move back and forth between the steps as you continue to work on the problem, as shown below:

problem solving steps iterative

Let’s explore of these steps in more detail, understanding what it is and the inputs and outputs of each phase.

1. Define the Problem

aka What are you trying to solve? In addition to getting clear on what the problem is, defining the problem also establishes a goal for what you want to achieve.

Input:  something is wrong or something could be improved. Output: a clear definition of the opportunity and a goal for fixing it.

2. Brainstorm Ideas

aka What are some ways to solve the problem? The goal is to create a list of possible solutions to choose from. The harder the problem, the more solutions you may need.

Input: a goal; research of the problem and possible solutions; imagination. Output: pick-list of possible solutions that would achieve the stated goal.

3. Decide on a Solution

aka What are you going to do? The ideal solution is effective (it will meet the goal), efficient (is affordable), and has the fewest side effects (limited consequences from implementation).

Input:  pick-list of possible solutions; decision-making criteria. Output: decision of what solution you will implement.

4. Implement the Solution

aka What are you doing? The implementation of a solution requires planning and execution. It’s often iterative, where the focus should be on short implementation cycles with testing and feedback, not trying to get it “perfect” the first time.

Input:  decision; planning; hard work. Output:  resolution to the problem.

5. Review the Results

aka What did you do? To know you successfully solved the problem, it’s important to review what worked, what didn’t and what impact the solution had. It also helps you improve long-term problem solving skills and keeps you from re-inventing the wheel.

Input:  resolutions; results of the implementation. Output: insights; case-studies; bullets on your resume.

Improving Problem Solving Skills

Once you understand the five steps of problem solving, you can build your skill level in each one. Often we’re naturally good at a couple of the phases and not as naturally good at others. Some people are great at generating ideas but struggle implementing them. Other people have great execution skills but can’t make decisions on which solutions to use. Knowing the different problem solving steps allows you to work on your weak areas, or team-up with someone who’s strengths complement yours.

Want to improve your problem solving skills? Want to perfect the art of problem solving?  Check out our training programs or try these 20 problem solving activities to improve creativity .

THIS FREE 129 SECOND QUIZ WILL SHOW YOU

what is your humor persona?

Humor is a skill that can be learned. And when used correctly, it is a superpower that can be your greatest asset for building a happier, healthier and more productive life.  See for yourself...

you might also be interested in...

20 Things To Do to make an Elevator Fun!

Using more humor in the workplace can be as simple as doing things to make an elevator fun! Here are […]

Top 10 TED Talks About Humor

Humor at work is less about making wisecracks and causing people to fall on the floor with laughter, and more […]

2014 Humor Awards Panel

The following esteemed panel of judges will be selecting the winners for 2014. John Garrett Title: Comedian / Writer Company: John […]

22 thoughts on “The 5 Steps of Problem Solving”

final step of problem solving approach of learning

very helpful and informative training

final step of problem solving approach of learning

Thank you for the information

final step of problem solving approach of learning

YOU ARE AFOOL

final step of problem solving approach of learning

I’m writing my 7th edition of Effective Security Management. I would like to use your circular graphic illustration in a new chapter on problem solving. You’re welcome to phone me at — with attribution.

final step of problem solving approach of learning

Sure thing, shoot us an email at [email protected] .

final step of problem solving approach of learning

i love your presentation. It’s very clear. I think I would use it in teaching my class problem solving procedures. Thank you

final step of problem solving approach of learning

It is well defined steps, thank you.

final step of problem solving approach of learning

these step can you email them to me so I can print them out these steps are very helpful

final step of problem solving approach of learning

I like the content of this article, it is really helpful. I would like to know much on how PAID process (i.e. Problem statement, Analyze the problem, Identify likely causes, and Define the actual causes) works in Problem Solving.

final step of problem solving approach of learning

very useful information on problem solving process.Thank you for the update.

