PS/RtI Logo

An Overview of 4-Step Problem Solving

  • Resource Topics
  • Professional Learning Modules
  • Program Evaluation
  • Fact Sheets
  • Presentations LiveBinder

This online course is intended to provide users with an understanding of the broad concepts of the 4-step problem solving process. The course includes the critical elements and guiding questions within each step, features sample data sources, and provides checks for understanding throughout.

  • Sign into your account.
  • Select All Courses at the top of the page, find An Overview of 4-Step Problem Solving , and click “Start Course” to begin.
  • From FL PS/RtI Thinkific site, click “Sign In” in the upper right-hand corner.
  • Click “Create a new account” below sign-in fields.
  • Fill in your name, email, and create a password. Click “Sign Up.”
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is the 3rd step in the 4 step problem solving process

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

what is the 3rd step in the 4 step problem solving process

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

MRSC logo

  • Rosters & E-Bidding

Have a Research Question?

  • Research Tools
  • Explore Topics
  • Stay Informed
  • Publications

Easy Problem Solving Using the 4-step Method

June 7, 2017  by  Jennifer Haury Category:  Guest Author ,  Management

what is the 3rd step in the 4 step problem solving process

At a recent hospital town forum, hospital leaders are outlining the changes coming when a lone, brave nurse raises her hand and says, “We just can’t take any more changes. They are layered on top of each other and each one is rolled out in a different way. We are exhausted and it’s overloading us all.”  

 “Flavor of the Month” Fatigue

Change fatigue. You hear about it in every industry, from government sectors to software design to manufacturing to healthcare and more. When policy and leadership changes and process improvement overlap it’s no surprise when people complain about “flavor of the month,” and resist it just so they can keep some routine to their days.

In a time where change is required just to keep up with the shifting environment, one way to ease fatigue is to standardize HOW we change. If we use a best practice for solving problems, we can ensure that the right people are involved and problems are solved permanently, not temporarily. Better yet, HOW we change can become the habit and routine we long for.

The 4-step Problem Solving Method

The model we’ve used with clients is based on the A3 problem-solving methodology used by many “lean” production-based companies. In addition to being simpler, our 4-step method is visual, which helps remind the user what goes into each box.

The steps are as follows

  • Develop a Problem Statement
  • Determine Root Causes
  • Rank Root Causes in Order of Importance
  • Create an Action Plan

Step 1: Develop a Problem Statement

Developing a good problem statement always seems a lot easier than it generally turns out to be.  For example, this statement: “We don’t have enough staff,” frequently shows up as a problem statement. However, it suggests the solution—“GET MORE STAFF” — and fails to address the real problem that more staff might solve, such as answering phones in a timely manner.

The trick is to develop a problem statement that does not suggest a solution.  Avoiding the following words/phrases: “lack of,” “no,” “not enough,” or “too much” is key. When I start to fall into the trap of suggesting a solution, I ask: “So what problem does that cause?” This usually helps to get to a more effective problem statement.

“Haury-post_6-5-17_1.jpg"

Once you’ve developed a problem statement, you’ll need to define your target goal, measure your actual condition, then determine the gap. If we ran a restaurant and our problem was: “Customers complaining about burnt toast during morning shift,” the target goal might be: “Toast golden brown 100% of morning shift.”

Focus on a tangible, achievable target goal then measure how often that target is occurring. If our actual condition is: “Toast golden brown 50% of the time,” then our gap is: “Burnt toast 50% of the time.” That gap is now a refined problem to take to Step 2.

Step 2:  Determine Root Causes

In Step 2, we want to understand the root causes. For example, if the gap is burnt toast 50% of the time, what are all the possible reasons why?

This is when you brainstorm. It could be an inattentive cook or a broken pop-up mechanism. Cooks could be using different methods to time the toasting process or some breads toast more quickly.  During brainstorming, you’ll want to include everyone in the process since observing these interactions might also shed light on why the problem is occurring.

“Haury-post_6-5-17_2.jpg"

Once we have an idea of why, we then use the 5-why process to arrive at a root cause.  Ask “Why?” five times or until it no longer makes sense to ask. Root causes can be tricky.  For example, if the pop up mechanism is broken you could just buy a new toaster, right? But if you asked WHY it broke, you may learn cooks are pressing down too hard on the pop up mechanism, causing it to break. In this case, the problem would just reoccur if you bought a new toaster.

When you find you are fixing reoccurring problems that indicates you haven’t solved for the root cause. Through the 5-why process, you can get to the root cause and fix the problem permanently.

Step 3: Rank Root Causes

Once you know what’s causing the problem (and there may be multiple root causes), it’s time to move to Step 3 to understand which causes, if solved for, would close your gap. Here you rank the root causes in order of importance by looking at which causes would have the greatest impact in closing the gap.

Haury-post_6-5-17_3.jpg"

There may be times when you don’t want to go after your largest root cause (perhaps because it requires others to change what they are doing, will take longer, or is dependent on other things getting fixed, etc). Sometimes you’ll find it’s better to start with a solution that has a smaller impact but can be done quickly.

Step 4: Create an Action Plan

In Step 4 you create your action plan — who is going to do what and by when. Documenting all of this and making it visible helps to communicate the plan to others and helps hold them accountable during implementation.

This is where your countermeasures or experiments to fix the problem are detailed. Will we train our chefs on how to use a new “pop-up mechanism” free toaster? Will we dedicate one toaster for white bread and one for wheat?  

Haury-post_6-5-17_4.jpg

Make sure to measure your results after you’ve implemented your plan to see if your target is met. If not, that’s okay; just go through the steps again until the problem is resolved.

Final Thoughts

Using the 4-step method has been an easy way for teams to change how they solve problems. One team I was working with started challenging their “solution jumps” and found this method was a better way to avoid assumptions which led to never really solving their problems.  It was easy to use in a conference room and helped them make their thinking visual so everyone could be involved and engaged in solving the problems their team faced. 

