• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Null Hypothesis: Definition, Rejecting & Examples

By Jim Frost 6 Comments

What is a Null Hypothesis?

The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test.

Photograph of Rodin's statue, The Thinker who is pondering the null hypothesis.

  • Null Hypothesis H 0 : No effect exists in the population.
  • Alternative Hypothesis H A : The effect exists in the population.

In every study or experiment, researchers assess an effect or relationship. This effect can be the effectiveness of a new drug, building material, or other intervention that has benefits. There is a benefit or connection that the researchers hope to identify. Unfortunately, no effect may exist. In statistics, we call this lack of an effect the null hypothesis. Researchers assume that this notion of no effect is correct until they have enough evidence to suggest otherwise, similar to how a trial presumes innocence.

In this context, the analysts don’t necessarily believe the null hypothesis is correct. In fact, they typically want to reject it because that leads to more exciting finds about an effect or relationship. The new vaccine works!

You can think of it as the default theory that requires sufficiently strong evidence to reject. Like a prosecutor, researchers must collect sufficient evidence to overturn the presumption of no effect. Investigators must work hard to set up a study and a data collection system to obtain evidence that can reject the null hypothesis.

Related post : What is an Effect in Statistics?

Null Hypothesis Examples

Null hypotheses start as research questions that the investigator rephrases as a statement indicating there is no effect or relationship.

Does the vaccine prevent infections? The vaccine does not affect the infection rate.
Does the new additive increase product strength? The additive does not affect mean product strength.
Does the exercise intervention increase bone mineral density? The intervention does not affect bone mineral density.
As screen time increases, does test performance decrease? There is no relationship between screen time and test performance.

After reading these examples, you might think they’re a bit boring and pointless. However, the key is to remember that the null hypothesis defines the condition that the researchers need to discredit before suggesting an effect exists.

Let’s see how you reject the null hypothesis and get to those more exciting findings!

When to Reject the Null Hypothesis

So, you want to reject the null hypothesis, but how and when can you do that? To start, you’ll need to perform a statistical test on your data. The following is an overview of performing a study that uses a hypothesis test.

The first step is to devise a research question and the appropriate null hypothesis. After that, the investigators need to formulate an experimental design and data collection procedures that will allow them to gather data that can answer the research question. Then they collect the data. For more information about designing a scientific study that uses statistics, read my post 5 Steps for Conducting Studies with Statistics .

After data collection is complete, statistics and hypothesis testing enter the picture. Hypothesis testing takes your sample data and evaluates how consistent they are with the null hypothesis. The p-value is a crucial part of the statistical results because it quantifies how strongly the sample data contradict the null hypothesis.

When the sample data provide sufficient evidence, you can reject the null hypothesis. In a hypothesis test, this process involves comparing the p-value to your significance level .

Rejecting the Null Hypothesis

Reject the null hypothesis when the p-value is less than or equal to your significance level. Your sample data favor the alternative hypothesis, which suggests that the effect exists in the population. For a mnemonic device, remember—when the p-value is low, the null must go!

When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .

Failing to Reject the Null Hypothesis

Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis. The sample data provides insufficient data to conclude that the effect exists in the population. When the p-value is high, the null must fly!

Note that failing to reject the null is not the same as proving it. For more information about the difference, read my post about Failing to Reject the Null .

That’s a very general look at the process. But I hope you can see how the path to more exciting findings depends on being able to rule out the less exciting null hypothesis that states there’s nothing to see here!

Let’s move on to learning how to write the null hypothesis for different types of effects, relationships, and tests.

Related posts : How Hypothesis Tests Work and Interpreting P-values

How to Write a Null Hypothesis

The null hypothesis varies by the type of statistic and hypothesis test. Remember that inferential statistics use samples to draw conclusions about populations. Consequently, when you write a null hypothesis, it must make a claim about the relevant population parameter . Further, that claim usually indicates that the effect does not exist in the population. Below are typical examples of writing a null hypothesis for various parameters and hypothesis tests.

Related posts : Descriptive vs. Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics

Group Means

T-tests and ANOVA assess the differences between group means. For these tests, the null hypothesis states that there is no difference between group means in the population. In other words, the experimental conditions that define the groups do not affect the mean outcome. Mu (µ) is the population parameter for the mean, and you’ll need to include it in the statement for this type of study.

For example, an experiment compares the mean bone density changes for a new osteoporosis medication. The control group does not receive the medicine, while the treatment group does. The null states that the mean bone density changes for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group means are equal in the population: µ 1 = µ 2 , or µ 1 – µ 2 = 0
  • Alternative Hypothesis H A : Group means are not equal in the population: µ 1 ≠ µ 2 , or µ 1 – µ 2 ≠ 0.

Group Proportions

Proportions tests assess the differences between group proportions. For these tests, the null hypothesis states that there is no difference between group proportions. Again, the experimental conditions did not affect the proportion of events in the groups. P is the population proportion parameter that you’ll need to include.

For example, a vaccine experiment compares the infection rate in the treatment group to the control group. The treatment group receives the vaccine, while the control group does not. The null states that the infection rates for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group proportions are equal in the population: p 1 = p 2 .
  • Alternative Hypothesis H A : Group proportions are not equal in the population: p 1 ≠ p 2 .

Correlation and Regression Coefficients

Some studies assess the relationship between two continuous variables rather than differences between groups.

In these studies, analysts often use either correlation or regression analysis . For these tests, the null states that there is no relationship between the variables. Specifically, it says that the correlation or regression coefficient is zero. As one variable increases, there is no tendency for the other variable to increase or decrease. Rho (ρ) is the population correlation parameter and beta (β) is the regression coefficient parameter.

For example, a study assesses the relationship between screen time and test performance. The null states that there is no correlation between this pair of variables. As screen time increases, test performance does not tend to increase or decrease.

  • Null Hypothesis H 0 : The correlation in the population is zero: ρ = 0.
  • Alternative Hypothesis H A : The correlation in the population is not zero: ρ ≠ 0.

For all these cases, the analysts define the hypotheses before the study. After collecting the data, they perform a hypothesis test to determine whether they can reject the null hypothesis.

The preceding examples are all for two-tailed hypothesis tests. To learn about one-tailed tests and how to write a null hypothesis for them, read my post One-Tailed vs. Two-Tailed Tests .

Related post : Understanding Correlation

Neyman, J; Pearson, E. S. (January 1, 1933).  On the Problem of the most Efficient Tests of Statistical Hypotheses .  Philosophical Transactions of the Royal Society A .  231  (694–706): 289–337.

Share this:

how to find the null hypothesis

Reader Interactions

' src=

January 11, 2024 at 2:57 pm

Thanks for the reply.

January 10, 2024 at 1:23 pm

Hi Jim, In your comment you state that equivalence test null and alternate hypotheses are reversed. For hypothesis tests of data fits to a probability distribution, the null hypothesis is that the probability distribution fits the data. Is this correct?

' src=

January 10, 2024 at 2:15 pm

Those two separate things, equivalence testing and normality tests. But, yes, you’re correct for both.

Hypotheses are switched for equivalence testing. You need to “work” (i.e., collect a large sample of good quality data) to be able to reject the null that the groups are different to be able to conclude they’re the same.

With typical hypothesis tests, if you have low quality data and a low sample size, you’ll fail to reject the null that they’re the same, concluding they’re equivalent. But that’s more a statement about the low quality and small sample size than anything to do with the groups being equal.

So, equivalence testing make you work to obtain a finding that the groups are the same (at least within some amount you define as a trivial difference).

For normality testing, and other distribution tests, the null states that the data follow the distribution (normal or whatever). If you reject the null, you have sufficient evidence to conclude that your sample data don’t follow the probability distribution. That’s a rare case where you hope to fail to reject the null. And it suffers from the problem I describe above where you might fail to reject the null simply because you have a small sample size. In that case, you’d conclude the data follow the probability distribution but it’s more that you don’t have enough data for the test to register the deviation. In this scenario, if you had a larger sample size, you’d reject the null and conclude it doesn’t follow that distribution.

I don’t know of any equivalence testing type approach for distribution fit tests where you’d need to work to show the data follow a distribution, although I haven’t looked for one either!

' src=

February 20, 2022 at 9:26 pm

Is a null hypothesis regularly (always) stated in the negative? “there is no” or “does not”

February 23, 2022 at 9:21 pm

Typically, the null hypothesis includes an equal sign. The null hypothesis states that the population parameter equals a particular value. That value is usually one that represents no effect. In the case of a one-sided hypothesis test, the null still contains an equal sign but it’s “greater than or equal to” or “less than or equal to.” If you wanted to translate the null hypothesis from its native mathematical expression, you could use the expression “there is no effect.” But the mathematical form more specifically states what it’s testing.

It’s the alternative hypothesis that typically contains does not equal.

There are some exceptions. For example, in an equivalence test where the researchers want to show that two things are equal, the null hypothesis states that they’re not equal.

In short, the null hypothesis states the condition that the researchers hope to reject. They need to work hard to set up an experiment and data collection that’ll gather enough evidence to be able to reject the null condition.

' src=

February 15, 2022 at 9:32 am

Dear sir I always read your notes on Research methods.. Kindly tell is there any available Book on all these..wonderfull Urgent

Comments and Questions Cancel reply

Null Hypothesis Definition and Examples, How to State

What is the null hypothesis, how to state the null hypothesis, null hypothesis overview.

how to find the null hypothesis

Why is it Called the “Null”?

The word “null” in this context means that it’s a commonly accepted fact that researchers work to nullify . It doesn’t mean that the statement is null (i.e. amounts to nothing) itself! (Perhaps the term should be called the “nullifiable hypothesis” as that might cause less confusion).

Why Do I need to Test it? Why not just prove an alternate one?

The short answer is, as a scientist, you are required to ; It’s part of the scientific process. Science uses a battery of processes to prove or disprove theories, making sure than any new hypothesis has no flaws. Including both a null and an alternate hypothesis is one safeguard to ensure your research isn’t flawed. Not including the null hypothesis in your research is considered very bad practice by the scientific community. If you set out to prove an alternate hypothesis without considering it, you are likely setting yourself up for failure. At a minimum, your experiment will likely not be taken seriously.

null hypothesis

  • Null hypothesis : H 0 : The world is flat.
  • Alternate hypothesis: The world is round.

Several scientists, including Copernicus , set out to disprove the null hypothesis. This eventually led to the rejection of the null and the acceptance of the alternate. Most people accepted it — the ones that didn’t created the Flat Earth Society !. What would have happened if Copernicus had not disproved the it and merely proved the alternate? No one would have listened to him. In order to change people’s thinking, he first had to prove that their thinking was wrong .