Pingback: Let’s Look at Work Is Working with the Environment | #EnviroSociety

final step of problem solving approach of learning

It makes sense that a business would want to have an effective problem solving strategy. Things could get bad if they can’t find solutions! I think one of the most important things about problem solving is communication.

final step of problem solving approach of learning

Well in our school teacher teach us –

1) problem ldentification 2) structuring the problem 3) looking for possible solutions 4) lmplementation 5) monitoring or seeking feedback 6) decision making

Pleace write about it …

final step of problem solving approach of learning

I teach Professional communication (Speech) and I find the 5 steps to problem solving as described here the best method. Your teacher actually uses 4 steps. The Feedback and decision making are follow up to the actual implementation and solving of the problem.

final step of problem solving approach of learning

i know the steps of doing some guideline for problem solving

final step of problem solving approach of learning

steps are very useful to solve my problem

final step of problem solving approach of learning

The steps given are very effective. Thank you for the wonderful presentation of the cycle/steps/procedure and their connections.

final step of problem solving approach of learning

I like the steps for problem solving

final step of problem solving approach of learning

It is very useful for solving difficult problem i would reccomend it to a friend

final step of problem solving approach of learning

this is very interesting because once u have learned you will always differentiate the right from the wrong.

final step of problem solving approach of learning

I like the contents of the problem solving steps. informative.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Humor Persona - Template B2B

I make an effort to appreciate the humor of everyday life....

This question helps us further the advancement of humor research to make it more equitable.

Humor Persona - Main B2C

Purdue Mitchell E. Daniels, Jr. School of Business logo

Effective Problem-Solving Techniques in Business

Problem solving is an increasingly important soft skill for those in business. The Future of Jobs Survey by the World Economic Forum drives this point home. According to this report, complex problem solving is identified as one of the top 15 skills that will be sought by employers in 2025, along with other soft skills such as analytical thinking, creativity and leadership.

Dr. Amy David , clinical associate professor of management for supply chain and operations management, spoke about business problem-solving methods and how the Purdue University Online MBA program prepares students to be business decision-makers.

Why Are Problem-Solving Skills Essential in Leadership Roles?

Every business will face challenges at some point. Those that are successful will have people in place who can identify and solve problems before the damage is done.

“The business world is constantly changing, and companies need to be able to adapt well in order to produce good results and meet the needs of their customers,” David says. “They also need to keep in mind the triple bottom line of ‘people, profit and planet.’ And these priorities are constantly evolving.”

To that end, David says people in management or leadership need to be able to handle new situations, something that may be outside the scope of their everyday work.

“The name of the game these days is change—and the speed of change—and that means solving new problems on a daily basis,” she says.

The pace of information and technology has also empowered the customer in a new way that provides challenges—or opportunities—for businesses to respond.

“Our customers have a lot more information and a lot more power,” she says. “If you think about somebody having an unhappy experience and tweeting about it, that’s very different from maybe 15 years ago. Back then, if you had a bad experience with a product, you might grumble about it to one or two people.”

David says that this reality changes how quickly organizations need to react and respond to their customers. And taking prompt and decisive action requires solid problem-solving skills.

What Are Some of the Most Effective Problem-Solving Methods?

David says there are a few things to consider when encountering a challenge in business.

“When faced with a problem, are we talking about something that is broad and affects a lot of people? Or is it something that affects a select few? Depending on the issue and situation, you’ll need to use different types of problem-solving strategies,” she says.

Using Techniques

There are a number of techniques that businesses use to problem solve. These can include:

  • Five Whys : This approach is helpful when the problem at hand is clear but the underlying causes are less so. By asking “Why?” five times, the final answer should get at the potential root of the problem and perhaps yield a solution.
  • Gap Analysis : Companies use gap analyses to compare current performance with expected or desired performance, which will help a company determine how to use its resources differently or adjust expectations.
  • Gemba Walk : The name, which is derived from a Japanese word meaning “the real place,” refers to a commonly used technique that allows managers to see what works (and what doesn’t) from the ground up. This is an opportunity for managers to focus on the fundamental elements of the process, identify where the value stream is and determine areas that could use improvement.
  • Porter’s Five Forces : Developed by Harvard Business School professor Michael E. Porter, applying the Five Forces is a way for companies to identify competitors for their business or services, and determine how the organization can adjust to stay ahead of the game.
  • Six Thinking Hats : In his book of the same name, Dr. Edward de Bono details this method that encourages parallel thinking and attempting to solve a problem by trying on different “thinking hats.” Each color hat signifies a different approach that can be utilized in the problem-solving process, ranging from logic to feelings to creativity and beyond. This method allows organizations to view problems from different angles and perspectives.
  • SWOT Analysis : This common strategic planning and management tool helps businesses identify strengths, weaknesses, opportunities and threats (SWOT).

“We have a lot of these different tools,” David says. “Which one to use when is going to be dependent on the problem itself, the level of the stakeholders, the number of different stakeholder groups and so on.”