Do you have a problem-solving method that you use at your worksite?  Let us know in the comments below. 

MRSC is a private nonprofit organization serving local governments in Washington State. Eligible government agencies in Washington State may use our free, one-on-one Ask MRSC service to get answers to legal, policy, or financial questions.

Photo of Jennifer Haury

About Jennifer Haury

Jennifer Haury is the CEO of All Angles Consulting, LLC and guest authored this post for MRSC.

Jennifer has over 28 years learning in the healthcare industry (17 in leadership positions or consulting in performance improvement and organizational anthropology) and is a Lean Six Sigma Black Belt.

She is a trusted, experienced leader with a keen interest in performance improvement and organizational anthropology. Jennifer is particularly concerned with the sustainability of continuous improvement programs and the cultural values and beliefs that translate into behaviors that either get in our own way or help us succeed in transforming our work.

The views expressed in guest columns represent the opinions of the author and do not necessarily reflect those of MRSC.

Blog Archives

Weekly e-news.

what is the 3rd step in the 4 step problem solving process

Get the latest local government news, analysis, and training opportunities in Washington State with MRSC’s Weekly Insights .

Related Materials

what is the 3rd step in the 4 step problem solving process

2016 Legislature: Recap of Some Public Agency Records and Open Meetings Bills

what is the 3rd step in the 4 step problem solving process

Planners manage conflict every day: Here's how to get better at it

what is the 3rd step in the 4 step problem solving process

Strategic Planning

4 Step Problem Solving Process for Any Issue

Ed Latimore

Ed Latimore

11 Min Read

what is the 3rd step in the 4 step problem solving process

Every problem may be different, but effective problem solving asks the same 4 questions and follows the same method.

  • What’s the problem?  Something is wrong. What are we going to do about t his? This is the foundation and the motivation.
  • What do you need to know?  This is the most important part of the problem. If you don’t know exactly what the problem is, then you can’t come up with possible solutions for it.
  • What do you already know?  You already know something related to the problem that will help you solve the problem. It’s not always obvious (especially in the real-world) but you know (or can research) something that will help. 
  • What’s the relationship between the two?  This is where your skills and abilities come into play. The previous steps set you up to find many potential solutions to your problem, regardless of its type. 

When I used to tutor kids in  math and physics , I would drill this problem solving process into their heads. This methodology works for any problem, regardless of its complexity or difficulty. In fact, if you look at the various advances in society, you’ll see they all follow some variation of this problem solving technique. 

“The gap between understanding and misunderstanding can best be bridged by thought!”  ― Ernest Agyemang Yeboah

Generally speaking, if you can’t solve the problem then your issue is step 3 or step 4; you either don’t know enough or you’re missing the connection. 

Good problem solvers always believe step 3 is the issue. In this case, it’s a simple matter of learning more. Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills.

This is fixed versus growth mindset and it makes a huge difference in the effort you put forth and belief you have in yourself to make use of this step by step process. These two mindsets make a big difference in your learning because, at its core, learning is problem solving.

Let’s dig deeper into the 4 steps. In this way, you can better see how to apply them to your learning journey .

Step 1: What’s the problem?

The ability to recognize the exact nature of a problem is extremely valuable. 

Most people only focus on finding solutions. While a “solutions oriented” mindset is a good thing, sometimes it pays to focus on the problem. When you focus on the problem, you often make it easier to find a viable solution to it.

When you know the exact nature of the problem, you reduce the risk of wasting time. This reminds me of a story I was once told.

The lawn mower problem

Homeowners love a well-kept lawn, but hate mowing the grass.

Many companies and inventors raced to figure out a more time-efficient way to mow the lawn. Some even tried to design robots that would do the mowing. They all were chasing the solution, but only one inventor took time to understand the root cause of problem.

Most people figured that the problem was the labor required to maintain a lawn. The actual problem was just the opposite: maintaining a lawn was labor intensive. The rearrangement seems trivial, but it reveals the true desire: a well-maintained lawn.

The best solution? Remove maintenance from the equation. A lawn made of artificial grass solved the problem . Hence, an application of Astroturf was discovered.

This way, the law always looked its best. Taking a few moments to apply critical thinking identified the true nature of the problem yielded a powerful solution.

Word problems: The scourge of high school math students

One thing I’ve learned from  tutoring high school students in math : they hate word problems. 

This is because they make the student figure out the problem. Finding the solution to a math problem is already stressful. Forcing the student to also figure out what problem needs solving is another level. 

Word problems are not always clear about what needs to be solved. They also have the annoying habit of adding extraneous information. An ordinary math problem does not do this. For example, compare the following two problems:

What’s the height of h?

what is the 3rd step in the 4 step problem solving process

A radio station tower was built in two sections. From a point 87 feet from the base of the tower, the angle of elevation of the top of the first section is 25º, and the angle of elevation of the top of the second section is 40º. To the nearest foot, what is the height of the top section of the tower?

what is the 3rd step in the 4 step problem solving process

The first is a simple problem. The second is a complex problem.

The questions require the same knowledge (trigonometric functions), but the second is more difficult for students. Why? The second problem does not make it clear what the exact problem is. Before the mathematics can even begin, you must know the problem or else you risk solving the wrong one.

If you understand what the problem is, then finding the solution is much easier. Understanding this, ironically, is the biggest problem for people.

Problem solving is a universal language

Speaking of people, this method also helps settle disagreements. 

When we disagree, we rarely take the time to figure out the exact issue. This happens for many reasons, but it always results in misunderstanding. When each party is clear with their intentions, they can generate the best response.

Education systems fail when they don’t consider the problem they’re supposed to solve. Foreign language education in America is one of the best examples.

The problem is that students can’t speak the target language. It seems obvious that the solution is to have students spend most of their time speaking. Unfortunately, language classes spend a ridiculous amount of time learning grammar rules and memorizing vocabulary.