How to State the Null Hypothesis from a Word Problem

You’ll be asked to convert a word problem into a hypothesis statement in statistics that will include a null hypothesis and an alternate hypothesis . Breaking your problem into a few small steps makes these problems much easier to handle.

how to state the null hypothesis

Step 2: Convert the hypothesis to math . Remember that the average is sometimes written as μ.

H 1 : μ > 8.2

Broken down into (somewhat) English, that’s H 1 (The hypothesis): μ (the average) > (is greater than) 8.2

Step 3: State what will happen if the hypothesis doesn’t come true. If the recovery time isn’t greater than 8.2 weeks, there are only two possibilities, that the recovery time is equal to 8.2 weeks or less than 8.2 weeks.

H 0 : μ ≤ 8.2

Broken down again into English, that’s H 0 (The null hypothesis): μ (the average) ≤ (is less than or equal to) 8.2

How to State the Null Hypothesis: Part Two

But what if the researcher doesn’t have any idea what will happen.

Example Problem: A researcher is studying the effects of radical exercise program on knee surgery patients. There is a good chance the therapy will improve recovery time, but there’s also the possibility it will make it worse. Average recovery times for knee surgery patients is 8.2 weeks. 

Step 1: State what will happen if the experiment doesn’t make any difference. That’s the null hypothesis–that nothing will happen. In this experiment, if nothing happens, then the recovery time will stay at 8.2 weeks.

H 0 : μ = 8.2

Broken down into English, that’s H 0 (The null hypothesis): μ (the average) = (is equal to) 8.2

Step 2: Figure out the alternate hypothesis . The alternate hypothesis is the opposite of the null hypothesis. In other words, what happens if our experiment makes a difference?

H 1 : μ ≠ 8.2

In English again, that’s H 1 (The  alternate hypothesis): μ (the average) ≠ (is not equal to) 8.2

That’s How to State the Null Hypothesis!

Check out our Youtube channel for more stats tips!

Gonick, L. (1993). The Cartoon Guide to Statistics . HarperPerennial. Kotz, S.; et al., eds. (2006), Encyclopedia of Statistical Sciences , Wiley.

What is The Null Hypothesis & When Do You Reject The Null Hypothesis

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.

The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

The null hypothesis is the statement that a researcher or an investigator wants to disprove.

Testing the null hypothesis can tell you whether your results are due to the effects of manipulating ​ the dependent variable or due to random chance. 

How to Write a Null Hypothesis

Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.

It is a default position that your research aims to challenge or confirm.

For example, if studying the impact of exercise on weight loss, your null hypothesis might be:

There is no significant difference in weight loss between individuals who exercise daily and those who do not.

Examples of Null Hypotheses

Research QuestionNull Hypothesis
Do teenagers use cell phones more than adults?Teenagers and adults use cell phones the same amount.
Do tomato plants exhibit a higher rate of growth when planted in compost rather than in soil?Tomato plants show no difference in growth rates when planted in compost rather than soil.
Does daily meditation decrease the incidence of depression?Daily meditation does not decrease the incidence of depression.
Does daily exercise increase test performance?There is no relationship between daily exercise time and test performance.
Does the new vaccine prevent infections?The vaccine does not affect the infection rate.
Does flossing your teeth affect the number of cavities?Flossing your teeth has no effect on the number of cavities.

When Do We Reject The Null Hypothesis? 

We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected. 

Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).

If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables. 

You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.

Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.

The level of statistical significance is often expressed as a  p  -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.

When your p-value is less than or equal to your significance level, you reject the null hypothesis.

In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.

In this case, the sample data provides insufficient data to conclude that the effect exists in the population.

Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.

When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.

Why Do We Never Accept The Null Hypothesis?

The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.

A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. 

It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null. 

One can either reject the null hypothesis, or fail to reject it, but can never accept it.

Why Do We Use The Null Hypothesis?

We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.

The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).

A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.

Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists. 

Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.

It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter. 

Purpose of a Null Hypothesis 

  • The primary purpose of the null hypothesis is to disprove an assumption. 
  • Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
  • A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.

Do you always need both a Null Hypothesis and an Alternative Hypothesis?

The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true. 

While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables. 

The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study. 

What is the difference between a null hypothesis and an alternative hypothesis?

The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.

It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.

What are some problems with the null hypothesis?

One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.

Why can a null hypothesis not be accepted?

We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.

We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.

Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.

If the p-value is greater than the significance level, then you fail to reject the null hypothesis.

Is a null hypothesis directional or non-directional?

A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.

A nondirectional hypothesis contains the not equal sign (“≠”).  However, a null hypothesis is neither directional nor non-directional.

A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.

The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.

Gill, J. (1999). The insignificance of null hypothesis significance testing.  Political research quarterly ,  52 (3), 647-674.

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method.  American Psychologist ,  56 (1), 16.

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.  Behavior research methods ,  43 , 679-690.

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy.  Psychological methods ,  5 (2), 241.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test.  Psychological bulletin ,  57 (5), 416.

Print Friendly, PDF & Email

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 29, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

  • Math Article

Null Hypothesis

Class Registration Banner

In mathematics, Statistics deals with the study of research and surveys on the numerical data. For taking surveys, we have to define the hypothesis. Generally, there are two types of hypothesis. One is a null hypothesis, and another is an alternative hypothesis .

In probability and statistics, the null hypothesis is a comprehensive statement or default status that there is zero happening or nothing happening. For example, there is no connection among groups or no association between two measured events. It is generally assumed here that the hypothesis is true until any other proof has been brought into the light to deny the hypothesis. Let us learn more here with definition, symbol, principle, types and example, in this article.

Table of contents:

  • Comparison with Alternative Hypothesis

Null Hypothesis Definition

The null hypothesis is a kind of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data. This hypothesis is either rejected or not rejected based on the viability of the given population or sample . In other words, the null hypothesis is a hypothesis in which the sample observations results from the chance. It is said to be a statement in which the surveyors wants to examine the data. It is denoted by H 0 .

Null Hypothesis Symbol

In statistics, the null hypothesis is usually denoted by letter H with subscript ‘0’ (zero), such that H 0 . It is pronounced as H-null or H-zero or H-nought. At the same time, the alternative hypothesis expresses the observations determined by the non-random cause. It is represented by H 1 or H a .

Null Hypothesis Principle

The principle followed for null hypothesis testing is, collecting the data and determining the chances of a given set of data during the study on some random sample, assuming that the null hypothesis is true. In case if the given data does not face the expected null hypothesis, then the outcome will be quite weaker, and they conclude by saying that the given set of data does not provide strong evidence against the null hypothesis because of insufficient evidence. Finally, the researchers tend to reject that.

Null Hypothesis Formula

Here, the hypothesis test formulas are given below for reference.

The formula for the null hypothesis is:

H 0 :  p = p 0

The formula for the alternative hypothesis is:

H a = p >p 0 , < p 0 ≠ p 0

The formula for the test static is:

Remember that,  p 0  is the null hypothesis and p – hat is the sample proportion.

Also, read:

Types of Null Hypothesis

There are different types of hypothesis. They are:

Simple Hypothesis

It completely specifies the population distribution. In this method, the sampling distribution is the function of the sample size.

Composite Hypothesis

The composite hypothesis is one that does not completely specify the population distribution.

Exact Hypothesis

Exact hypothesis defines the exact value of the parameter. For example μ= 50

Inexact Hypothesis

This type of hypothesis does not define the exact value of the parameter. But it denotes a specific range or interval. For example 45< μ <60

Null Hypothesis Rejection

Sometimes the null hypothesis is rejected too. If this hypothesis is rejected means, that research could be invalid. Many researchers will neglect this hypothesis as it is merely opposite to the alternate hypothesis. It is a better practice to create a hypothesis and test it. The goal of researchers is not to reject the hypothesis. But it is evident that a perfect statistical model is always associated with the failure to reject the null hypothesis.

How do you Find the Null Hypothesis?

The null hypothesis says there is no correlation between the measured event (the dependent variable) and the independent variable. We don’t have to believe that the null hypothesis is true to test it. On the contrast, you will possibly assume that there is a connection between a set of variables ( dependent and independent).

When is Null Hypothesis Rejected?

The null hypothesis is rejected using the P-value approach. If the P-value is less than or equal to the α, there should be a rejection of the null hypothesis in favour of the alternate hypothesis. In case, if P-value is greater than α, the null hypothesis is not rejected.

Null Hypothesis and Alternative Hypothesis

Now, let us discuss the difference between the null hypothesis and the alternative hypothesis.

1

The null hypothesis is a statement. There exists no relation between two variables

Alternative hypothesis a statement, there exists some relationship between two measured phenomenon

2

Denoted by H

Denoted by H

3

The observations of this hypothesis are the result of chance

The observations of this hypothesis are the result of real effect

4

The mathematical formulation of the null hypothesis is an equal sign

The mathematical formulation alternative hypothesis is an inequality sign such as greater than, less than, etc.

Null Hypothesis Examples

Here, some of the examples of the null hypothesis are given below. Go through the below ones to understand the concept of the null hypothesis in a better way.

If a medicine reduces the risk of cardiac stroke, then the null hypothesis should be “the medicine does not reduce the chance of cardiac stroke”. This testing can be performed by the administration of a drug to a certain group of people in a controlled way. If the survey shows that there is a significant change in the people, then the hypothesis is rejected.

Few more examples are:

1). Are there is 100% chance of getting affected by dengue?

Ans: There could be chances of getting affected by dengue but not 100%.

2). Do teenagers are using mobile phones more than grown-ups to access the internet?

Ans: Age has no limit on using mobile phones to access the internet.

3). Does having apple daily will not cause fever?

Ans: Having apple daily does not assure of not having fever, but increases the immunity to fight against such diseases.

4). Do the children more good in doing mathematical calculations than grown-ups?

Ans: Age has no effect on Mathematical skills.

In many common applications, the choice of the null hypothesis is not automated, but the testing and calculations may be automated. Also, the choice of the null hypothesis is completely based on previous experiences and inconsistent advice. The choice can be more complicated and based on the variety of applications and the diversity of the objectives. 

The main limitation for the choice of the null hypothesis is that the hypothesis suggested by the data is based on the reasoning which proves nothing. It means that if some hypothesis provides a summary of the data set, then there would be no value in the testing of the hypothesis on the particular set of data. 

Frequently Asked Questions on Null Hypothesis

What is meant by the null hypothesis.

In Statistics, a null hypothesis is a type of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data.

What are the benefits of hypothesis testing?

Hypothesis testing is defined as a form of inferential statistics, which allows making conclusions from the entire population based on the sample representative.

When a null hypothesis is accepted and rejected?

The null hypothesis is either accepted or rejected in terms of the given data. If P-value is less than α, then the null hypothesis is rejected in favor of the alternative hypothesis, and if the P-value is greater than α, then the null hypothesis is accepted in favor of the alternative hypothesis.

Why is the null hypothesis important?

The importance of the null hypothesis is that it provides an approximate description of the phenomena of the given data. It allows the investigators to directly test the relational statement in a research study.

How to accept or reject the null hypothesis in the chi-square test?

If the result of the chi-square test is bigger than the critical value in the table, then the data does not fit the model, which represents the rejection of the null hypothesis.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Maths related queries and study materials

Your result is as below

Request OTP on Voice Call

MATHS Related Links

how to find the null hypothesis

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

equal (=) not equal (≠)
greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing

Writing Null Hypotheses in Research and Statistics

Last Updated: January 17, 2024 Fact Checked

This article was co-authored by Joseph Quinones and by wikiHow staff writer, Jennifer Mueller, JD . Joseph Quinones is a High School Physics Teacher working at South Bronx Community Charter High School. Joseph specializes in astronomy and astrophysics and is interested in science education and science outreach, currently practicing ways to make physics accessible to more students with the goal of bringing more students of color into the STEM fields. He has experience working on Astrophysics research projects at the Museum of Natural History (AMNH). Joseph recieved his Bachelor's degree in Physics from Lehman College and his Masters in Physics Education from City College of New York (CCNY). He is also a member of a network called New York City Men Teach. There are 7 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 29,126 times.

Are you working on a research project and struggling with how to write a null hypothesis? Well, you've come to the right place! Start by recognizing that the basic definition of "null" is "none" or "zero"—that's your biggest clue as to what a null hypothesis should say. Keep reading to learn everything you need to know about the null hypothesis, including how it relates to your research question and your alternative hypothesis as well as how to use it in different types of studies.

Things You Should Know

  • Write a research null hypothesis as a statement that the studied variables have no relationship to each other, or that there's no difference between 2 groups.

{\displaystyle \mu _{1}=\mu _{2}}

  • Adjust the format of your null hypothesis to match the statistical method you used to test it, such as using "mean" if you're comparing the mean between 2 groups.

What is a null hypothesis?

A null hypothesis states that there's no relationship between 2 variables.

  • Research hypothesis: States in plain language that there's no relationship between the 2 variables or there's no difference between the 2 groups being studied.
  • Statistical hypothesis: States the predicted outcome of statistical analysis through a mathematical equation related to the statistical method you're using.

Examples of Null Hypotheses

Step 1 Research question:

Null Hypothesis vs. Alternative Hypothesis

Step 1 Null hypotheses and alternative hypotheses are mutually exclusive.

  • For example, your alternative hypothesis could state a positive correlation between 2 variables while your null hypothesis states there's no relationship. If there's a negative correlation, then both hypotheses are false.

Step 2 Proving the null hypothesis false is a precursor to proving the alternative.

  • You need additional data or evidence to show that your alternative hypothesis is correct—proving the null hypothesis false is just the first step.
  • In smaller studies, sometimes it's enough to show that there's some relationship and your hypothesis could be correct—you can leave the additional proof as an open question for other researchers to tackle.

How do I test a null hypothesis?

Use statistical methods on collected data to test the null hypothesis.

  • Group means: Compare the mean of the variable in your sample with the mean of the variable in the general population. [6] X Research source
  • Group proportions: Compare the proportion of the variable in your sample with the proportion of the variable in the general population. [7] X Research source
  • Correlation: Correlation analysis looks at the relationship between 2 variables—specifically, whether they tend to happen together. [8] X Research source
  • Regression: Regression analysis reveals the correlation between 2 variables while also controlling for the effect of other, interrelated variables. [9] X Research source

Templates for Null Hypotheses

Step 1 Group means

  • Research null hypothesis: There is no difference in the mean [dependent variable] between [group 1] and [group 2].

{\displaystyle \mu _{1}+\mu _{2}=0}

  • Research null hypothesis: The proportion of [dependent variable] in [group 1] and [group 2] is the same.

{\displaystyle p_{1}=p_{2}}

  • Research null hypothesis: There is no correlation between [independent variable] and [dependent variable] in the population.

\rho =0

  • Research null hypothesis: There is no relationship between [independent variable] and [dependent variable] in the population.

{\displaystyle \beta =0}

Expert Q&A

Joseph Quinones

You Might Also Like

Write an Essay

Expert Interview

how to find the null hypothesis

Thanks for reading our article! If you’d like to learn more about physics, check out our in-depth interview with Joseph Quinones .

  • ↑ https://online.stat.psu.edu/stat100/lesson/10/10.1
  • ↑ https://online.stat.psu.edu/stat501/lesson/2/2.12
  • ↑ https://support.minitab.com/en-us/minitab/21/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/null-and-alternative-hypotheses/
  • ↑ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635437/
  • ↑ https://online.stat.psu.edu/statprogram/reviews/statistical-concepts/hypothesis-testing
  • ↑ https://education.arcus.chop.edu/null-hypothesis-testing/
  • ↑ https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_hypothesistest-means-proportions/bs704_hypothesistest-means-proportions_print.html

About This Article

Joseph Quinones

  • Send fan mail to authors

Reader Success Stories

Mogens Get

Dec 3, 2022

Did this article help you?

how to find the null hypothesis

Featured Articles

Protect Yourself from Predators (for Kids)

Trending Articles

Superhero Name Generator

Watch Articles

Wear a Headband

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

Hypothesis Testing Calculator

$H_o$:
$H_a$: μ μ₀
$n$ =   $\bar{x}$ =   =
$\text{Test Statistic: }$ =
$\text{Degrees of Freedom: } $ $df$ =
$ \text{Level of Significance: } $ $\alpha$ =

Type II Error

$H_o$: $\mu$
$H_a$: $\mu$ $\mu_0$
$n$ =   σ =   $\mu$ =
$\text{Level of Significance: }$ $\alpha$ =

The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is known as a t test and we use the t distribution. Use of the t distribution relies on the degrees of freedom, which is equal to the sample size minus one. Furthermore, if the population standard deviation σ is unknown, the sample standard deviation s is used instead. To switch from σ known to σ unknown, click on $\boxed{\sigma}$ and select $\boxed{s}$ in the Hypothesis Testing Calculator.

$\sigma$ Known $\sigma$ Unknown
Test Statistic $ z = \dfrac{\bar{x}-\mu_0}{\sigma/\sqrt{{\color{Black} n}}} $ $ t = \dfrac{\bar{x}-\mu_0}{s/\sqrt{n}} $

Next, the test statistic is used to conduct the test using either the p-value approach or critical value approach. The particular steps taken in each approach largely depend on the form of the hypothesis test: lower tail, upper tail or two-tailed. The form can easily be identified by looking at the alternative hypothesis (H a ). If there is a less than sign in the alternative hypothesis then it is a lower tail test, greater than sign is an upper tail test and inequality is a two-tailed test. To switch from a lower tail test to an upper tail or two-tailed test, click on $\boxed{\geq}$ and select $\boxed{\leq}$ or $\boxed{=}$, respectively.

Lower Tail Test Upper Tail Test Two-Tailed Test
$H_0 \colon \mu \geq \mu_0$ $H_0 \colon \mu \leq \mu_0$ $H_0 \colon \mu = \mu_0$
$H_a \colon \mu $H_a \colon \mu \neq \mu_0$

In the p-value approach, the test statistic is used to calculate a p-value. If the test is a lower tail test, the p-value is the probability of getting a value for the test statistic at least as small as the value from the sample. If the test is an upper tail test, the p-value is the probability of getting a value for the test statistic at least as large as the value from the sample. In a two-tailed test, the p-value is the probability of getting a value for the test statistic at least as unlikely as the value from the sample.

To test the hypothesis in the p-value approach, compare the p-value to the level of significance. If the p-value is less than or equal to the level of signifance, reject the null hypothesis. If the p-value is greater than the level of significance, do not reject the null hypothesis. This method remains unchanged regardless of whether it's a lower tail, upper tail or two-tailed test. To change the level of significance, click on $\boxed{.05}$. Note that if the test statistic is given, you can calculate the p-value from the test statistic by clicking on the switch symbol twice.

In the critical value approach, the level of significance ($\alpha$) is used to calculate the critical value. In a lower tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the lower tail of the sampling distribution of the test statistic. In an upper tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the upper tail of the sampling distribution of the test statistic. In a two-tailed test, the critical values are the values of the test statistic providing areas of $\alpha / 2$ in the lower and upper tail of the sampling distribution of the test statistic.

To test the hypothesis in the critical value approach, compare the critical value to the test statistic. Unlike the p-value approach, the method we use to decide whether to reject the null hypothesis depends on the form of the hypothesis test. In a lower tail test, if the test statistic is less than or equal to the critical value, reject the null hypothesis. In an upper tail test, if the test statistic is greater than or equal to the critical value, reject the null hypothesis. In a two-tailed test, if the test statistic is less than or equal the lower critical value or greater than or equal to the upper critical value, reject the null hypothesis.

Lower Tail Test Upper Tail Test Two-Tailed Test
If $z \leq -z_\alpha$, reject $H_0$. If $z \geq z_\alpha$, reject $H_0$. If $z \leq -z_{\alpha/2}$ or $z \geq z_{\alpha/2}$, reject $H_0$.
If $t \leq -t_\alpha$, reject $H_0$. If $t \geq t_\alpha$, reject $H_0$. If $t \leq -t_{\alpha/2}$ or $t \geq t_{\alpha/2}$, reject $H_0$.

When conducting a hypothesis test, there is always a chance that you come to the wrong conclusion. There are two types of errors you can make: Type I Error and Type II Error. A Type I Error is committed if you reject the null hypothesis when the null hypothesis is true. Ideally, we'd like to accept the null hypothesis when the null hypothesis is true. A Type II Error is committed if you accept the null hypothesis when the alternative hypothesis is true. Ideally, we'd like to reject the null hypothesis when the alternative hypothesis is true.

Condition
$H_0$ True $H_a$ True
Conclusion Accept $H_0$ Correct Type II Error
Reject $H_0$ Type I Error Correct

Hypothesis testing is closely related to the statistical area of confidence intervals. If the hypothesized value of the population mean is outside of the confidence interval, we can reject the null hypothesis. Confidence intervals can be found using the Confidence Interval Calculator . The calculator on this page does hypothesis tests for one population mean. Sometimes we're interest in hypothesis tests about two population means. These can be solved using the Two Population Calculator . The probability of a Type II Error can be calculated by clicking on the link at the bottom of the page.

  • Null hypothesis

by Marco Taboga , PhD

In a test of hypothesis , a sample of data is used to decide whether to reject or not to reject a hypothesis about the probability distribution from which the sample was extracted.

The hypothesis is called the null hypothesis, or simply "the null".

Things a data scientist should know: 1) the criminal trial analogy; 2) the role of the test statistic; 3) failure to reject may be due to lack of power; 4) Rejection may be due to misspecification.

Table of contents

The null is like the defendant in a criminal trial

How is the null hypothesis tested, example 1 - proportion of defective items, measurement, test statistic, critical region, interpretation, example 2 - reliability of a production plant, rejection and failure to reject, not rejecting and accepting are not the same thing, failure to reject can be due to lack of power, rejections are easier to interpret, but be careful, takeaways - how to (and not to) formulate a null hypothesis, more examples, more details, best practices in science, keep reading the glossary.

Formulating null hypotheses and subjecting them to statistical testing is one of the workhorses of the scientific method.

Scientists in all fields make conjectures about the phenomena they study, translate them into null hypotheses and gather data to test them.

This process resembles a trial:

the defendant (the null hypothesis) is accused of being guilty (wrong);

evidence (data) is gathered in order to prove the defendant guilty (reject the null);

if there is evidence beyond any reasonable doubt, the defendant is found guilty (the null is rejected);

otherwise, the defendant is found not guilty (the null is not rejected).

Keep this analogy in mind because it helps to better understand statistical tests, their limitations, use and misuse, and frequent misinterpretation.

The null hypothesis is like the defendant in a criminal trial.

Before collecting the data:

we decide how to summarize the relevant characteristics of the sample data in a single number, the so-called test statistic ;

we derive the probability distribution of the test statistic under the hypothesis that the null is true (the data is regarded as random; therefore, the test statistic is a random variable);

we decide what probability of incorrectly rejecting the null we are willing to tolerate (the level of significance , or size of the test ); the level of significance is typically a small number, such as 5% or 1%.

we choose one or more intervals of values (collectively called rejection region) such that the probability that the test statistic falls within these intervals is equal to the desired level of significance; the rejection region is often a tail of the distribution of the test statistic (one-tailed test) or the union of the left and right tails (two-tailed test).

The rejection region is a set of values that the test statistic is unlikely to take if the null hypothesis is true.

Then, the data is collected and used to compute the value of the test statistic.

A decision is taken as follows:

if the test statistic falls within the rejection region, then the null hypothesis is rejected;

otherwise, it is not rejected.

The probability distribution of the test statistic and the rejection region depend on the null hypothesis.

We now make two examples of practical problems that lead to formulate and test a null hypothesis.

A new method is proposed to produce light bulbs.

The proponents claim that it produces less defective bulbs than the method currently in use.

To check the claim, we can set up a statistical test as follows.

We keep the light bulbs on for 10 consecutive days, and then we record whether they are still working at the end of the test period.

The probability that a light bulb produced with the new method is still working at the end of the test period is the same as that of a light bulb produced with the old method.

100 light bulbs are tested:

50 of them are produced with the new method (group A)

the remaining 50 are produced with the old method (group B).

The final data comprises 100 observations of:

an indicator variable which is equal to 1 if the light bulb is still working at the end of the test period and 0 otherwise;

a categorical variable that records the group (A or B) to which each light bulb belongs.

We use the data to compute the proportions of working light bulbs in groups A and B.

The proportions are estimates of the probabilities of not being defective, which are equal for the two groups under the null hypothesis.

We then compute a z-statistic (see here for details) by:

taking the difference between the proportion in group A and the proportion in group B;

standardizing the difference:

we subtract the expected value (which is zero under the null hypothesis);

we divide by the standard deviation (it can be derived analytically).

The distribution of the z-statistic can be approximated by a standard normal distribution .

The z-statistic has a normal distribution with zero mean and variance equal to one.

We decide that the level of confidence must be 5%. In other words, we are going to tolerate a 5% probability of incorrectly rejecting the null hypothesis.

The critical region is the right 5%-tail of the normal distribution, that is, the set of all values greater than 1.645 (see the glossary entry on critical values if you are wondering how this value was obtained).

If the test statistic is greater than 1.645, then the null hypothesis is rejected; otherwise, it is not rejected.

A rejection is interpreted as significant evidence that the new production method produces less defective items; failure to reject is interpreted as insufficient evidence that the new method is better.

The null hypothesis is rejected when the test statistic falls in the tails of the distribution.

A production plant incurs high costs when production needs to be halted because some machinery fails.

The plant manager has decided that he is not willing to tolerate more than one halt per year on average.

If the expected number of halts per year is greater than 1, he will make new investments in order to improve the reliability of the plant.

A statistical test is set up as follows.

The reliability of the plant is measured by the number of halts.

The number of halts in a year is assumed to have a Poisson distribution with expected value equal to 1 (using the Poisson distribution is common in reliability testing).

The manager cannot wait more than one year before taking a decision.

There will be a single datum at his disposal: the number of halts observed during one year.

The number of halts is used as a test statistic. By assumption, it has a Poisson distribution under the null hypothesis.

The manager decides that the probability of incorrectly rejecting the null can be at most 10%.

A Poisson random variable with expected value equal to 1 takes values:

larger than 1 with probability 26.42%;

larger than 2 with probability 8.03%.

Therefore, it is decided that the critical region will be the set of all values greater than or equal to 3.

If the test statistic is strictly greater than or equal to 3, then the null is rejected; otherwise, it is not rejected.

A rejection is interpreted as significant evidence that the production plant is not reliable enough (the average number of halts per year is significantly larger than tolerated).

Failure to reject is interpreted as insufficient evidence that the plant is unreliable.

Failure to reject the null hypothesis is interpreted as insufficient evidence.

This section discusses the main problems that arise in the interpretation of the outcome of a statistical test (reject / not reject).

When the test statistic does not fall within the critical region, then we do not reject the null hypothesis.

Does this mean that we accept the null? Not really.

In general, failure to reject does not constitute, per se, strong evidence that the null hypothesis is true .

Remember the analogy between hypothesis testing and a criminal trial. In a trial, when the defendant is declared not guilty, this does not mean that the defendant is innocent. It only means that there was not enough evidence (not beyond any reasonable doubt) against the defendant.

In turn, lack of evidence can be due:

either to the fact that the defendant is innocent ;

or to the fact that the prosecution has not been able to provide enough evidence against the defendant, even if the latter is guilty .

This is the very reason why courts do not declare defendants innocent, but they use the locution "not guilty".

In a similar fashion, statisticians do not say that the null hypothesis has been accepted, but they say that it has not been rejected.

Failure to reject does not imply acceptance.

To better understand why failure to reject does not in general constitute strong evidence that the null hypothesis is true, we need to use the concept of statistical power .

The power of a test is the probability (calculated ex-ante, i.e., before observing the data) that the null will be rejected when another hypothesis (called the alternative hypothesis ) is true.

Let's consider the first of the two examples above (the production of light bulbs).

In that example, the null hypothesis is: the probability that a light bulb is defective does not decrease after introducing a new production method.

Let's make the alternative hypothesis that the probability of being defective is 1% smaller after changing the production process (assume that a 1% decrease is considered a meaningful improvement by engineers).

How much is the ex-ante probability of rejecting the null if the alternative hypothesis is true?

If this probability (the power of the test) is small, then it is very likely that we will not reject the null even if it is wrong.

If we use the analogy with criminal trials, low power means that most likely the prosecution will not be able to provide sufficient evidence, even if the defendant is guilty.

Thus, in the case of lack of power, failure to reject is almost meaningless (it was anyway highly likely).

This is why, before performing a test, it is good statistical practice to compute its power against a relevant alternative .

If the power is found to be too small, there are usually remedies. In particular, statistical power can usually be increased by increasing the sample size (see, e.g., the lecture on hypothesis tests about the mean ).

The best practice is to compute the power of the test, that is, the probability of rejecting the null hypothesis when the alternative is true.

As we have explained above, interpreting a failure to reject the null hypothesis is not always straightforward. Instead, interpreting a rejection is somewhat easier.

When we reject the null, we know that the data has provided a lot of evidence against the null. In other words, it is unlikely (how unlikely depends on the size of the test) that the null is true given the data we have observed.

There is an important caveat though. The null hypothesis is often made up of several assumptions, including:

the main assumption (the one we are testing);

other assumptions (e.g., technical assumptions) that we need to make in order to set up the hypothesis test.

For instance, in Example 2 above (reliability of a production plant), the main assumption is that the expected number of production halts per year is equal to 1. But there is also a technical assumption: the number of production halts has a Poisson distribution.

It must be kept in mind that a rejection is always a joint rejection of the main assumption and all the other assumptions .

Therefore, we should always ask ourselves whether the null has been rejected because the main assumption is wrong or because the other assumptions are violated.

In the case of Example 2 above, is a rejection of the null due to the fact that the expected number of halts is greater than 1 or is it due to the fact that the distribution of the number of halts is very different from a Poisson distribution?

When we suspect that a rejection is due to the inappropriateness of some technical assumption (e.g., assuming a Poisson distribution in the example), we say that the rejection could be due to misspecification of the model .

The right thing to do when these kind of suspicions arise is to conduct so-called robustness checks , that is, to change the technical assumptions and carry out the test again.

In our example, we could re-run the test by assuming a different probability distribution for the number of halts (e.g., a negative binomial or a compound Poisson - do not worry if you have never heard about these distributions).

If we keep obtaining a rejection of the null even after changing the technical assumptions several times, the we say that our rejection is robust to several different specifications of the model .

Even if the null hypothesis is true, a wrong technical assumption can lead to reject the null too often.

What are the main practical implications of everything we have said thus far? How does the theory above help us to set up and test a null hypothesis?

What we said can be summarized in the following guiding principles:

A test of hypothesis is like a criminal trial and you are the prosecutor . You want to find evidence that the defendant (the null hypothesis) is guilty. Your job is not to prove that the defendant is innocent. If you find yourself hoping that the defendant is found not guilty (i.e., the null is not rejected) then something is wrong with the way you set up the test. Remember: you are the prosecutor.

Compute the power of your test against one or more relevant alternative hypotheses. Do not run a test if you know ex-ante that it is unlikely to reject the null when the alternative hypothesis is true.

Beware of technical assumptions that you add to the main assumption you want to test. Make robustness checks in order to verify that the outcome of the test is not biased by model misspecification.

$H_{0}$

More examples of null hypotheses and how to test them can be found in the following lectures.

Where the example is found Null hypothesis
The mean of a normal distribution is equal to a certain value
The variance of a normal distribution is equal to a certain value
A vector of parameters estimated by MLE satisfies a set of linear or non-linear restrictions
A regression coefficient is equal to a certain value

The lecture on Hypothesis testing provides a more detailed mathematical treatment of null hypotheses and how they are tested.

This lecture on the null hypothesis was featured in Stanford University's Best practices in science .

Stanford University Best Practices in Science.

Previous entry: Normal equations

Next entry: Parameter

How to cite

Please cite as:

Taboga, Marco (2021). "Null hypothesis", Lectures on probability theory and mathematical statistics. Kindle Direct Publishing. Online appendix. https://www.statlect.com/glossary/null-hypothesis.

Most of the learning materials found on this website are now available in a traditional textbook format.

  • Permutations
  • Characteristic function
  • Almost sure convergence
  • Likelihood ratio test
  • Uniform distribution
  • Bernoulli distribution
  • Multivariate normal distribution
  • Chi-square distribution
  • Maximum likelihood
  • Mathematical tools
  • Fundamentals of probability
  • Probability distributions
  • Asymptotic theory
  • Fundamentals of statistics
  • About Statlect
  • Cookies, privacy and terms of use
  • Precision matrix
  • Distribution function
  • Mean squared error
  • IID sequence
  • To enhance your privacy,
  • we removed the social buttons,
  • but don't forget to share .

Null Hypothesis and Alternative Hypothesis

  • Inferential Statistics
  • Statistics Tutorials
  • Probability & Games
  • Descriptive Statistics
  • Applications Of Statistics
  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Mathematics, Purdue University
  • M.S., Mathematics, Purdue University
  • B.A., Mathematics, Physics, and Chemistry, Anderson University

Hypothesis testing involves the careful construction of two statements: the null hypothesis and the alternative hypothesis. These hypotheses can look very similar but are actually different.

How do we know which hypothesis is the null and which one is the alternative? We will see that there are a few ways to tell the difference.

The Null Hypothesis

The null hypothesis reflects that there will be no observed effect in our experiment. In a mathematical formulation of the null hypothesis, there will typically be an equal sign. This hypothesis is denoted by H 0 .

The null hypothesis is what we attempt to find evidence against in our hypothesis test. We hope to obtain a small enough p-value that it is lower than our level of significance alpha and we are justified in rejecting the null hypothesis. If our p-value is greater than alpha, then we fail to reject the null hypothesis.

If the null hypothesis is not rejected, then we must be careful to say what this means. The thinking on this is similar to a legal verdict. Just because a person has been declared "not guilty", it does not mean that he is innocent. In the same way, just because we failed to reject a null hypothesis it does not mean that the statement is true.

For example, we may want to investigate the claim that despite what convention has told us, the mean adult body temperature is not the accepted value of 98.6 degrees Fahrenheit . The null hypothesis for an experiment to investigate this is “The mean adult body temperature for healthy individuals is 98.6 degrees Fahrenheit.” If we fail to reject the null hypothesis, then our working hypothesis remains that the average adult who is healthy has a temperature of 98.6 degrees. We do not prove that this is true.

If we are studying a new treatment, the null hypothesis is that our treatment will not change our subjects in any meaningful way. In other words, the treatment will not produce any effect in our subjects.

The Alternative Hypothesis

The alternative or experimental hypothesis reflects that there will be an observed effect for our experiment. In a mathematical formulation of the alternative hypothesis, there will typically be an inequality, or not equal to symbol. This hypothesis is denoted by either H a or by H 1 .

The alternative hypothesis is what we are attempting to demonstrate in an indirect way by the use of our hypothesis test. If the null hypothesis is rejected, then we accept the alternative hypothesis. If the null hypothesis is not rejected, then we do not accept the alternative hypothesis. Going back to the above example of mean human body temperature, the alternative hypothesis is “The average adult human body temperature is not 98.6 degrees Fahrenheit.”

If we are studying a new treatment, then the alternative hypothesis is that our treatment does, in fact, change our subjects in a meaningful and measurable way.

The following set of negations may help when you are forming your null and alternative hypotheses. Most technical papers rely on just the first formulation, even though you may see some of the others in a statistics textbook.

  • Null hypothesis: “ x is equal to y .” Alternative hypothesis “ x is not equal to y .”
  • Null hypothesis: “ x is at least y .” Alternative hypothesis “ x is less than y .”
  • Null hypothesis: “ x is at most y .” Alternative hypothesis “ x is greater than y .”
  • What 'Fail to Reject' Means in a Hypothesis Test
  • Type I and Type II Errors in Statistics
  • An Example of a Hypothesis Test
  • The Runs Test for Random Sequences
  • An Example of Chi-Square Test for a Multinomial Experiment
  • The Difference Between Type I and Type II Errors in Hypothesis Testing
  • What Level of Alpha Determines Statistical Significance?
  • What Is the Difference Between Alpha and P-Values?
  • What Is ANOVA?
  • How to Find Critical Values with a Chi-Square Table
  • Example of a Permutation Test
  • Degrees of Freedom for Independence of Variables in Two-Way Table
  • Example of an ANOVA Calculation
  • How to Find Degrees of Freedom in Statistics
  • How to Construct a Confidence Interval for a Population Proportion
  • Degrees of Freedom in Statistics and Mathematics

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

How to choose the null and alternative hypothesis?

I'm practicing with the hypothesis test and I find myself in trouble with the decision about how to set a null and an alternative hypothesis. My main issue is to determine, in every situation, a "general rule" on how I can decide correctly which is the null and which is the alternative hypothesis.. can someone help me?

Here is an example: As an established scholar, you are requested to evaluate if Customer Relationship Management affects the financial performance of firms. The main issue will be solved by means of a test of hypothesis. Two hypothesis will be tested one against the other: CRM is related to performance, CRM is not related.

  • hypothesis-testing

RedViper16's user avatar

  • 1 $\begingroup$ This tutorial video is a very good explanation if you want to learn about hypothesis testing in an intuitive approach - youtube.com/watch?v=UApFKiK4Hi8 $\endgroup$ –  London guy Commented Nov 9, 2014 at 18:58

3 Answers 3

The rule for the proper formulation of a hypothesis test is that the alternative or research hypothesis is the statement that, if true, is strongly supported by the evidence furnished by the data.

The null hypothesis is generally the complement of the alternative hypothesis. Frequently, it is (or contains) the assumption that you are making about how the data are distributed in order to calculate the test statistic.

Here are a few examples to help you understand how these are properly chosen.

Suppose I am an epidemiologist in public health, and I'm investigating whether the incidence of smoking among a certain ethnic group is greater than the population as a whole, and therefore there is a need to target anti-smoking campaigns for this sub-population through greater community outreach and education. From previous studies that have been published in the literature, I find that the incidence among the general population is $p_0$. I can then go about collecting sample data (that's actually the hard part!) to test $$H_0 : p = p_0 \quad \mathrm{vs.} \quad H_a : p > p_0.$$ This is a one-sided binomial proportion test. $H_a$ is the statement that, if it were true, would need to be strongly supported by the data we collected. It is the statement that carries the burden of proof . This is because any conclusion we draw from the test is conditional upon assuming that the null is true: either $H_a$ is accepted, or the test is inconclusive and there is insufficient evidence from the data to suggest $H_a$ is true. The choice of $H_0$ reflects the underlying assumption that there is no difference in the smoking rates of the sub-population compared to the whole.

Now suppose I am a researcher investigating a new drug that I believe to be equally effective to an existing standard of treatment, but with fewer side effects and therefore a more desirable safety profile. I would like to demonstrate the equal efficacy by conducting a bioequivalence test. If $\mu_0$ is the mean existing standard treatment effect, then my hypothesis might look like this: $$H_0 : |\mu - \mu_0| \ge \Delta \quad \mathrm{vs.} \quad H_a : |\mu - \mu_0| < \Delta,$$ for some choice of margin $\Delta$ that I consider to be clinically significant. For example, a clinician might say that two treatments are sufficiently bioequivalent if there is less than a $\Delta = 10\%$ difference in treatment effect. Note again that $H_a$ is the statement that carries the burden of proof: the data we collect must strongly support it, in order for us to accept it; otherwise, it could still be true but we don't have the evidence to support the claim .

Now suppose I am doing an analysis for a small business owner who sells three products $A$, $B$, $C$. They suspect that there is a statistically significant preference for these three products. Then my hypothesis is $$H_0 : \mu_A = \mu_B = \mu_C \quad \mathrm{vs.} \quad H_a : \exists i \ne j \text{ such that } \mu_i \ne \mu_j.$$ Really, all that $H_a$ is saying is that there are two means that are not equal to each other, which would then suggest that some difference in preference exists.

heropup's user avatar

  • $\begingroup$ Thank you so much.. Also your response has been of great help :D $\endgroup$ –  RedViper16 Commented Nov 10, 2014 at 21:25
  • $\begingroup$ The third example seems worse than the first two in that, in reality, with a finite size sample, no two distinct products will almost never sell at exactly same amount and $H_0$ as formulated above will almost always be rejected? $\endgroup$ –  qazwsx Commented Nov 21, 2015 at 20:23
  • 1 $\begingroup$ @qazwsx What one believes about the likelihood of rejecting the null hypothesis has no bearing on the appropriate construction of the hypothesis test that correctly tests the inference of interest. That is to say, if one is interested in demonstrating with a high degree of confidence that there is a difference between two (or more) means, then the way to test this hypothesis is to use the structure specified in (3), no matter what the data says , because the hypothesis is necessarily pre-specified . $\endgroup$ –  heropup Commented Nov 22, 2015 at 5:22
  • 1 $\begingroup$ @MSIS You've omitted a critical detail that is present in my original characterization: "the alternative hypothesis is the statement that, if true , is strongly supported by the evidence furnished by the data." You want to choose the alternative in such a way that if you conduct the test and reject the null in favor of the alternative, a high standard of evidence has been met to support this decision. But this does not mean the null is "usually" true or that the alternative "should be" true. It is like the legal principle of "innocent until proven guilty beyond a reasonable doubt." $\endgroup$ –  heropup Commented Dec 4, 2019 at 8:44
  • 2 $\begingroup$ @MSIS (cont.) To illustrate the analogy, in a criminal court of law, a defendant is assumed innocent of a crime, and the prosecution must establish guilt through presenting evidence. The strength of this evidence must be such that no reasonable logic could exculpate the defendant. Otherwise, the burden of proof is not met. That is not to say the defendant is truly innocent: it simply means the evidence is lacking to establish guilt beyond a reasonable doubt. Similarly, failure to reject the null does not imply the null is true; rather, the data is simply lacking. $\endgroup$ –  heropup Commented Dec 4, 2019 at 8:48

The null hypothesis is nearly always "something didn't happen" or "there is no effect" or "there is no relationship" or something similar. But it need not be this.

In your case, the null would be "there is no relationship between CRM and performance"

The usual method is to test the null at some significance level (most often, 0.05). Whether this is a good method is another matter, but it is what is commonly done.

Peter Flom's user avatar

In science proofs, you can never prove anything, you can only demonstrate that your model describes the data better than another model. You want your alternate hypothesis to come from the new model under test, and the null hypothesis to be from a different model.

The null hypothesis should come from a model which others would choose to use when challenging your scientific claims! The most common pattern for a scientific claim is "I think that X is a factor in process Y. If everyone already believes X is a factor in the process, then there is nothing to prove, and everyone can just go out and talk about it over drinks. Scientific arguments with null hypothesis are interesting because, if someone takes the opposing view, "X is not a factor in process Y, then there is a disagreement. This is where science does its thing.

If you believe "X is a factor in process Y" enough to run an experiment, you should generally know what you're looking to see in the results. So now your phrase becomes "X is a factor in process Y, producing visible outcome Z."

This is where you pick your null hypothesis. If someone believes X is not a factor, and your experiment does indeed show Z, then they need an explanation for Z. With your choice of null hypothesis, you are effectively challenging their explanation . The dead simplest explanation is always "Z was caused by random chance because science is based on statistics." Accordingly, most null hypothesis are in the form of "The outcome should be predicted using the previously accepted model plus some random chance to account for statistics.

Both hypothesis should be phrased in terms of the visible outcome, NOT the model you intend to prove. [note] You never start with an alternate hypothesis of "I believe X is a factor." You phrase it "I expect to see this result when I observe Z." The null hypothesis will be phrased similarly, "The status quo predicts that we will see this different result when I observe Z." There is always a statistical phrasing in there such as "I expect to observe a normal distribution on Z when I do this experiment over and over." Once you observe results that defend your alternate hypothesis and reject the null hypothsis, you are THEN in a position to make claims about the validity of your model.

[note] This bolded statement is my opinion, but I feel confident enough in its wording choice to post it. The hypotheses draw a strong line between the intuitive portion of the science, and the data and analysis of the science. If your phrasing is too close to the model, it becomes hard to separate the model from the data, and makes it harder for the next scientist to use your data

In the case of our simple model with process Y and visible outcome Z, the existing belief is that Z will fit a distribution that everyone is already comfortable with, such as "the randomness expected by your particular laboratory equipment setup" or "the purity of the reagents used in the experiment." When you "reject the null hypothesis" what you are saying is most literally, "I have run this experiment, and it is so tremendously unlikely that random chance generated the observed behavior, that everybody should start considering that maybe there's more to this than meets the eye."

The alternative hypothesis is what you offer to the world to replace the null hypothesis . It is one thing to go do experiments to poke at holes in other's models, but that doesn't promote science nearly as well as poking holes in other's models and then replacing them with new models that do a better job.

With the null and alternate hypothesis, you are trying to challenge the current conventional thinking of the day. Choose the hypotheses so that they effectively declare "Here is a result everybody would expect (null hypothesis). However, I actually went out and did the experiment and gathered data, and it is VERY unlikely that the null hypothesis is true. Here is the result I expected (the alternate hypothesis). Nobody expected this hypothesis to be true but me, but when I gathered the data and did the statistics, it is very likely that my model does a better job of describing reality than the existing model . Accordingly, I reject the null hypothesis, accept my hypothesis, and challenge my fellow scientists to work from this new data."

And the fellow scientists are free to:

  • Rejoice and accept your data and model with open arms.
  • Ignore your data or model (sorry, it happens... welcome to real life)
  • Reject your data, and spend their effort running experiments to show different data (It is very common for the science community to say "We do not trust your sample size of 10. We are going to redo your experiment with a sample size of 1000.)
  • Accept your data, but not your model. They then must spend their effort generating a new model which explains the data in a different manner.

The last outcome causes strife and bickering, but is ABSOLUTELY part of the scientific process. By using the scientific method to publish your results, you accept that others are free to use the scientific method to contradict your results. They will do so, and publish their results.

At this point, the scientific community will make a political decision: who has to go out and spend the money to test their model, and whose model do we accept. TYPICALLY, because you published the model and the data first, and they are refuting your data, the onus is on them to run the experiments which proves why their model is better than yours. But this is now WELL beyond the hypothesis that caused the strife in the first place, so I leave you to experience them in your lifetime!

Cort Ammon's user avatar

  • $\begingroup$ Thank you so much for your response. You have been very precise and of help! I've now a stronger idea of what this hypothesis means :D $\endgroup$ –  RedViper16 Commented Nov 10, 2014 at 21:24

Not the answer you're looking for? Browse other questions tagged hypothesis-testing self-study or ask your own question .

  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites

Hot Network Questions

  • Cramer's Rule when the determinant of coefficient matrix is zero?
  • The size of elementary particles
  • Correct Expression for Centripetal Force
  • Reusing own code at work without losing licence
  • Why is "on " the optimal preposition in this case?
  • Stuck on Sokoban
  • Relation between stopping times and their filtrations
  • If inflation/cost of living is such a complex difficult problem, then why has the price of drugs been absoultly perfectly stable my whole life?
  • What to do when 2 light switches are too far apart for the light switch cover plate?
  • Dress code for examiner in UK PhD viva
  • I'm trying to remember a novel about an asteroid threatening to destroy the earth. I remember seeing the phrase "SHIVA IS COMING" on the cover
  • What prevents a browser from saving and tracking passwords entered to a site?
  • Passport Carry in Taiwan
  • Walk or Drive to school?
  • Is Intuition Indispensable in Mathematics?
  • How much payload could the Falcon 9 send to geostationary orbit?
  • Using conditionals within \tl_put_right from latex3 explsyntax
  • What explanations can be offered for the extreme see-sawing in Montana's senate race polling?
  • Two way ANOVA or two way repeat measurement ANOVA
  • How does the summoned monster know who is my enemy?
  • How would you say a couple of letters (as in mail) if they're not necessarily letters?
  • How to reply to reviewers who ask for more work by responding that the paper is complete as it stands?
  • How can judicial independence be jeopardised by politicians' criticism?
  • Book or novel about an intelligent monolith from space that crashes into a mountain

how to find the null hypothesis

  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Integration Formulas
  • Differentiation Formulas
  • Trigonometry Formulas
  • Algebra Formulas
  • Mensuration Formula
  • Statistics Formulas
  • Trigonometric Table

Null Hypothesis

Null Hypothesis , often denoted as H 0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. It serves as a baseline assumption, positing no observed change or effect occurring. The null is t he truth or falsity of an idea in analysis.

In this article, we will discuss the null hypothesis in detail, along with some solved examples and questions on the null hypothesis.

Table of Content

What is Null Hypothesis?

Null hypothesis symbol, formula of null hypothesis, types of null hypothesis, null hypothesis examples, principle of null hypothesis, how do you find null hypothesis, null hypothesis in statistics, null hypothesis and alternative hypothesis, null hypothesis and alternative hypothesis examples, null hypothesis – practice problems.

Null Hypothesis in statistical analysis suggests the absence of statistical significance within a specific set of observed data. Hypothesis testing, using sample data, evaluates the validity of this hypothesis. Commonly denoted as H 0 or simply “null,” it plays an important role in quantitative analysis, examining theories related to markets, investment strategies, or economies to determine their validity.

Null Hypothesis Meaning

Null Hypothesis represents a default position, often suggesting no effect or difference, against which researchers compare their experimental results. The Null Hypothesis, often denoted as H 0 asserts a default assumption in statistical analysis. It posits no significant difference or effect, serving as a baseline for comparison in hypothesis testing.

The null Hypothesis is represented as H 0 , the Null Hypothesis symbolizes the absence of a measurable effect or difference in the variables under examination.

Certainly, a simple example would be asserting that the mean score of a group is equal to a specified value like stating that the average IQ of a population is 100.

The Null Hypothesis is typically formulated as a statement of equality or absence of a specific parameter in the population being studied. It provides a clear and testable prediction for comparison with the alternative hypothesis. The formulation of the Null Hypothesis typically follows a concise structure, stating the equality or absence of a specific parameter in the population.

Mean Comparison (Two-sample t-test)

H 0 : μ 1 = μ 2

This asserts that there is no significant difference between the means of two populations or groups.

Proportion Comparison

H 0 : p 1 − p 2 = 0

This suggests no significant difference in proportions between two populations or conditions.

Equality in Variance (F-test in ANOVA)

H 0 : σ 1 = σ 2

This states that there’s no significant difference in variances between groups or populations.

Independence (Chi-square Test of Independence):

H 0 : Variables are independent

This asserts that there’s no association or relationship between categorical variables.

Null Hypotheses vary including simple and composite forms, each tailored to the complexity of the research question. Understanding these types is pivotal for effective hypothesis testing.

Equality Null Hypothesis (Simple Null Hypothesis)

The Equality Null Hypothesis, also known as the Simple Null Hypothesis, is a fundamental concept in statistical hypothesis testing that assumes no difference, effect or relationship between groups, conditions or populations being compared.

Non-Inferiority Null Hypothesis

In some studies, the focus might be on demonstrating that a new treatment or method is not significantly worse than the standard or existing one.

Superiority Null Hypothesis

The concept of a superiority null hypothesis comes into play when a study aims to demonstrate that a new treatment, method, or intervention is significantly better than an existing or standard one.

Independence Null Hypothesis

In certain statistical tests, such as chi-square tests for independence, the null hypothesis assumes no association or independence between categorical variables.

Homogeneity Null Hypothesis

In tests like ANOVA (Analysis of Variance), the null hypothesis suggests that there’s no difference in population means across different groups.

  • Medicine: Null Hypothesis: “No significant difference exists in blood pressure levels between patients given the experimental drug versus those given a placebo.”
  • Education: Null Hypothesis: “There’s no significant variation in test scores between students using a new teaching method and those using traditional teaching.”
  • Economics: Null Hypothesis: “There’s no significant change in consumer spending pre- and post-implementation of a new taxation policy.”
  • Environmental Science: Null Hypothesis: “There’s no substantial difference in pollution levels before and after a water treatment plant’s establishment.”

The principle of the null hypothesis is a fundamental concept in statistical hypothesis testing. It involves making an assumption about the population parameter or the absence of an effect or relationship between variables.

In essence, the null hypothesis (H 0 ) proposes that there is no significant difference, effect, or relationship between variables. It serves as a starting point or a default assumption that there is no real change, no effect or no difference between groups or conditions.

\alpha

Null Hypothesis Rejection

Rejecting the Null Hypothesis occurs when statistical evidence suggests a significant departure from the assumed baseline. It implies that there is enough evidence to support the alternative hypothesis, indicating a meaningful effect or difference. Null Hypothesis rejection occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.

Identifying the Null Hypothesis involves defining the status quotient, asserting no effect and formulating a statement suitable for statistical analysis.

When is Null Hypothesis Rejected?

The Null Hypothesis is rejected when statistical tests indicate a significant departure from the expected outcome, leading to the consideration of alternative hypotheses. It occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.

In statistical hypothesis testing, researchers begin by stating the null hypothesis, often based on theoretical considerations or previous research. The null hypothesis is then tested against an alternative hypothesis (Ha), which represents the researcher’s claim or the hypothesis they seek to support.

The process of hypothesis testing involves collecting sample data and using statistical methods to assess the likelihood of observing the data if the null hypothesis were true. This assessment is typically done by calculating a test statistic, which measures the difference between the observed data and what would be expected under the null hypothesis.

In the realm of hypothesis testing, the null hypothesis (H 0 ) and alternative hypothesis (H₁ or Ha) play critical roles. The null hypothesis generally assumes no difference, effect, or relationship between variables, suggesting that any observed change or effect is due to random chance. Its counterpart, the alternative hypothesis, asserts the presence of a significant difference, effect, or relationship between variables, challenging the null hypothesis. These hypotheses are formulated based on the research question and guide statistical analyses.

Difference Between Null Hypothesis and Alternative Hypothesis

The null hypothesis (H 0 ) serves as the baseline assumption in statistical testing, suggesting no significant effect, relationship, or difference within the data. It often proposes that any observed change or correlation is merely due to chance or random variation. Conversely, the alternative hypothesis (H 1 or Ha) contradicts the null hypothesis, positing the existence of a genuine effect, relationship or difference in the data. It represents the researcher’s intended focus, seeking to provide evidence against the null hypothesis and support for a specific outcome or theory. These hypotheses form the crux of hypothesis testing, guiding the assessment of data to draw conclusions about the population being studied.

Criteria

Null Hypothesis

Alternative Hypothesis

Definition

Assumes no effect or difference

Asserts a specific effect or difference

Symbol

H

H (or Ha)

Formulation

States equality or absence of parameter

States a specific value or relationship

Testing Outcome

Rejected if evidence of a significant effect

Accepted if evidence supports the hypothesis

Let’s envision a scenario where a researcher aims to examine the impact of a new medication on reducing blood pressure among patients. In this context:

Null Hypothesis (H 0 ): “The new medication does not produce a significant effect in reducing blood pressure levels among patients.”

Alternative Hypothesis (H 1 or Ha): “The new medication yields a significant effect in reducing blood pressure levels among patients.”

The null hypothesis implies that any observed alterations in blood pressure subsequent to the medication’s administration are a result of random fluctuations rather than a consequence of the medication itself. Conversely, the alternative hypothesis contends that the medication does indeed generate a meaningful alteration in blood pressure levels, distinct from what might naturally occur or by random chance.

People Also Read:

Mathematics Maths Formulas Probability and Statistics

Example 1: A researcher claims that the average time students spend on homework is 2 hours per night.

Null Hypothesis (H 0 ): The average time students spend on homework is equal to 2 hours per night. Data: A random sample of 30 students has an average homework time of 1.8 hours with a standard deviation of 0.5 hours. Test Statistic and Decision: Using a t-test, if the calculated t-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: Based on the statistical analysis, we fail to reject the null hypothesis, suggesting that there is not enough evidence to dispute the claim of the average homework time being 2 hours per night.

Example 2: A company asserts that the error rate in its production process is less than 1%.

Null Hypothesis (H 0 ): The error rate in the production process is 1% or higher. Data: A sample of 500 products shows an error rate of 0.8%. Test Statistic and Decision: Using a z-test, if the calculated z-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: The statistical analysis supports rejecting the null hypothesis, indicating that there is enough evidence to dispute the company’s claim of an error rate of 1% or higher.

Q1. A researcher claims that the average time spent by students on homework is less than 2 hours per day. Formulate the null hypothesis for this claim?

Q2. A manufacturing company states that their new machine produces widgets with a defect rate of less than 5%. Write the null hypothesis to test this claim?

Q3. An educational institute believes that their online course completion rate is at least 60%. Develop the null hypothesis to validate this assertion?

Q4. A restaurant claims that the waiting time for customers during peak hours is not more than 15 minutes. Formulate the null hypothesis for this claim?

Q5. A study suggests that the mean weight loss after following a specific diet plan for a month is more than 8 pounds. Construct the null hypothesis to evaluate this statement?

Summary – Null Hypothesis and Alternative Hypothesis

The null hypothesis (H 0 ) and alternative hypothesis (H a ) are fundamental concepts in statistical hypothesis testing. The null hypothesis represents the default assumption, stating that there is no significant effect, difference, or relationship between variables. It serves as the baseline against which the alternative hypothesis is tested. In contrast, the alternative hypothesis represents the researcher’s hypothesis or the claim to be tested, suggesting that there is a significant effect, difference, or relationship between variables. The relationship between the null and alternative hypotheses is such that they are complementary, and statistical tests are conducted to determine whether the evidence from the data is strong enough to reject the null hypothesis in favor of the alternative hypothesis. This decision is based on the strength of the evidence and the chosen level of significance. Ultimately, the choice between the null and alternative hypotheses depends on the specific research question and the direction of the effect being investigated.

FAQs on Null Hypothesis

What does null hypothesis stands for.

The null hypothesis, denoted as H 0 ​, is a fundamental concept in statistics used for hypothesis testing. It represents the statement that there is no effect or no difference, and it is the hypothesis that the researcher typically aims to provide evidence against.

How to Form a Null Hypothesis?

A null hypothesis is formed based on the assumption that there is no significant difference or effect between the groups being compared or no association between variables being tested. It often involves stating that there is no relationship, no change, or no effect in the population being studied.

When Do we reject the Null Hypothesis?

In statistical hypothesis testing, if the p-value (the probability of obtaining the observed results) is lower than the chosen significance level (commonly 0.05), we reject the null hypothesis. This suggests that the data provides enough evidence to refute the assumption made in the null hypothesis.

What is a Null Hypothesis in Research?

In research, the null hypothesis represents the default assumption or position that there is no significant difference or effect. Researchers often try to test this hypothesis by collecting data and performing statistical analyses to see if the observed results contradict the assumption.

What Are Alternative and Null Hypotheses?

The null hypothesis (H0) is the default assumption that there is no significant difference or effect. The alternative hypothesis (H1 or Ha) is the opposite, suggesting there is a significant difference, effect or relationship.

What Does it Mean to Reject the Null Hypothesis?

Rejecting the null hypothesis implies that there is enough evidence in the data to support the alternative hypothesis. In simpler terms, it suggests that there might be a significant difference, effect or relationship between the groups or variables being studied.

How to Find Null Hypothesis?

Formulating a null hypothesis often involves considering the research question and assuming that no difference or effect exists. It should be a statement that can be tested through data collection and statistical analysis, typically stating no relationship or no change between variables or groups.

How is Null Hypothesis denoted?

The null hypothesis is commonly symbolized as H 0 in statistical notation.

What is the Purpose of the Null hypothesis in Statistical Analysis?

The null hypothesis serves as a starting point for hypothesis testing, enabling researchers to assess if there’s enough evidence to reject it in favor of an alternative hypothesis.

What happens if we Reject the Null hypothesis?

Rejecting the null hypothesis implies that there is sufficient evidence to support an alternative hypothesis, suggesting a significant effect or relationship between variables.

What are Test for Null Hypothesis?

Various statistical tests, such as t-tests or chi-square tests, are employed to evaluate the validity of the Null Hypothesis in different scenarios.

Please Login to comment...

Similar reads.

  • Geeks Premier League
  • School Learning
  • Geeks Premier League 2023
  • Math-Concepts
  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • What is OpenAI SearchGPT? How it works and How to Get it?
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Search Search Please fill out this field.

What Is a Null Hypothesis?

The alternative hypothesis.

  • Additional Examples
  • Null Hypothesis and Investments

The Bottom Line

  • Corporate Finance
  • Financial Ratios

Null Hypothesis: What Is It, and How Is It Used in Investing?

Adam Hayes, Ph.D., CFA, is a financial writer with 15+ years Wall Street experience as a derivatives trader. Besides his extensive derivative trading expertise, Adam is an expert in economics and behavioral finance. Adam received his master's in economics from The New School for Social Research and his Ph.D. from the University of Wisconsin-Madison in sociology. He is a CFA charterholder as well as holding FINRA Series 7, 55 & 63 licenses. He currently researches and teaches economic sociology and the social studies of finance at the Hebrew University in Jerusalem.

how to find the null hypothesis

A null hypothesis is a type of statistical hypothesis that proposes that no statistical significance exists in a set of given observations. Hypothesis testing is used to assess the credibility of a hypothesis by using sample data. Sometimes referred to simply as the “null,” it is represented as H 0 .

The null hypothesis, also known as “the conjecture,” is used in quantitative analysis to test theories about markets, investing strategies, and economies to decide if an idea is true or false.

Key Takeaways

  • A null hypothesis is a type of conjecture in statistics that proposes that there is no difference between certain characteristics of a population or data-generating process.
  • The alternative hypothesis proposes that there is a difference.
  • Hypothesis testing provides a method to reject a null hypothesis within a certain confidence level.
  • If you can reject the null hypothesis, it provides support for the alternative hypothesis.
  • Null hypothesis testing is the basis of the principle of falsification in science.

Alex Dos Diaz / Investopedia

Understanding a Null Hypothesis

A gambler may be interested in whether a game of chance is fair. If it is, then the expected earnings per play come to zero for both players. If it is not, then the expected earnings are positive for one player and negative for the other.

To test whether the game is fair, the gambler collects earnings data from many repetitions of the game, calculates the average earnings from these data, then tests the null hypothesis that the expected earnings are not different from zero.

If the average earnings from the sample data are sufficiently far from zero, then the gambler will reject the null hypothesis and conclude the alternative hypothesis—namely, that the expected earnings per play are different from zero. If the average earnings from the sample data are near zero, then the gambler will not reject the null hypothesis, concluding instead that the difference between the average from the data and zero is explainable by chance alone.

A null hypothesis can only be rejected, not proven.

The null hypothesis assumes that any kind of difference between the chosen characteristics that you see in a set of data is due to chance. For example, if the expected earnings for the gambling game are truly equal to zero, then any difference between the average earnings in the data and zero is due to chance.

Analysts look to reject   the null hypothesis because doing so is a strong conclusion. This requires evidence in the form of an observed difference that is too large to be explained solely by chance. Failing to reject the null hypothesis—that the results are explainable by chance alone—is a weak conclusion because it allows that while factors other than chance may be at work, they may not be strong enough for the statistical test to detect them.

An important point to note is that we are testing the null hypothesis because there is an element of doubt about its validity. Whatever information that is against the stated null hypothesis is captured in the alternative (alternate) hypothesis (H 1 ).

For the examples below, the alternative hypothesis would be:

  • Students score an average that is not equal to seven.
  • The mean annual return of a mutual fund is not equal to 8% per year.

In other words, the alternative hypothesis is a direct contradiction of the null hypothesis.

Null Hypothesis Examples

Here is a simple example: A school principal claims that students in her school score an average of seven out of 10 in exams. The null hypothesis is that the population mean is not 7.0. To test this null hypothesis, we record marks of, say, 30 students ( sample ) from the entire student population of the school (say, 300) and calculate the mean of that sample.

We can then compare the (calculated) sample mean to the (hypothesized) population mean of 7.0 and attempt to reject the null hypothesis. (The null hypothesis here—that the population mean is not 7.0—cannot be proved using the sample data. It can only be rejected.)

Take another example: The annual return of a particular  mutual fund  is claimed to be 8%. Assume that the mutual fund has been in existence for 20 years. The null hypothesis is that the mean return is not 8% for the mutual fund. We take a random sample of annual returns of the mutual fund for, say, five years (sample) and calculate the sample mean. We then compare the (calculated) sample mean to the (claimed) population mean (8%) to test the null hypothesis.

For the above examples, null hypotheses are:

  • Example A: Students in the school don’t score an average of seven out of 10 in exams.
  • Example B: The mean annual return of the mutual fund is not 8% per year.

For the purposes of determining whether to reject the null hypothesis (abbreviated H0), said hypothesis is assumed, for the sake of argument, to be true. Then the likely range of possible values of the calculated statistic (e.g., the average score on 30 students’ tests) is determined under this presumption (e.g., the range of plausible averages might range from 6.2 to 7.8 if the population mean is 7.0).

If the sample average is outside of this range, the null hypothesis is rejected. Otherwise, the difference is said to be “explainable by chance alone,” being within the range that is determined by chance alone.

How Null Hypothesis Testing Is Used in Investments

As an example related to financial markets, assume Alice sees that her investment strategy produces higher average returns than simply buying and holding a stock . The null hypothesis states that there is no difference between the two average returns, and Alice is inclined to believe this until she can conclude contradictory results.

Refuting the null hypothesis would require showing statistical significance, which can be found by a variety of tests. The alternative hypothesis would state that the investment strategy has a higher average return than a traditional buy-and-hold strategy.

One tool that can determine the statistical significance of the results is the p-value. A p-value represents the probability that a difference as large or larger than the observed difference between the two average returns could occur solely by chance.

A p-value that is less than or equal to 0.05 often indicates whether there is evidence against the null hypothesis. If Alice conducts one of these tests, such as a test using the normal model, resulting in a significant difference between her returns and the buy-and-hold returns (the p-value is less than or equal to 0.05), she can then reject the null hypothesis and conclude the alternative hypothesis.

How Is the Null Hypothesis Identified?

The analyst or researcher establishes a null hypothesis based on the research question or problem they are trying to answer. Depending on the question, the null may be identified differently. For example, if the question is simply whether an effect exists (e.g., does X influence Y?), the null hypothesis could be H 0 : X = 0. If the question is instead, is X the same as Y, the H 0 would be X = Y. If it is that the effect of X on Y is positive, H 0 would be X > 0. If the resulting analysis shows an effect that is statistically significantly different from zero, the null can be rejected.

How Is Null Hypothesis Used in Finance?

In finance , a null hypothesis is used in quantitative analysis. It tests the premise of an investing strategy, the markets, or an economy to determine if it is true or false.

For instance, an analyst may want to see if two stocks, ABC and XYZ, are closely correlated. The null hypothesis would be ABC ≠ XYZ.

How Are Statistical Hypotheses Tested?

Statistical hypotheses are tested by a four-step process . The first is for the analyst to state the two hypotheses so that only one can be right. The second is to formulate an analysis plan, which outlines how the data will be evaluated. The third is to carry out the plan and physically analyze the sample data. The fourth and final step is to analyze the results and either reject the null hypothesis or claim that the observed differences are explainable by chance alone.

What Is an Alternative Hypothesis?

An alternative hypothesis is a direct contradiction of a null hypothesis. This means that if one of the two hypotheses is true, the other is false.

A null hypothesis states there is no difference between groups or relationship between variables. It is a type of statistical hypothesis and proposes that no statistical significance exists in a set of given observations. “Null” means nothing.

The null hypothesis is used in quantitative analysis to test theories about economies, investing strategies, and markets to decide if an idea is true or false. Hypothesis testing assesses the credibility of a hypothesis by using sample data. It is represented as H 0 and is sometimes simply known as “the null.”

Sage Publishing. “ Chapter 8: Introduction to Hypothesis Testing ,” Page 4.

Sage Publishing. “ Chapter 8: Introduction to Hypothesis Testing ,” Pages 4 to 7.

Sage Publishing. “ Chapter 8: Introduction to Hypothesis Testing ,” Page 7.

how to find the null hypothesis

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

IMAGES

  1. 15 Null Hypothesis Examples (2024)

    how to find the null hypothesis

  2. Null Hypothesis

    how to find the null hypothesis

  3. Null hypothesis

    how to find the null hypothesis

  4. Null Hypothesis, Alternative Hypothesis, Test Stat, P-Value. Stats 160

    how to find the null hypothesis

  5. How to Write a Null Hypothesis (with Examples and Templates)

    how to find the null hypothesis

  6. How to Write a Null Hypothesis (with Examples and Templates)

    how to find the null hypothesis

VIDEO

  1. Hypothesis Testing: the null and alternative hypotheses

  2. Testing of Hypothesis,Null, alternative hypothesis, type-I & -II Error etc @VATAMBEDUSRAVANKUMAR

  3. What is a Null Hypothesis?

  4. Null vs. alternative Hypothesis

  5. Hypothsis Testing in Statistics Part 2 Steps to Solving a Problem

  6. The Null Hypothesis [v0.5b]

COMMENTS

  1. How to Write a Null Hypothesis (5 Examples)

    How to Write a Null Hypothesis (5 Examples) A hypothesis test uses sample data to determine whether or not some claim about a population parameter is true. Whenever we perform a hypothesis test, we always write a null hypothesis and an alternative hypothesis, which take the following forms: H0 (Null Hypothesis): Population parameter =, ≤, ≥ ...

  2. Null & Alternative Hypotheses

    Learn how to formulate null and alternative hypotheses for different statistical tests. The null hypothesis is the claim that there's no effect in the population, while the alternative hypothesis is the claim that there's an effect.

  3. Null Hypothesis: Definition, Rejecting & Examples

    Learn what a null hypothesis is and how to write it for different types of statistics and hypothesis tests. Find out when and how to reject the null hypothesis and conclude that an effect or relationship exists in the population.

  4. Null Hypothesis Definition and Examples, How to State

    Null Hypothesis Overview The null hypothesis, H 0 is the commonly accepted fact; it is the opposite of the alternate hypothesis. Researchers work to reject, nullify or disprove the null hypothesis. Researchers come up with an alternate hypothesis, one that they think explains a phenomenon, and then work to reject the null hypothesis. Read on or watch the video for more information.

  5. 9.1 Null and Alternative Hypotheses

    They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints. H0, the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  6. 9.1: Null and Alternative Hypotheses

    Learn how to formulate and test null and alternative hypotheses in statistics with examples and exercises from this LibreTexts course.

  7. How to Formulate a Null Hypothesis (With Examples)

    The null hypothesis is among the easiest hypothesis to test using statistical analysis, making it perhaps the most valuable hypothesis for the scientific method. By evaluating a null hypothesis in addition to another hypothesis, researchers can support their conclusions with a higher level of confidence. Below are examples of how you might formulate a null hypothesis to fit certain questions.

  8. What Is The Null Hypothesis & When To Reject It

    We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

  9. Null hypothesis

    Basic definitions. The null hypothesis and the alternative hypothesis are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise. The statement being tested in a test of statistical significance is called the null ...

  10. Hypothesis Testing

    The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in. Hypothesis testing example You want to test whether there is a relationship between gender and height.

  11. Null Hypothesis

    Learn what is a null hypothesis in statistics, how to find it, and how to test it. See the difference between null and alternative hypotheses, and some examples of null hypothesis statements.

  12. Null and Alternative Hypotheses

    H0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt. Ha: The alternative hypothesis: It is a claim about the population that is contradictory to H0 and what we conclude when we reject H0. Since the ...

  13. How to Write a Null Hypothesis (with Examples and Templates)

    Are you working on a research project and struggling with how to write a null hypothesis? Well, you've come to the right place! Start by recognizing that the basic definition of "null" is "none" or "zero"—that's your biggest clue as to what a null hypothesis should say. Keep reading to learn everything you need to know about the null hypothesis, including how it relates to your research ...

  14. Null & Alternative Hypothesis

    The hypothesis that the estimate is based solely on chance is called the null hypothesis. Thus, the null hypothesis is valid if the observed data (in the sample) do not differ from what would be expected based on chance alone. The complement of the null hypothesis is called the alternative hypothesis.

  15. Hypothesis Testing Calculator with Steps

    Hypothesis Testing Calculator. The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is ...

  16. Understanding the Null Hypothesis for Linear Regression

    This tutorial provides a simple explanation of the null and alternative hypothesis used in linear regression, including examples.

  17. Null Hypothesis Definition and Examples

    Null Hypothesis Examples. "Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a ...

  18. Null hypothesis

    The null is like the defendant in a criminal trial. Formulating null hypotheses and subjecting them to statistical testing is one of the workhorses of the scientific method. Scientists in all fields make conjectures about the phenomena they study, translate them into null hypotheses and gather data to test them.

  19. Null Hypothesis and Alternative Hypothesis

    Here are the differences between the null and alternative hypotheses and how to distinguish between them.

  20. How to choose the null and alternative hypothesis?

    The rule for the proper formulation of a hypothesis test is that the alternative or research hypothesis is the statement that, if true, is strongly supported by the evidence furnished by the data. The null hypothesis is generally the complement of the alternative hypothesis. Frequently, it is (or contains) the assumption that you are making ...

  21. Null Hypothesis

    Null hypothesis, often denoted as H0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. Learn more about Null Hypothesis, its formula, symbol and example in this article

  22. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain oppos...

  23. Null Hypothesis: What Is It, and How Is It Used in Investing?

    A null hypothesis is a type of statistical hypothesis that proposes that no statistical significance exists in a set of given observations.

  24. Mastering Hypothesis Testing: 8 Steps Decoded

    Deliverable 04 Worksheet 1. Describe the 8 steps in the process for hypothesis testing. Explain the decision criteria for rejecting the null hypothesis for both the p-value method and the critical value method. Answer and Explanation: The remaining problems refer to the following scenario: A claim is made that the average salary for all jobs in Minnesota is less than $75,000.

  25. Statistical testing of null hypothesis?

    How ever based on the type and clinical and statistical findings of the study we can also take alternate hypothesis, but chances of bias are more in alternate hypothesis studies compared to ...