Each of the techniques outlined above uses the same core steps of problem solving:

  • Identify and define the problem
  • Consider possible solutions
  • Evaluate options
  • Choose the best solution
  • Implement the solution
  • Evaluate the outcome

Data drives a lot of daily decisions in business and beyond. Analytics have also been deployed to problem solve.

“We have specific classes around storytelling with data and how you convince your audience to understand what the data is,” David says. “Your audience has to trust the data, and only then can you use it for real decision-making.”

Data can be a powerful tool for identifying larger trends and making informed decisions when it’s clearly understood and communicated. It’s also vital for performance monitoring and optimization.

How Is Problem Solving Prioritized in Purdue’s Online MBA?

The courses in the Purdue Online MBA program teach problem-solving methods to students, keeping them up to date with the latest techniques and allowing them to apply their knowledge to business-related scenarios.

“I can give you a model or a tool, but most of the time, a real-world situation is going to be a lot messier and more valuable than what we’ve seen in a textbook,” David says. “Asking students to take what they know and apply it to a case where there’s not one single correct answer is a big part of the learning experience.”

Make Your Own Decision to Further Your Career

An online MBA from Purdue University can help advance your career by teaching you problem-solving skills, decision-making strategies and more. Reach out today to learn more about earning an online MBA with Purdue University .

If you would like to receive more information about pursuing a business master’s at the Mitchell E. Daniels, Jr. School of Business, please fill out the form and a program specialist will be in touch!

Connect With Us

Facilitating Complex Thinking

Problem-Solving

Somewhat less open-ended than creative thinking is  problem-solving , the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem-solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the chest is far from clear and requires skill, experience, and resourcefulness to decide which foggy-looking blobs to ignore, and which to interpret as real physical structures (and therefore real medical concerns). Problem-solving is also needed when a grocery store manager has to decide how to improve the sales of a product: should she put it on sale at a lower price, or increase publicity for it, or both? Will these actions actually increase sales enough to pay for their costs?

PROBLEM-SOLVING IN THE CLASSROOM

Problem-solving happens in classrooms when teachers present tasks or challenges that are deliberately complex and for which finding a solution is not straightforward or obvious. The responses of students to such problems, as well as the strategies for assisting them, show the key features of problem-solving. Consider this example and students’ responses to it. We have numbered and named the paragraphs to make it easier to comment about them individually:

Scene #1: A problem to be solved

A teacher gave these instructions: “Can you connect all of the dots below using only  four  straight lines?” She drew the following display on the chalkboard:

nine dots in a three by three grid

The problem itself and the procedure for solving it seemed very clear: simply experiment with different arrangements of four lines. But two volunteers tried doing it at the board, but were unsuccessful. Several others worked at it at their seats, but also without success.

Scene #2: Coaxing students to re-frame the problem

When no one seemed to be getting it, the teacher asked, “Think about how you’ve set up the problem in your mind—about what you believe the problem is about. For instance, have you made any assumptions about how long the lines ought to be? Don’t stay stuck on one approach if it’s not working!”

Scene #3: Alicia abandons a fixed response

After the teacher said this, Alicia indeed continued to think about how she saw the problem. “The lines need to be no longer than the distance across the square,” she said to herself. So she tried several more solutions, but none of them worked either.

The teacher walked by Alicia’s desk and saw what Alicia was doing. She repeated her earlier comment: “Have you assumed anything about how long the lines ought to be?”

Alicia stared at the teacher blankly, but then smiled and said, “Hmm! You didn’t actually  say  that the lines could be no longer than the matrix! Why not make them longer?” So she experimented again using oversized lines and soon discovered a solution:

Nine dots in a three-by-three grid, all dots are connected using just four lines. The first line travels through the top-right dot, the center dot, and the bottom-left dot. The second line travels from the the bottom-left dot, through the middle-left dot, and through the top-right dot, then extends past the top-right dot. The third line starts where the second line extended, forming an angle as it passes through the top-middle dot and the middle-right dot. The third line then extends past the right-middle dot until it is even with the bottom of the grid. The fourth line starts where the third line extended, then passes through the bottom-right, bottom-middle, and bottom-left dots. The end result are four lines, three of which form a right triangle with corners extending beyond the three-by-three grid, with the remaining line bisecting the right angle of the triangle so that it passes through the middle and top-right dots.