The problem is not that the students don’t know the imperfect past tense verb conjugations in Spanish. The problem is that they can’t use the language to accomplish anything. Every year, kids graduate from American high schools without the ability to speak another language, despite studying one for 4 years.

Well begun is half done

Before you begin to learn something, be sure that you understand the exact nature of the problem. This will make clear what you need to know and what you can discard. When you know the exact problem you’re tasked with solving, you save precious time and energy. Doing this increases the likelihood that you’ll succeed.

Step 2: What do you need to know?

All problems are the result of insufficient knowledge. To solve the problem, you must identify what you need to know. If you get this wrong, you can only be disappointed.

Either you’ll solve what you thought was problem, only to find out this wasn’t the real issue and now you’ve still got trouble or you won’t and you still have trouble. Either way, the problem persists.

The only thing that wastes more time than an unsolved problem is solving the wrong one.

Imagine that your car won’t start. You replace the alternator, the starter, and the ignition switch. The car still doesn’t start. Now you replace the engine, but you still can’t get it to start. Your replacements and repairs solved other problems, but not the main one: the car won’t start. 

Then it turns out that all you needed was gas. 

This example is a little extreme, but I hope it makes the point. For something more relatable, let’s return to the problem with language learning.

You need basic communication to navigate a foreign country you’re visiting, let’s say Mexico. When you enroll in a Spanish course, they teach you a bunch of unimportant words and phrases. You stick with it, believing it will eventually click.

When you land, you can tell everyone your name and ask for the location of the bathroom. This does not help when you need to ask for directions or tell the driver which airport terminal to drop you off at.

Finding the solution to chess problems works the same way

The book “The Amateur Mind” by IM Jeremy Silman improved my chess by teaching how to analyze the board.

It’s only with a proper analysis of imbalances that you can make the best move. Though you may not always choose the correct line of play,  the book teaches you how to recognize what you need to know . It teaches you how to identify the problem.

what is the 3rd step in the 4 step problem solving process

The problem solving method always starts with identifying the problem or asking “What do you need to know?”. Only then can you move on to the next step.

Step 3: What do you already know?

The only way to know if you lack knowledge is by gaining some in the first place. All advances and solutions arise from the accumulation and implementation of prior information. You must first consider what it is that you already know in the context of the problem of at hand.

Isaac Newton once said,  “If I have seen further, it is by standing on the shoulders of giants.” This is Newton’s way of explaining that his advancements in physics and mathematics would be impossible if it were not for previous discoveries.

Mathematics is a great place to see this idea at work. Consider the following problem:

What is the domain and range of y=(x^2)+6?

This simple algebra problem relies on you knowing a few things already. You must know:

  • The definition of “domain” and “range”
  • That you can never square any real number and get a negative

Once you know those things, this becomes easy to solve. This is also how we learn languages.

Speaking languages on the shoulders of computers

Anyone interested in serious foreign language study (as opposed to a “crash course” or “survival course”) should learn the infinitive form of verbs in their target language. You can’t make progress without them because they’re the root of all conjugations. It’s only once you have a grasp of the infinitives that you can completely express yourself. Consider the problem solving steps applied in the following example.

I know that I want to say “I don’t eat eggs” to my Mexican waiter.  That’s the problem.

I don’t know how to say that, but last night I told my date “No bebo alcohol” (“I don’t drink alcohol”). I also know the the infinitive for “eat” in Spanish (comer).  This is what I already know.

Now I can execute the final step of problem solving.

Step 4: What’s the relationship between the two?

I see the connection. 

I know the infinitive for the spanish word “drink” is “beber”. Last night, I changed it to “bebo” to express a similar idea. I should be able to do the same thing to the word for “eat”. 

“No como huevos” is a pretty accurate guess.

In the math example, the same process occurs. You don’t know the answer to “What is the domain and range of y=(x^2)+6?” You only know what “domain” and “range” mean and that negatives aren’t possible when you square a real number.

A domain of all real numbers and a range of all numbers equal to and greater than six is the answer.

This is relating what you don’t know to what you already do know. The solutions appear simple, but walking through them is an excellent demonstration of the process of problem solving.

In most cases, the solution won’t be this simple, but the process of finding it is the same. This may seem trivial, but this is a model for thinking that has served the greatest minds in history.

A recap of the 4 steps of the simple problem solving process

  • What’s the problem?  There’s something wrong. There’s something amiss.
  • What do you need to know?  This is how to fix what’s wrong.
  • What do you already know?  You already know something useful that will help you find an effective solution.
  • What’s the relationship between the previous two?  When you use what you know to help figure out what you don’t know, there is no problem that won’t yield.

Learning is simply problem solving. You’ll learn faster if you view it this way.

What was once complicated will become simple.

What was once convoluted will become clear.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)
  • Guide: Problem Solving

Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

  • Last Updated: January 7, 2024
  • Learn Lean Sigma

Problem-solving stands as a fundamental skill, crucial in navigating the complexities of both everyday life and professional environments. Far from merely providing quick fixes, it entails a comprehensive process involving the identification, analysis, and resolution of issues.

This multifaceted approach requires an understanding of the problem’s nature, the exploration of its various components, and the development of effective solutions. At its core, problem-solving serves as a bridge from the current situation to a desired outcome, requiring not only the recognition of an existing gap but also the precise definition and thorough analysis of the problem to find viable solutions.

Table of Contents

What is problem solving.

At its core, problem-solving is about bridging the gap between the current situation and the desired outcome. It starts with recognizing that a discrepancy exists, which requires intervention to correct or improve. The ability to identify a problem is the first step, but it’s equally crucial to define it accurately. A well-defined problem is half-solved, as the saying goes.

Analyzing the problem is the next critical step. This analysis involves breaking down the problem into smaller parts to understand its intricacies. It requires looking at the problem from various angles and considering all relevant factors – be they environmental, social, technical, or economic. This comprehensive analysis aids in developing a deeper understanding of the problem’s root causes, rather than just its symptoms.