Scene #4: Willem’s and Rachel’s alternative strategies

Meanwhile, Willem worked on the problem. As it happened, Willem loved puzzles of all kinds and had ample experience with them. He had not, however, seen this particular problem. “It  must  be a trick,” he said to himself because he knew from experience that problems posed in this way often were not what they first appeared to be. He mused to himself: “Think outside the box, they always tell you. . .” And  that  was just the hint he needed: he drew lines outside the box by making them longer than the matrix and soon came up with this solution:

a mirror image of Alicia's solution

When Rachel went to work, she took one look at the problem and knew the answer immediately: she had seen this problem before, though she could not remember where. She had also seen other drawing-related puzzles and knew that their solution always depended on making the lines longer, shorter, or differently angled than first expected. After staring at the dots briefly, she drew a solution faster than Alicia or even Willem. Her solution looked exactly like Willem’s.

This story illustrates two common features of problem-solving: the effect of degree of structure or constraint on problem-solving, and the effect of mental obstacles to solving problems. The next sections discuss each of these features and then look at common techniques for solving problems.

The Effect of Constraints: Well-Structured Versus Ill-Structured Problems

Problems vary in how much information they provide for solving a problem, as well as in how many rules or procedures are needed for a solution. A  well-structured problem  provides much of the information needed and can in principle be solved using relatively few clearly understood rules. Classic examples are the word problems often taught in math lessons or classes: everything you need to know is contained within the stated problem and the solution procedures are relatively clear and precise. An  ill-structured problem  has the converse qualities: the information is not necessarily within the problem, solution procedures are potentially quite numerous, and multiple solutions are likely (Voss, 2006). Extreme examples are problems like “How can the world achieve lasting peace?” or “How can teachers ensure that students learn?”

By these definitions, the nine-dot problem is relatively well-structured—though not completely. Most of the information needed for a solution is provided in Scene #1: there are nine dots shown and instructions given to draw four lines. But not  all  necessary information was given: students needed to consider lines that were longer than implied in the original statement of the problem. Students had to “think outside the box,” as Willem said—in this case, literally.

When a problem is well-structured, so are its solution procedures likely to be as well. A well-defined procedure for solving a particular kind of problem is often called an  algorithm ; examples are the procedures for multiplying or dividing two numbers or the instructions for using a computer (Leiserson, et al., 2001). Algorithms are only effective when a problem is very well-structured and there is no question about whether the algorithm is an appropriate choice for the problem. In that situation, it pretty much guarantees a correct solution. They do not work well, however, with ill-structured problems, where they are ambiguities and questions about how to proceed or even about precisely  what  the problem is about. In those cases, it is more effective to use  heuristics , which are general strategies—“rules of thumb,” so to speak—that do not always work but often do, or that provide at least partial solutions. When beginning research for a term paper, for example, a useful heuristic is to scan the library catalog for titles that look relevant. There is no guarantee that this strategy will yield the books most needed for the paper, but the strategy works enough of the time to make it worth trying.

In the nine-dot problem, most students began in Scene #1 with a simple algorithm that can be stated like this: “Draw one line, then draw another, and another, and another.” Unfortunately, this simple procedure did not produce a solution, so they had to find other strategies for a solution. Three alternatives are described in Scenes #3 (for Alicia) and 4 (for Willem and Rachel). Of these, Willem’s response resembled a heuristic the most: he knew from experience that a good  general  strategy that  often  worked for such problems was to suspect deception or trick in how the problem was originally stated. So he set out to question what the teacher had meant by the word  line  and came up with an acceptable solution as a result.

Common Obstacles to Solving Problems

The example also illustrates two common problems that sometimes happen during problem-solving. One of these is  functional fixedness : a tendency to regard the  functions  of objects and ideas as  fixed  (German & Barrett, 2005). Over time, we get so used to one particular purpose for an object that we overlook other uses. We may think of a dictionary, for example, as necessarily something to verify spellings and definitions, but it also can function as a gift, a doorstop, or a footstool. For students working on the nine-dot matrix described in the last section, the notion of “drawing” a line was also initially fixed; they assumed it to be connecting dots but not extending lines beyond the dots. Functional fixedness sometimes is also called  response set , the tendency for a person to frame or think about each problem in a series in the same way as the previous problem, even when doing so is not appropriate for later problems. In the example of the nine-dot matrix described above, students often tried one solution after another, but each solution was constrained by a set response not  to extend any line beyond the matrix.

Functional fixedness and the response set are obstacles in  problem representation , the way that a person understands and organizes information provided in a problem. If information is misunderstood or used inappropriately, then mistakes are likely—if indeed the problem can be solved at all. With the nine-dot matrix problem, for example, construing the instruction to draw four lines as meaning “draw four lines entirely within the matrix” means that the problem simply could not be solved. For another, consider this problem: “The number of water lilies on a lake doubles each day. Each water lily covers exactly one square foot. If it takes 100 days for the lilies to cover the lake exactly, how many days does it take for the lilies to cover exactly half of the lake?” If you think that the size of the lilies affects the solution to this problem, you have not represented the problem correctly. Information about lily size is  not  relevant to the solution and only serves to distract from the truly crucial information, the fact that the lilies  double  their coverage each day. (The answer, incidentally, is that the lake is half covered in 99 days; can you think why?)

Strategies to Assist Problem-Solving

Just as there are cognitive obstacles to problem-solving, there are also general strategies that help the process be successful, regardless of the specific content of a problem (Thagard, 2005). One helpful strategy is  problem analysis —identifying the parts of the problem and working on each part separately. Analysis is especially useful when a problem is ill-structured. Consider this problem, for example: “Devise a plan to improve bicycle transportation in the city.” Solving this problem is easier if you identify its parts or component subproblems, such as (1) installing bicycle lanes on busy streets, (2) educating cyclists and motorists to ride safely, (3) fixing potholes on streets used by cyclists, and (4) revising traffic laws that interfere with cycling. Each separate subproblem is more manageable than the original, general problem. The solution of each subproblem contributes to the solution of the whole, though of course is not equivalent to a whole solution.

Another helpful strategy is  working backward   from  a final solution to the originally stated problem. This approach is especially helpful when a problem is well-structured but also has elements that are distracting or misleading when approached in a forward, normal direction. The water lily problem described above is a good example: starting with the day when  all  the lake is covered (Day 100), ask what day would it, therefore, be half-covered (by the terms of the problem, it would have to be the day before, or Day 99). Working backward, in this case, encourages reframing the extra information in the problem (i. e. the size of each water lily) as merely distracting, not as crucial to a solution.

A third helpful strategy is  analogical thinking —using knowledge or experiences with similar features or structures to help solve the problem at hand (Bassok, 2003). In devising a plan to improve bicycling in the city, for example, an analogy of cars with bicycles is helpful in thinking of solutions: improving conditions for both vehicles requires many of the same measures (improving the roadways, educating drivers). Even solving simpler, more basic problems is helped by considering analogies. A first-grade student can partially decode unfamiliar printed words by analogy to words he or she has learned already. If the child cannot yet read the word screen , for example, he can note that part of this word looks similar to words he may already know, such as  seen  or  green,  and from this observation derive a clue about how to read the word  screen . Teachers can assist this process, as you might expect, by suggesting reasonable, helpful analogies for students to consider.

Video 5.4.1. Problem Solving explains strategies used for solving problems.

Many systems for problem-solving can be taught to learners (Pressley, 1995). There are problem-solving strategies to improve general problem solving (Burkell, Schneider, & Pressley, 1990; Mayer, 1987; Sternberg, 1988), scientific thinking (Kuhn, 1989), mathematical problem solving (Schoenfeld, 1989), and writing during the elementary years (Harris & Graham, 1992a) and during adolescence (Applebee, 1984; Langer & Applebee, 1987).

A problem-solving system that can be used in a variety of curriculum areas and with a variety of problems is called IDEAL (Bransford & Steen, 1984). IDEAL involves five stages of problem-solving:

  • Identify the problem. Learners must know what the problem is before they can solve it. During this stage of problem-solving, learners ask themselves whether they understand what the problem is and whether they have stated it clearly.
  • Define terms. During this stage, learners check whether they understand what each word in the problem statement means.
  • Explore strategies. At this stage, learners compile relevant information and try out strategies to solve the problem. This can involve drawing diagrams, working backward to solve a mathematical or reading comprehension problem, or breaking complex problems into manageable units.
  • Act on the strategy. Once learners have explored a variety of strategies, they select one and now use it.
  • Look at the effects. During the final stage of the IDEAL method, learners ask themselves whether they have come up with an acceptable solution.

Video 5.4.2. The Problem Solving Model explains the process involved in solving problems. These steps can be explicitly taught to enhance problem-solving skills.