Finally, effective problem-solving involves the implementation of the chosen solution and its subsequent evaluation. This stage tests the practicality of the solution and its effectiveness in the real world. It’s a critical phase where theoretical solutions meet practical application.

The Nature of Problems

The nature of the problem significantly influences the approach to solving it. Problems vary greatly in their complexity and structure, and understanding this is crucial for effective problem-solving.

Simple vs. Complex Problems : Simple problems are straightforward, often with clear solutions. They usually have a limited number of variables and predictable outcomes. On the other hand, complex problems are multi-faceted. They involve multiple variables, stakeholders, and potential outcomes, often requiring a more sophisticated analysis and a multi-pronged approach to solving.

Structured vs. Unstructured Problems : Structured problems are well-defined. They follow a specific pattern or set of rules, making their outcomes more predictable. These problems often have established methodologies for solving. For example, mathematical problems usually fall into this category. Unstructured problems, in contrast, are more ambiguous. They lack a clear pattern or set of rules, making their outcomes uncertain. These problems require a more exploratory approach, often involving trial and error, to identify potential solutions.

Understanding the type of problem at hand is essential, as it dictates the approach. For instance, a simple problem might require a straightforward solution, while a complex problem might need a more comprehensive, step-by-step approach. Similarly, structured problems might benefit from established methodologies, whereas unstructured problems might need more innovative and creative problem-solving techniques.

The Problem-Solving Process

The process of problem-solving is a methodical approach that involves several distinct stages. Each stage plays a crucial role in navigating from the initial recognition of a problem to its final resolution. Let’s explore each of these stages in detail.

Step 1: Identifying the Problem

Step 2: defining the problem.

Once the problem is identified, the next step is to define it clearly and precisely. This is a critical phase because a well-defined problem often suggests its solution. Defining the problem involves breaking it down into smaller, more manageable parts. It also includes understanding the scope and impact of the problem. A clear definition helps in focusing efforts and resources efficiently and serves as a guide to stay on track during the problem-solving process.

Step 3: Analyzing the Problem

Step 4: generating solutions, step 5: evaluating and selecting solutions.

After generating a list of possible solutions, the next step is to evaluate each one critically. This evaluation includes considering the feasibility, costs, benefits, and potential impact of each solution. Techniques like cost-benefit analysis, risk assessment, and scenario planning can be useful here. The aim is to select the solution that best addresses the problem in the most efficient and effective way, considering the available resources and constraints.

Step 6: Implementing the Solution

Step 7: reviewing and reflecting.

The final stage in the problem-solving process is to review the implemented solution and reflect on its effectiveness and the process as a whole. This involves assessing whether the solution met its intended goals and what could have been done differently. Reflection is a critical part of learning and improvement. It helps in understanding what worked well and what didn’t, providing valuable insights for future problem-solving efforts.

Tools and Techniques for Effective Problem Solving

Problem-solving is a multifaceted endeavor that requires a variety of tools and techniques to navigate effectively. Different stages of the problem-solving process can benefit from specific strategies, enhancing the efficiency and effectiveness of the solutions developed. Here’s a detailed look at some key tools and techniques:

Brainstorming

Swot analysis (strengths, weaknesses, opportunities, threats), root cause analysis.

This is a method used to identify the underlying causes of a problem, rather than just addressing its symptoms. One popular technique within root cause analysis is the “ 5 Whys ” method. This involves asking “why” multiple times (traditionally five) until the fundamental cause of the problem is uncovered. This technique encourages deeper thinking and can reveal connections that aren’t immediately obvious. By addressing the root cause, solutions are more likely to be effective and long-lasting.

Mind Mapping

Each of these tools and techniques can be adapted to different types of problems and situations. Effective problem solvers often use a combination of these methods, depending on the nature of the problem and the context in which it exists. By leveraging these tools, one can enhance their ability to dissect complex problems, generate creative solutions, and implement effective strategies to address challenges.

Developing Problem-Solving Skills

Developing problem-solving skills is a dynamic process that hinges on both practice and introspection. Engaging with a diverse array of problems enhances one’s ability to adapt and apply different strategies. This exposure is crucial as it allows individuals to encounter various scenarios, ranging from straightforward to complex, each requiring a unique approach. Collaborating with others in teams is especially beneficial. It broadens one’s perspective, offering insights into different ways of thinking and approaching problems. Such collaboration fosters a deeper understanding of how diverse viewpoints can contribute to more robust solutions.

Reflection is equally important in the development of problem-solving skills. Reflecting on both successes and failures provides valuable lessons. Successes reinforce effective strategies and boost confidence, while failures are rich learning opportunities that highlight areas for improvement. This reflective practice enables one to understand what worked, what didn’t, and why.

Critical thinking is a foundational skill in problem-solving. It involves analyzing information, evaluating different perspectives, and making reasoned judgments. Creativity is another vital component. It pushes the boundaries of conventional thinking and leads to innovative solutions. Effective communication also plays a crucial role, as it ensures that ideas are clearly understood and collaboratively refined.

In conclusion, problem-solving is an indispensable skill set that blends analytical thinking, creativity, and practical implementation. It’s a journey from understanding the problem to applying a solution and learning from the outcome.

Whether dealing with simple or complex issues, or structured or unstructured challenges, the essence of problem-solving lies in a methodical approach and the effective use of various tools and techniques. It’s a skill that is honed over time, through experience, reflection, and the continuous development of critical thinking, creativity, and communication abilities. In mastering problem-solving, one not only addresses immediate issues but also builds a foundation for future challenges, leading to more innovative and effective outcomes.

  • Mourtos, N.J., Okamoto, N.D. and Rhee, J., 2004, February. Defining, teaching, and assessing problem solving skills . In  7th UICEE Annual Conference on Engineering Education  (pp. 1-5).
  • Foshay, R. and Kirkley, J., 2003. Principles for teaching problem solving.   Technical paper ,  4 (1), pp.1-16.

Q: What are the key steps in the problem-solving process?