Candela Citations

  • Problem-Solving. Authored by : Nicole Arduini-Van Hoose. Provided by : Hudson Valley Community College. Retrieved from : https://courses.lumenlearning.com/edpsy/chapter/problemsolving. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Educational Psychology. Authored by : Kelvin Seifert and Rosemary Sutton. Provided by : The Saylor Foundation. Retrieved from : https://courses.lumenlearning.com/educationalpsychology. License : CC BY: Attribution
  • Educational Psychology. Authored by : Bohlin. License : CC BY: Attribution
  • Problem Solving. Authored by : Carole Yue. Provided by : Khan Academy. Retrieved from : https://youtu.be/J3GGx9wy07w. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • The Problem Solving Model. Provided by : Gregg Learning. Retrieved from : https://youtu.be/CDk_BD1LXiI. License : All Rights Reserved

Educational Psychology Copyright © 2020 by Nicole Arduini-Van Hoose is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Icon Partners

  • Quality Improvement
  • Talk To Minitab

The Basics of Structured Problem-Solving Methodologies: DMAIC & 8D

Topics: Minitab Engage

When it comes to solving a problem, organizations want to get to the root cause of the problem, as quickly as possible. They also want to ensure that they find the most effective solution to that problem, make sure the solution is implemented fully, and is sustained into the future so that the problem no longer occurs. The best way to do this is by implementing structured problem-solving. In this blog post, we’ll briefly cover structured problem-solving and the best improvement methodologies to achieve operational excellence. Before we dive into ways Minitab can help, let’s first cover the basics of problem-solving.

WHAT IS STRUCTURED PROBLEM-SOLVING?

Structured problem-solving is a disciplined approach that breaks down the problem-solving process into discrete steps with clear objectives. This method enables you to tackle complex problems, while ensuring you’re resolving the right ones. It also ensures that you fully understand those problems, you've considered the reasonable solutions, and are effectively implementing and sustaining them.

WHAT IS A STRUCTURED PROBLEM-SOLVING METHODOLOGY?

A structured problem-solving methodology is a technique that consists of a series of phases that a project must pass through before it gets completed. The goal of a methodology is to highlight the intention behind solving a particular problem and offers a strategic way to resolve it. WHAT ARE THE BEST PROBLEM-SOLVING METHODOLOGIES?

That depends on the problem you’re trying to solve for your improvement initiative. The structure and discipline of completing all the steps in each methodology is more important than the specific methodology chosen. To help you easily visualize these methodologies, we’ve created the Periodic Table of Problem-Solving Methodologies. Now let’s cover two important methodologies for successful process improvement and problem prevention: DMAIC and 8D .

DMAIC Methodology

8D is known as the Eight Disciplines of problem-solving. It consists of eight steps to solve difficult, recurring, or critical problems. The methodology consists of problem-solving tools to help you identify, correct, and eliminate the source of problems within your organization. If the problem you’re trying to solve is complex and needs to be resolved quickly, 8D might be the right methodology to implement for your organization. Each methodology could be supported with a project template, where its roadmap corresponds to the set of phases in that methodology. It is a best practice to complete each step of a given methodology, before moving on to the next one.

MINITAB ENGAGE, YOUR SOLUTION TO EFFECTIVE PROBLEM-SOLVING

Minitab Engage TM was built to help organizations drive innovation and improvement initiatives. What makes our solution unique is that it combines structured problem-solving methodologies with tools and dashboards to help you plan, execute, and measure your innovation initiatives! There are many problem-solving methodologies and tools to help you get started. We have the ultimate end-to-end improvement solution to help you reach innovation success.

Ready to explore structured problem-solving?

Download our free eBook to discover the top methodologies and tools to help you accelerate your innovation programs.

Download Now

You Might Also Like

  • Trust Center

© 2023 Minitab, LLC. All Rights Reserved.

  • Terms of Use
  • Privacy Policy
  • Cookies Settings

loading

Teach Educator

What are the 7 Steps to Problem-Solving? & Its Examples

7 steps to problem-solving.

7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions, and implementing the best course of action. While different problem-solving models exist, a common approach often involves the following seven steps:

Define the Problem:

  • Clearly articulate and understand the nature of the problem. Define the issue, its scope, and its impact on individuals or the organization.

Gather Information:

  • Collect relevant data and information related to the problem. This may involve research, observation, interviews, or any other method to gain a comprehensive understanding.

Generate Possible Solutions:

  • Brainstorm and generate a variety of potential solutions to the problem. Encourage creativity and consider different perspectives during this phase.

Evaluate Options:

  • Assess the strengths and weaknesses of each potential solution. Consider the feasibility, potential risks, and the likely outcomes associated with each option.

Make a Decision:

  • Based on the evaluation, choose the most suitable solution. This decision should align with the goals and values of the individual or organization facing the problem.

Implement the Solution:

  • Put the chosen solution into action. Develop an implementation plan, allocate resources, and carry out the necessary steps to address the problem effectively.

Evaluate the Results:

  • Assess the outcomes of the implemented solution. Did it solve the problem as intended? What can be learned from the process? Use this information to refine future problem-solving efforts.

It’s important to note that these steps are not always linear and may involve iteration. Problem-solving is often an ongoing process, and feedback from the implementation and evaluation stages may lead to adjustments in the chosen solution or the identification of new issues that need to be addressed.

Problem-Solving Example in Education

  • Certainly: Let’s consider a problem-solving example in the context of education.
  • Problem: Declining Student Engagement in Mathematics Classes

Background:

A high school has noticed a decline in student engagement and performance in mathematics classes over the past few years. Students seem disinterested, and there is a noticeable decrease in test scores. The traditional teaching methods are not effectively capturing students’ attention, and there’s a need for innovative solutions to rekindle interest in mathematics.

Steps in Problem-Solving

Identify the problem:.

  • Clearly define the issue: declining student engagement and performance in mathematics classes.
  • Gather data on student performance, attendance, and feedback from teachers and students.

Root Cause Analysis

  • Conduct surveys, interviews, and classroom observations to identify the root causes of disengagement.
  • Identify potential factors such as teaching methods, curriculum relevance, or lack of real-world applications.

Brainstorm Solutions

  • Organize a team of educators, administrators, and even students to brainstorm creative solutions.
  • Consider integrating technology, real-world applications, project-based learning, or other interactive teaching methods.

Evaluate and Prioritize Solutions

  • Evaluate each solution based on feasibility, cost, and potential impact.
  • Prioritize solutions that are likely to address the root causes and have a positive impact on student engagement.

Implement the Chosen Solution

  • Develop an action plan for implementing the chosen solution.
  • Provide training and resources for teachers to adapt to new teaching methods or technologies.

Monitor and Evaluate

  • Continuously monitor the implementation of the solution.
  • Collect feedback from teachers and students to assess the effectiveness of the changes.

Adjust as Needed

  • Be willing to make adjustments based on ongoing feedback and data analysis.
  • Fine-tune the solution to address any unforeseen challenges or issues.

Example Solution

  • Introduce a project-based learning approach in mathematics classes, where students work on real-world problems that require mathematical skills.
  • Incorporate technology, such as educational apps or interactive simulations, to make learning more engaging.
  • Provide professional development for teachers to enhance their skills in implementing these new teaching methods.

Expected Outcomes:

  • Increased student engagement and interest in mathematics.
  • Improvement in test scores and overall academic performance.
  • Positive feedback from both teachers and students.

Final Words

This problem-solving approach in education involves a systematic process of identifying, analyzing, and addressing issues to enhance the learning experience for students.

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

IMAGES

  1. Developing Problem-Solving Skills for Kids

    final step of problem solving approach of learning

  2. What Is the Final Step in the Problem-solving Process

    final step of problem solving approach of learning

  3. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    final step of problem solving approach of learning

  4. Problem-Solving Steps

    final step of problem solving approach of learning

  5. 7 Steps to Improve Your Problem Solving Skills

    final step of problem solving approach of learning

  6. Steps for Problem Solving

    final step of problem solving approach of learning

VIDEO

  1. POLYAS 4-STEP PROBLEM SOLVING APPROACH- BSED SCI 1A

  2. Lean Six Sigma EP1: Understanding to Define

  3. Solving Problems as a Music Producer: My 6-Step Approach

  4. Approaches to Problem Solving

  5. Problem Solving Strategy for Thinking Skills Part 2-1 Finding Procedures(1)

  6. Problem Solving Strategy for Thinking Skills Part 2-1 Finding Procedures(2)

COMMENTS

  1. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  2. Problem-Based Learning: Six Steps to Design, Implement, and Assess

    Step One: Identify Outcomes/Assessments. PBL fits best with process-oriented course outcomes such as collaboration, research, and problem solving. It can help students acquire content or conceptual knowledge, or develop disciplinary habits such as writing or communication. After determining whether your course has learning outcomes that fit ...