A : The problem-solving process involves several key steps: identifying the problem, defining it clearly, analyzing it to understand its root causes, generating a range of potential solutions, evaluating and selecting the most viable solution, implementing the chosen solution, and finally, reviewing and reflecting on the effectiveness of the solution and the process used to arrive at it.

Q: How can brainstorming be effectively used in problem-solving?

A: Brainstorming is effective in the solution generation phase of problem-solving. It involves gathering a group and encouraging the free flow of ideas without immediate criticism. The goal is to produce a large quantity of ideas, fostering creative thinking. This technique helps in uncovering unique and innovative solutions that might not surface in a more structured setting.

Q: What is SWOT Analysis and how does it aid in problem-solving?

A : SWOT Analysis is a strategic planning tool used to evaluate the Strengths, Weaknesses, Opportunities, and Threats involved in a situation. In problem-solving, it aids by providing a clear understanding of the internal and external factors that could impact the problem and potential solutions. This analysis helps in formulating strategies that leverage strengths and opportunities while mitigating weaknesses and threats.

Q: Why is it important to understand the nature of a problem before solving it?

A : Understanding the nature of a problem is crucial as it dictates the approach for solving it. Problems can be simple or complex, structured or unstructured, and each type requires a different strategy. A clear understanding of the problem’s nature helps in applying the appropriate methods and tools for effective resolution.

Q: How does reflection contribute to developing problem-solving skills?

A : Reflection is a critical component in developing problem-solving skills. It involves looking back at the problem-solving process and the implemented solution to assess what worked well and what didn’t. Reflecting on both successes and failures provides valuable insights and lessons, helping to refine and improve problem-solving strategies for future challenges. This reflective practice enhances one’s ability to approach problems more effectively over time.

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Other Guides

loading

How it works

For Business

Join Mind Tools

Article • 11 min read

The Four-Step Innovation Process

Generating innovative solutions to complex problems.

By the Mind Tools Content Team

what is the 3rd step in the 4 step problem solving process

Imagine that you need to solve a complex problem. You ask everyone on your team to come up with solutions, and they provide a number of ideas. The problem is that the solutions don't have the impact you'd hoped for – they're wild ideas or quick, obvious fixes, and they won't add much value to what you do.

To solve problems effectively, it's essential that you and your team think in a creative and innovative way. You also need to ensure that your solutions address defined business needs, otherwise your ideas won't add much value.

Weiss and Legrand's Four-Step Innovation Process helps you come up with innovative and creative solutions to complex problems, which are securely grounded in a thorough understanding of the business context.

In this article, we'll look at the benefits of using this process, and we'll discuss how you can apply it to find innovative solutions to the problems you face.

What Are the Four Steps to Problem Solving Innovation?

David Weiss and Claude Legrand developed the Four-Step Innovation Process, and published it in their 2011 book, "Innovative Intelligence: The Art and Practice of Leading Sustainable Innovation in Your Organization."

The four steps are:

  • Framework development.
  • Define issue.
  • Generate ideas.
  • Implement best solution.

The model's main, unique advantage is that it encourages you to define your business needs early in the innovation process. This means that you generate solutions that add real value to what you do, so that you can deliver better and more sustainable results.

The Four-Step Innovation Process is a relatively simple model. But it's by no means a "quick fix." It's best to work through the process slowly, and to give yourself plenty of time to think about each step.

How to Solve Your Problem in Four Steps

Let's look at each step in greater detail, and discuss how you can apply the Four-Step Innovation model.

Step 1: Framework Development

This initial step encourages you to think about how you'll solve the problem. It also helps you ensure that the solution you develop robustly meets business needs.

Work through the following sub-steps:

  • Identify the problem's history – What is the history of this problem? Has anyone tried to solve it before? What worked, and what didn't?
  • Understand context – What's the higher strategy , or project, that the problem fits into? What other projects, problems, rules, or regulations could affect how you solve this problem? How much support will the organization and key stakeholders give to this project?
  • Ask "How" – Phrase the problem as a question, starting with "How to..." or "How will we…?" For instance, "How will we cut customer complaints by five percent?" or "How will we speed up the process by one hour?" This helps to set the objective and define how you'll measure success.

Use very specific, quantified words, and avoid vague words like "faster," "improve," "better," "higher," "expensive," or "more," unless you can quantify them.

If you're working with a team, get each person to write a "How will...?" question – one that he or she feels best describes the problem that you're all trying to solve. Then, discuss everyone's ideas, and decide which one is most suitable.

  • Define boundaries – What is your budget and timeline, and what resources do you have? What must the solution do, or not do? And what boundaries are outside your control?
  • Define outcome – Loosely define the type of solution, or outcome, that you think will solve the problem. Will you need to improve a process or product? Or do you need to rethink the way that you do marketing or sales, for example? This step helps focus your thinking in the later steps.
  • Identify the decision maker – Who really "owns" this issue, and who can make the final decision? If you're solving the problem as part of a project, this may be the project sponsor.

Take time to work through these six areas. Although you might feel ready to start coming up with solutions, wait. The work you put in now will help you in later steps.

If you're working on a complex project, it may be useful to put this information into a more formal Project Charter .

Step 2: Define Issue

The goal of this second step is to find the root cause of the problem, and to identify any sub-problems or issues that you haven't yet uncovered. This will help you ensure that you're looking at the right issue.

First, clarify your assumptions about the problem using a tool such as the Ladder of Inference .

Then, explore the problem using tools such as the 5 Whys technique, Cause and Effect Analysis , Root Cause Analysis , and Interrelationship Diagrams , so that you can identify the main issue that you need to deal with.

It can also help to identify how the problem fits into a larger system or process. Flow Charts and Swim Lane Diagrams can help you do this.

Once you feel that you've understood the problem clearly, make sure that you validate this understanding with the problem owner, or decision maker.

Step 3: Generate Ideas

Now that you've identified a framework for solving your problem, and you have a good understanding of what your problem is, you can focus on the fun, creative part of problem solving: idea generation!

There are four substeps in the idea generation process. Following these substeps ensures that you and your team generate ideas that fit within the boundaries and limits that you've already identified.

  • Prepare – Arrive at the brainstorming session with the right problem in mind, with an agenda, with a facilitator, and with plenty of creative brainstorming techniques to use.
  • Define a framework – Let everyone know what the final "How will...?" question is, and go over the boundaries, rules, and goals that you identified in previous steps. This helps you ensure that everyone is on the same page.
  • Start generating ideas – Put your creative brainstorming techniques to use, and start generating ideas. Try not to judge the quality of ideas; just concentrate on speed and quantity during this stage!
  • Identify best solutions – Look at all of the solutions that you and your team have generated. You may be able to combine some to create other meaningful solutions. Pick the solution (or combination of solutions) that best answers your "How will…?" question, but don't disregard the other solutions yet.

One of the most damaging things that can happen in stage c is that ideas are censored or judged. Make it clear to your team members that you should not disregard any ideas until you get to step d. There is a time and place for weeding out the weaker ideas, and this should not take place until the end of this step!

Come to the idea generation process prepared with brainstorming techniques that work well with a group. Conventional Brainstorming can work very well, but, if it gets bogged down, be prepared to use tools like Round Robin Brainstorming and Crawford's Slip Writing Method .

If any of you get stuck in the brainstorming process, use lateral thinking techniques such as Provocation to come up with fresh ideas.

Step 4: Implement Best Solution

Now, you need to choose the best solution from Step 3, and develop a plan to implement it successfully. This includes thinking through the solution in detail, assessing risks, and creating detailed plans.

Read our article on organizing team decision-making for more on how you can make great decisions as a group.

If you have several possible solutions to consider, use decision-making tools like Decision Tree Analysis and Decision Matrix Analysis to evaluate your options. Use the criteria you identified in Step 1 to choose between them.

For small projects, an Action Plan will be useful for implementing your solution. However, if you're implementing a large-scale project, you'll need to use a more formal project management approach.

Where your implementation affects several people, or groups of people, it's also worth thinking about how you'll manage change effectively. Remember, if you create a positive vision and communicate a compelling reason for the change, it'll be easier to build excitement and get buy-in from your team or organization.

Terms reprinted from Weiss, D.S., and Legrand, C "Innovative Intelligence: The Art and Practice of Leading Sustainable Innovation in Your Organization" by permission of J. Wiley & Sons Canada, Mississauga, Ontario. Copyright © 2011.

The Four-Step Innovation Process is one of several useful problem-solving processes, and its strength lies in the way that it anchors innovation in the right organizational context.

Other approaches include Hurson's Productive Thinking Model , which is great for encouraging creativity and critical thinking at each stage of the problem-solving process; the Simplex Process , which embeds innovation in a process of continual improvement; and Soft Systems Methodology , which adopts a fluid and iterative approach to problem definition and problem solving.

The best problem-solving approach for your situation may involve a combination of all of these approaches.

David Weiss and Claude Legrand published their Four-Step Innovation Process in their 2011 book, "Innovative Intelligence: The Art and Practice of Leading Sustainable Innovation in Your Organization."

The benefit of using the Four-Step Innovation Process is that it provides a framework that you, along with your team, can use to work through the innovation process in a thorough and methodical way.

This leads to better, more innovative ideas because you've prepared the ground thoroughly, defined issues clearly, generated ideas in the right context, and planned implementation and change carefully.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Infographic

8 Signs of Stress You Can't Ignore Infographic

Infographic Transcript

Planning a Workshop

Organizing and Running a Successful Event

Add comment

Comments (0)

Be the first to comment!

what is the 3rd step in the 4 step problem solving process

Team Management

Learn the key aspects of managing a team, from building and developing your team, to working with different types of teams, and troubleshooting common problems.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article amtbj63

SWOT Analysis

Article at29cce

How to Build a Strong Culture in a Distributed Team

Mind Tools Store

About Mind Tools Content

Discover something new today

Top tips for delegating.

Delegate work to your team members effectively with these top tips

Ten Dos and Don'ts of Change Conversations

Tips for tackling discussions about change

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Performance management overview.

Introduction to the Performance Management Cycle and Performance Management Framework

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Table of Contents

The problem-solving process, how to solve problems: 5 steps, train to solve problems with lean today, what is problem solving steps, techniques, & best practices explained.

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

Problem solving is the art of identifying problems and implementing the best possible solutions. Revisiting your problem-solving skills may be the missing piece to leveraging the performance of your business, achieving Lean success, or unlocking your professional potential. 

Ask any colleague if they’re an effective problem-solver and their likely answer will be, “Of course! I solve problems every day.” 

Problem solving is part of most job descriptions, sure. But not everyone can do it consistently. 

Problem solving is the process of defining a problem, identifying its root cause, prioritizing and selecting potential solutions, and implementing the chosen solution.

There’s no one-size-fits-all problem-solving process. Often, it’s a unique methodology that aligns your short- and long-term objectives with the resources at your disposal. Nonetheless, many paradigms center problem solving as a pathway for achieving one’s goals faster and smarter. 

One example is the Six Sigma framework , which emphasizes eliminating errors and refining the customer experience, thereby improving business outcomes. Developed originally by Motorola, the Six Sigma process identifies problems from the perspective of customer satisfaction and improving product delivery. 

Lean management, a similar method, is about streamlining company processes over time so they become “leaner” while producing better outcomes. 

Trendy business management lingo aside, both of these frameworks teach us that investing in your problem solving process for personal and professional arenas will bring better productivity.

1. Precisely Identify Problems

As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. 

At this stage, your task is to identify the scope and substance of the problem. Ask yourself a series of questions: 

  • What’s the problem? 
  • How many subsets of issues are underneath this problem? 
  • What subject areas, departments of work, or functions of business can best define this problem? 

Although some problems are naturally large in scope, precision is key. Write out the problems as statements in planning sheets . Should information or feedback during a later step alter the scope of your problem, revise the statements. 

Framing the problem at this stage will help you stay focused if distractions come up in later stages. Furthermore, how you frame a problem will aid your search for a solution. A strategy of building Lean success, for instance, will emphasize identifying and improving upon inefficient systems. 

2. Collect Information and Plan 

The second step is to collect information and plan the brainstorming process. This is another foundational step to road mapping your problem-solving process. Data, after all, is useful in identifying the scope and substance of your problems. 

Collecting information on the exact details of the problem, however, is done to narrow the brainstorming portion to help you evaluate the outcomes later. Don’t overwhelm yourself with unnecessary information — use the problem statements that you identified in step one as a north star in your research process. 

This stage should also include some planning. Ask yourself:

  • What parties will ultimately decide a solution? 
  • Whose voices and ideas should be heard in the brainstorming process? 
  • What resources are at your disposal for implementing a solution? 

Establish a plan and timeline for steps 3-5. 

3. Brainstorm Solutions

Brainstorming solutions is the bread and butter of the problem-solving process. At this stage, focus on generating creative ideas. As long as the solution directly addresses the problem statements and achieves your goals, don’t immediately rule it out. 

Moreover, solutions are rarely a one-step answer and are more like a roadmap with a set of actions. As you brainstorm ideas, map out these solutions visually and include any relevant factors such as costs involved, action steps, and involved parties. 

With Lean success in mind, stay focused on solutions that minimize waste and improve the flow of business ecosystems. 

Become a Quality Management Professional

  • 10% Growth In Jobs Of Quality Managers Profiles By 2025
  • 11% Revenue Growth For Organisations Improving Quality

Certified Lean Six Sigma Green Belt

  • 4 hands-on projects to perfect the skills learnt
  • 4 simulation test papers for self-assessment

Lean Six Sigma Expert

  • IASSC® Lean Six Sigma Green Belt and Black Belt certification
  • 13 Projects, 12 Simulation exams, 18 Case Studies & 114 PDUs

Here's what learners are saying regarding our programs:

Xueting Liu

Xueting Liu

Mechanical engineer student at sargents pty. ltd. ,.

A great training and proper exercise with step-by-step guide! I'll give a rating of 10 out of 10 for this training.

Abdus Salam

Abdus Salam

I have completed the Lean Six Sigma Expert Master’s Program from Simplilearn. And after the course, I could take up new projects and perform better. My average pay rate for a research position increased by 21%.

4. Decide and Implement

The most critical stage is selecting a solution. Easier said than done. Consider the criteria that has arisen in previous steps as you decide on a solution that meets your needs. 

Once you select a course of action, implement it. 

Practicing due diligence in earlier stages of the process will ensure that your chosen course of action has been evaluated from all angles. Often, efficient implementation requires us to act correctly and successfully the first time, rather than being hurried and sloppy. Further compilations will create more problems, bringing you back to step 1. 

5. Evaluate

Exercise humility and evaluate your solution honestly. Did you achieve the results you hoped for? What would you do differently next time? 

As some experts note, formulating feedback channels into your evaluation helps solidify future success. A framework like Lean success, for example, will use certain key performance indicators (KPIs) like quality, delivery success, reducing errors, and more. Establish metrics aligned with company goals to assess your solutions.

Master skills like measurement system analysis, lean principles, hypothesis testing, process analysis and DFSS tools with our Lean Six Sigma Green Belt Training Course . Sign-up today!

Become a quality expert with Simplilearn’s Lean Six Sigma Green Belt . This Lean Six Sigma certification program will help you gain key skills to excel in digital transformation projects while improving quality and ultimate business results.

In this course, you will learn about two critical operations management methodologies – Lean practices and Six Sigma to accelerate business improvement.

Our Quality Management Courses Duration And Fees

Explore our top Quality Management Courses and take the first step towards career success

Get Free Certifications with free video courses

Lean Management

Quality Management

Lean Management

PMP Basics

Project Management

Learn from industry experts with free masterclasses, digital marketing.

The Top 10 AI Tools You Need to Master Marketing in 2024

Unlock Digital Marketing Career Success Secrets for 2024 with Purdue University

Your Gateway to Game-changing Digital Marketing Careers in 2024 with Purdue University

Recommended Reads

Introduction to Machine Learning: A Beginner's Guide

Webinar Wrap-up: Mastering Problem Solving: Career Tips for Digital Transformation Jobs

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Free eBook: 21 Resources to Find the Data You Need

ITIL Problem Workaround: A Leader’s Guide to Manage Problems

Your One-Stop Solution to Understand Coin Change Problem

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

2.1: George Polya's Four Step Problem Solving Process

  • Last updated
  • Save as PDF
  • Page ID 132871

Step 1: Understand the Problem

  • Do you understand all the words?
  • Can you restate the problem in your own words?
  • Do you know what is given?
  • Do you know what the goal is?
  • Is there enough information?
  • Is there extraneous information?
  • Is this problem similar to another problem you have solved?

Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.)

IMAGES

  1. what is the 3rd step in the 4 step problem solving process

    what is the 3rd step in the 4 step problem solving process

  2. what is the 3rd step in the 4 step problem solving process

    what is the 3rd step in the 4 step problem solving process

  3. what is the 3rd step in the 4 step problem solving process

    what is the 3rd step in the 4 step problem solving process

  4. problem-solving-steps-poster

    what is the 3rd step in the 4 step problem solving process

  5. 4 Steps Problem Solving Process Powerpoint Guide

    what is the 3rd step in the 4 step problem solving process

  6. what is the 4 step problem solving process

    what is the 3rd step in the 4 step problem solving process

VIDEO

  1. 7 Step Problem Solving #shorts #problemsolving

  2. Four Step Problem Solving

  3. Polya's 4 step Problem Solving

  4. die hard jugs.mov

  5. Introduction to Polya's 4-step Problem-Solving Method_GEC-MMW Group 4 report

  6. Polya's 4 step problem solving

COMMENTS

  1. The easy 4 step problem-solving process (+ examples)

    Good problem solvers always believe step 3 is the issue. In this case, it's a simple matter of learning more. Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills.

  2. PDF The 4-Step Problem-Solving Process

    The 4-Step Problem-Solving Process. This document is the third in a series intended to help school and district leaders maximize the effectiveness and fluidity of their multi-tiered system of supports (MTSS) across different learning environments. Specifically, the document is designed to support the use of problem solving to improve outcomes ...

  3. 10.1: George Polya's Four Step Problem Solving Process

    Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.)

  4. Polya's Problem Solving Process

    Polya's 4-Step Process. George Polya was a mathematician in the 1940s. He devised a systematic process for solving problems that is now referred to by his name: the Polya 4-Step Problem-Solving ...

  5. PDF What do we need to know about the 4-step problem solving process?

    process is most effective when used by teams of educators with a variety of expertise to accelerate students educational performance. Family engagement is a critical element to ensure successful outcomes of the problem-solving process. The 4-step process is a proven and well-established method of identifying, implementing and evaluating

  6. What is Problem Solving? Steps, Process & Techniques

    The Problem-Solving Process. In order to effectively manage and run a successful organization, leadership must guide their employees and develop problem-solving techniques. Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below.

  7. PDF 4-Step Process for Problem Solving

    Choose a strategy, or combination of strategies. Make a record of false starts, and your corrections. Carry out the plan. Clearly and precisely describe verbally each step of the plan. Verify that each step has been done correctly. Provide mathematical justification for the step (a convincing argument)

  8. Intermediate Algebra Tutorial 8

    The following formula will come in handy for solving example 6: Perimeter of a Rectangle = 2 (length) + 2 (width) Example 6 : In a blueprint of a rectangular room, the length is 1 inch more than 3 times the width. Find the dimensions if the perimeter is to be 26 inches. Step 1: Understand the problem.

  9. An Overview of 4-Step Problem Solving

    An Overview of 4-Step Problem Solving. This online course is intended to provide users with an understanding of the broad concepts of the 4-step problem solving process. The course includes the critical elements and guiding questions within each step, features sample data sources, and provides checks for understanding throughout.

  10. The Art of Effective Problem Solving: A Step-by-Step Guide

    This is the next step in the problem-solving process, which we'll go over in greater detail in the following section. Step 3 - Evaluate Options and Choose the Best Solution. ... Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution ...

  11. The Problem-Solving Process

    The Problem-Solving Process. Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  12. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  13. PDF THIRTEEN PROBLEM-SOLVING MODELS

    Identify the people, information (data), and things needed to resolve the problem. Step. Description. Step 3: Select an Alternative. After you have evaluated each alternative, select the alternative that comes closest to solving the problem with the most advantages and fewest disadvantages.

  14. MRSC

    The 4-step Problem Solving Method. The model we've used with clients is based on the A3 problem-solving methodology used by many "lean" production-based companies. In addition to being simpler, our 4-step method is visual, which helps remind the user what goes into each box. The steps are as follows. Develop a Problem Statement; Determine ...

  15. 4 Step Problem Solving Process for Any Issue

    Good problem solvers always believe step 3 is the issue. In this case, it's a simple matter of learning more. Less skilled problem solvers believe step 4 is the root cause of their difficulties. In this instance, they simply believe they have limited problem-solving skills. This is fixed versus growth mindset and it makes a huge difference in ...

  16. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  17. Guide: Problem Solving

    The Problem-Solving Process. The process of problem-solving is a methodical approach that involves several distinct stages. Each stage plays a crucial role in navigating from the initial recognition of a problem to its final resolution. Let's explore each of these stages in detail. Step 1: Identifying the Problem. This is the foundational ...

  18. The Four-Step Innovation Process

    The four steps are: Framework development. Define issue. Generate ideas. Implement best solution. The benefit of using the Four-Step Innovation Process is that it provides a framework that you, along with your team, can use to work through the innovation process in a thorough and methodical way.

  19. What Is Problem Solving? Steps, Techniques, and Best ...

    How to Solve Problems: 5 Steps. 1. Precisely Identify Problems. As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. At this stage, your task is to identify the scope ...

  20. 2.3.1: George Polya's Four Step Problem Solving Process

    Is there extraneous information? Is this problem similar to another problem you have solved? Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1. Guess and test.

  21. THE PROBLEM-SOLVING PROCESS Flashcards

    Step 1: Define the Problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically. Identify what standard or expectation is violated. Determine in which process the problem lies. Avoid trying to solve the problem without data.

  22. PDF The 4-Step Problem Solving Process

    The 4-Step Problem Solving Process A multi-tiered system of supports (MTSS) is an evidence-based system of schooling within ... The 4-step process is a proven and well-established method of identifying, implementing and evaluating educational solutions that are designed to improve student growth and performance.

  23. Master Problem Solving with Interpersonal Skills

    The first step in problem-solving is to clearly identify the issue at hand. This involves active listening and open communication to ensure that all perspectives are considered.

  24. Master Problem Solving Skills in 6 Key Steps

    The first step in problem solving is to clearly identify the issue at hand. This involves understanding the problem's context and its impact on your goals. You need to ask the right questions to ...

  25. Master Problem Solving Skills with Key Training Steps

    Navigating the problem-solving process is a critical skill that can make a significant difference in both your professional and personal life. When faced with a challenge, it's essential to ...

  26. Josh Allen Live: Buffalo Bills 2024 Offseason Workouts

    We're LIVE with QB Josh Allen as he meets with the media from One Bills Drive. #GoBills #BillsMafia

  27. 2.1: George Polya's Four Step Problem Solving Process

    Step 2: Devise a Plan: Below are some strategies one might use to solve a problem. Can one (or more) of the following strategies be used? (A strategy is defined as an artful means to an end.) 1. Guess and test.