  3. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  4. The easy 4 step problem-solving process (+ examples)

    Consider the problem-solving steps applied in the following example. I know that I want to say "I don't eat eggs" to my Mexican waiter. That's the problem. I don't know how to say that, but last night I told my date "No bebo alcohol" ("I don't drink alcohol"). I also know the infinitive for "eat" in Spanish (comer).

  5. PDF The 4-Step Problem-Solving Process

    The 4-Step Problem-Solving Process. This document is the third in a series intended to help school and district leaders maximize the effectiveness and fluidity of their multi-tiered system of supports (MTSS) across different learning environments. Specifically, the document is designed to support the use of problem solving to improve outcomes ...

  6. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  7. Teaching the IDEAL Problem-Solving Method to Diverse Learners

    Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it. Problem-solving involves other executive functioning behaviors as well, including attentional control, planning, and task initiation. Individuals might use time management, emotional control, or organization skills to solve problems as well.

  8. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  9. 5 Step Problem Solving Process Model for Students

    The three steps before problem solving: we call them the K-W-I. The "K" stands for "know" and requires students to identify what they already know about a problem. The goal in this step of the routine is two-fold. First, the student needs to analyze the problem and identify what is happening within the context of the problem.

  10. 7.5 Problem-Solving

    When we're solving a problem, whether at work, school, or home, we are being asked to perform multiple, often complex, tasks. The most effective problem-solving approach includes some variation of the following steps: Determine the issue(s) Recognize other perspectives; Think of multiple possible results; Research and evaluate the possibilities

  11. Problem-Solving with Critical Thinking

    Step 7: Evaluate progress. The final step when employing critical thinking to problem-solving is to evaluate the progress of the solution. Since critical thinking demands open-mindedness, analysis, and a willingness to change one's mind, it is important to monitor how well the solution has actually solved the problem in order to determine if ...

  12. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  13. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  14. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  15. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  16. The 7 Step Problem Solving Process

    Here are a few tips for effective problem solving: Stay Objective -Keep an open mind and avoid assumptions. Focus on facts and data. Communicate Clearly -Ensure that all stakeholders are informed and involved in the process. Think Creatively -Encourage innovative thinking and be open to unconventional solutions.

  17. The 5 Steps of Problem Solving

    The implementation of a solution requires planning and execution. It's often iterative, where the focus should be on short implementation cycles with testing and feedback, not trying to get it "perfect" the first time. Input: decision; planning; hard work. Output: resolution to the problem. 5.

  18. Effective Problem-Solving Techniques in Business

    Problem solving is an increasingly important soft skill for those in business. The Future of Jobs Survey by the World Economic Forum drives this point home. According to this report, complex problem solving is identified as one of the top 15 skills that will be sought by employers in 2025, along with other soft skills such as analytical thinking, creativity and leadership.

  19. 5 Steps of Problem-Solving Approach

    See more recommendations. The 5 Steps of solving a problem is 1. Understand the problem, 2. Find Simple examples, 3. Break it down, 4. Solve and simplify and 5. Refactor your codes.

  20. Problem-Solving

    Problem-Solving Somewhat less open-ended than creative thinking is problem-solving, the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006).Problem-solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the chest is far from clear and requires skill, experience ...

  21. The Basics of Structured Problem-Solving Methodologies: DMAIC ...

    DMAIC is best suited for a complex problem, or if the risk is high. 8D is known as the Eight Disciplines of problem-solving. It consists of eight steps to solve difficult, recurring, or critical problems. The methodology consists of problem-solving tools to help you identify, correct, and eliminate the source of problems within your organization.

  22. The Problem-Solving Process

    Get unlimited access to all our career-boosting content and member benefits with our 7-day free trial. Although problem-solving is something everyone does on a daily basis, many people lack confidence in their ability. Here we look at the basic problem-solving process to help keep you on the right track.

  23. THE PROBLEM-SOLVING PROCESS Flashcards

    Step 1: Define the Problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically. Identify what standard or expectation is violated. Determine in which process the problem lies. Avoid trying to solve the problem without data.

  24. What are the 7 Steps to Problem-Solving? & Its Examples

    This problem-solving approach in education involves a systematic process of identifying, analyzing, and addressing issues to enhance the learning experience for students. 7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions,