ScienceDaily

Stem Cells News

Top headlines, latest headlines.

  • Control of Stem Cell Differentiation
  • Understanding Kidney Development
  • Facial Development and Pressure in the Womb
  • New Way to Generate Human Cartilage
  • Curing An Hereditary Liver Disease: Gene ...
  • How to Protect the Brain After Traumatic Injury
  • Familial Alzheimer's Via Bone Marrow Transplant
  • Stem Cell Aging in the Brain
  • Better Engineered Blood Vessels
  • Vitamin A, Stem Cell Biology and Wound Repair

Earlier Headlines

Monday, march 4, 2024.

  • Degree of Cell Crowding in the Early Human Embryo Influences Cell Identity Decision, New Culture System Finds

Tuesday, February 27, 2024

  • Researchers Identify Enzyme Key to Training Cells to Fight Autoimmune Disorders

Monday, February 26, 2024

  • Human Stem Cells Coaxed to Mimic the Very Early Central Nervous System

Monday, February 12, 2024

  • Nutrients Direct Intestinal Stem Cell Function and Affect Aging
  • Artificial Cartilage With the Help of 3D Printing

Friday, February 9, 2024

  • From Growing Roots, Clues to How Stem Cells Decide Their Fate

Wednesday, February 7, 2024

  • Scientists Develop a Low-Cost Device to Make Cell Therapy Safer

Friday, February 2, 2024

  • Scientists Uncover a Crucial Link Between Cholesterol Synthesis and Cancer Progression

Wednesday, January 31, 2024

  • Researchers Hack Neurons' Internal Clocks to Accelerate the Study of Neurological Diseases

Friday, January 26, 2024

  • How Gene Activity Modulates the Amount of Immune Cell Production in Mice

Thursday, January 11, 2024

  • Genetically Modified Pluripotent Stem Cells May Evade Immunological Rejection After Transplantation, Study Shows

Wednesday, January 10, 2024

  • How 'pioneers' Blaze the One Trail That Determines Cell Fate

Thursday, January 4, 2024

  • Scientists Develop a Game-Changing Organoid Model to Study Human Cerebellar Development and Disease

Thursday, December 21, 2023

  • The Future of Canine Stem Cell Therapy: Unprecedented, Painless, and Feeder-Free

Tuesday, December 19, 2023

  • Immune System Plays Crucial Step in Creating Blood Stem Cells

Monday, December 18, 2023

  • New Discovery Could Aid Regenerative Heart Therapies

Wednesday, December 13, 2023

  • Understanding the Risk of Cell Therapy for Heart Repair
  • The Pedigree of Brain Cells

Monday, December 11, 2023

  • Stem Cell Study Reveals How Infantile Cystinosis Causes Kidney Failure -- And How to Cure It

Thursday, December 7, 2023

  • Novel Stem Cell Therapy Using Technology from mRNA COVID-19 Vaccines May Stimulate Natural Repair in Treatment of Chronic and Acute Liver Disease
  • Novel and Promising Pancreatic Cancer Organoids for Effective Screening of Anticancer Drugs

Tuesday, December 5, 2023

  • Revolutionizing the Treatment of Parkinson's Patients

Monday, November 27, 2023

  • Early-Stage Stem Cell Therapy Trial Shows Promise for Treating Progressive MS
  • Stem Cell-Based Treatment Controls Blood Sugar in People With Type 1 Diabetes

Friday, November 24, 2023

  • Decoding Cell Fate: Key Mechanism in Stem Cell Switch Identified

Wednesday, November 22, 2023

  • Pediatric Oncology: Scientists Discover New Achilles Heel of Leukemia Cells

Friday, November 17, 2023

  • Potential Glaucoma Treatment Strategy to Guide Stem Cells to the Retina
  • Lung Cancer Cells' 'memories' Suggest New Strategy for Improving Treatment
  • Alzheimer's and Parkinson's: Scientists Produce Human Norepinephrine Neurons from Stem Cells

Thursday, November 16, 2023

  • New Research Advances Understanding of Cancer Risk in Gene Therapies

Tuesday, November 14, 2023

  • Cancer Stem Cells Trigger Macrophage Aging
  • Researchers Chart the Contents of Human Bone Marrow

Thursday, November 9, 2023

  • Side-Effect Avoiding Treatment Shows Early Promise Against Breast Cancer in Mice

Monday, November 6, 2023

  • A Step Closer to Injection-Free Diabetes Care: Innovation in Insulin-Producing Cells

Tuesday, October 31, 2023

  • Combining Cell Types May Lead to Improved Cardiac Cell Therapy Following Heart Attack

Tuesday, October 17, 2023

  • Team Finds a Stem-Cell Derived Mechanism That Could Lead to Regenerative Therapies for Heart Damage

Tuesday, October 10, 2023

  • DNA Aptamer Finds Novel Application in Regulating Cell Differentiation

Thursday, September 28, 2023

  • Brazil's Diversity Makes Country a Testing Ground for a Global Stem Cell Biobank, Scientists Say

Wednesday, September 27, 2023

  • New Information on the Most Important Early Stage of Embryonic Development
  • Blocking Abnormal Stem Cell Signal During Aging Lessens Related Bone Loss
  • Researchers Discover Disease-Causing Stem Cells in Lungs of Cystic Fibrosis Patients

Wednesday, September 20, 2023

  • Newly Discovered Bone Stem Cell Causes Premature Skull Fusion

Tuesday, September 19, 2023

  • Career Choice in Stem Cells: Predetermined or Self-Selected?

Monday, September 11, 2023

  • Stem Cell-Derived Components May Treat Underlying Causes of PCOS
  • Nutrients Drive Cellular Reprogramming in the Intestine

Thursday, September 7, 2023

  • Researchers Grow Embryonic Humanized Kidneys Inside Pigs for 28 Days

Thursday, August 31, 2023

  • Expanding the Impact of CAR T Cell Therapy: An Immunotherapy Strategy Against All Blood Cancers

Wednesday, August 30, 2023

  • Promising Evidence for Sickle Cell Gene Therapy
  • Researchers Identify Stem Cells in the Thymus

Thursday, August 24, 2023

  • Researchers Describe Rebuilding, Regenerating Lung Cells

Thursday, August 17, 2023

  • How TET2 Gene Deficiency Fuels Development of Acute Myeloid Leukemia
  • With Advances in in Vitro Models, Group Proposes Refined Legal Definition of an Embryo

Wednesday, August 16, 2023

  • Building Muscle in the Lab
  • Genetically Modified Neural Stem Cells Show Promising Therapeutic Potential for Spinal Cord Injury

Monday, August 14, 2023

  • Stem-Cell Derived Organoids Secrete Tooth Enamel Proteins

Wednesday, August 9, 2023

  • Research Sheds New Light on Gene Therapy for Blood Disorders
  • Stem Cell Therapy Rescues Symptoms of Alzheimer's Disease
  • Childhood Cancer: 'New' Immune System Responds Better to Therapy

Monday, July 31, 2023

  • Researchers Find an Epigenetic Key That Unlocks Common Deadly Cancers

Friday, July 28, 2023

  • Neonatal Stem Cells from the Heart Could Treat Crohn's Disease

Friday, July 21, 2023

  • Researchers Reverse Chemotherapy-Related Fertility Loss Using Cell-Based Therapy
  • Powerhouse Proteins Protect Heart Cells from Chemotherapy Damage

Thursday, July 20, 2023

  • Researchers Generate Human Embryo-Like Structures That Include Extraembryonic Tissue

Wednesday, July 19, 2023

  • Study Optimizes Patient-Specific Stem Cell-Based Therapy for Parkinson's Disease

Wednesday, June 28, 2023

  • Innovative Stem Cell Research Takes Aim at Origins of Human Cancers

Tuesday, June 27, 2023

  • New Drug Delivery Method Can Reverse Senescence of Stem Cells
  • New Model Provides Unprecedented Window Into Human Embryonic Development
  • Human Embryo-Like Models Created from Stem Cells to Understand Earliest Stages of Human Development

Tuesday, June 20, 2023

  • The Speed of Life: A Zoo of Cells to Study Developmental Time

Monday, June 5, 2023

  • Coaxing Hair Growth in Aging Hair Follicle Stem Cells

Thursday, June 1, 2023

  • Lab-Grown Mini Lungs Could Accelerate the Study of Respiratory Diseases

Wednesday, May 31, 2023

  • Gene Engineered Cell Therapy Developed to Target Brain Metastatic Melanomas

Tuesday, May 30, 2023

  • Scientists Unveil RNA-Guided Mechanisms Driving Cell Fate
  • Researchers Design an Innovative Strategy to Fight Obesity Through Gene Therapy

Thursday, May 25, 2023

  • Scientists Target Human Stomach Cells for Diabetes Therapy
  • Researchers Successfully Induce Primate Oocytes in the Lab

Friday, May 12, 2023

  • A Look Inside Stem Cells Helps Create Personalized Regenerative Medicine

Thursday, May 4, 2023

  • Gamma Delta T Cells Can Fight Aggressive Breast Cancer

Wednesday, May 3, 2023

  • A Novel Stem Cell Adhesive Using Mussels

Thursday, April 20, 2023

  • Engineering the Next Generation of Cell and Gene Therapies

Wednesday, April 19, 2023

  • Study Links 'stuck' Stem Cells to Hair Turning Gray

Friday, April 14, 2023

  • Healing the Unhealable: New Approach Helps Bones Mend Themselves

Thursday, April 13, 2023

  • Scientists Achieve Promising Results Towards Restoring Vision in Blindness Caused by Cellular Degeneration in the Eye

Thursday, April 6, 2023

  • Researchers Create Embryo-Like Structures from Monkey Embryonic Stem Cells

Tuesday, April 4, 2023

  • A Miniature Heart in a Petri Dish: Organoid Emulates Development of the Human Heart
  • Simultaneous Diagnosis and Treatment of Cancer Now Possible

Thursday, March 23, 2023

  • Patient-Specific Cells Generated from Thymus Organoids

Tuesday, March 21, 2023

  • To Ward Off Aging, Stem Cells Must Take out the Trash
  • What Makes Blood Stem Cells Transform? Regulation of RNA Splicing May Be an Answer

Monday, March 20, 2023

  • Study Uses Base Editing to Correct Mutation That Causes Rare Immune Deficiency
  • Genes That Form Specific Bones in the Womb Heal Them Later in Life

Friday, March 17, 2023

  • Discovery of an Unexpected Function of Blood Immune Cells: Their Ability to Proliferate

Wednesday, March 15, 2023

  • Filling a Niche: Neural Stem Cells Help Maintain Their Microenvironment

Friday, March 10, 2023

  • How to Assemble a Complete Jaw
  • Researchers Discover Therapeutic Target to Aid in Glaucoma Treatment

Thursday, March 9, 2023

  • New Stem Cell Model Developed for Research Into a Life-Threatening Malformation of the Newborn Lung

Friday, March 3, 2023

  • Research Finds Hope in Stem Cell Therapy for Perianal Fistulas in Patients With Crohn's Disease

Wednesday, March 1, 2023

  • How to Generate New Neurons in the Brain

Friday, February 24, 2023

  • Head Injuries Could Be a Risk Factor for Developing Brain Cancer

Tuesday, February 21, 2023

  • First Stem Cells from a Bat Species Known to Harbor SARS-CoV-2 Could Shed Light on Virus Survival and Molecular Adaptability
  • LATEST NEWS
  • Health & Medicine
  • Diseases & Conditions
  • Alzheimer's Research
  • Amyotrophic Lateral Sclerosis
  • Attention Deficit Disorder
  • Back and Neck Pain
  • Birth Defects
  • Bladder Disorders
  • Blood Clots
  • COVID and SARS
  • Cervical Cancer
  • Bladder Cancer
  • Multiple Myeloma
  • Pancreatic Cancer
  • Brain Tumor
  • Colon Cancer
  • Breast Cancer
  • Ovarian Cancer
  • Lung Cancer
  • Mesothelioma
  • Skin Cancer
  • Prostate Cancer
  • Cerebral Palsy
  • Chikungunya
  • Chronic Fatigue Syndrome
  • Cold and Flu
  • Crohn's Disease
  • Cystic Fibrosis
  • Dengue Fever
  • Down Syndrome
  • Eating Disorder Research
  • Encephalitis
  • Epilepsy Research
  • Erectile Dysfunction
  • Fibromyalgia
  • Gastrointestinal Problems
  • HIV and AIDS
  • Headache Research
  • Hearing Loss
  • Heart Health
  • Cholesterol
  • Stroke Prevention
  • Heart Disease
  • Hormone Disorders
  • Hypertension
  • Infectious Diseases
  • Insomnia Research
  • Irritable Bowel Syndrome
  • Kidney Disease
  • Liver Disease
  • Lung Disease
  • Lyme Disease
  • Mental Health Research
  • Multiple Sclerosis Research
  • Mumps, Measles, Rubella
  • Muscular Dystrophy
  • Osteoporosis
  • Parkinson's Research
  • Prostate Health
  • Restless Leg Syndrome
  • Sickle Cell Anemia
  • Sleep Disorder Research
  • Thyroid Disease
  • Triglycerides
  • Tuberculosis
  • Medical Topics
  • Accident and Trauma
  • Alternative Medicine
  • Birth Control
  • Bone and Spine
  • Chronic Illness
  • Controlled Substances
  • Dietary Supplements and Minerals
  • Epigenetics
  • Food Additives
  • Foodborne Illness
  • Foot Health
  • Gene Therapy
  • Health Policy
  • Human Biology
  • Immune System
  • Joint Health
  • Medical Imaging
  • Nervous System
  • Pain Control
  • Personalized Medicine
  • Pharmacology
  • Psychology Research
  • Wounds and Healing
  • PHYSICAL/TECH
  • ENVIRONMENT
  • SOCIETY & EDUCATION
  • Controlling Shape-Shifting Soft Robots
  • Brain Flexibility for a Complex World
  • ONe Nova to Rule Them All
  • AI Systems Are Skilled at Manipulating Humans
  • Planet Glows With Molten Lava
  • A Fragment of Human Brain, Mapped
  • Symbiosis Solves Long-Standing Marine Mystery
  • Surprising Common Ideas in Environmental ...
  • 2D All-Organic Perovskites: 2D Electronics
  • Generative AI That Imitates Human Motion

Trending Topics

Strange & offbeat.

News

Current News

Chuck Chan, stem cell researcher who discovered how to regrow cartilage, dies at 48

Chuck Chan, stem cell researcher who discovered how to regrow cartilage, dies at 48

Scientists talk sustainability at inaugural synthetic biology symposium

Scientists talk sustainability at inaugural synthetic biology symposium

Old mice regain leg strength after antibody treatment, Stanford Medicine researchers find

Old mice regain leg strength after antibody treatment, Stanford Medicine researchers find

Stanford Medicine researchers take early, critical step toward growing organs

Stanford Medicine researchers take early, critical step toward growing organs

Stanford pediatricians transplant kidneys without need for immune-suppressing drugs

Stanford pediatricians transplant kidneys without need for immune-suppressing drugs

  • Continuing Medical Education (CME)
  • Seminars at Stanford

Learn about the many ways to support the institute for Stem Cell Biology and Regenerative Medicine

Appointments at Mayo Clinic

Stem cells: what they are and what they do.

Stem cells offer promise for new medical treatments. Learn about stem cell types, current and possible uses, and the state of research and practice.

You've heard about stem cells in the news, and perhaps you've wondered if they might help you or a loved one with a serious disease. Here are some answers to frequently asked questions about stem cells.

What are stem cells?

Stem cells as the body's master cells

Stem cells: The body's master cells

Stem cells are the body's master cells. All other cells arise from stem cells, including blood cells, nerve cells and other cells.

Stem cells are a special type of cells that have two important properties. They are able to make more cells like themselves. That is, they self-renew. And they can become other cells that do different things in a process known as differentiation. Stem cells are found in almost all tissues of the body. And they are needed for the maintenance of tissue as well as for repair after injury.

Depending on where the stem cells are, they can develop into different tissues. For example, hematopoietic stem cells reside in the bone marrow and can produce all the cells that function in the blood. Stem cells also can become brain cells, heart muscle cells, bone cells or other cell types.

There are various types of stem cells. Embryonic stem cells are the most versatile since they can develop into all the cells of the developing fetus. The majority of stem cells in the body have fewer abilities to give rise to cells and may only help maintain and repair the tissues and organs in which they reside.

No other cell in the body has the natural ability to generate new cell types.

Why is there such an interest in stem cells?

Researchers are studying stem cells to see if they can help to:

  • Increase understanding of how diseases occur. By watching stem cells mature into cells in bones, heart muscle, nerves, and other organs and tissue, researchers may better understand how diseases and conditions develop.

Generate healthy cells to replace cells affected by disease (regenerative medicine). Stem cells can be guided into becoming specific cells that can be used in people to regenerate and repair tissues that have been damaged or affected by disease.

People who might benefit from stem cell therapies include those with leukemia, Hodgkin disease, non-Hodgkin lymphoma and some solid tumor cancers. Stem cell therapies also might benefit people who have aplastic anemia, immunodeficiencies and inherited conditions of metabolism.

Stem cells are being studied to treat type 1 diabetes, Parkinson's disease, amyotrophic lateral sclerosis, heart failure, osteoarthritis and other conditions.

Stem cells may have the potential to be grown to become new tissue for use in transplant and regenerative medicine. Researchers continue to advance the knowledge on stem cells and their applications in transplant and regenerative medicine.

Test new drugs for safety and effectiveness. Before giving drugs in development to people, researchers can use some types of stem cells to test the drugs for safety and quality. This type of testing may help assess drugs in development for toxicity to the heart.

New areas of study include the effectiveness of using human stem cells that have been programmed into tissue-specific cells to test new drugs. For the testing of new drugs to be accurate, the cells must be programmed to acquire properties of the type of cells targeted by the drug. Techniques to program cells into specific cells are under study.

Where do stem cells come from?

There are several sources of stem cells:

Embryonic stem cells. These stem cells come from embryos that are 3 to 5 days old. At this stage, an embryo is called a blastocyst and has about 150 cells.

These are pluripotent (ploo-RIP-uh-tunt) stem cells, meaning they can divide into more stem cells or can become any type of cell in the body. This allows embryonic stem cells to be used to regenerate or repair diseased tissue and organs.

  • Adult stem cells. These stem cells are found in small numbers in most adult tissues, such as bone marrow or fat. Compared with embryonic stem cells, adult stem cells have a more limited ability to give rise to various cells of the body.

Adult cells altered to have properties of embryonic stem cells. Scientists have transformed regular adult cells into stem cells using genetic reprogramming. By altering the genes in the adult cells, researchers can make the cells act similarly to embryonic stem cells. These cells are called induced pluripotent stem cells (iPSCs).

This new technique may allow use of reprogrammed cells instead of embryonic stem cells and prevent immune system rejection of the new stem cells. However, scientists don't yet know whether using altered adult cells will cause adverse effects in humans.

Researchers have been able to take regular connective tissue cells and reprogram them to become functional heart cells. In studies, animals with heart failure that were injected with new heart cells had better heart function and survival time.

Perinatal stem cells. Researchers have discovered stem cells in amniotic fluid as well as umbilical cord blood. These stem cells can change into specialized cells.

Amniotic fluid fills the sac that surrounds and protects a developing fetus in the uterus. Researchers have identified stem cells in samples of amniotic fluid drawn from pregnant women for testing or treatment — a procedure called amniocentesis.

Why is there controversy about using embryonic stem cells?

The National Institutes of Health created guidelines for human stem cell research in 2009. The guidelines define embryonic stem cells and how they may be used in research and include recommendations for the donation of embryonic stem cells. Also, the guidelines state that embryonic stem cells from embryos created by in vitro fertilization can be used only when the embryo is no longer needed.

Where do these embryos come from?

The embryos being used in embryonic stem cell research come from eggs that were fertilized at in vitro fertilization clinics but never implanted in women's uteruses. The stem cells are donated with informed consent from donors. The stem cells can live and grow in special solutions in test tubes or petri dishes in laboratories.

Why can't researchers use adult stem cells instead?

Progress in cell reprogramming and the formation of iPSCs has greatly enhanced research in this field. However, reprogramming is an inefficient process. When possible, iPSCs are used instead of embryonic stem cells since this avoids the ethical issues about use of embryonic stem cells that may be morally objectionable for some people.

Although research into adult stem cells is promising, adult stem cells may not be as versatile and durable as are embryonic stem cells. Adult stem cells may not be able to be manipulated to produce all cell types, which limits how adult stem cells can be used to treat diseases.

Adult stem cells are also more likely to contain irregularities due to environmental hazards, such as toxins, or from errors acquired by the cells during replication. However, researchers have found that adult stem cells are more adaptable than was first thought.

What are stem cell lines, and why do researchers want to use them?

A stem cell line is a group of cells that all descend from a single original stem cell and are grown in a lab. Cells in a stem cell line keep growing but don't become specialized cells. Ideally, they remain free of genetic defects and continue to create more stem cells. Clusters of cells can be taken from a stem cell line and frozen for storage or shared with other researchers.

What is stem cell therapy (regenerative medicine), and how does it work?

Stem cell therapy, also known as regenerative medicine, promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives. It is the next chapter in organ transplantation and uses cells instead of donor organs, which are limited in supply.

Researchers grow stem cells in a lab. These stem cells are manipulated to specialize into specific types of cells, such as heart muscle cells, blood cells or nerve cells.

The specialized cells can then be implanted into a person. For example, if the person has heart disease, the cells could be injected into the heart muscle. The healthy transplanted heart muscle cells could then contribute to repairing the injured heart muscle.

Researchers have already shown that adult bone marrow cells guided to become heart-like cells can repair heart tissue in people, and more research is ongoing.

Have stem cells already been used to treat diseases?

Yes. Doctors have performed stem cell transplants, also known as bone marrow transplants, for many decades. In hematopoietic stem cell transplants, stem cells replace cells damaged by chemotherapy or disease or serve as a way for the donor's immune system to fight some types of cancer and blood-related diseases. Leukemia, lymphoma, neuroblastoma and multiple myeloma often are treated this way. These transplants use adult stem cells or umbilical cord blood.

Researchers are testing adult stem cells to treat other conditions, including some degenerative diseases such as heart failure.

What are the potential problems with using embryonic stem cells in humans?

For embryonic stem cells to be useful, researchers must be certain that the stem cells will differentiate into the specific cell types desired.

Researchers have discovered ways to direct stem cells to become specific types of cells, such as directing embryonic stem cells to become heart cells. Research is ongoing in this area.

Embryonic stem cells also can grow irregularly or specialize in different cell types spontaneously. Researchers are studying how to control the growth and development of embryonic stem cells.

Embryonic stem cells also might trigger an immune response in which the recipient's body attacks the stem cells as foreign invaders, or the stem cells might simply fail to function as expected, with unknown consequences. Researchers continue to study how to avoid these possible complications.

What is therapeutic cloning, and what benefits might it offer?

Therapeutic cloning, also called somatic cell nuclear transfer, is a way to create versatile stem cells independent of fertilized eggs. In this technique, the nucleus is removed from an unfertilized egg. This nucleus contains the genetic material. The nucleus also is removed from the cell of a donor.

This donor nucleus is then injected into the egg, replacing the nucleus that was removed, in a process called nuclear transfer. The egg is allowed to divide and soon forms a blastocyst. This process creates a line of stem cells that is genetically identical to the donor's cells — in essence, a clone.

Some researchers believe that stem cells derived from therapeutic cloning may offer benefits over those from fertilized eggs because cloned cells are less likely to be rejected once transplanted back into the donor. And it may allow researchers to see exactly how a disease develops.

Has therapeutic cloning in people been successful?

No. Researchers haven't been able to successfully perform therapeutic cloning with humans despite success in a number of other species.

Researchers continue to study the potential of therapeutic cloning in people.

There is a problem with information submitted for this request. Review/update the information highlighted below and resubmit the form.

From Mayo Clinic to your inbox

Sign up for free and stay up to date on research advancements, health tips, current health topics, and expertise on managing health. Click here for an email preview.

Error Email field is required

Error Include a valid email address

To provide you with the most relevant and helpful information, and understand which information is beneficial, we may combine your email and website usage information with other information we have about you. If you are a Mayo Clinic patient, this could include protected health information. If we combine this information with your protected health information, we will treat all of that information as protected health information and will only use or disclose that information as set forth in our notice of privacy practices. You may opt-out of email communications at any time by clicking on the unsubscribe link in the e-mail.

Thank you for subscribing!

You'll soon start receiving the latest Mayo Clinic health information you requested in your inbox.

Sorry something went wrong with your subscription

Please, try again in a couple of minutes

  • Stem cell basics. National Institutes of Health. https://stemcells.nih.gov/info/basics/stc-basics/#stc-I. Accessed March 21, 2024.
  • Lovell-Badge R, et al. ISSCR guidelines for stem cell research and clinical translation: The 2021 update. Stem Cell Reports. 2021; doi:10.1016/j.stemcr.2021.05.012.
  • AskMayoExpert. Hematopoietic stem cell transplant. Mayo Clinic; 2024.
  • Stem cell transplants in cancer treatment. National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/stem-cell-transplant/. Accessed March 21, 2024.
  • Townsend CM Jr, et al. Regenerative medicine. In: Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice. 21st ed. Elsevier; 2022. https://www.clinicalkey.com. Accessed March 21, 2024.
  • Kumar D, et al. Stem cell based preclinical drug development and toxicity prediction. Current Pharmaceutical Design. 2021; doi:10.2174/1381612826666201019104712.
  • NIH guidelines for human stem cell research. National Institutes of Health. https://stemcells.nih.gov/research-policy/guidelines-for-human-stem-cell-research. Accessed March 21, 2024.
  • De la Torre P, et al. Current status and future prospects of perinatal stem cells. Genes. 2020; doi:10.3390/genes12010006.
  • Yen Ling Wang A. Human induced pluripotent stem cell-derived exosomes as a new therapeutic strategy for various diseases. International Journal of Molecular Sciences. 2021; doi:10.3390/ijms22041769.
  • Alessandrini M, et al. Stem cell therapy for neurological disorders. South African Medical Journal. 2019; doi:10.7196/SAMJ.2019.v109i8b.14009.
  • Goldenberg D, et al. Regenerative engineering: Current applications and future perspectives. Frontiers in Surgery. 2021; doi:10.3389/fsurg.2021.731031.
  • Brown MA, et al. Update on stem cell technologies in congenital heart disease. Journal of Cardiac Surgery. 2020; doi:10.1111/jocs.14312.
  • Li M, et al. Brachyury engineers cardiac repair competent stem cells. Stem Cells Translational Medicine. 2021; doi:10.1002/sctm.20-0193.
  • Augustine R, et al. Stem cell-based approaches in cardiac tissue engineering: Controlling the microenvironment for autologous cells. Biomedical Pharmacotherapy. 2021; doi:10.1016/j.biopha.2021.111425.
  • Cloning fact sheet. National Human Genome Research Institute. https://www.genome.gov/about-genomics/fact-sheets/Cloning-Fact-Sheet. Accessed March 21, 2024.
  • Dingli D (expert opinion). Mayo Clinic. Nov. 17, 2023.

Products and Services

  • A Book: Living Medicine
  • Sign up for Email: Get Your Free Resource – Coping with Cancer
  • Give today to find cancer cures for tomorrow
  • Acute lymphocytic leukemia
  • Acute myelogenous leukemia
  • Adjuvant therapy for cancer
  • Amyloidosis
  • Aplastic anemia
  • Atypical cells: Are they cancer?
  • Biopsy procedures
  • Blood Cancers and Disorders
  • Bone marrow transplant
  • Cancer blood tests
  • Myths about cancer causes
  • Infographic: Cancer Clinical Trials Offer Many Benefits
  • Cancer diagnosis: 11 tips for coping
  • Cancer-related fatigue
  • Cancer pain: Relief is possible
  • Cancer risk: What the numbers mean
  • Cancer surgery
  • Cancer survival rate
  • Cancer survivors: Care for your body after treatment
  • Cancer survivors: Late effects of cancer treatment
  • Cancer survivors: Managing your emotions after cancer treatment
  • Cancer treatment myths
  • Chemotherapy side effects: A cause of heart disease?
  • Chronic lymphocytic leukemia
  • Chronic myelogenous leukemia
  • Curcumin: Can it slow cancer growth?
  • What is type 1 diabetes? A Mayo Clinic expert explains
  • Type 1 diabetes FAQs
  • Cancer-related diarrhea
  • DiGeorge syndrome (22q11.2 deletion syndrome)
  • Eating during cancer treatment: Tips to make food tastier
  • Epidermolysis bullosa
  • Gaucher disease
  • Heart cancer: Is there such a thing?
  • High-dose vitamin C: Can it kill cancer cells?
  • Hodgkin's lymphoma (Hodgkin's disease)
  • Hodgkin's vs. non-Hodgkin's lymphoma: What's the difference?
  • Low blood counts
  • Measles Virus as a Cancer Fighter
  • Monoclonal antibody drugs
  • Mort Crim and Cancer
  • Mouth sores caused by cancer treatment: How to cope
  • Multiple myeloma
  • Infographic: Multiple Myeloma
  • Myelofibrosis
  • Neuroblastoma
  • No appetite? How to get nutrition during cancer treatment
  • Non-Hodgkin's lymphoma
  • Scleroderma
  • Self-Image During Cancer
  • Sickle cell anemia
  • Sisters' Bone Marrow Transplant
  • Small cell, large cell cancer: What this means
  • Stem Cells 101
  • Thalassemia
  • Tumor vs. cyst: What's the difference?
  • Type 1 diabetes
  • Stem cell transplant
  • How cancer spreads
  • PICC line placement
  • When cancer returns: How to cope with cancer recurrence

Mayo Clinic does not endorse companies or products. Advertising revenue supports our not-for-profit mission.

  • Opportunities

Mayo Clinic Press

Check out these best-sellers and special offers on books and newsletters from Mayo Clinic Press .

  • Mayo Clinic on Incontinence - Mayo Clinic Press Mayo Clinic on Incontinence
  • The Essential Diabetes Book - Mayo Clinic Press The Essential Diabetes Book
  • Mayo Clinic on Hearing and Balance - Mayo Clinic Press Mayo Clinic on Hearing and Balance
  • FREE Mayo Clinic Diet Assessment - Mayo Clinic Press FREE Mayo Clinic Diet Assessment
  • Mayo Clinic Health Letter - FREE book - Mayo Clinic Press Mayo Clinic Health Letter - FREE book
  • Stem cells What they are and what they do

Your gift holds great power – donate today!

Make your tax-deductible gift and be a part of the cutting-edge research and care that's changing medicine.

  • Open access
  • Published: 26 February 2019

Stem cells: past, present, and future

  • Wojciech Zakrzewski 1 ,
  • Maciej Dobrzyński 2 ,
  • Maria Szymonowicz 1 &
  • Zbigniew Rybak 1  

Stem Cell Research & Therapy volume  10 , Article number:  68 ( 2019 ) Cite this article

562k Accesses

844 Citations

54 Altmetric

Metrics details

In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation. Quality control and teratoma formation assays are important procedures in assessing the properties of the stem cells tested. Derivation methods and the utilization of culturing media are crucial to set proper environmental conditions for controlled differentiation. Among many types of stem tissue applications, the use of graphene scaffolds and the potential of extracellular vesicle-based therapies require attention due to their versatility. The review is summarized by challenges that stem cell therapy must overcome to be accepted worldwide. A wide variety of possibilities makes this cutting edge therapy a turning point in modern medicine, providing hope for untreatable diseases.

Stem cell classification

Stem cells are unspecialized cells of the human body. They are able to differentiate into any cell of an organism and have the ability of self-renewal. Stem cells exist both in embryos and adult cells. There are several steps of specialization. Developmental potency is reduced with each step, which means that a unipotent stem cell is not able to differentiate into as many types of cells as a pluripotent one. This chapter will focus on stem cell classification to make it easier for the reader to comprehend the following chapters.

Totipotent stem cells are able to divide and differentiate into cells of the whole organism. Totipotency has the highest differentiation potential and allows cells to form both embryo and extra-embryonic structures. One example of a totipotent cell is a zygote, which is formed after a sperm fertilizes an egg. These cells can later develop either into any of the three germ layers or form a placenta. After approximately 4 days, the blastocyst’s inner cell mass becomes pluripotent. This structure is the source of pluripotent cells.

Pluripotent stem cells (PSCs) form cells of all germ layers but not extraembryonic structures, such as the placenta. Embryonic stem cells (ESCs) are an example. ESCs are derived from the inner cell mass of preimplantation embryos. Another example is induced pluripotent stem cells (iPSCs) derived from the epiblast layer of implanted embryos. Their pluripotency is a continuum, starting from completely pluripotent cells such as ESCs and iPSCs and ending on representatives with less potency—multi-, oligo- or unipotent cells. One of the methods to assess their activity and spectrum is the teratoma formation assay. iPSCs are artificially generated from somatic cells, and they function similarly to PSCs. Their culturing and utilization are very promising for present and future regenerative medicine.

Multipotent stem cells have a narrower spectrum of differentiation than PSCs, but they can specialize in discrete cells of specific cell lineages. One example is a haematopoietic stem cell, which can develop into several types of blood cells. After differentiation, a haematopoietic stem cell becomes an oligopotent cell. Its differentiation abilities are then restricted to cells of its lineage. However, some multipotent cells are capable of conversion into unrelated cell types, which suggests naming them pluripotent cells.

Oligopotent stem cells can differentiate into several cell types. A myeloid stem cell is an example that can divide into white blood cells but not red blood cells.

Unipotent stem cells are characterized by the narrowest differentiation capabilities and a special property of dividing repeatedly. Their latter feature makes them a promising candidate for therapeutic use in regenerative medicine. These cells are only able to form one cell type, e.g. dermatocytes.

Stem cell biology

A blastocyst is formed after the fusion of sperm and ovum fertilization. Its inner wall is lined with short-lived stem cells, namely, embryonic stem cells. Blastocysts are composed of two distinct cell types: the inner cell mass (ICM), which develops into epiblasts and induces the development of a foetus, and the trophectoderm (TE). Blastocysts are responsible for the regulation of the ICM microenvironment. The TE continues to develop and forms the extraembryonic support structures needed for the successful origin of the embryo, such as the placenta. As the TE begins to form a specialized support structure, the ICM cells remain undifferentiated, fully pluripotent and proliferative [ 1 ]. The pluripotency of stem cells allows them to form any cell of the organism. Human embryonic stem cells (hESCs) are derived from the ICM. During the process of embryogenesis, cells form aggregations called germ layers: endoderm, mesoderm and ectoderm (Fig.  1 ), each eventually giving rise to differentiated cells and tissues of the foetus and, later on, the adult organism [ 2 ]. After hESCs differentiate into one of the germ layers, they become multipotent stem cells, whose potency is limited to only the cells of the germ layer. This process is short in human development. After that, pluripotent stem cells occur all over the organism as undifferentiated cells, and their key abilities are proliferation by the formation of the next generation of stem cells and differentiation into specialized cells under certain physiological conditions.

figure 1

Oocyte development and formation of stem cells: the blastocoel, which is formed from oocytes, consists of embryonic stem cells that later differentiate into mesodermal, ectodermal, or endodermal cells. Blastocoel develops into the gastrula

Signals that influence the stem cell specialization process can be divided into external, such as physical contact between cells or chemical secretion by surrounding tissue, and internal, which are signals controlled by genes in DNA.

Stem cells also act as internal repair systems of the body. The replenishment and formation of new cells are unlimited as long as an organism is alive. Stem cell activity depends on the organ in which they are in; for example, in bone marrow, their division is constant, although in organs such as the pancreas, division only occurs under special physiological conditions.

Stem cell functional division

Whole-body development.

During division, the presence of different stem cells depends on organism development. Somatic stem cell ESCs can be distinguished. Although the derivation of ESCs without separation from the TE is possible, such a combination has growth limits. Because proliferating actions are limited, co-culture of these is usually avoided.

ESCs are derived from the inner cell mass of the blastocyst, which is a stage of pre-implantation embryo ca. 4 days after fertilization. After that, these cells are placed in a culture dish filled with culture medium. Passage is an inefficient but popular process of sub-culturing cells to other dishes. These cells can be described as pluripotent because they are able to eventually differentiate into every cell type in the organism. Since the beginning of their studies, there have been ethical restrictions connected to the medical use of ESCs in therapies. Most embryonic stem cells are developed from eggs that have been fertilized in an in vitro clinic, not from eggs fertilized in vivo.

Somatic or adult stem cells are undifferentiated and found among differentiated cells in the whole body after development. The function of these cells is to enable the healing, growth, and replacement of cells that are lost each day. These cells have a restricted range of differentiation options. Among many types, there are the following:

Mesenchymal stem cells are present in many tissues. In bone marrow, these cells differentiate mainly into the bone, cartilage, and fat cells. As stem cells, they are an exception because they act pluripotently and can specialize in the cells of any germ layer.

Neural cells give rise to nerve cells and their supporting cells—oligodendrocytes and astrocytes.

Haematopoietic stem cells form all kinds of blood cells: red, white, and platelets.

Skin stem cells form, for example, keratinocytes, which form a protective layer of skin.

The proliferation time of somatic stem cells is longer than that of ESCs. It is possible to reprogram adult stem cells back to their pluripotent state. This can be performed by transferring the adult nucleus into the cytoplasm of an oocyte or by fusion with the pluripotent cell. The same technique was used during cloning of the famous Dolly sheep.

hESCs are involved in whole-body development. They can differentiate into pluripotent, totipotent, multipotent, and unipotent cells (Fig.  2 ) [ 2 ].

figure 2

Changes in the potency of stem cells in human body development. Potency ranges from pluripotent cells of the blastocyst to unipotent cells of a specific tissue in a human body such as the skin, CNS, or bone marrow. Reversed pluripotency can be achieved by the formation of induced pluripotent stem cells using either octamer-binding transcription factor (Oct4), sex-determining region Y (Sox2), Kruppel-like factor 4 (Klf4), or the Myc gene

Pluripotent cells can be named totipotent if they can additionally form extraembryonic tissues of the embryo. Multipotent cells are restricted in differentiating to each cell type of given tissue. When tissue contains only one lineage of cells, stem cells that form them are called either called oligo- or unipotent.

iPSC quality control and recognition by morphological differences

The comparability of stem cell lines from different individuals is needed for iPSC lines to be used in therapeutics [ 3 ]. Among critical quality procedures, the following can be distinguished:

Short tandem repeat analysis—This is the comparison of specific loci on the DNA of the samples. It is used in measuring an exact number of repeating units. One unit consists of 2 to 13 nucleotides repeating many times on the DNA strand. A polymerase chain reaction is used to check the lengths of short tandem repeats. The genotyping procedure of source tissue, cells, and iPSC seed and master cell banks is recommended.

Identity analysis—The unintentional switching of lines, resulting in other stem cell line contamination, requires rigorous assay for cell line identification.

Residual vector testing—An appearance of reprogramming vectors integrated into the host genome is hazardous, and testing their presence is a mandatory procedure. It is a commonly used procedure for generating high-quality iPSC lines. An acceptable threshold in high-quality research-grade iPSC line collections is ≤ 1 plasmid copies per 100 cells. During the procedure, 2 different regions, common to all plasmids, should be used as specific targets, such as EBNA and CAG sequences [ 3 ]. To accurately represent the test reactions, a standard curve needs to be prepared in a carrier of gDNA from a well-characterized hPSC line. For calculations of plasmid copies per cell, it is crucial to incorporate internal reference gDNA sequences to allow the quantification of, for example, ribonuclease P (RNaseP) or human telomerase reverse transcriptase (hTERT).

Karyotype—A long-term culture of hESCs can accumulate culture-driven mutations [ 4 ]. Because of that, it is crucial to pay additional attention to genomic integrity. Karyotype tests can be performed by resuscitating representative aliquots and culturing them for 48–72 h before harvesting cells for karyotypic analysis. If abnormalities are found within the first 20 karyotypes, the analysis must be repeated on a fresh sample. When this situation is repeated, the line is evaluated as abnormal. Repeated abnormalities must be recorded. Although karyology is a crucial procedure in stem cell quality control, the single nucleotide polymorphism (SNP) array, discussed later, has approximately 50 times higher resolution.

Viral testing—When assessing the quality of stem cells, all tests for harmful human adventitious agents must be performed (e.g. hepatitis C or human immunodeficiency virus). This procedure must be performed in the case of non-xeno-free culture agents.

Bacteriology—Bacterial or fungal sterility tests can be divided into culture- or broth-based tests. All the procedures must be recommended by pharmacopoeia for the jurisdiction in which the work is performed.

Single nucleotide polymorphism arrays—This procedure is a type of DNA microarray that detects population polymorphisms by enabling the detection of subchromosomal changes and the copy-neutral loss of heterozygosity, as well as an indication of cellular transformation. The SNP assay consists of three components. The first is labelling fragmented nucleic acid sequences with fluorescent dyes. The second is an array that contains immobilized allele-specific oligonucleotide (ASO) probes. The last component detects, records, and eventually interprets the signal.

Flow cytometry—This is a technique that utilizes light to count and profile cells in a heterogeneous fluid mixture. It allows researchers to accurately and rapidly collect data from heterogeneous fluid mixtures with live cells. Cells are passed through a narrow channel one by one. During light illumination, sensors detect light emitted or refracted from the cells. The last step is data analysis, compilation and integration into a comprehensive picture of the sample.

Phenotypic pluripotency assays—Recognizing undifferentiated cells is crucial in successful stem cell therapy. Among other characteristics, stem cells appear to have a distinct morphology with a high nucleus to cytoplasm ratio and a prominent nucleolus. Cells appear to be flat with defined borders, in contrast to differentiating colonies, which appear as loosely located cells with rough borders [ 5 ]. It is important that images of ideal and poor quality colonies for each cell line are kept in laboratories, so whenever there is doubt about the quality of culture, it can always be checked according to the representative image. Embryoid body formation or directed differentiation of monolayer cultures to produce cell types representative of all three embryonic germ layers must be performed. It is important to note that colonies cultured under different conditions may have different morphologies [ 6 ].

Histone modification and DNA methylation—Quality control can be achieved by using epigenetic analysis tools such as histone modification or DNA methylation. When stem cells differentiate, the methylation process silences pluripotency genes, which reduces differentiation potential, although other genes may undergo demethylation to become expressed [ 7 ]. It is important to emphasize that stem cell identity, together with its morphological characteristics, is also related to its epigenetic profile [ 8 , 9 ]. According to Brindley [ 10 ], there is a relationship between epigenetic changes, pluripotency, and cell expansion conditions, which emphasizes that unmethylated regions appear to be serum-dependent.

hESC derivation and media

hESCs can be derived using a variety of methods, from classic culturing to laser-assisted methodologies or microsurgery [ 11 ]. hESC differentiation must be specified to avoid teratoma formation (see Fig.  3 ).

figure 3

Spontaneous differentiation of hESCs causes the formation of a heterogeneous cell population. There is a different result, however, when commitment signals (in forms of soluble factors and culture conditions) are applied and enable the selection of progenitor cells

hESCs spontaneously differentiate into embryonic bodies (EBs) [ 12 ]. EBs can be studied instead of embryos or animals to predict their effects on early human development. There are many different methods for acquiring EBs, such as bioreactor culture [ 13 ], hanging drop culture [ 12 ], or microwell technology [ 14 , 15 ]. These methods allow specific precursors to form in vitro [ 16 ].

The essential part of these culturing procedures is a separation of inner cell mass to culture future hESCs (Fig.  4 ) [ 17 ]. Rosowski et al. [ 18 ] emphasizes that particular attention must be taken in controlling spontaneous differentiation. When the colony reaches the appropriate size, cells must be separated. The occurrence of pluripotent cells lasts for 1–2 days. Because the classical utilization of hESCs caused ethical concerns about gastrulas used during procedures, Chung et al. [ 19 ] found out that it is also possible to obtain hESCs from four cell embryos, leaving a higher probability of embryo survival. Additionally, Zhang et al. [ 20 ] used only in vitro fertilization growth-arrested cells.

figure 4

Culturing of pluripotent stem cells in vitro. Three days after fertilization, totipotent cells are formed. Blastocysts with ICM are formed on the sixth day after fertilization. Pluripotent stem cells from ICM can then be successfully transmitted on a dish

Cell passaging is used to form smaller clusters of cells on a new culture surface [ 21 ]. There are four important passaging procedures.

Enzymatic dissociation is a cutting action of enzymes on proteins and adhesion domains that bind the colony. It is a gentler method than the manual passage. It is crucial to not leave hESCs alone after passaging. Solitary cells are more sensitive and can easily undergo cell death; collagenase type IV is an example [ 22 , 23 ].

Manual passage , on the other hand, focuses on using cell scratchers. The selection of certain cells is not necessary. This should be done in the early stages of cell line derivation [ 24 ].

Trypsin utilization allows a healthy, automated hESC passage. Good Manufacturing Practice (GMP)-grade recombinant trypsin is widely available in this procedure [ 24 ]. However, there is a risk of decreasing the pluripotency and viability of stem cells [ 25 ]. Trypsin utilization can be halted with an inhibitor of the protein rho-associated protein kinase (ROCK) [ 26 ].

Ethylenediaminetetraacetic acid ( EDTA ) indirectly suppresses cell-to-cell connections by chelating divalent cations. Their suppression promotes cell dissociation [ 27 ].

Stem cells require a mixture of growth factors and nutrients to differentiate and develop. The medium should be changed each day.

Traditional culture methods used for hESCs are mouse embryonic fibroblasts (MEFs) as a feeder layer and bovine serum [ 28 ] as a medium. Martin et al. [ 29 ] demonstrated that hESCs cultured in the presence of animal products express the non-human sialic acid, N -glycolylneuraminic acid (NeuGc). Feeder layers prevent uncontrolled proliferation with factors such as leukaemia inhibitory factor (LIF) [ 30 ].

First feeder layer-free culture can be supplemented with serum replacement, combined with laminin [ 31 ]. This causes stable karyotypes of stem cells and pluripotency lasting for over a year.

Initial culturing media can be serum (e.g. foetal calf serum FCS), artificial replacement such as synthetic serum substitute (SSS), knockout serum replacement (KOSR), or StemPro [ 32 ]. The simplest culture medium contains only eight essential elements: DMEM/F12 medium, selenium, NaHCO 3, l -ascorbic acid, transferrin, insulin, TGFβ1, and FGF2 [ 33 ]. It is not yet fully known whether culture systems developed for hESCs can be allowed without adaptation in iPSC cultures.

Turning point in stem cell therapy

The turning point in stem cell therapy appeared in 2006, when scientists Shinya Yamanaka, together with Kazutoshi Takahashi, discovered that it is possible to reprogram multipotent adult stem cells to the pluripotent state. This process avoided endangering the foetus’ life in the process. Retrovirus-mediated transduction of mouse fibroblasts with four transcription factors (Oct-3/4, Sox2, KLF4, and c-Myc) [ 34 ] that are mainly expressed in embryonic stem cells could induce the fibroblasts to become pluripotent (Fig.  5 ) [ 35 ]. This new form of stem cells was named iPSCs. One year later, the experiment also succeeded with human cells [ 36 ]. After this success, the method opened a new field in stem cell research with a generation of iPSC lines that can be customized and biocompatible with the patient. Recently, studies have focused on reducing carcinogenesis and improving the conduction system.

figure 5

Retroviral-mediated transduction induces pluripotency in isolated patient somatic cells. Target cells lose their role as somatic cells and, once again, become pluripotent and can differentiate into any cell type of human body

The turning point was influenced by former discoveries that happened in 1962 and 1987.

The former discovery was about scientist John Gurdon successfully cloning frogs by transferring a nucleus from a frog’s somatic cells into an oocyte. This caused a complete reversion of somatic cell development [ 37 ]. The results of his experiment became an immense discovery since it was previously believed that cell differentiation is a one-way street only, but his experiment suggested the opposite and demonstrated that it is even possible for a somatic cell to again acquire pluripotency [ 38 ].

The latter was a discovery made by Davis R.L. that focused on fibroblast DNA subtraction. Three genes were found that originally appeared in myoblasts. The enforced expression of only one of the genes, named myogenic differentiation 1 (Myod1), caused the conversion of fibroblasts into myoblasts, showing that reprogramming cells is possible, and it can even be used to transform cells from one lineage to another [ 39 ].

Although pluripotency can occur naturally only in embryonic stem cells, it is possible to induce terminally differentiated cells to become pluripotent again. The process of direct reprogramming converts differentiated somatic cells into iPSC lines that can form all cell types of an organism. Reprogramming focuses on the expression of oncogenes such as Myc and Klf4 (Kruppel-like factor 4). This process is enhanced by a downregulation of genes promoting genome stability, such as p53. Additionally, cell reprogramming involves histone alteration. All these processes can cause potential mutagenic risk and later lead to an increased number of mutations. Quinlan et al. [ 40 ] checked fully pluripotent mouse iPSCs using whole genome DNA sequencing and structural variation (SV) detection algorithms. Based on those studies, it was confirmed that although there were single mutations in the non-genetic region, there were non-retrotransposon insertions. This led to the conclusion that current reprogramming methods can produce fully pluripotent iPSCs without severe genomic alterations.

During the course of development from pluripotent hESCs to differentiated somatic cells, crucial changes appear in the epigenetic structure of these cells. There is a restriction or permission of the transcription of genes relevant to each cell type. When somatic cells are being reprogrammed using transcription factors, all the epigenetic architecture has to be reconditioned to achieve iPSCs with pluripotency [ 41 ]. However, cells of each tissue undergo specific somatic genomic methylation. This influences transcription, which can further cause alterations in induced pluripotency [ 42 ].

Source of iPSCs

Because pluripotent cells can propagate indefinitely and differentiate into any kind of cell, they can be an unlimited source, either for replacing lost or diseased tissues. iPSCs bypass the need for embryos in stem cell therapy. Because they are made from the patient’s own cells, they are autologous and no longer generate any risk of immune rejection.

At first, fibroblasts were used as a source of iPSCs. Because a biopsy was needed to achieve these types of cells, the technique underwent further research. Researchers investigated whether more accessible cells could be used in the method. Further, other cells were used in the process: peripheral blood cells, keratinocytes, and renal epithelial cells found in urine. An alternative strategy to stem cell transplantation can be stimulating a patient’s endogenous stem cells to divide or differentiate, occurring naturally when skin wounds are healing. In 2008, pancreatic exocrine cells were shown to be reprogrammed to functional, insulin-producing beta cells [ 43 ].

The best stem cell source appears to be the fibroblasts, which is more tempting in the case of logistics since its stimulation can be fast and better controlled [ 44 ].

  • Teratoma formation assay

The self-renewal and differentiation capabilities of iPSCs have gained significant interest and attention in regenerative medicine sciences. To study their abilities, a quality-control assay is needed, of which one of the most important is the teratoma formation assay. Teratomas are benign tumours. Teratomas are capable of rapid growth in vivo and are characteristic because of their ability to develop into tissues of all three germ layers simultaneously. Because of the high pluripotency of teratomas, this formation assay is considered an assessment of iPSC’s abilities [ 45 ].

Teratoma formation rate, for instance, was observed to be elevated in human iPSCs compared to that in hESCs [ 46 ]. This difference may be connected to different differentiation methods and cell origins. Most commonly, the teratoma assay involves an injection of examined iPSCs subcutaneously or under the testis or kidney capsule in mice, which are immune-deficient [ 47 ]. After injection, an immature but recognizable tissue can be observed, such as the kidney tubules, bone, cartilage, or neuroepithelium [ 30 ]. The injection site may have an impact on the efficiency of teratoma formation [ 48 ].

There are three groups of markers used in this assay to differentiate the cells of germ layers. For endodermal tissue, there is insulin/C-peptide and alpha-1 antitrypsin [ 49 ]. For the mesoderm, derivatives can be used, e.g. cartilage matrix protein for the bone and alcian blue for the cartilage. As ectodermal markers, class III B botulin or keratin can be used for keratinocytes.

Teratoma formation assays are considered the gold standard for demonstrating the pluripotency of human iPSCs, demonstrating their possibilities under physiological conditions. Due to their actual tissue formation, they could be used for the characterization of many cell lineages [ 50 ].

Directed differentiation

To be useful in therapy, stem cells must be converted into desired cell types as necessary or else the whole regenerative medicine process will be pointless. Differentiation of ESCs is crucial because undifferentiated ESCs can cause teratoma formation in vivo. Understanding and using signalling pathways for differentiation is an important method in successful regenerative medicine. In directed differentiation, it is likely to mimic signals that are received by cells when they undergo successive stages of development [ 51 ]. The extracellular microenvironment plays a significant role in controlling cell behaviour. By manipulating the culture conditions, it is possible to restrict specific differentiation pathways and generate cultures that are enriched in certain precursors in vitro. However, achieving a similar effect in vivo is challenging. It is crucial to develop culture conditions that will allow the promotion of homogenous and enhanced differentiation of ESCs into functional and desired tissues.

Regarding the self-renewal of embryonic stem cells, Hwang et al. [ 52 ] noted that the ideal culture method for hESC-based cell and tissue therapy would be a defined culture free of either the feeder layer or animal components. This is because cell and tissue therapy requires the maintenance of large quantities of undifferentiated hESCs, which does not make feeder cells suitable for such tasks.

Most directed differentiation protocols are formed to mimic the development of an inner cell mass during gastrulation. During this process, pluripotent stem cells differentiate into ectodermal, mesodermal, or endodermal progenitors. Mall molecules or growth factors induce the conversion of stem cells into appropriate progenitor cells, which will later give rise to the desired cell type. There is a variety of signal intensities and molecular families that may affect the establishment of germ layers in vivo, such as fibroblast growth factors (FGFs) [ 53 ]; the Wnt family [ 54 ] or superfamily of transforming growth factors—β(TGFβ); and bone morphogenic proteins (BMP) [ 55 ]. Each candidate factor must be tested on various concentrations and additionally applied to various durations because the precise concentrations and times during which developing cells in embryos are influenced during differentiation are unknown. For instance, molecular antagonists of endogenous BMP and Wnt signalling can be used for ESC formation of ectoderm [ 56 ]. However, transient Wnt and lower concentrations of the TGFβ family trigger mesodermal differentiation [ 57 ]. Regarding endoderm formation, a higher activin A concentration may be required [ 58 , 59 ].

There are numerous protocols about the methods of forming progenitors of cells of each of germ layers, such as cardiomyocytes [ 60 ], hepatocytes [ 61 ], renal cells [ 62 ], lung cells [ 63 , 64 ], motor neurons [ 65 ], intestinal cells [ 66 ], or chondrocytes [ 67 ].

Directed differentiation of either iPSCs or ESCs into, e.g. hepatocytes, could influence and develop the study of the molecular mechanisms in human liver development. In addition, it could also provide the possibility to form exogenous hepatocytes for drug toxicity testing [ 68 ].

Levels of concentration and duration of action with a specific signalling molecule can cause a variety of factors. Unfortunately, for now, a high cost of recombinant factors is likely to limit their use on a larger scale in medicine. The more promising technique focuses on the use of small molecules. These can be used for either activating or deactivating specific signalling pathways. They enhance reprogramming efficiency by creating cells that are compatible with the desired type of tissue. It is a cheaper and non-immunogenic method.

One of the successful examples of small-molecule cell therapies is antagonists and agonists of the Hedgehog pathway. They show to be very useful in motor neuron regeneration [ 69 ]. Endogenous small molecules with their function in embryonic development can also be used in in vitro methods to induce the differentiation of cells; for example, retinoic acid, which is responsible for patterning the nervous system in vivo [ 70 ], surprisingly induced retinal cell formation when the laboratory procedure involved hESCs [ 71 ].

The efficacy of differentiation factors depends on functional maturity, efficiency, and, finally, introducing produced cells to their in vivo equivalent. Topography, shear stress, and substrate rigidity are factors influencing the phenotype of future cells [ 72 ].

The control of biophysical and biochemical signals, the biophysical environment, and a proper guide of hESC differentiation are important factors in appropriately cultured stem cells.

Stem cell utilization and their manufacturing standards and culture systems

The European Medicines Agency and the Food and Drug Administration have set Good Manufacturing Practice (GMP) guidelines for safe and appropriate stem cell transplantation. In the past, protocols used for stem cell transplantation required animal-derived products [ 73 ].

The risk of introducing animal antigens or pathogens caused a restriction in their use. Due to such limitations, the technique required an obvious update [ 74 ]. Now, it is essential to use xeno-free equivalents when establishing cell lines that are derived from fresh embryos and cultured from human feeder cell lines [ 75 ]. In this method, it is crucial to replace any non-human materials with xeno-free equivalents [ 76 ].

NutriStem with LN-511, TeSR2 with human recombinant laminin (LN-511), and RegES with human foreskin fibroblasts (HFFs) are commonly used xeno-free culture systems [ 33 ]. There are many organizations and international initiatives, such as the National Stem Cell Bank, that provide stem cell lines for treatment or medical research [ 77 ].

Stem cell use in medicine

Stem cells have great potential to become one of the most important aspects of medicine. In addition to the fact that they play a large role in developing restorative medicine, their study reveals much information about the complex events that happen during human development.

The difference between a stem cell and a differentiated cell is reflected in the cells’ DNA. In the former cell, DNA is arranged loosely with working genes. When signals enter the cell and the differentiation process begins, genes that are no longer needed are shut down, but genes required for the specialized function will remain active. This process can be reversed, and it is known that such pluripotency can be achieved by interaction in gene sequences. Takahashi and Yamanaka [ 78 ] and Loh et al. [ 79 ] discovered that octamer-binding transcription factor 3 and 4 (Oct3/4), sex determining region Y (SRY)-box 2 and Nanog genes function as core transcription factors in maintaining pluripotency. Among them, Oct3/4 and Sox2 are essential for the generation of iPSCs.

Many serious medical conditions, such as birth defects or cancer, are caused by improper differentiation or cell division. Currently, several stem cell therapies are possible, among which are treatments for spinal cord injury, heart failure [ 80 ], retinal and macular degeneration [ 81 ], tendon ruptures, and diabetes type 1 [ 82 ]. Stem cell research can further help in better understanding stem cell physiology. This may result in finding new ways of treating currently incurable diseases.

Haematopoietic stem cell transplantation

Haematopoietic stem cells are important because they are by far the most thoroughly characterized tissue-specific stem cell; after all, they have been experimentally studied for more than 50 years. These stem cells appear to provide an accurate paradigm model system to study tissue-specific stem cells, and they have potential in regenerative medicine.

Multipotent haematopoietic stem cell (HSC) transplantation is currently the most popular stem cell therapy. Target cells are usually derived from the bone marrow, peripheral blood, or umbilical cord blood [ 83 ]. The procedure can be autologous (when the patient’s own cells are used), allogenic (when the stem cell comes from a donor), or syngeneic (from an identical twin). HSCs are responsible for the generation of all functional haematopoietic lineages in blood, including erythrocytes, leukocytes, and platelets. HSC transplantation solves problems that are caused by inappropriate functioning of the haematopoietic system, which includes diseases such as leukaemia and anaemia. However, when conventional sources of HSC are taken into consideration, there are some important limitations. First, there is a limited number of transplantable cells, and an efficient way of gathering them has not yet been found. There is also a problem with finding a fitting antigen-matched donor for transplantation, and viral contamination or any immunoreactions also cause a reduction in efficiency in conventional HSC transplantations. Haematopoietic transplantation should be reserved for patients with life-threatening diseases because it has a multifactorial character and can be a dangerous procedure. iPSC use is crucial in this procedure. The use of a patient’s own unspecialized somatic cells as stem cells provides the greatest immunological compatibility and significantly increases the success of the procedure.

Stem cells as a target for pharmacological testing

Stem cells can be used in new drug tests. Each experiment on living tissue can be performed safely on specific differentiated cells from pluripotent cells. If any undesirable effect appears, drug formulas can be changed until they reach a sufficient level of effectiveness. The drug can enter the pharmacological market without harming any live testers. However, to test the drugs properly, the conditions must be equal when comparing the effects of two drugs. To achieve this goal, researchers need to gain full control of the differentiation process to generate pure populations of differentiated cells.

Stem cells as an alternative for arthroplasty

One of the biggest fears of professional sportsmen is getting an injury, which most often signifies the end of their professional career. This applies especially to tendon injuries, which, due to current treatment options focusing either on conservative or surgical treatment, often do not provide acceptable outcomes. Problems with the tendons start with their regeneration capabilities. Instead of functionally regenerating after an injury, tendons merely heal by forming scar tissues that lack the functionality of healthy tissues. Factors that may cause this failed healing response include hypervascularization, deposition of calcific materials, pain, or swelling [ 84 ].

Additionally, in addition to problems with tendons, there is a high probability of acquiring a pathological condition of joints called osteoarthritis (OA) [ 85 ]. OA is common due to the avascular nature of articular cartilage and its low regenerative capabilities [ 86 ]. Although arthroplasty is currently a common procedure in treating OA, it is not ideal for younger patients because they can outlive the implant and will require several surgical procedures in the future. These are situations where stem cell therapy can help by stopping the onset of OA [ 87 ]. However, these procedures are not well developed, and the long-term maintenance of hyaline cartilage requires further research.

Osteonecrosis of the femoral hip (ONFH) is a refractory disease associated with the collapse of the femoral head and risk of hip arthroplasty in younger populations [ 88 ]. Although total hip arthroplasty (THA) is clinically successful, it is not ideal for young patients, mostly due to the limited lifetime of the prosthesis. An increasing number of clinical studies have evaluated the therapeutic effect of stem cells on ONFH. Most of the authors demonstrated positive outcomes, with reduced pain, improved function, or avoidance of THA [ 89 , 90 , 91 ].

Rejuvenation by cell programming

Ageing is a reversible epigenetic process. The first cell rejuvenation study was published in 2011 [ 92 ]. Cells from aged individuals have different transcriptional signatures, high levels of oxidative stress, dysfunctional mitochondria, and shorter telomeres than in young cells [ 93 ]. There is a hypothesis that when human or mouse adult somatic cells are reprogrammed to iPSCs, their epigenetic age is virtually reset to zero [ 94 ]. This was based on an epigenetic model, which explains that at the time of fertilization, all marks of parenteral ageing are erased from the zygote’s genome and its ageing clock is reset to zero [ 95 ].

In their study, Ocampo et al. [ 96 ] used Oct4, Sox2, Klf4, and C-myc genes (OSKM genes) and affected pancreas and skeletal muscle cells, which have poor regenerative capacity. Their procedure revealed that these genes can also be used for effective regenerative treatment [ 97 ]. The main challenge of their method was the need to employ an approach that does not use transgenic animals and does not require an indefinitely long application. The first clinical approach would be preventive, focused on stopping or slowing the ageing rate. Later, progressive rejuvenation of old individuals can be attempted. In the future, this method may raise some ethical issues, such as overpopulation, leading to lower availability of food and energy.

For now, it is important to learn how to implement cell reprogramming technology in non-transgenic elder animals and humans to erase marks of ageing without removing the epigenetic marks of cell identity.

Cell-based therapies

Stem cells can be induced to become a specific cell type that is required to repair damaged or destroyed tissues (Fig.  6 ). Currently, when the need for transplantable tissues and organs outweighs the possible supply, stem cells appear to be a perfect solution for the problem. The most common conditions that benefit from such therapy are macular degenerations [ 98 ], strokes [ 99 ], osteoarthritis [ 89 , 90 ], neurodegenerative diseases, and diabetes [ 100 ]. Due to this technique, it can become possible to generate healthy heart muscle cells and later transplant them to patients with heart disease.

figure 6

Stem cell experiments on animals. These experiments are one of the many procedures that proved stem cells to be a crucial factor in future regenerative medicine

In the case of type 1 diabetes, insulin-producing cells in the pancreas are destroyed due to an autoimmunological reaction. As an alternative to transplantation therapy, it can be possible to induce stem cells to differentiate into insulin-producing cells [ 101 ].

Stem cells and tissue banks

iPS cells with their theoretically unlimited propagation and differentiation abilities are attractive for the present and future sciences. They can be stored in a tissue bank to be an essential source of human tissue used for medical examination. The problem with conventional differentiated tissue cells held in the laboratory is that their propagation features diminish after time. This does not occur in iPSCs.

The umbilical cord is known to be rich in mesenchymal stem cells. Due to its cryopreservation immediately after birth, its stem cells can be successfully stored and used in therapies to prevent the future life-threatening diseases of a given patient.

Stem cells of human exfoliated deciduous teeth (SHED) found in exfoliated deciduous teeth has the ability to develop into more types of body tissues than other stem cells [ 102 ] (Table  1 ). Techniques of their collection, isolation, and storage are simple and non-invasive. Among the advantages of banking, SHED cells are:

Guaranteed donor-match autologous transplant that causes no immune reaction and rejection of cells [ 103 ]

Simple and painless for both child and parent

Less than one third of the cost of cord blood storage

Not subject to the same ethical concerns as embryonic stem cells [ 104 ]

In contrast to cord blood stem cells, SHED cells are able to regenerate into solid tissues such as connective, neural, dental, or bone tissue [ 105 , 106 ]

SHED can be useful for close relatives of the donor

Fertility diseases

In 2011, two researchers, Katsuhiko Hayashi et al. [ 107 ], showed in an experiment on mice that it is possible to form sperm from iPSCs. They succeeded in delivering healthy and fertile pups in infertile mice. The experiment was also successful for female mice, where iPSCs formed fully functional eggs .

Young adults at risk of losing their spermatogonial stem cells (SSC), mostly cancer patients, are the main target group that can benefit from testicular tissue cryopreservation and autotransplantation. Effective freezing methods for adult and pre-pubertal testicular tissue are available [ 108 ].

Qiuwan et al. [ 109 ] provided important evidence that human amniotic epithelial cell (hAEC) transplantation could effectively improve ovarian function by inhibiting cell apoptosis and reducing inflammation in injured ovarian tissue of mice, and it could be a promising strategy for the management of premature ovarian failure or insufficiency in female cancer survivors.

For now, reaching successful infertility treatments in humans appears to be only a matter of time, but there are several challenges to overcome. First, the process needs to have high efficiency; second, the chances of forming tumours instead of eggs or sperm must be maximally reduced. The last barrier is how to mature human sperm and eggs in the lab without transplanting them to in vivo conditions, which could cause either a tumour risk or an invasive procedure.

Therapy for incurable neurodegenerative diseases

Thanks to stem cell therapy, it is possible not only to delay the progression of incurable neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease (AD), and Huntington disease, but also, most importantly, to remove the source of the problem. In neuroscience, the discovery of neural stem cells (NSCs) has nullified the previous idea that adult CNS were not capable of neurogenesis [ 110 , 111 ]. Neural stem cells are capable of improving cognitive function in preclinical rodent models of AD [ 112 , 113 , 114 ]. Awe et al. [ 115 ] clinically derived relevant human iPSCs from skin punch biopsies to develop a neural stem cell-based approach for treating AD. Neuronal degeneration in Parkinson’s disease (PD) is focal, and dopaminergic neurons can be efficiently generated from hESCs. PD is an ideal disease for iPSC-based cell therapy [ 116 ]. However, this therapy is still in an experimental phase ( https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539501 /). Brain tissue from aborted foetuses was used on patients with Parkinson’s disease [ 117 ]. Although the results were not uniform, they showed that therapies with pure stem cells are an important and achievable therapy.

Stem cell use in dentistry

Teeth represent a very challenging material for regenerative medicine. They are difficult to recreate because of their function in aspects such as articulation, mastication, or aesthetics due to their complicated structure. Currently, there is a chance for stem cells to become more widely used than synthetic materials. Teeth have a large advantage of being the most natural and non-invasive source of stem cells.

For now, without the use of stem cells, the most common periodontological treatments are either growth factors, grafts, or surgery. For example, there are stem cells in periodontal ligament [ 118 , 119 ], which are capable of differentiating into osteoblasts or cementoblasts, and their functions were also assessed in neural cells [ 120 ]. Tissue engineering is a successful method for treating periodontal diseases. Stem cells of the root apical areas are able to recreate periodontal ligament. One of the possible methods of tissue engineering in periodontology is gene therapy performed using adenoviruses-containing growth factors [ 121 ].

As a result of animal studies, dentin regeneration is an effective process that results in the formation of dentin bridges [ 122 ].

Enamel is more difficult to regenerate than dentin. After the differentiation of ameloblastoma cells into the enamel, the former is destroyed, and reparation is impossible. Medical studies have succeeded in differentiating bone marrow stem cells into ameloblastoma [ 123 ].

Healthy dental tissue has a high amount of regular stem cells, although this number is reduced when tissue is either traumatized or inflamed [ 124 ]. There are several dental stem cell groups that can be isolated (Fig.  7 ).

figure 7

Localization of stem cells in dental tissues. Dental pulp stem cells (DPSCs) and human deciduous teeth stem cells (SHED) are located in the dental pulp. Periodontal ligaments stem cells are located in the periodontal ligament. Apical papilla consists of stem cells from the apical papilla (SCAP)

Dental pulp stem cell (DPSC)

These were the first dental stem cells isolated from the human dental pulp, which were [ 125 ] located inside dental pulp (Table  2 ). They have osteogenic and chondrogenic potential. Mesenchymal stem cells (MSCs) of the dental pulp, when isolated, appear highly clonogenic; they can be isolated from adult tissue (e.g. bone marrow, adipose tissue) and foetal (e.g. umbilical cord) [ 126 ] tissue, and they are able to differentiate densely [ 127 ]. MSCs differentiate into odontoblast-like cells and osteoblasts to form dentin and bone. Their best source locations are the third molars [ 125 ]. DPSCs are the most useful dental source of tissue engineering due to their easy surgical accessibility, cryopreservation possibility, increased production of dentin tissues compared to non-dental stem cells, and their anti-inflammatory abilities. These cells have the potential to be a source for maxillofacial and orthopaedic reconstructions or reconstructions even beyond the oral cavity. DPSCs are able to generate all structures of the developed tooth [ 128 ]. In particular, beneficial results in the use of DPSCs may be achieved when combined with other new therapies, such as periodontal tissue photobiomodulation (laser stimulation), which is an efficient technique in the stimulation of proliferation and differentiation into distinct cell types [ 129 ]. DPSCs can be induced to form neural cells to help treat neurological deficits.

Stem cells of human exfoliated deciduous teeth (SHED) have a faster rate of proliferation than DPSCs and differentiate into an even greater number of cells, e.g. other mesenchymal and non-mesenchymal stem cell derivatives, such as neural cells [ 130 ]. These cells possess one major disadvantage: they form a non-complete dentin/pulp-like complex in vivo. SHED do not undergo the same ethical concerns as embryonic stem cells. Both DPSCs and SHED are able to form bone-like tissues in vivo [ 131 ] and can be used for periodontal, dentin, or pulp regeneration. DPSCs and SHED can be used in treating, for example, neural deficits [ 132 ]. DPSCs alone were tested and successfully applied for alveolar bone and mandible reconstruction [ 133 ].

Periodontal ligament stem cells (PDLSCs)

These cells are used in periodontal ligament or cementum tissue regeneration. They can differentiate into mesenchymal cell lineages to produce collagen-forming cells, adipocytes, cementum tissue, Sharpey’s fibres, and osteoblast-like cells in vitro. PDLSCs exist both on the root and alveolar bone surfaces; however, on the latter, these cells have better differentiation abilities than on the former [ 134 ]. PDLSCs have become the first treatment for periodontal regeneration therapy because of their safety and efficiency [ 135 , 136 ].

Stem cells from apical papilla (SCAP)

These cells are mesenchymal structures located within immature roots. They are isolated from human immature permanent apical papilla. SCAP are the source of odontoblasts and cause apexogenesis. These stem cells can be induced in vitro to form odontoblast-like cells, neuron-like cells, or adipocytes. SCAP have a higher capacity of proliferation than DPSCs, which makes them a better choice for tissue regeneration [ 137 , 138 ].

Dental follicle stem cells (DFCs)

These cells are loose connective tissues surrounding the developing tooth germ. DFCs contain cells that can differentiate into cementoblasts, osteoblasts, and periodontal ligament cells [ 139 , 140 ]. Additionally, these cells proliferate after even more than 30 passages [ 141 ]. DFCs are most commonly extracted from the sac of a third molar. When DFCs are combined with a treated dentin matrix, they can form a root-like tissue with a pulp-dentin complex and eventually form tooth roots [ 141 ]. When DFC sheets are induced by Hertwig’s epithelial root sheath cells, they can produce periodontal tissue; thus, DFCs represent a very promising material for tooth regeneration [ 142 ].

Pulp regeneration in endodontics

Dental pulp stem cells can differentiate into odontoblasts. There are few methods that enable the regeneration of the pulp.

The first is an ex vivo method. Proper stem cells are grown on a scaffold before they are implanted into the root channel [ 143 ].

The second is an in vivo method. This method focuses on injecting stem cells into disinfected root channels after the opening of the in vivo apex. Additionally, the use of a scaffold is necessary to prevent the movement of cells towards other tissues. For now, only pulp-like structures have been created successfully.

Methods of placing stem cells into the root channel constitute are either soft scaffolding [ 144 ] or the application of stem cells in apexogenesis or apexification. Immature teeth are the best source [ 145 ]. Nerve and blood vessel network regeneration are extremely vital to keep pulp tissue healthy.

The potential of dental stem cells is mainly regarding the regeneration of damaged dentin and pulp or the repair of any perforations; in the future, it appears to be even possible to generate the whole tooth. Such an immense success would lead to the gradual replacement of implant treatments. Mandibulary and maxillary defects can be one of the most complicated dental problems for stem cells to address.

Acquiring non-dental tissue cells by dental stem cell differentiation

In 2013, it was reported that it is possible to grow teeth from stem cells obtained extra-orally, e.g. from urine [ 146 ]. Pluripotent stem cells derived from human urine were induced and generated tooth-like structures. The physical properties of the structures were similar to natural ones except for hardness [ 127 ]. Nonetheless, it appears to be a very promising technique because it is non-invasive and relatively low-cost, and somatic cells can be used instead of embryonic cells. More importantly, stem cells derived from urine did not form any tumours, and the use of autologous cells reduces the chances of rejection [ 147 ].

Use of graphene in stem cell therapy

Over recent years, graphene and its derivatives have been increasingly used as scaffold materials to mediate stem cell growth and differentiation [ 148 ]. Both graphene and graphene oxide (GO) represent high in-plane stiffness [ 149 ]. Because graphene has carbon and aromatic network, it works either covalently or non-covalently with biomolecules; in addition to its superior mechanical properties, graphene offers versatile chemistry. Graphene exhibits biocompatibility with cells and their proper adhesion. It also tested positively for enhancing the proliferation or differentiation of stem cells [ 148 ]. After positive experiments, graphene revealed great potential as a scaffold and guide for specific lineages of stem cell differentiation [ 150 ]. Graphene has been successfully used in the transplantation of hMSCs and their guided differentiation to specific cells. The acceleration skills of graphene differentiation and division were also investigated. It was discovered that graphene can serve as a platform with increased adhesion for both growth factors and differentiation chemicals. It was also discovered that π-π binding was responsible for increased adhesion and played a crucial role in inducing hMSC differentiation [ 150 ].

Therapeutic potential of extracellular vesicle-based therapies

Extracellular vesicles (EVs) can be released by virtually every cell of an organism, including stem cells [ 151 ], and are involved in intercellular communication through the delivery of their mRNAs, lipids, and proteins. As Oh et al. [ 152 ] prove, stem cells, together with their paracrine factors—exosomes—can become potential therapeutics in the treatment of, e.g. skin ageing. Exosomes are small membrane vesicles secreted by most cells (30–120 nm in diameter) [ 153 ]. When endosomes fuse with the plasma membrane, they become exosomes that have messenger RNAs (mRNAs) and microRNAs (miRNAs), some classes of non-coding RNAs (IncRNAs) and several proteins that originate from the host cell [ 154 ]. IncRNAs can bind to specific loci and create epigenetic regulators, which leads to the formation of epigenetic modifications in recipient cells. Because of this feature, exosomes are believed to be implicated in cell-to-cell communication and the progression of diseases such as cancer [ 155 ]. Recently, many studies have also shown the therapeutic use of exosomes derived from stem cells, e.g. skin damage and renal or lung injuries [ 156 ].

In skin ageing, the most important factor is exposure to UV light, called “photoageing” [ 157 ], which causes extrinsic skin damage, characterized by dryness, roughness, irregular pigmentation, lesions, and skin cancers. In intrinsic skin ageing, on the other hand, the loss of elasticity is a characteristic feature. The skin dermis consists of fibroblasts, which are responsible for the synthesis of crucial skin elements, such as procollagen or elastic fibres. These elements form either basic framework extracellular matrix constituents of the skin dermis or play a major role in tissue elasticity. Fibroblast efficiency and abundance decrease with ageing [ 158 ]. Stem cells can promote the proliferation of dermal fibroblasts by secreting cytokines such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), and basic fibroblast growth factor. Huh et al. [ 159 ] mentioned that a medium of human amniotic fluid-derived stem cells (hAFSC) positively affected skin regeneration after longwave UV-induced (UVA, 315–400 nm) photoageing by increasing the proliferation and migration of dermal fibroblasts. It was discovered that, in addition to the induction of fibroblast physiology, hAFSC transplantation also improved diseases in cases of renal pathology, various cancers, or stroke [ 160 , 161 ].

Oh [ 162 ] also presented another option for the treatment of skin wounds, either caused by physical damage or due to diabetic ulcers. Induced pluripotent stem cell-conditioned medium (iPSC-CM) without any animal-derived components induced dermal fibroblast proliferation and migration.

Natural cutaneous wound healing is divided into three steps: haemostasis/inflammation, proliferation, and remodelling. During the crucial step of proliferation, fibroblasts migrate and increase in number, indicating that it is a critical step in skin repair, and factors such as iPSC-CM that impact it can improve the whole cutaneous wound healing process. Paracrine actions performed by iPSCs are also important for this therapeutic effect [ 163 ]. These actions result in the secretion of cytokines such as TGF-β, interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), vascular endothelial growth factor (VEGF), platelet-derived growth factor-AA (PDGF-AA), and basic fibroblast growth factor (bFGF). Bae et al. [ 164 ] mentioned that TGF-β induced the migration of keratinocytes. It was also demonstrated that iPSC factors can enhance skin wound healing in vivo and in vitro when Zhou et al. [ 165 ] enhanced wound healing, even after carbon dioxide laser resurfacing in an in vivo study.

Peng et al. [ 166 ] investigated the effects of EVs derived from hESCs on in vitro cultured retinal glial, progenitor Müller cells, which are known to differentiate into retinal neurons. EVs appear heterogeneous in size and can be internalized by cultured Müller cells, and their proteins are involved in the induction and maintenance of stem cell pluripotency. These stem cell-derived vesicles were responsible for the neuronal trans-differentiation of cultured Müller cells exposed to them. However, the research article points out that the procedure was accomplished only on in vitro acquired retina.

Challenges concerning stem cell therapy

Although stem cells appear to be an ideal solution for medicine, there are still many obstacles that need to be overcome in the future. One of the first problems is ethical concern.

The most common pluripotent stem cells are ESCs. Therapies concerning their use at the beginning were, and still are, the source of ethical conflicts. The reason behind it started when, in 1998, scientists discovered the possibility of removing ESCs from human embryos. Stem cell therapy appeared to be very effective in treating many, even previously incurable, diseases. The problem was that when scientists isolated ESCs in the lab, the embryo, which had potential for becoming a human, was destroyed (Fig.  8 ). Because of this, scientists, seeing a large potential in this treatment method, focused their efforts on making it possible to isolate stem cells without endangering their source—the embryo.

figure 8

Use of inner cell mass pluripotent stem cells and their stimulation to differentiate into desired cell types

For now, while hESCs still remain an ethically debatable source of cells, they are potentially powerful tools to be used for therapeutic applications of tissue regeneration. Because of the complexity of stem cell control systems, there is still much to be learned through observations in vitro. For stem cells to become a popular and widely accessible procedure, tumour risk must be assessed. The second problem is to achieve successful immunological tolerance between stem cells and the patient’s body. For now, one of the best ideas is to use the patient’s own cells and devolve them into their pluripotent stage of development.

New cells need to have the ability to fully replace lost or malfunctioning natural cells. Additionally, there is a concern about the possibility of obtaining stem cells without the risk of morbidity or pain for either the patient or the donor. Uncontrolled proliferation and differentiation of cells after implementation must also be assessed before its use in a wide variety of regenerative procedures on living patients [ 167 ].

One of the arguments that limit the use of iPSCs is their infamous role in tumourigenicity. There is a risk that the expression of oncogenes may increase when cells are being reprogrammed. In 2008, a technique was discovered that allowed scientists to remove oncogenes after a cell achieved pluripotency, although it is not efficient yet and takes a longer amount of time. The process of reprogramming may be enhanced by deletion of the tumour suppressor gene p53, but this gene also acts as a key regulator of cancer, which makes it impossible to remove in order to avoid more mutations in the reprogrammed cell. The low efficiency of the process is another problem, which is progressively becoming reduced with each year. At first, the rate of somatic cell reprogramming in Yamanaka’s study was up to 0.1%. The use of transcription factors creates a risk of genomic insertion and further mutation of the target cell genome. For now, the only ethically acceptable operation is an injection of hESCs into mouse embryos in the case of pluripotency evaluation [ 168 ].

Stem cell obstacles in the future

Pioneering scientific and medical advances always have to be carefully policed in order to make sure they are both ethical and safe. Because stem cell therapy already has a large impact on many aspects of life, it should not be treated differently.

Currently, there are several challenges concerning stem cells. First, the most important one is about fully understanding the mechanism by which stem cells function first in animal models. This step cannot be avoided. For the widespread, global acceptance of the procedure, fear of the unknown is the greatest challenge to overcome.

The efficiency of stem cell-directed differentiation must be improved to make stem cells more reliable and trustworthy for a regular patient. The scale of the procedure is another challenge. Future stem cell therapies may be a significant obstacle. Transplanting new, fully functional organs made by stem cell therapy would require the creation of millions of working and biologically accurate cooperating cells. Bringing such complicated procedures into general, widespread regenerative medicine will require interdisciplinary and international collaboration.

The identification and proper isolation of stem cells from a patient’s tissues is another challenge. Immunological rejection is a major barrier to successful stem cell transplantation. With certain types of stem cells and procedures, the immune system may recognize transplanted cells as foreign bodies, triggering an immune reaction resulting in transplant or cell rejection.

One of the ideas that can make stem cells a “failsafe” is about implementing a self-destruct option if they become dangerous. Further development and versatility of stem cells may cause reduction of treatment costs for people suffering from currently incurable diseases. When facing certain organ failure, instead of undergoing extraordinarily expensive drug treatment, the patient would be able to utilize stem cell therapy. The effect of a successful operation would be immediate, and the patient would avoid chronic pharmacological treatment and its inevitable side effects.

Although these challenges facing stem cell science can be overwhelming, the field is making great advances each day. Stem cell therapy is already available for treating several diseases and conditions. Their impact on future medicine appears to be significant.

After several decades of experiments, stem cell therapy is becoming a magnificent game changer for medicine. With each experiment, the capabilities of stem cells are growing, although there are still many obstacles to overcome. Regardless, the influence of stem cells in regenerative medicine and transplantology is immense. Currently, untreatable neurodegenerative diseases have the possibility of becoming treatable with stem cell therapy. Induced pluripotency enables the use of a patient’s own cells. Tissue banks are becoming increasingly popular, as they gather cells that are the source of regenerative medicine in a struggle against present and future diseases. With stem cell therapy and all its regenerative benefits, we are better able to prolong human life than at any time in history.

Abbreviations

Basic fibroblast growth factor

Bone morphogenic proteins

Dental follicle stem cells

Dental pulp stem cells

Embryonic bodies

Embryonic stem cells

Fibroblast growth factors

Good Manufacturing Practice

Graphene oxide

Human amniotic fluid-derived stem cells

Human embryonic stem cells

Human foreskin fibroblasts

Inner cell mass

Non-coding RNA

Induced pluripotent stem cells

In vitro fertilization

Knockout serum replacement

Leukaemia inhibitory factor

Monocyte chemotactic protein-1

Fibroblasts

Messenger RNA

Mesenchymal stem cells of dental pulp

Myogenic differentiation

Osteoarthritis

Octamer-binding transcription factor 3 and 4

Platelet-derived growth factor

Platelet-derived growth factor-AA

Periodontal ligament stem cells

Rho-associated protein kinase

Stem cells from apical papilla

Stem cells of human exfoliated deciduous teeth

Synthetic Serum Substitute

Trophectoderm

Vascular endothelial growth factor

Transforming growth factors

Sukoyan MA, Vatolin SY, et al. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Embryo Dev. 1993;36(2):148–58

Larijani B, Esfahani EN, Amini P, Nikbin B, Alimoghaddam K, Amiri S, Malekzadeh R, Yazdi NM, Ghodsi M, Dowlati Y, Sahraian MA, Ghavamzadeh A. Stem cell therapy in treatment of different diseases. Acta Medica Iranica. 2012:79–96 https://www.ncbi.nlm.nih.gov/pubmed/22359076 .

Sullivan S, Stacey GN, Akazawa C, et al. Quality guidelines for clinical-grade human induced pluripotent stem cell lines. Regenerative Med. 2018; https://doi.org/10.2217/rme-2018-0095 .

Amps K, Andrews PW, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol. 2011; 29 (12):1121–44.

Google Scholar  

Amit M, Itskovitz-Eldor J. Atlas of human pluripotent stem cells: derivation and culturing. New York: Humana Press; 2012.

Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3:637–46.

CAS   PubMed   Google Scholar  

Kang MI. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J. Cell Biochem. 2007;102:224–39.

Vaes B, Craeye D, Pinxteren J. Quality control during manufacture of a stem cell therapeutic. BioProcess Int. 2012;10:50–5.

Bloushtain-Qimron N. Epigenetic patterns of embryonic and adult stem cells. Cell Cycle. 2009;8:809–17.

Brindley DA. Peak serum: implications of serum supply for cell therapy manufacturing. Regenerative Medicine. 2012;7:809–17.

Solter D, Knowles BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A. 1975;72:5099–102.

CAS   PubMed   PubMed Central   Google Scholar  

Hoepfl G, Gassmann M, Desbaillets I. Differentiating embryonic stem cells into embryoid bodies. Methods Mole Biol. 2004;254:79–98 https://doi.org/10.1385/1-59259-741-6:079 .

Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013;4(3):71. https://doi.org/10.1186/scrt222 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials. 2006;27(36):6032–42. https://doi.org/10.1016/j.biomaterials.2006.07.012 .

Article   CAS   PubMed   Google Scholar  

Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of the visceral yolk sac, blood islands, and myocardium. J Embryol Exp Morphol. 1985;87:27–45.

Kurosawa HY. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103:389–98.

Heins N, Englund MC, Sjoblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells. 2004;22:367–76.

Rosowski KA, Mertz AF, Norcross S, Dufresne ER, Horsley V. Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Sci Rep. 2015;5:Article number:14218.

PubMed   Google Scholar  

Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2:113–7.

Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells. 2006;24:2669–76.

Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat Protoc. 2012;7:2029–40.

Ellerström C, Hyllner J, Strehl R. single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method. In: Turksen K, editor. Human embryonic stem cell protocols. Methods in molecular biology: Humana Press; 2009. p. 584.

Heng BC, Liu H, Ge Z, Cao T. Mechanical dissociation of human embryonic stem cell colonies by manual scraping after collagenase treatment is much more detrimental to cellular viability than is trypsinization with gentle pipetting. Biotechnol Appl Biochem. 2010;47(1):33–7.

Ellerstrom C, Strehl R, Noaksson K, Hyllner J, Semb H. Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells. 2007;25:1690–6.

Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, Lyons IG, Freed WJ, Robins AJ, Rao MS, Schulz TC. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines deri. Stem Cells Dev. 2004;13:585–97.

Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.

Nie Y, Walsh P, Clarke DL, Rowley JA, Fellner T. Scalable passaging of adherent human pluripotent stem cells. 2014. https://doi.org/10.1371/journal.pone.0088012 .

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cellsexpress an immunogenic nonhuman sialic acid. Nat. Med. 2005;11:228–32.

Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336(6200):688–90. https://doi.org/10.1038/336688a0 .

Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnol. 2001;19:971–4. https://doi.org/10.1038/nbt1001-971 .

Article   CAS   Google Scholar  

Weathersbee PS, Pool TB, Ord T. Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J. Assist Reprod Genet. 1995;12:354–60.

Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods. 2011;8:424–9.

Sommer CA, Mostoslavsky G. Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Res Ther. 2010;1:26.

PubMed   PubMed Central   Google Scholar  

Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457–61 https://doi.org/10.1242/dev.092551 .

Shi D, Lu F, Wei Y, et al. Buffalos ( Bubalus bubalis ) cloned by nuclear transfer of somatic cells. Biol. Reprod. 2007;77:285–91. https://doi.org/10.1095/biolreprod.107.060210 .

Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Development. 1962;10:622–40 http://dev.biologists.org/content/10/4/622 .

CAS   Google Scholar  

Kain K. The birth of cloning: an interview with John Gurdon. Dis Model Mech. 2009;2(1–2):9–10. https://doi.org/10.1242/dmm.002014 .

Article   PubMed Central   Google Scholar  

Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;24(51(6)):987–1000.

Quinlan AR, Boland MJ, Leibowitz ML, et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell. 2011;9(4):366–73.

Maherali N, Sridharan R, Xie W, Utika LJ, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1:55–70.

Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, Yu J, Hebrok M, Hochedlinger K, Costello JF, Song JS, Ramalho-Santos M. Incomplete DNA methylation underlines a transcriptional memory of somatic cells in human IPS cells. Nat Cell Biol. 2011;13:541–9.

Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455:627–32 https://doi.org/10.1038/nature07314 .

Hilfiker A, Kasper C, Hass R, Haverich A. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg. 2011;396:489–97.

Zhang Wendy, Y., de Almeida Patricia, E., and Wu Joseph, C. Teratoma formation: a tool for monitoring pluripotency in stem cell research. StemBook, ed. The Stem Cell Research Community . June 12, 2012. https://doi.org/10.3824/stembook.1.53.1 .

Narsinh KH, Sun N, Sanchez-Freire V, et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest. 2011;121(3):1217–21.

Gertow K, Przyborski S, Loring JF, Auerbach JM, Epifano O, Otonkoski T, Damjanov I, AhrlundRichter L. Isolation of human embryonic stem cell-derived teratomas for the assessment of pluripotency. Curr Protoc Stem Cell Biol . 2007, Chapter 1, Unit 1B 4. 3: 1B.4.1-1B.4.29.

Cooke MJ, Stojkovic M, Przyborski SA. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev. 2006;15(2):254–9.

Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells. 2005;23:1242–50.

Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, Gil Y, Berman-Zaken Y, Perlman TS, Geva N, Levy O, Arbell D, Simon A, Ben-Meir A, Shufaro Y, Laufer N, Reubinoff BE. Derivation of xeno-free and GMP-grade human embryonic stem cells- platforms for future clinical applications. PLoS One. 2012;7:e35325.

Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12:243–52.

Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev. 2007;60(2):199–214. https://doi.org/10.1016/j.addr.2007.08.036 .

Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

Rao TP, Kuhl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106:1798–806.

Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136:3699–714.

Efthymiou AG, Chen G, Rao M, Chen G, Boehm M. Self-renewal and cell lineage differentiation strategies in human embryonic stem cells and induced pluripotent stem cells. Expert Opin Biol Ther. 2014;14:1333–44.

Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDRþembryonic-stem-cell-derived population. Nature. 2008;453:524–8.

Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52. https://doi.org/10.1038/nbt1393 .

Vallier L, Reynolds D, Pedersen RA. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol. 2004;275:403–21.

Burridge PW, Zambidis ET. Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol Biol. 2013;997:149–61.

Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39.

Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH. Directing human embryonic stem cell differentiation towards a renal lineage generates a selforganizing kidney. Nat Cell Biol. 2014;16:118–26.

Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, VunjakNovakovic G, Bhattacharya J, Snoeck HW. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014;32:84–91.

Kadzik RS, Morrisey EE. Directing lung endoderm differentiation in pluripotent stem cells. Cell Stem Cell. 2012;10:355–61.

Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385–97.

Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105–9.

Oldershaw RA, Baxter MA, Lowe ET, Bates N, Grady LM, Soncin F, Brison DR, Hardingham TE, Kimber SJ. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol. 2010;28:1187–94.

Jun Cai, Ann DeLaForest, Joseph Fisher, Amanda Urick, Thomas Wagner, Kirk Twaroski, Max Cayo, Masato Nagaoka, Stephen A Duncan. Protocol for directed differentiation of human pluripotent stem cells toward a hepatocyte fate. 2012. DOI: https://doi.org/10.3824/stembook.1.52.1 .

Frank-Kamenetsky M, Zhang XM, Bottega S, Guicherit O, Wichterle H, Dudek H, Bumcrot D, Wang FY, Jones S, Shulok J, Rubin LL, Porter JA. Small-molecule modulators of hedgehog signaling: identification and characterization of smoothened agonists and antagonists. J Biol. 2002;1:10.

Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair celllike cells from embryonic and induced pluripotent stem cells. Cell. 2010;141:704–16.

Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122:3169–79.

Kshitiz PJ, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH. Control of stem cell fate and function by engineering physical microenvironments. Intergr Biol (Camb). 2012;4:1008–18.

Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, ChiaoE CYM, Choo AB, Collins D, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:1132–44.

Nukaya D, Minami K, Hoshikawa R, Yokoi N, Seino S. Preferential gene expression and epigenetic memory of induced pluripotent stem cells derived from mouse pancreas. Genes Cells. 2015;20:367–81.

Murdoch A, Braude P, Courtney A, Brison D, Hunt C, Lawford-Davies J, Moore H, Stacey G, Sethe S, Procurement Working Group Of National Clinical H, E. S. C. F, National Clinical H, E. S. C. F. The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev. 2012;8:91–9.

Hewitson H, Wood V, Kadeva N, Cornwell G, Codognotto S, Stephenson E, Ilic D. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene. Stem Cell Res. 2016;16:210–2.

Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, Breuer CK, Caulfield T, Cedars MI, Frey-Vasconcells J, Heslop HE, Jin Y, Lee RT, Mccabe C, Munsie M, Murry CE, Piantadosi S, Rao M, Rooke HM, Sipp D, Studer L, Sugarman J, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 2016;6:787–97.

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024 .

Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.

Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, SuberbielleBoissel C, Tartour E, Desnos M, Larghero J. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36:2011–7.

Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.

Ilic D, Ogilvie C. Concise review: human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells. 2017;35:17–25.

Rocha V, et al. Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant. 2006;12(1):34–4.

Longo UG, Ronga M, Maffulli N. Sports Med Arthrosc 17:112–126. Achilles tendinopathy. Sports Med Arthrosc. 2009;17:112–26.

Tempfer H, Lehner C, Grütz M, Gehwolf R, Traweger A. Biological augmentation for tendon repair: lessons to be learned from development, disease, and tendon stem cell research. In: Gimble J, Marolt D, Oreffo R, Redl H, Wolbank S, editors. Cell engineering and regeneration. Reference Series in Biomedical Engineering. Cham: Springer; 2017.

Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626–34.

Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14:177–82.

Li R, Lin Q-X, Liang X-Z, Liu G-B, et al. Stem cell therapy for treating osteonecrosis of the femoral head: from clinical applications to related basic research. Stem Cell Res Therapy. 2018;9:291 https://doi.org/10.1186/s13287-018-1018-7 .

Gangji V, De Maertelaer V, Hauzeur JP. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone. 2011;49(5):1005–9.

Zhao D, Cui D, Wang B, Tian F, Guo L, Yang L, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50(1):325–30.

Sen RK, Tripathy SK, Aggarwal S, Marwaha N, Sharma RR, Khandelwal N. Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: a randomized control study. J Arthroplast. 2012;27(5):679–86.

Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J, Lehmann S, Lemaitre JM. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011;25:2248–53.

Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464:520–8.

Petkovich DA, Podolskiy DI, Lobanov AV, Lee SG, Miller RA, Gladyshev VN. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 2017;25:954–60 https://doi.org/10.1016/j.cmet.2017.03.016 .

Gerontology, Rejuvenation by cell reprogramming: a new horizon in. Rodolfo G. Goya, Marianne Lehmann, Priscila Chiavellini, Martina Canatelli-Mallat, Claudia B. Hereñú and Oscar A. Brown. Stem Cell Res Therapy . 2018, 9:349. https://doi.org/10.1186/s13287-018-1075-y .

Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, Araoka T, Vazquez-Ferrer E, Donoso D, Roman JLXJ, Rodriguez-Esteban C, Nuñez G, Nuñez Delicado E, Campistol JM, Guillen I, Guillen P, Izpisua. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167:1719–33.

de Lázaro I, Cossu G, Kostarelos K. Transient transcription factor (OSKM) expression is key towards clinical translation of in vivo cell reprogramming. EMBO Mol Med. 2017;9:733–6.

Sun S, Li ZQ, Glencer P, Cai BC, Zhang XM, Yang J, Li XR. Bringing the age-related macular degeneration high-risk allele age-related maculopathy susceptibility 2 into focus with stem cell technology. Stem Cell Res Ther. 2017;8:135 https://doi.org/10.1186/s13287-017-0584-4 .

Liu J. Induced pluripotent stem cell-derived neural stem cells: new hope for stroke? Stem Cell Res Ther. 2013;4:115 https://doi.org/10.1186/scrt326 .

Shahjalal HM, Dayem AA, Lim KM, Jeon TI, Cho SG. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell ResTher. 2018;9:355 https://doi.org/10.1186/s13287-018-1099-3 .

Kroon E, Martinson LA, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26;443–52.

Arora V, Pooja A, Munshi AK. Banking stem cells from human exfoliated deciduous teeth. J Clin Pediatr Dent. 2009;33(4):289–94.

Mao JJ. Stem cells and the future of dental care. New York State Dental J. 2008;74(2):21–4.

Reznick, Jay B. Continuing education: stem cells: emerging medical and dental therapies for the dental Professional. Dentaltown Magazine . 2008, pp. 42–53.

Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008;26(7):1787–95.

Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith A. Dental pulp tissue engineering with stem cells from exfoliated. J Endod. 2008;34(8):962–9.

Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146(4):519–32. https://doi.org/10.1016/j.cell.2011.06.052 .

Sadri-Ardekani H, Atala A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell ResTher. 2014;5:68 https://doi.org/10.1186/scrt457 .

Zhang Q, Xu M, Yao X, Li T, Wang Q, Lai D. Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility. Stem Cell Res Ther. 2015;6:152 https://doi.org/10.1186/s13287-015-0148-4 .

Ma DK, Bonaguidi MA, Ming GL, Song H. Adult neural stem cells in the mammalian central nervous system. Cell Res. 2009;19:672–82. https://doi.org/10.1038/cr.2009.56 .

Dantuma E, Merchant S, Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell ResTher. 2010;1:37 https://doi.org/10.1186/scrt37 .

Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamiya T, Nagao S. Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Invest. 2006;53:61–9. https://doi.org/10.2152/jmi.53.61 .

Article   PubMed   Google Scholar  

Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation. 2009;78:59–68. https://doi.org/10.1016/j.diff.2009.06.005 .

Byrne JA. Developing neural stem cell-based treatments for neurodegenerative diseases. Stem Cell ResTher. 2014;5:72. https://doi.org/10.1186/scrt461 .

Awe JP, Lee PC, Ramathal C, Vega-Crespo A, Durruthy-Durruthy J, Cooper A, Karumbayaram S, Lowry WE, Clark AT, Zack JA, Sebastiano V, Kohn DB, Pyle AD, Martin MG, Lipshutz GS, Phelps PE, Pera RA, Byrne JA. Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Res Ther. 2013;4:87. https://doi.org/10.1186/scrt246 .

Peng J, Zeng X. The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases. Stem Cell ResTher. 2011;2:32. https://doi.org/10.1186/scrt73 .

Wright BL, Barker RA. Established and emerging therapies for Huntington’s disease. 2007;7(6):579–87 https://www.ncbi.nlm.nih.gov/pubmed/17896994/579-87 .

Lin NH, Gronthos S, Bartold PM. Stem cells and periodontal regeneration. Aust Dent J. 2008;53:108–21.

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

Ramseier CA, Abramson ZR, Jin Q, Giannobile WV. Gene therapeutics for periodontal regenerative medicine. Dent Clin North Am. 2006;50:245–63.

Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. OrthodCraniofac Res. 2005;8:191–9.

Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein. J Dent Res. 2004;83:590–5.

Hu B, Unda F, Bopp-Kuchler S, Jimenez L, Wang XJ, Haikel Y, et al. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res. 2006;85:416–21.

Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, Luo H, Tang L, Kong X, Chen X, Liu N, Ding Y, Jin Y. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells. 2011;29(11):1804–16. https://doi.org/10.1002/stem.728 .

Raspini G, Wolff J, Helminen M, Raspini G, Raspini M, Sándor GK. Dental stem cells harvested from third molars combined with bioactive glass can induce signs of bone formation in vitro. J Oral Maxillofac Res. 2018;9(1):e2. Published 2018 Mar 31. https://doi.org/10.5037/jomr.2018.9102 .

Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther. 2018;9(1;336). https://doi.org/10.1186/s13287-018-1078-8 .

Bansal R, Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med. 2015;6(1):29–34. https://doi.org/10.4103/0976-9668.149074 .

Article   PubMed   PubMed Central   Google Scholar  

Edgar Ledesma-Martínez, Víctor Manuel Mendoza-Núñez, Edelmiro Santiago-Osorio. Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int . 2016, 4,709,572, p. doi: https://doi.org/10.1155/2016/4709572 ].

Grzech-Leśniak K. Making use of lasers in periodontal treatment: a new gold standard? Photomed Laser Surg. 2017;35(10):513–4.

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12. https://doi.org/10.1073/pnas.0937635100 .

Yasui T, Mabuchi Y, Toriumi H, Ebine T, Niibe K, Houlihan DD, Morikawa S, Onizawa K, Kawana H, Akazawa C, Suzuki N, Nakagawa T, Okano H, Matsuzaki Y. Purified human dental pulp stem cells promote osteogenic regeneration. J Dent Res. 2016;95(2):206–14. https://doi.org/10.1177/0022034515610748 .

Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res. 2014;78:16–20. https://doi.org/10.1016/j.neures.2013.10.010 .

d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater. 2009;12, PMID: 19908196:75–83.

Wang L, Shen H, Zheng W, Tang L, Yang Z, Gao Y, Yang Q, Wang C, Duan Y, Jin Y. Characterization of stem cells from alveolar periodontal ligament. Tissue Eng. Part A. 2011;17(7–8):1015–26. https://doi.org/10.1089/ten.tea.2010.0140 .

Iwata T, Yamato M, Zhang Z, Mukobata S, Washio K, Ando T, Feijen J, Okano T, Ishikawa I. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol. 2010;37(12):1088–99. https://doi.org/10.1111/j.1600-051X.2010.01597.x .

Chen F-M, Gao L-N, Tian B-M, Zhang X-Y, Zhang Y-J, Dong G-Y, Lu H, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther. 2016;7:33. https://doi.org/10.1186/s13287-016-0288-1 .

Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56(7):709–21. https://doi.org/10.1016/j.archoralbio.2010.12.008 .

Han C, Yang Z, Zhou W, Jin F, Song Y, Wang Y, Huo N, Chen L, Qian H, Hou R, Duan Y, Jin Y. Periapical follicle stem cell: a promising candidate for cementum/periodontal ligament regeneration and bio-root engineering. Stem Cells Dev. 2010;19(9):1405–15. https://doi.org/10.1089/scd.2009.0277 .

Luan X, Ito Y, Dangaria S, Diekwisch TG. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium. Stem Cells Dev. 2006;15(4):595–608. https://doi.org/10.1089/scd.2006.15.595 .

Handa K, Saito M, Tsunoda A, Yamauchi M, Hattori S, Sato S, Toyoda M, Teranaka T, Narayanan AS. Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res. 2002;43(2–3):406–8 PMID: 12489190.

Guo W, Chen L, Gong K, Ding B, Duan Y, Jin Y. Heterogeneous dental follicle cells and the regeneration of complex periodontal tissues. Tissue Engineering. Part A. 2012;18(5–6):459–70 https://doi.org/10.1089/ten.tea.2011.0261 .

Bai, Yudi et al. Cementum- and periodontal ligament-like tissue formation by dental follicle cell sheets co-cultured with Hertwig’s epithelial root sheath cells. Bone. 2011, 48, Issue 6, pp. 1417–1426, https://doi.org/10.1016/j.bone.2011.02.016 .

Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. 2008, 34, pp. 962–969.

Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate, hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 2. 2002;43:387–90.

Friedlander LT, Cullinan MP, Love RM. Dental stem cells and their potential role in apexogenesis and apexification. Int Endod J. 2009;42:955–62.

Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Pan G, Pei D, Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen (Lond). July 30, 2013, 2(1), pp. 6, doi: https://doi.org/10.1186/2045-9769-2-6 .

Craig J. Taylor, Eleanor M. Bolton, and J. Andrew Bradley 2011 Aug 12 and https://doi.org/10.1098/rstb.2011.0030 ], 366(1575): 2312–2322. [doi:. Immunological considerations for embryonic and induced pluripotent stem cell banking,. Philos Trans R SocLond B Biol Sci. 2011, 366(1575), pp. 2312–2322, doi: https://doi.org/10.1098/rstb.2011.0030 .

T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X.F. Xu, P.L.R. Ee, J.H. Ahn, B.H. Hong, G. Pastorin, B. Ozyilmaz, ACS Nano, 5 (6) (2011), pp. 4. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells,. ACS Nano. 2011, pp. 4670–4678.

Lee WC, Lim C, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5(9):7334–41.

Kenry LWC, Loh KP, Lim CT. When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236–50.

Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. 2009. 2009, 4(3), p. https://doi.org/10.1371/journal.pone . 0004722.

Oh, Myeongsik, et al. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci. 2018, 19(6), p. 1715.

Ramirez MI. et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10:881–906.

Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–9.

Mateescu B, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA—an ISEV position paper. J. Extracell. Vesicles. 2017;6(1). https://doi.org/10.1080/20013078.2017.1286095 .

Nawaz M, et al. Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int. 2016;2016:17. Article ID 1073140.

Helfrich, Y.R., Sachs, D.L. and Voorhees, J.J. Overview of skin aging and photoaging. Dermatol. Nurs. 20, pp. 177–183, https://www.ncbi.nlm.nih.gov/pubmed/18649702 .

Julia Tigges, Jean Krutmann, Ellen Fritsche, Judith Haendeler, Heiner Schaal, Jens W. Fischer, Faiza Kalfalah, Hans Reinke, Guido Reifenberger, Kai Stühler, Natascia Ventura, Sabrina Gundermann, Petra Boukamp, Fritz Boege. The hallmarks of fibroblast ageing, mechanisms of ageing and development, 138, 2014, Pages 26–44. 2014, 138, pp. 26–44, ISSN 0047–6374, https://doi.org/10.1016/j.mad.2014.03.004 .

Huh MI, Kim MS, Kim HK, et al. Effect of conditioned media collected from human amniotic fluid-derived stem cells (hAFSCs) on skin regeneration and photo-aging. Tissue Eng Regen Med. 2014;11:171 https://doi.org/10.1007/s13770-014-0412-1 .

Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31.

Liu J, Han G, Liu H, et al. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One. 2013;8:e62844.

Oh M, et al. Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnol. Bioprocess Eng. 2017;22:561–8.

Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS One. 2008;3:e1886.

Bae J-S, Lee S-H, Kim J-E, Choi J-Y, Park R-W, Park JY, Park H-S, Sohn Y-S, Lee D-S, Lee EB. βig-h3 supports keratinocyte adhesion, migration, and proliferation through α3β1 integrin. Biochem. Biophys. Res. Commun. 2002;294:940–8.

Zhou B-R, Xu Y, Guo S-L, Xu Y, Wang Y, Zhu F, Permatasari F, Wu D, Yin Z-Q, Luo D. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Res. Int. 2013;519:126.

Peng Y, Baulier E, Ke Y, Young A, Ahmedli NB, Schwartz SD, et al. Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. PLoS ONE. 2018, 13(3), p. https://doi.org/10.1371/journal.pone.019400 .

Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res. 2004;22:998–1003.

Mascetti VL, Pedersen RA. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell. 2016;18:67–72.

Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepúlveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2007;26(3):638–45.

Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM, Hockema JJ, Woods EJ, Goebel WS. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods. 2008;14(2):149–56.

Garcia-Olmo D, Garcia-Arranz M, Herreros D, et al. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48:1416–23.

de Mendonça CA, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, Cerruti H, Alonso N, Passos-Bueno MR. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg. 2008;19(1):204–10.

Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S. SHED repair critical-size calvarial defects in mice. Oral Dis. 2008;14(5):428–34.

Abbas, Diakonov I., Sharpe P. Neural crest origin of dental stem cells. Pan European Federation of the International Association for Dental Research (PEF IADR). 2008, Vols. Seq #96 - Oral Stem Cells.

Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Gaiad TP, Morini AC, Vieira NM, Marina P, et al. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs. J Transl Med. 2008;6:35.

Xianrui Yang, Li Li, Li Xiao, Donghui Zhang. Recycle the dental fairy’s package: overview of dental pulp stem cells. Stem Cell Res Ther . 2018, 9, 1, 1. https://doi.org/10.1186/s13287-018-1094-8 .

Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2010;19:1375–83.

Wang J, et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly (L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater. 2010;6(10):3856–63.

Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab. 2015;33:371–82.

Huang GT-J, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod. 2006;32:1066–73.

Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–9.

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.

Nuti N, Corallo C, Chan BMF, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511–23.

Ferro F, et al. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PloS One. 2012;7(7):e41774.

Conde MCM, Chisini LA, Grazioli G, Francia A, Carvalho RVd, Alcázar JCB, Tarquinio SBC, Demarco FF. Does cryopreservation affect the biological properties of stem cells from dental tissues? A systematic review. Braz Dent J. 2016;1210(6):633-40. https://doi.org/10.1590/0103-6440201600980 .

Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006;208:319–25.

Alge DL, Zhou D, Adams LL, et. al. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med. 2010;4(1):73–81.

Jo Y-Y, Lee H-J, Kook S-Y, Choung H-W, Park J-Y, Chung J-H, Choung Y-H, Kim E-S, Yang H-C, Choung P-H. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73.

Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–5.

Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res. 2005;20:1394–402.

Zainal A, Shahrul H, et al. In vitro chondrogenesis transformation study of mouse dental pulp stem cells. Sci World J. 2012;2012:827149.

Wei X, et al. Expression of mineralization markers in dental pulp cells. J Endod. 2007;33(6):703–8.

Dai J, et al. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials. 2012;33(31):7699–711.

Vasandan AB, et al. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med. 2014;18(2):344–54.

Werle SB, et al. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig. 2015;20:75–81.

Nemeth CL, et al. Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng A. 2014;20(21–22):2817–29.

Paino F, Ricci G, De Rosa A, D’Aquino R, Laino L, Pirozzi G, et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur. Cell Mater. 2010;20:295–305.

Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. In: Kioussi C, editor. Stem cells and tissue repair. Methods in molecular biology (methods and protocols): Humana Press. 2014;1210.

Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Nakahara T, Ishikawa H, Mitev V, Haapasalo M. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod. 2012;38:475–80.

Download references

Acknowledgements

Not applicable.

This work is supported by Wrocław Medical University in Poland.

Availability of data and materials

Please contact author for data requests.

Author information

Authors and affiliations.

Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Bujwida 44, Wrocław, 50-345, Poland

Wojciech Zakrzewski, Maria Szymonowicz & Zbigniew Rybak

Department of Conservative Dentistry and Pedodontics, Krakowska 26, Wrocław, 50-425, Poland

Maciej Dobrzyński

You can also search for this author in PubMed   Google Scholar

Contributions

WZ is the principal author and was responsible for the first draft of the manuscript. WZ and ZR were responsible for the concept of the review. MS, MD, and ZR were responsible for revising the article and for data acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wojciech Zakrzewski .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article.

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. et al. Stem cells: past, present, and future. Stem Cell Res Ther 10 , 68 (2019). https://doi.org/10.1186/s13287-019-1165-5

Download citation

Published : 26 February 2019

DOI : https://doi.org/10.1186/s13287-019-1165-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Differentiation
  • Pluripotency
  • Induced pluripotent stem cell (iPSC)
  • Stem cell derivation
  • Growth media
  • Tissue banks
  • Tissue transplantation

Stem Cell Research & Therapy

ISSN: 1757-6512

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

current research on stem cells

U.S. flag

Focus On Stem Cell Research

3D rendering of stem cells. Focus On Stem Cell Research banner image. Credit: Shutterstock

Stem cells possess the unique ability to differentiate into many distinct cell types in the body, including brain cells, but they also retain the ability to produce more stem cells, a process termed self-renewal. There are multiple types of stem cell, such as embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and adult or somatic stem cells. While various types of stem cells share similar properties there are differences as well. For example, ES cells and iPS cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use in future therapies is exciting, but significant technical hurdles remain that will only be overcome through years of intensive research.

NINDS supports a diverse array of research on stem cells, from studies of the basic biology of stem cells in the developing and adult mammalian brain, to studies focusing on nervous system disorders such as ALS or spinal cord injury. Other examples of NINDS funded research include using iPS cells to derive dopamine-producing neurons that might alleviate symptoms in patients with Parkinson’s disease, and using ES cells to generate cerebral organoids to model Zika virus infection.

Estimates of Funding for Various Research, Condition, and Disease Categories

Resources and tools.

Timothy LaVaute, Ph.D. | Program Director, Repair and Plasticity  [email protected]

Funding Opportunities 

NIH Common Fund Somatic Cell Genome Editing Letters of intent are due April 4, 2018

Search the NIH Guide to Grants and Contracts . Use key words such as “neurological disease” and “stem cell” or “regenerative medicine” in your search.

News & Events

CRISPR helps find new genetic suspects behind ALS/FTD

Memory gene goes viral

Study suggests lasting benefits of cord blood transplants in infants with Krabbe disease

Related Topics  NIH Stem Cell Information Page NIH Policies related to stem cell research NINDS Human Cell and Data Repository NEUROLINCS NIH Human Embryonic Stem Cell Registry NINDS Repository at the Coriell Institute for Medical Research Regenerative Medicine Program (RMP) Regenerative Medicine Innovative Project (RMIP)

US Flag Icon

NIH Stem Cell Information

General information.

current research on stem cells

Investigator Toolbox

current research on stem cells

Eurekaselect logo

Current Stem Cell Research & Therapy

Impact Factor : 2.7

Indexed in: Scopus, SCI Expanded, MEDLINE/PubMed... View all

Volume 19 , Issues 11, 2024

This journal supports open access

Submission for General Articles

Submit to thematic issues.

current research on stem cells

Thematic Issue Issue: {[{issue.issue_title}]}

{[{issue.about_issue}]}

No Text Found

  • Submit Abstracts
  • Submit Manuscripts Online
  • Thematic Issue Proposal
  • Animated Abstract Submission

current research on stem cells

  • About Journal
  • Editorial Board
  • Journal Insight
  • Current Issue
  • Volumes /Issues
  • Author Guidelines
  • Graphical Abstracts
  • Fabricating and Stating False Information
  • Research Misconduct
  • Post Publication Discussions and Corrections
  • Publishing Ethics and Rectitude
  • Increase Visibility of Your Article
  • Archiving Policies
  • Peer Review Workflow
  • Order Your Article Before Print
  • Promote Your Article
  • Manuscript Transfer Facility
  • Editorial Policies
  • Allegations from Whistleblowers
  • Announcements
  • Forthcoming Thematic Issues
  • Guest Editor Guidelines
  • Editorial Management
  • Ethical Guidelines for New Editors
  • Reviewer Guidelines
  • Abstract Ahead of Print 2
  • Article(s) in Press 48
  • Free Online Copy
  • Most Cited Articles
  • Most Accessed Articles
  • Highlighted Article
  • Most Popular Articles
  • Editor's Choice
  • Thematic Issues
  • Open Access Articles
  • Open Access Funding
  • Library Recommendation
  • Trial Requests
  • Advertise With Us
  • Meet the Executive Guest Editor(s)
  • Brand Ambassador
  • Author's Comment & Reviews
  • New Journals 2023
  • New Journals 2024
  • Alert Subscription

current research on stem cells

Current Stem Cell Reports

This journal publishes cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. The contents are distinguished by their incisive, insightful, and balanced contributions from leading experts in each relevant domain. Leading authorities serve as Section Editors in key areas spanning the discipline, choosing topics for review by expert contributors. These reviews, along with commentaries from well-known figures in the field, will benefit a wide readership of clinicians, basic scientists and translational investigators.

  • Graça Almeida-Porada

current research on stem cells

Latest issue

Volume 10, Issue 1

Latest articles

Rna-mediated regulation of glycolysis in embryonic stem cell pluripotency and differentiation.

  • Xiaoling Li

current research on stem cells

The Technical and Ethical Framework of Fetal Therapy: Past and Current Advances

  • Anna Y. Lynn
  • Peter M. Glazer
  • David H. Stitelman

TRASCET—Transamniotic Stem Cell Therapy

  • Emily M. Scire
  • Dario O. Fauza

current research on stem cells

Stem Cell-Based Strategies for Prenatal Treatment of Spina Bifida and the Promise of Cell-Free, Minimally Invasive Approaches

  • Bruna Corradetti
  • Francesca Taraballi
  • Richard H. Finnell

current research on stem cells

First Clinical Experiences Using Preconditioning Approaches to Improve MSC-Based Therapies

  • Amin Cressman
  • Fernando A. Fierro

current research on stem cells

Journal information

  • Chemical Abstracts Service (CAS)
  • Emerging Sources Citation Index
  • Google Scholar
  • Japanese Science and Technology Agency (JST)
  • OCLC WorldCat Discovery Service
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Springer policies

© Springer Nature Switzerland AG

  • Find a journal
  • Publish with us
  • Track your research
  • Bridging generations: Combating social isolation in older adults through art and storytelling
  • Using AI to improve diagnosis of rare genetic disorders
  • Lyme disease 101: Q&A with Dr. Sarah Gunter
  • Understanding small bowel obstructions: causes, symptoms and treatment
  • A mechanism influencing the generation of new COVID variants

Baylor College of Medicine Blog Network

Uncovering the secret of long-lived stem cells

current research on stem cells

Nothing lives forever, but compared to other cells in the body, hematopoietic stem cells (HSCs) are remarkably long-lived. HSCs are blood-forming cells – they give rise to rapidly dividing progenitor cells, which in turn generate hundreds of billions of cells to fulfill the daily demand of oxygen-delivering red blood cells, disease-fighting white blood cells and clot-forming platelets.

HSCs typically remain dormant within the bone marrow, yet they possess the ability to activate and replenish blood cells continuously, maintaining a relatively youthful profile throughout the life of an organism. What is the secret of long-lived HSCs that wards off the effects of aging? A team led by researchers at Baylor College of Medicine revealed in Nature Cell Biology that the enzyme cyclophilin A, which is produced in large amounts in HSCs, is key for these cells to retain their regenerative potential and avert the effects of aging.

Long live the stem cells!

current research on stem cells

“A driving force of cellular aging is the accumulation of proteins that have reached the end of  their useful life,” said corresponding author Dr. André Catic , assistant professor and CPRIT Scholar in Cancer Research in the Huffington Center on Aging at Baylor . “With age, proteins tend to misfold, aggregate and accumulate inside the cell, which leads to toxic stress that can disrupt cell function.”

Cells that frequently engage in cell division, like progenitor cells, can dispose of protein aggregates through dilution. On the other hand, long-lived HSCs, which do not divide often, face the problem of the accumulation of misfolded proteins and subsequent toxic stress. Nevertheless, HSCs remain impervious to aging. How do they do it?

current research on stem cells

“Understanding the molecular mechanisms that contribute to HSC aging not only contributes to the field of normal HSC biology, but also may have significant clinical relevance for cancer treatment,” said co-first author of the work, Dr. Laure Maneix , who was at the Catic lab while working on this project.

Molecular chaperones at work

Previous studies have shown that mammalian cells express several hundreds of molecular chaperones, proteins that preserve or change the three-dimensional conformation of existing proteins. Cyclophilins, one of the most abundant chaperones, have been implicated in the aging process. However, how they affect cellular proteins has not previously been studied.

Working with mice, the researchers first characterized the protein content of HSCs and discovered that cyclophilin A is a prevalent chaperone. Further experiments showed that the expression of cyclophilin A, also called PPIA, was significantly decreased in aged HSCs, and genetically eliminating cyclophilin A accelerated natural aging in the stem cell compartment. In contrast, reintroducing cyclophilin A into aged HSCs enhanced their function. Together, these findings support cyclophilin A as a key factor in the longevity of HSCs.

Connecting cyclophilin A, intrinsically disordered proteins and HSC longevity

Next, the team investigated the proteins with which cyclophilin A interacts, preserving their stability. “We found that proteins enriched in intrinsically disordered regions are frequent targets of the chaperone,” Catic said.

Intrinsically disordered proteins naturally change their 3-D conformation to interact with different proteins, nucleic acids or other molecules. Consequently, proteins rich in intrinsically disordered regions regulate many cellular processes by promoting specific activities between molecules. “Due to their flexible nature, intrinsically disordered proteins are inherently prone to aggregation. Cyclophilin A supports these proteins in fulfilling their functions and simultaneously prevents them from clumping,” Catic said.

current research on stem cells

Furthermore, the findings suggest that cyclophilin A interacts with intrinsically disordered proteins from the moment of their synthesis. “As these proteins are being made, cyclophilin A makes sure they keep the appropriate conformations and are maintained at sufficient levels,” Catic said. “Genetic depletion of cyclophilin A results in stem cells distinctively lacking intrinsically disordered proteins.”

“For the first time, our study showed that producing disordered proteins and maintaining the structural diversity of the proteins in a cell plays a role in HSC aging,” Maneix said.

Co-first author Polina Iakova, Charles G. Lee, Shannon E. Moree, Xuan Lu, Gandhar K. Datar, Cedric T. Hill, Eric Spooner, Jordon C. K. King, David B. Sykes, Borja Saez, Bruno Di Stefano, Xi Chen, Daniela S. Krause, Ergun Sahin, Francis T. F. Tsai, Margaret A. Goodell, Bradford C. Berk and David T. Scadden also contributed to this study.

For a complete list of the authors’ affiliations and financial support for this work, see the publication .

See a video of this work, here.

By Ana María Rodríguez, Ph.D.

Follow From the Labs on X @BCMFromtheLabs and Instagram !

Receive From the Labs via email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Email Address

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Headed to a festival or outdoor event soon? Here is what you should know
  • Wearable technology gives surgeons data to improve posture during surgery

You May Also Like

A doctor holding a clipboard speaks to a patient.

SQUID increases accessibility to single-cell tumor profiling to improve treatment outcomes

current research on stem cells

Male brain heeds message of female sex hormone

Experts tackle 3 key policy areas for using cutting-edge sequencing in patient care, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

Notify me of new posts by email.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

current research on stem cells

NASA Invites Social Creators for Launch of NOAA Weather Satellite 

current research on stem cells

NASA’s New Mobile Launcher Stacks Up for Future Artemis Missions 

NASA’s Webb Hints at Possible Atmosphere Surrounding Rocky Exoplanet

NASA’s Webb Hints at Possible Atmosphere Surrounding Rocky Exoplanet

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Hubble Celebrates the 15th Anniversary of Servicing Mission 4

Hubble Celebrates the 15th Anniversary of Servicing Mission 4

Hubble Glimpses a Star-Forming Factory

Hubble Glimpses a Star-Forming Factory

current research on stem cells

NASA Mission Strengthens 40-Year Friendship 

current research on stem cells

NASA Selects Commercial Service Studies to Enable Mars Robotic Science

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

Flooding on the Souris River

International SWOT Mission Can Improve Flood Prediction

NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases

Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases

C.26 Rapid Mission Design Studies for Mars Sample Return Correction and Other Documents Posted

C.26 Rapid Mission Design Studies for Mars Sample Return Correction and Other Documents Posted

NASA Selects Students for Europa Clipper Intern Program

NASA Selects Students for Europa Clipper Intern Program

The Big Event, 2024

The Big Event, 2024

This image of the Andromeda galaxy uses data from NASA’s retired Spitzer Space Telescope. Multiple wavelengths are shown, revealing stars (in blue and cyan), dust (red), and areas of star formation. Dust swirls around like water going down a drain, as the black hole at the heart of the Andromeda consumes it.

NASA Images Help Explain Eating Habits of Massive Black Hole

current research on stem cells

NASA Licenses 3D-Printable Superalloy to Benefit US Economy

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

A man talks at a podium in an aircraft hangar.

NASA’s Commitment to Safety Starts with its Culture

blue glow emanates from a ring-like Hall-effect Thruster

Tech Today: NASA’s Ion Thruster Knowhow Keeps Satellites Flying

A stack of computer components on a white background - CGI

Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions

The 2024 App Development Challenge top teams in front of the Orion Capsule in the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.

NASA Challenge Gives Artemis Generation Coders a Chance to Shine

Community college students

NASA Community College Aerospace Scholars

Official headshot of an Iranian woman with short hair, wearing a gray blazer over a blue and white blouse, with an American flag and a NASA flag in the background.

Johnson Celebrates AA and NHPI Heritage Month: Kimia Seyedmadani

The Group 19 NASA and Japan Aerospace Exploration Agency astronaut candidates pose for a group photo – front row, Robert L. Satcher, left, Dorothy “Dottie” M. Metcalf-Lindenburger, Christopher J. Cassidy, Richard R. Arnold, Randolph J. Bresnik, and Thomas H. Marshburn; back row, Akihiko “Aki” Hoshide, left, Shannon Walker, Joseph M. Acaba, James P. Dutton, R. Shane Kimbrough, Satoshi Furukawa, José M. Hernández, and Naoko Yamazaki

20 Years Ago: NASA Selects its 19th Group of Astronauts

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Researchers develop ‘founding document’ on synthetic cell development.

The headshot image of Tara Friesen

Tara Friesen

A scientist is looking through a microscope while backlit by a red image on a computer screen. Synthetic cell development could lead researchers to new developments in food and medical sciences and a better understanding of the origins of life on Earth.

Cells are the fundamental units of life, forming the variety of all living things on Earth as individual cells and multi-cellular organisms. To better understand how cells perform the essential functions of life, scientists have begun developing synthetic cells – non-living bits of cellular biochemistry wrapped in a membrane that mimic specific biological processes.

The development of synthetic cells could one day hold the answers to developing new ways to fight disease, supporting long-duration human spaceflight, and better understanding the origins of life on Earth.

In a paper published recently in ACS Synthetic Biology , researchers outline the potential opportunities that synthetic cell development could unlock and what challenges lie ahead in this groundbreaking research. They also present a roadmap to inspire and guide innovation in this intriguing field.

“The potential for this field is incredible,” said Lynn Rothschild, the lead author of the paper and an astrobiologist at NASA’s Ames Research Center in California’s Silicon Valley. “It’s a privilege to have led this group in forming what we envision will be a founding document, a resource that will spur this field on.”

Synthetic cell development could have wide ranging benefits to humanity. Analyzing the intricacies that go in to building a cell could guide researchers to better understand how cells first evolved or open the door to creating new forms of life more capable of withstanding harsh environments like radiation or freezing temperatures.

These innovations could also lead to advancements in food and medical sciences – creating efficiencies in food production, detecting contaminants in manufacturing, or developing novel cellular functions that act as new therapies for chronic diseases and even synthetic organ transplantation.

Building synthetic cells could also answer some of NASA’s biggest questions about the possibility of life beyond Earth.

“The challenge of creating synthetic cells informs whether we’re alone in the universe,” said Rothschild. “We’re starting to develop the skills to not just create synthetic analogs of life as it may have happened on Earth but to consider pathways to life that could form on other planets.”

As research continues on synthetic cell development, Rothschild sees opportunities where it could expand our understanding of the complexities of natural life.

“Life is an amazing thing. We use the capabilities of cells all the time – we build houses with wood, we use leather in our shoes, we breathe oxygen. Life has amazing precision, and if you can harness it, it’s unbelievable what we could accomplish.”

For news media :

Members of the news media interested in covering this topic should reach out to the  NASA Ames newsroom .

Related Terms

  • Ames Research Center
  • Cell and Molecular Biology
  • Developmental, Reproductive and Evolutionary Biology
  • Science & Research

Explore More

current research on stem cells

Fifteen years ago, human hands touched NASA’s Hubble Space Telescope for the last time. As…

current research on stem cells

NASA Glenn Looking to Lease Facilities

current research on stem cells

The celestial object showcased in this image from the NASA/ESA Hubble Space Telescope is the…

Discover Related Topics

current research on stem cells

Cell Science

Space Synthetic Biology (SynBio)

current research on stem cells

Science News

current research on stem cells

  • Skip to main content
  • Skip to FDA Search
  • Skip to in this section menu
  • Skip to footer links

U.S. flag

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

U.S. Food and Drug Administration

  •   Search
  •   Menu
  • Vaccines, Blood & Biologics
  • Science & Research (Biologics)

Genome Editing and Advanced Manufacturing of Hematopoietic Stem Cell-Based Therapeutics

Pankaj Kumar Mandal - headshot

Pankaj Kumar Mandal, PhD

Office of Tissues and Advanced Therapies Division of Cellular and Gene Therapies Tumor Vaccines and Biotechnology Branch

[email protected]

Pankaj K. Mandal, PhD is a Senior Staff Fellow in the Tumor Vaccines and Biotechnology Branch (TVBB) of OTAT.  His research interests include hematopoietic stem cell (HSC) biology and genetically engineered hematopoietic stem cell (HSC)-- based therapeutics.

Dr. Mandal graduated from Haryana Agricultural University, Hisar, India in 2002 with a BS in veterinary sciences and animal husbandry (2002), completed an MS in veterinary immunology at Indian Veterinary Research Institute, Izatnagar, India (2004), and received his PhD in veterinary medicine from Ludwig Maximilian University, Munich (2009).

He conducted his postdoctoral research training at Harvard Medical School and Boston Children’s Hospital, (2010-2014), focusing on developing a modified mRNA-based cellular reprogramming protocol for deriving induced pluripotent stem (iPS) cells, generating hematopoietic stem cell (HSC)-specific reporter strains of mice, and evaluating the efficacy of CRISPR/Cas9 genome editing in human cells. From 2014-2018, he served as an instructor in pediatrics at Harvard Medical School and was a Senior Scientist in the Discovery Biology group at Omega Therapeutics (2018-2019). In his current role as Senior Staff Fellow at DCGT, Dr. Mandal leads a research group focused on understanding the advanced manufacturing of CRISPR-edited HSC-based therapeutics.

General Overview

Recent advances in gene therapy, genetic engineering, and stem cell therapeutics, have helped to promote a paradigm shift from conventional palliative treatments to regeneration and cures.  Cell- and gene-based therapies and devices could provide long-term cure through replacement or regeneration of diseased tissue. These advances have brought newer cell-based treatments, such as CAR-T cells and HSC gene therapy, into clinical practice. By generating functionally competent cell types through differentiation, CRISPR/Cas9 engineered HSC-based cellular therapeutics hold great promise for treatment of hematological disorders, such as sickle cell anemia, beta-thalassemia, and severe combined immunodeficiency. Despite significant advances in the development of HSC-based therapies over the past decade, the lack of optimized protocols for HSC expansion ex vivo and manufacturing of quality HSC products has stalled their widespread use.

Our research program is focused on understanding advanced manufacturing of genome-edited HSC-based therapeutics. We propose to identify and define optimal conditions for cost-effective, large scale manufacturing of genome-edited, HSC-based therapeutics. Such work will help us to establish a set of Critical Quality Attributes (CQA), evaluate submissions in this product class, and establish FDA regulatory guidelines for HSC-based therapeutics.

Scientific Overview

HSCs are the regenerative unit of hematopoietic tissue. Through self-renewal and differentiation, HSCs sustain steady-state hematopoiesis by generating various blood cell types throughout life. Therefore, they have the potential to provide curative treatments for various blood disorders.

The conditions for very robust ex vivo gene editing in human HSPCs using CRISPR/Cas9 have been well-established; however, the latest findings indicate that very low percentage of gene-edited HSPCs are able to engraft following transplantation. This reflects our limited understanding of the large-scale manufacturing of HSCs under advanced manufacturing conditions.  Sub-optimal and poorly defined culture conditions, gene editing, and gene therapy reagents can adversely affect the ability of ex vivo manipulated HSPC to engraft and sustain long-lasting, balanced hematopoiesis in transplant recipients. This lack of cost-effective, industrial-scale, and reproducible manufacturing of quality HSC-based therapeutics with defined Quality Attributes (QA) is the major roadblock to the safe, effective, and widespread use of this therapy.

Cost-effective large-scale manufacturing of quality HSC-based therapeutics requires an in-depth knowledge of cell behavior and response to advanced manufacturing conditions. Taking a Quality by Design (QbD) approach, our goal is to define the critical parameters that affect HSC activity during advanced manufacturing. Using cells from an HSC-specific reporter mouse, human HSCs/HSPCs, CRISPR/Cas9 technology (for genome editing and functional genomics), and a combination of small molecules, growth factors, and cytokines, we propose to optimize the ex vivo culture conditions for large- scale HSC expansion and develop an advanced manufacturing protocol for CRISPR/Cas9-engineered HSC-based therapeutics.

Publications

  • Bruna S. Paulsen*, Pankaj K. Mandal*, Richard L. Frock, Baris Boyraz, Rachita Yadav, Srigokul Upadhyayula, Paula Gutierrez-Martinez, Wataru Ebina, Anders Fasth, Tomas Kirchhausen, Michael E. Talkowski, Suneet Agarwal, Frederick W. Alt, and Derrick J. Rossi (2017) Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR/Cas9 genome editing . Nat. Biomed. Eng. 1(11):878-888.
  • Pankaj K. Mandal*, Leonardo M. R. Ferreira*, Ryan Collins, Torsten B. Meissner, Christian L. Boutwell, Max Friesen, Vladimir Vrbanac, Brian S. Garrison, Alexei Stortchevoi, David Bryder, Kiran Musunuru, Harrison Brand, Andrew M. Tager, Todd M. Allen, Michael E. Talkowski, Derrick J. Rossi, and Chad A. Cowan (2014). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9 Cell Stem Cell 15(5): 643–652.
  • Roi Gazit*, Pankaj K. Mandal*, Wataru Ebina, Ayal Ben-Zvi, Cesar Nombela-Arrieta, Leslie E. Silberstein, Derrick J. Rossi (2014). Fgd5 identifies hematopoietic stem cells in the murine bone marrow and is not required for definitive hematopoiesis J. Ex. Med. 211(7):1315-31

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 06 April 2020

Next-generation stem cells — ushering in a new era of cell-based therapies

  • Erin A. Kimbrel   ORCID: orcid.org/0000-0001-8520-7585 1 &
  • Robert Lanza   ORCID: orcid.org/0000-0002-3047-3074 1  

Nature Reviews Drug Discovery volume  19 ,  pages 463–479 ( 2020 ) Cite this article

24k Accesses

156 Citations

82 Altmetric

Metrics details

  • Biotechnology
  • Drug development
  • Drug therapy
  • Gene therapy

Naturally occurring stem cells isolated from humans have been used therapeutically for decades. This has primarily involved the transplantation of primary cells such as haematopoietic and mesenchymal stem cells and, more recently, derivatives of pluripotent stem cells. However, the advent of cell-engineering approaches is ushering in a new generation of stem cell-based therapies, greatly expanding their therapeutic utility. These next-generation stem cells are being used as ‘Trojan horses’ to improve the delivery of drugs and oncolytic viruses to intractable tumours and are also being engineered with angiogenic, neurotrophic and anti-inflammatory molecules to accelerate the repair of injured or diseased tissues. Moreover, gene therapy and gene editing technologies are being used to create stem cell derivatives with improved functionality, specificity and responsiveness compared with their natural counterparts. Here, we review these engineering approaches and areas in which they will help broaden the utility and clinical applicability of stem cells.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

195,33 € per year

only 16,28 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

current research on stem cells

Similar content being viewed by others

current research on stem cells

Antisense oligonucleotide therapeutic approach for Timothy syndrome

current research on stem cells

Discovery of tumor-reactive T cell receptors by massively parallel library synthesis and screening

current research on stem cells

FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy

Atala, A., Lanza, R., Mikos, T., Nerem, R. Principles of Regenerative Medicine 3rd edn, (Academic, 2019).

Thomas, E. D., Lochte, H. L. Jr., Cannon, J. H., Sahler, O. D. & Ferrebee, J. W. Supralethal whole body irradiation and isologous marrow transplantation in man. J. Clin. Invest. 38 , 1709–1716 (1959).

CAS   PubMed   PubMed Central   Google Scholar  

Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 9 , 12–12 (2011).

Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S. & Caplan, A. I. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 16 , 557–564 (1995).

CAS   PubMed   Google Scholar  

Squillaro, T., Peluso, G. & Galderisi, U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25 , 829–848 (2016).

PubMed   Google Scholar  

Galipeau, J. & Sensébé, L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22 , 824–833 (2018).

Mendicino, M., Bailey, A. M., Wonnacott, K., Puri, R. K. & Bauer, S. R. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14 , 141–145 (2014).

Madrazo, I. et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med. 318 , 51 (1988).

Ishii, T. & Eto, K. Fetal stem cell transplantation: past, present, and future. World J. Stem Cell 6 , 404–420 (2014).

Google Scholar  

Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 71 , 83–87 (2014).

PubMed   PubMed Central   Google Scholar  

Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54 , 403–414 (2003).

Hasan, S. M. et al. Immortalized human fetal retinal cells retain progenitor characteristics and represent a potential source for the treatment of retinal degenerative disease. Cell Transplant. 19 , 1291–1306 (2010).

Liu, Y. et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res. Ther. 8 , 209–209 (2017).

Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282 , 1145–1147 (1998).

Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 , 861–872 (2007).

Williams, L. A., Davis-Dusenbery, B. N. & Eggan, K. C. SnapShot: directed differentiation of pluripotent stem cells. Cell 149 , 1174–1174.e1 (2012).

Kimbrel, E. A. & Lanza, R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat. Rev. Drug Discov. 14 , 681–692 (2015).

Frantz, S. Embryonic stem cell pioneer Geron exits field, cuts losses. Nat. Biotechnol. 30 , 12–13 (2012).

Schwartz, S. D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379 , 713–720 (2012).

Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385 , 509–516 (2015).

Kashani, A. H. et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 10 , eaao4097 (2018).

Mandai, M. et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N. Engl. J. Med. 376 , 1038–1046 (2017).

Mehat, M. S. et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125 , 1765–1775 (2018).

Menasché, P. et al. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 71 , 429–438 (2018).

Cyranoski, D. ‘Reprogrammed’ stem cells implanted into patient with Parkinson’s disease. Nature https://doi.org/10.1038/d41586-018-07407-9 (2018).

Article   PubMed   Google Scholar  

Cyranoski, D. Japan poised to allow ‘reprogrammed’ stem-cell therapy for damaged corneas. Nature https://doi.org/10.1038/d41586-019-00860-0 (2019).

Cyranoski, D. ‘Reprogrammed’ stem cells to treat spinal-cord injuries for the first time. Nature https://doi.org/10.1038/d41586-019-00656-2 (2019).

Izrael, M. et al. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1(G93A) and NSG animal models. Stem Cell Res. Ther. 9 , 152–152 (2018).

Wang, Y.-K. et al. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Rep. 11 , 171–182 (2018).

CAS   Google Scholar  

Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545 , 229–233 (2017).

Milone, M. C. & O’Doherty, U. Clinical use of lentiviral vectors. Leukemia 32 , 1529–1541 (2018).

Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118 , 3132–3142 (2008).

Lewinski, M. K. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2 , e60 (2006).

Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott–Aldrich syndrome. Science 341 , 1233151 (2013).

Scala, S. et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 24 , 1683–1690 (2018).

Naldini, L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol. Med. 11 , e9958 (2019).

Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72 , 8463–8471 (1998).

Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72 , 9873–9880 (1998).

Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24 , 430–446 (2016).

Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93 , 1156–1160 (1996).

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11 , 636–646 (2010).

Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 , 1509–1512 (2009).

Jiang, F. & Doudna, J. A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46 , 505–529 (2017).

Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482 , 331–338 (2012).

Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339 , 823–826 (2013).

Dai, W.-J. et al. CRISPR–Cas9 for in vivo gene therapy: promise and hurdles. Mol. Ther. Nucleic Acids 5 , e349–e349 (2016).

Zhang, X.-H., Tee, L. Y., Wang, X.-G., Huang, Q.-S. & Yang, S.-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4 , e264 (2015).

Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31 , 822 (2013).

Gaj, T., Epstein, B. E. & Schaffer, D. V. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol. Ther. 24 , 458–464 (2016).

Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9 , 1911 (2018).

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 , 819–823 (2013).

Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163 , 759–771 (2015).

Strecker, J. et al. Engineering of CRISPR–Cas12b for human genome editing. Nat. Commun. 10 , 212 (2019).

Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566 , 218–223 (2019).

Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32 , 577–582 (2014).

Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 , 1380–1389 (2013).

Lo, A. & Qi, L. Genetic and epigenetic control of gene expression by CRISPR–Cas systems. F1000Res . 6 (2017).

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 , 420 (2016).

Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15 , 215–226 (2014).

[No authors listed] Keep off-target effects in focus. Nat. Med . 24 , 1081–1081 (2018).

Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER–Seq. Science 364 , 286 (2019).

Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364 , 289 (2019).

Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364 , 292 (2019).

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576 , 149–157 (2019).

Ledford, H. Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature 574 , 464–465 (2019).

Pomeroy, J. E., Nguyen, H. X., Hoffman, B. D. & Bursac, N. Genetically encoded photoactuators and photosensors for characterization and manipulation of pluripotent stem cells. Theranostics 7 , 3539–3558 (2017).

Klapper, S. D. et al. On-demand optogenetic activation of human stem-cell-derived neurons. Sci. Rep. 7 , 14450 (2017).

Sokolik, C. et al. Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. Cell Syst. 1 , 117–129 (2015).

Shao, J. et al. Synthetic far-red light-mediated CRISPR–dCas9 device for inducing functional neuronal differentiation. Proc. Natl Acad. Sci. USA 115 , E6722–E6730 (2018).

Motta-Mena, L. B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10 , 196 (2014).

Roth, B. L. DREADDs for neuroscientists. Neuron 89 , 683–694 (2016).

Weston, M. et al. Olanzapine: a potent agonist at the hM4D(Gi) DREADD amenable to clinical translation of chemogenetics. Sci. Adv. 5 , eaaw1567 (2019).

Bonaventura, J. et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat. Commun. 10 , 4627 (2019).

Aldrin-Kirk, P. et al. DREADD modulation of transplanted DA neurons reveals a novel Parkinsonian dyskinesia mechanism mediated by the serotonin 5-HT6 receptor. Neuron 90 , 955–968 (2016).

Upadhya, D. et al. Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc. Natl Acad. Sci. USA 116 , 287 (2019).

Ji, B. et al. Multimodal imaging for DREADD-expressing neurons in living brain and their application to implantation of iPSC-derived neural progenitors. J. Neurosci. 36 , 11544–11558 (2016).

Chen, Y. et al. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18 , 817–826 (2016).

Takayama, Y., Kusamori, K. & Nishikawa, M. Click chemistry as a tool for cell engineering and drug delivery. Molecules 24 , 172 (2019).

PubMed Central   Google Scholar  

Layek, B., Sadhukha, T. & Prabha, S. Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors. Biomaterials 88 , 97–109 (2016).

Hargadon, K. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62 , 29–39 (2018).

Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50 , 165 (2018).

CAS   PubMed Central   Google Scholar  

Hu, Q. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat. Biomed. Eng. 2 , 831–840 (2018). This study demonstrates the feasibility and therapeutic potential of a novel tripartite engineered stem cell-based anti-leukaemia therapy; HSCs provide effective homing to the bone marrow, and conjugated platelets enable the delivery and subsequent offloading of a checkpoint inhibitor to kill bone marrow-resident leukaemia cells .

Aboody, K. S., Najbauer, J. & Danks, M. K. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 15 , 739–752 (2008).

Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15 , 730–738 (2008).

López-Lázaro, M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis. Oncoscience 2 , 467–475 (2015).

Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. & Hermoso, M. A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014 , 149185 (2014).

Aboody, K. S. et al. Neural stem cell–mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci. Transl. Med. 5 , 184ra159 (2013).

Kim, S. U. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24 , 159–171 (2004).

Davis, M. E. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20 , S2–S8 (2016).

Hottinger, A. F., Stupp, R. & Homicsko, K. Standards of care and novel approaches in the management of glioblastoma multiforme. Chin. J. Cancer 33 , 32–39 (2014).

Portnow, J. et al. Neural stem cell-based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients. Clin. Cancer Res. 23 , 2951–2960 (2017). This first-in-human study provides evidence for the safe use of an NSC-based approach to penetrate the blood–brain barrier and enhance the delivery of a chemotherapeutic agent to high-grade glioma. It represents the first clinical step in developing this modality further .

Heo, J.-R., Hwang, K.-A., Kim, S. U. & Choi, K.-C. A potential therapy using engineered stem cells prevented malignant melanoma in cellular and xenograft mouse models. Cancer Res. Treat. 51 , 797–811 (2019).

Metz, M. Z. et al. Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cell Transl. Med. 2 , 983–992 (2013).

Gutova, M. et al. Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Front. Oncol. 9 , 68 (2019).

von Einem, J. C. et al. Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells: results from the phase 1/2 TREAT-ME-1 trial. Int. J. Cancer 145 , 1538–1546 (2019).

Springer, C. J. & Niculescu-Duvaz, I. Prodrug-activating systems in suicide gene therapy. J. Clin. Invest. 105 , 1161–1167 (2000).

Soria, J. C. et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J. Clin. Oncol. 29 , 4442–4451 (2011).

Ganten, T. M. et al. Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin. Cancer Res. 12 , 2640–2646 (2006).

Davies, A. et al. TACTICAL: a phase I/II trial to assess the safety and efficacy of MSCTRAIL in the treatment of metastatic lung adenocarcinoma. J. Clin. Oncol. 37 , TPS9116–TPS9116 (2019).

Bago, J. R. et al. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat. Commun. 7 , 10593 (2016).

Rossignoli, F. et al. Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy. Cancer Gene Ther. 26 , 11–16 (2019).

Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M. & Marini, F. III. Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cell 29 , 11–19 (2011).

Yuan, Z., Kolluri, K. K., Gowers, K. H. C. & Janes, S. M. TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J. Extracell. Vesicles 6 , 1265291–1265291 (2017).

Lou, G. et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol. 8 , 122–122 (2015).

Mendt, M. et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight https://doi.org/10.1172/jci.insight.99263 (2018).

Article   PubMed   PubMed Central   Google Scholar  

Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546 , 498 (2017).

Zheng, M., Huang, J., Tong, A. & Yang, H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol. Ther. Oncolytics 15 , 234–247 (2019).

Ilkow, C. S., Swift, S. L., Bell, J. C. & Diallo, J.-S. From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathog. 10 , e1003836–e1003836 (2014).

Gujar, S., Bell, J. & Diallo, J. S. SnapShot: cancer immunotherapy with oncolytic viruses. Cell 176 , 1240–1240.e1 (2019).

Pol, J., Kroemer, G. & Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 5 , e1115641 (2016).

Conry, R. M., Westbrook, B., McKee, S. & Norwood, T. G. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum. Vaccin. Immunother. 14 , 839–846 (2018).

Du, W. et al. Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proc. Natl Acad. Sci. USA 114 , E6157 (2017). This study demonstrates the benefit of using stem cells to increase the biodistribution of an oncolytic virus and reach metastatic sites that otherwise would not have been reached as a stand-alone therapy .

Leoni, V. et al. Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget 6 , 34774–34787 (2015).

Draganov, D. D. et al. Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers. J. Transl. Med. 17 , 100 (2019).

Tobias, A. L. et al. The timing of neural stem cell-based virotherapy is critical for optimal therapeutic efficacy when applied with radiation and chemotherapy for the treatment of glioblastoma. Stem Cell Transl. Med. 2 , 655–666 (2013).

Mader, E. K. et al. Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J. Transl. Med. 11 , 20 (2013).

Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16 , 566–581 (2016).

Zhao, L. & Cao, Y. J. Engineered T cell therapy for cancer in the clinic. Front. Immunol. 10 , 2250 (2019).

Herzig, E. et al. Attacking latent HIV with convertibleCAR-T cells, a highly adaptable killing platform. Cell 179 , 880–894.e10 (2019).

Joglekar, A. et al. Hematopoietic stem/progenitor cells engineered with T cell receptors for immunotherapy for HIV infection. J. Immunol. 200 , 180.185 (2018).

Puig-Saus, C. et al. IND-enabling studies for a clinical trial to genetically program a persistent cancer-targeted immune system. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-0963 (2018). This paper details IND-enabling studies for an antigen-specific, T cell receptor-based HSC/T cell therapy being used in phase I clinical trials to treat relapsed/refractory ovarian, fallopian or primary peritoneal cancer with the added feature of a sr39TK suicide gene to control persistence of the cells, if needed .

Zhen, A. et al. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathog. 13 , e1006753 (2017).

Golinelli, G. et al. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther. https://doi.org/10.1038/s41417-018-0062-x (2018).

Themeli, M. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31 , 928–933 (2013).

Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23 , 181–192.e5 (2018). This paper illustrates the potential power of combining iPSC and CAR technologies, and also details how improved design of a CAR based upon the cell type in which it is expressed can improve its efficacy .

Senju, S. et al. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther. 18 , 874–883 (2011).

Vatakis, D. N. et al. Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc. Natl Acad. Sci. USA 108 , E1408–E1416 (2011).

van Lent, A. U. et al. Functional human antigen-specific T cells produced in vitro using retroviral T cell receptor transfer into hematopoietic progenitors. J. Immunol. 179 , 4959 (2007).

Guedan, S., Calderon, H., Posey, A. D. Jr. & Maus, M. V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12 , 145–156 (2018).

Yu, S., Yi, M., Qin, S. & Wu, K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol. Cancer 18 , 125 (2019).

De Oliveira, S. N. et al. Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy. Hum. Gene Ther. 24 , 824–839 (2013).

Kao, C.-Y. & Papoutsakis, E. T. Engineering human megakaryocytic microparticles for targeted delivery of nucleic acids to hematopoietic stem and progenitor cells. Sci. Adv. 4 , eaau6762 (2018).

Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543 , 113–117 (2017).

Steinberg, G. K. et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study. J. Neurosurg. https://doi.org/10.3171/2018.5.JNS173147 (2018).

Hess, D. C. et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 16 , 360–368 (2017).

Klein, S. M. et al. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene Ther. 16 , 509–521 (2005).

Akhtar, A. A. et al. Inducible expression of GDNF in transplanted iPSC-derived neural progenitor cells. Stem Cell Rep. 10 , 1696–1704 (2018).

Liu, Y.-W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36 , 597–605 (2018).

Terashvili, M. & Bosnjak, Z. J. Stem cell therapies in cardiovascular disease. J. Cardiothorac. Vasc. Anesthesia 33 , 209–222 (2019).

Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem-cell therapy. Nature 577 , 405–409 (2020).

Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379 , 895–904 (2012).

Malliaras, K. et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J. Am. Coll. Cardiol. 63 , 110–122 (2014).

Menasche, P. Cell therapy trials for heart regeneration — lessons learned and future directions. Nat. Rev. Cardiol. 15 , 659–671 (2018).

Davis, D. R. Cardiac stem cells in the post-Anversa era. Eur. Heart J. 40 , 1039–1041 (2019).

Tongers, J., Losordo, D. W. & Landmesser, U. Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur. Heart J. 32 , 1197–1206 (2011).

Tang, J. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2 , 17–26 (2018).

Lemcke, H., Voronina, N., Steinhoff, G. & David, R. Recent progress in stem cell modification for cardiac regeneration. Stem Cell Int. 2018 , 22 (2018).

Hwang, C. W. et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials 52 , 318–326 (2015).

Cavazzana, M., Bushman, F. D., Miccio, A., André-Schmutz, I. & Six, E. Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat. Rev. Drug Discov. 18 , 447–462 (2019).

Rio, P. et al. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat. Med. 25 , 1396–1401 (2019).

Anderson, J. S., Javien, J., Nolta, J. A. & Bauer, G. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5α protein, a CCR5 shRNA, and a TAR decoy. Mol. Ther. 17 , 2103–2114 (2009).

Hirsch, T. et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 551 , 327 (2017). This case report shows how gene therapy and expansion of autologous skin stem cells/progenitors within keratinocyte biopsies can be used to generate therapeutic skin grafts for the treatment of junctional epidermolysis bullosa .

Iyer, P. S. et al. Autologous cell therapy approach for Duchenne muscular dystrophy using PiggyBac transposons and mesoangioblasts. Mol. Ther. 26 , 1093–1108 (2018).

Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18 , 573–586 (2016).

Psatha, N. et al. Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with β-thalassemia major. Mol. Ther. Methods Clin. Dev. 10 , 313–326 (2018).

Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25 , 776–783 (2019). This paper describes how gene editing at the Bcl11a enhancer region in HSCs can be used to treat β-thalassaemia and sickle cell disease, a strategy being employed in three recent autologous HSC-based clinical trials .

Xu, S. et al. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood 133 , 2255–2262 (2019).

Román-Rodríguez, F. J. et al. NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with Fanconi anemia. Cell Stem Cell 25 , 607–621.e7 (2019).

DiGiusto, D. L. et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol. Ther. Methods Clin. Dev. https://doi.org/10.1038/mtm.2016.67 (2016).

Cyranoski, D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature 566 , 440–442 (2019).

Lanza, R., Russell, D. W. & Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 19 , 723–733 (2019).

Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35 , 765–772 (2017).

Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37 , 252–258 (2019).

Huaigeng, Xu, et al. Targeted disruption of HLA genes via CRISPR–Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24 , 1–13 (2019).

Zhao, L., Teklemariam, T. & Hantash, B. M. Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res. 13 , 342–354 (2014).

Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14 , 121–130 (2014).

Turner, L. & Knoepfler, P. Selling stem cells in the USA: assessing the direct-to-consumer industry. Cell Stem Cell 19 , 154–157 (2016).

Petricciani, J., Hayakawa, T., Stacey, G., Trouvin, J.-H. & Knezevic, I. Scientific considerations for the regulatory evaluation of cell therapy products. Biology 50 , 20–26 (2017).

Yu, Z., Pestell, T. G., Lisanti, M. P. & Pestell, R. G. Cancer stem cells. Int. J. Biochem. Cell Biol. 44 , 2144–2151 (2012).

Liang, Q. et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature 563 , 701–704 (2018).

Gargett, T. & Brown, M. P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol. 5 , 235–235 (2014).

Yamaguchi, T. & Uchida, E. Oncolytic virus: regulatory aspects from quality control to clinical studies. Curr. Cancer Drug Targets 18 , 202–208 (2018).

van der Loo, J. C. & Wright, J. F. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 25 , R42–R52 (2016).

Guru, A., Post, R. J., Ho, Y.-Y. & Warden, M. R. Making sense of optogenetics. Int. J. Neuropsychopharmacol. 18 , pyv079–pyv079 (2015).

Klapper, S. D., Swiersy, A., Bamberg, E. & Busskamp, V. Biophysical properties of optogenetic tools and their application for vision restoration approaches. Front. Syst. Neurosci. 10 , 74–74 (2016).

Garita-Hernandez, M. et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat. Commun. 10 , 4524 (2019). This paper demonstrates a proof of concept for rescuing vision through the transplantation and light-induced stimulation of optogenetically engineered iPSC-derived cone photoreceptors in a retinal degenerative model .

Ono, K. et al. Optogenetic control of cell differentiation in channelrhodopsin-2-expressing OS3, a bipotential glial progenitor cell line. Neurochem. Int. 104 , 49–63 (2017).

Zenchak, J. R. et al. Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson’s disease mouse model. J. Neurosci. Res. 98 , 458–468 (2018).

Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33 , 204 (2015).

Jia, Z. et al. Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol. 4 , 753–760 (2011).

Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33 , 750 (2015).

Bingen, B. O. et al. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc. Res. 104 , 194–205 (2014).

Björk, S. et al. Evaluation of optogenetic electrophysiology tools in human stem cell-derived cardiomyocytes. Front. Physiol. 8 , 884 (2017).

Zhang, F. & Tzanakakis, E. S. Optogenetic regulation of insulin secretion in pancreatic β-cells. Sci. Rep. 7 , 9357 (2017).

Millman, J. R. & Pagliuca, F. W. Autologous pluripotent stem cell-derived β-like cells for diabetes cellular therapy. Diabetes 66 , 1111–1120 (2017).

Download references

Author information

Authors and affiliations.

Astellas Institute for Regenerative Medicine, Westborough, MA, USA

Erin A. Kimbrel & Robert Lanza

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Erin A. Kimbrel or Robert Lanza .

Ethics declarations

Competing interests.

E.A.K. and R.L. are employees of Astellas Institute for Regenerative Medicine.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Are Stem Cells Ready for Prime Time? A Look at FDA Research Advances in Regenerative Medicine: https://www.fda.gov/science-research/about-science-research-fda/are-stem-cells-ready-prime-time-look-fda-research-advances-regenerative-medicine (2018)

Asterias Provides Top Line 12 Month Data Update for its OPC1 Phase 1/2a Clinical Trial in Severe Spinal Cord Injury: https://www.globenewswire.com/news-release/2019/01/24/1704757/0/en/Asterias-Provides-Top-Line-12-Month-Data-Update-for-its-OPC1-Phase-1-2a-Clinical-Trial-in-Severe-Spinal-Cord-Injury.html

CRISPR Therapeutics and ViaCyte Announce Strategic Collaboration to Develop Gene-Edited Stem Cell-Derived Therapy for Diabetes: http://www.crisprtx.com/about-us/press-releases-and-presentations/crispr-therapeutics-and-via-cyte-announce-strategic-collaboration-to-develop-gene-edited-stemcell-derived-therapy-for-diabetes-1/ (2018)

Cynata CYP-001 Stem Cell Therapy Meets All Safety and Efficacy Endpoints in Phase 1 Trial in GvHD: https://www.globenewswire.com/news-release/2018/08/30/1563317/0/en/Cynata-CYP-001-Stem-Cell-Therapy-Meets-All-Safety-and-Efficacy-Endpoints-in-Phase-1-Trial-in-GvHD.html (2018)

Fate Therapeutics Presents its First Off-the-shelf, iPSC-derived CAR T-Cell Cancer Immunotherapy Program at ASH Annual Meeting: https://ir.fatetherapeutics.com/news-releases/news-release-details/fate-therapeutics-presents-its-first-shelf-ipsc-derived-car-t/ (2016)

FDA Warns About Stem Cell Therapies: https://www.fda.gov/consumers/consumer-updates/fda-warns-about-stemcell-therapies/ (2019).

First iPSC-Derived CAR T-Cell Therapy Created by Kyoto University CiRA and Takeda Collaboration Enters Process Development Towards Clinical Testing: https://www.takeda.com/newsroom/newsreleases/2019/first-ipsc-derived-car-t-cell-therapy-created-by-kyoto-university-cira-and–takeda-collaboration-enters-process-development-towards-clinical-testing/ (2019)

Framework for the Regulation of Regenerative Medicine Products: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/framework-regulation-regenerative-medicine-products (2019)

Gene Therapy Clinical Trials Worldwide Provided by the Journal of Gene Medicine: http://www.abedia.com/wiley/vectors.php (2018)

Japan’s Regenerative Medicine Environment — A Guide to Understand the Pathways to Get Approval in Japan: https://firm.or.jp/_rmit/wp-content/uploads/2018/10/Japans-RM-Environment-2018.pdf (2018)

Multidisciplinary: cell therapy and tissue engineering: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-cell-therapy-tissue-engineering (2019)

SanBio: SB623, an Investigational Product, Granted Advanced Therapy Medicinal Product Classification by European Medicines Agency: https://www.businesswire.com/news/home/20190424006185/en/ (2019)

SanBio and Sumitomo Dainippon Pharma Announce Topline Results from a Phase 2b Study in the U.S. Evaluating SB623, a Regenerative Cell Medicine for the Treatment of Patients with Chronic Stroke: https://www.ds-pharma.com/ir/news/pdf/ene20190129.1.pdf/ (2019)

SanBio Announces SB623 Regenerative Cell Therapy for Traumatic Brain Injury Has Received Ministry of Health, Labour and Welfare (MHLW) Sakigake Designation: https://www.businesswire.com/news/home/20190408005341/en/ (2019)

Two-year Data from ViaCyte’s STEP ONE Clinical Trial Presented at ADA 2018: https://www.prnewswire.com/news-releases/two-year-data-from-viacytes-step-one-clinical-trial-presented-at-ada-2018-300671013.html

World Health Organization: Haematopoietic Stem Cell Transplantation HSCtx: https://www.who.int/transplantation/hsctx/en/ (2019)

The ability to give rise to many different cell types.

Genes located on chromosome 6 that encode major histocompatibility complex proteins, a set of proteins that help immune cells to distinguish self from non-self cells. HLA mismatches are responsible for immune-mediated rejection of allogeneic cells.

The ability to give rise to all cell types in the body.

The tendency (for a stem cell) to migrate towards a tumour, usually induced by chemoattraction of that cell to chemoattractants, angiogenic factors or inflammatory signals produced by a tumour.

(CAR). A class of genetically engineered, modular receptors that can be used to elicit highly potent, antigen-specific immune responses. The basic CAR structure consists of an extracellular antigen-specific binding domain, a hinge domain, a transmembrane domain and an intracellular signalling domain, although many versions of CARs also contain co-stimulatory domains and other modular features.

An engineering approach to introduce genes that encode light-responsive proteins into cells in order to be able to control cellular signalling pathways upon exposure to specific wavelengths of light.

(SCID). A rare inherited immune system disorder caused by mutations in the IL2RG gene, which is typically fatal early in life unless reconstitution of the immune system is achieved through bone marrow transplantation or gene therapy.

An X-linked primary immunodeficiency disorder caused by mutations in the WAS gene, which encodes a cytoskeletal protein essential for normal immune cell function. Insertion of a normal, wild-type WAS gene into a patient’s haematopoietic stem and progenitor cells may thus be able to functionally compensate for their mutated gene upon their differentiation into the afflicted immune cells.

An engineering approach to express genes encoding designer receptors in cells in order to be able to control the cells’ activity through administration of chemicals/drugs specifically designed to bind to the designer receptors.

The use of bio-orthogonal functional groups that enables linking two molecules of interest (biological and/or purely synthetic) together, such as the attachment of azide-coated cells with cyclooctyene-coated nanoparticles.

A rare subset of T cells that can be found in the gut mucosa, skin and lungs, thought to help bridge the innate and adaptive immune systems. Their name originates from the unique composition of their T cell receptor, which consists of a γ-chain and a δ-chain, as opposed to the more abundant αβ T cell subset whose T cell receptor consists of an α-chain and a β-chain.

A neuromuscular disorder caused by mutations in the gene encoding dystrophin, which result in severe muscle wasting.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Kimbrel, E.A., Lanza, R. Next-generation stem cells — ushering in a new era of cell-based therapies. Nat Rev Drug Discov 19 , 463–479 (2020). https://doi.org/10.1038/s41573-020-0064-x

Download citation

Accepted : 18 February 2020

Published : 06 April 2020

Issue Date : July 2020

DOI : https://doi.org/10.1038/s41573-020-0064-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells.

Journal of Nanobiotechnology (2024)

Clinical applications of stem cell-derived exosomes

  • Jialin Zheng

Signal Transduction and Targeted Therapy (2024)

LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing

  • Yuebao Zhang
  • Yizhou Dong

Nature Communications (2024)

Programmable synthetic receptors: the next-generation of cell and gene therapies

  • Tongtong Cui

Unlocking the Potential of Extracellular Vesicles as the Next Generation Therapy: Challenges and Opportunities

  • Syahidatulamali Che Shaffi
  • Omar Nafiis Hairuddin
  • Badrul Hisham Yahaya

Tissue Engineering and Regenerative Medicine (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

current research on stem cells

current research on stem cells

Scientists link oocyte-specific histone H1FOO to better iPS cell generation

A joint research team led by Dr. Akira Kunitomi, a former postdoctoral fellow at CiRA (currently a researcher at the Gladstone Institute of Cardiovascular Disease), and ID Pharma Co., Ltd., has uncovered the crucial role of oocyte-specific linker histone, H1FOO, in enhancing reprogramming efficiency and homogeneity to primed and naïve pluripotent states. The study is published in Stem Cell Reports .

Whereas conventional reprogramming produces human induced pluripotent stem (iPS) cells with "primed" characteristics, resembling post-implantation epiblasts with limited potential to turn into extraembryonic tissues, the "naïve" pluripotent state displays properties more similar to preimplantation epiblast cells and mouse iPS cells, thus allowing them to differentiate into both embryonic and extraembryonic lineages.

Even though primed and naïve human iPS cells have enabled biomedical advances previously unimaginable, a principal challenge concerning iPS cells for basic research and medical purposes is their heterogeneity. Traditional reprogramming methods remain a stochastic process, and hence, many researchers continue to seek more efficient and precise means to generate homogeneous iPS cells.

In their recent study, the collaborative research team examined the potential of the maternal-specific linker histone H1FOO as a candidate factor to refine the reprogramming process. The researchers engineered H1FOO by attaching a destabilization domain (DD) so they could manipulate its degradation chemically and carefully regulate its levels.

When used in combination with the Yamanaka factors (OSKL, MYC was replaced by LMYC to avoid tumorigenesis), they found H1FOO-DD to improve iPS cell generation efficiency significantly, regardless of the gene delivery system used.

Although gene expression and epigenetic analyses did not identify any meaningful differences between reprogramming using only OSKL or in combination with H1FOO-DD, they did, however, reveal that by using H1FOO-DD, the independently generated iPS cells displayed a more similar gene expression pattern, thus indicating improvements to homogeneity and reproducibility.

Notably, an analysis of genes with highly variable expression between independent iPS cell lines suggested that H1FOO reduced such variability by nearly half. Crucially, many of these genes are involved in gene expression regulation, hence demonstrating the ability of H1FOO-DD to guide the reprogramming process more stringently.

Furthermore, the researchers also observed that iPS cells generated via reprogramming with H1FOO-DD were better at differentiating into endoderm, one of three primary germ layers, and cardiomyocytes (a mesodermal cell type).

The research team continued their investigation by examining the underlying mechanisms through which H1FOO-DD improves reprogramming. By single-cell RNA sequencing (scRNA-seq) analysis, the researchers found reprogramming with H1FOO-DD not only led to earlier and higher expression of pluripotency-related genes but also suppressed the expression of genes related to innate immune response, inflammation, and apoptosis (programmed cell death).

In particular, H1FOO-DD increased the proportion of cells categorized as successfully reprogrammed while reducing cell subpopulations deemed to have undergone incomplete or unsuccessful reprogramming.

Given H1FOO's role as a chromatin remodeling factor, the researchers also examined accessibility to chromatin regions. Consistent with the findings from gene expression analysis, chromatin regions, especially those nearby pluripotency markers, opened earlier and were more accessible when H1FOO-DD was included as a reprogramming factor.

Further analysis demonstrated that POU and KLF/SP transcription factor families were activated earlier during the reprogramming process by H1FOO-DD. These results suggest that H1FOO-DD helps to coordinate reprogramming more efficiently and timely to enhance iPS cell generation.

The researchers next focused on downstream effectors that help mediate the positive effects of H1FOO-DD on iPS cell generation by examining genes with differential expression early on during reprogramming. Through this analysis, they identified 19 upregulated and two downregulated genes when H1FOO-DD was included as a reprogramming factor.

The research team examined these genes individually to determine whether they influence primed and naïve reprogramming and found that FKBP1A or APOE overexpression improves reprogramming. Since APOE was previously reported as highly expressed during reprogramming, the researchers focused their attention on FKBP1A in hopes of revealing novel molecular mechanisms underlying successful reprogramming.

Notably, they found that while reprogramming using OSKL alone does increase FKBP1A expression, the inclusion of H1FOO-DD dramatically enhances it. This observation was further supported by re-examining the gene expression and chromatin accessibility data they had already collected.

FKBP1A is an immunophilin involved in immunosuppression that can interact with and inhibit TGFBR1, which, in turn, promotes mesenchymal-to-epithelial transition (MET) and improves reprogramming efficiency.

The researchers thus hypothesized that both FKBP1A functions in suppressing innate immunity and inhibiting TGFBR1-mediated MET) are likely responsible for the enhancement of reprogramming efficiency by H1FOO-DD.

Notably, they found that reprogramming via a combination of OSKL and FKBP1A overexpression led to comparable TGFBR1 suppression, MET enhancement, innate immune response suppression, and apoptosis, as when H1FOO-DD was used to initiate reprogramming.

Lastly, because earlier gene expression analysis indicated that in addition to enhancing primed reprogramming, H1FOO-DD also induced the expression of naïve state markers, the researchers examined whether H1FOO-DD is also capable of promoting reprogramming to the naïve state. Indeed, they observed that H1FOO-DD inclusion substantially improved naïve iPS cell generation.

Furthermore, analogous to primed reprogramming, H1FOO-DD reinforced the reprogramming process by coordinating more uniform gene and epigenetic regulation in the cells. Functionally, as measured by metabolic activity and X-chromosome reactivation, reprogramming using H1FOO-DD produced naïve iPS cells more similar to naïve embryonic stem cells or preimplantation blastocysts than when OSKL was used alone.

In summary, combined efforts by the joint research team identified the H1FOO-FKBP1A axis as a means to reprogram cells with greater efficiency and precision. These findings will prove to have a tremendous impact on iPS cell generation for both basic scientific research and clinical applications.

More information: Akira Kunitomi et al, H1FOO-DD promotes efficiency and uniformity in reprogramming to naive pluripotency, Stem Cell Reports (2024). DOI: 10.1016/j.stemcr.2024.04.005

Provided by Kyoto University

Credit: Stem Cell Reports (2024). DOI: 10.1016/j.stemcr.2024.04.005

IMAGES

  1. Applications of Stem Cells-01

    current research on stem cells

  2. Multiple Sclerosis and Stem Cell Treatments

    current research on stem cells

  3. Stem cell research for ‘untreatable’ STDs

    current research on stem cells

  4. Stem Cells

    current research on stem cells

  5. Everything You Need To Know About Stem Cell Therapy In The Philippines

    current research on stem cells

  6. The Science of Stem Cells

    current research on stem cells

VIDEO

  1. The Ethical Questions of Stem Cell Research

  2. Promising stem cell research

  3. What are stem cells?

  4. Why Are Stem Cells So Important?

  5. Progress and Promise of Stem Cell Research: Breast Cancer

  6. The Future of Stem Cells

COMMENTS

  1. Stem Cells News -- ScienceDaily

    Novel Stem Cell Therapy Using Technology from mRNA COVID-19 Vaccines May Stimulate Natural Repair in Treatment of Chronic and Acute Liver Disease. Dec. 7, 2023 — New research has found evidence ...

  2. Stem cells

    Stem cells are cells that have the capacity to self-renew by dividing and to develop into more mature, specialised cells. Stem cells can be unipotent, multipotent, pluripotent or totipotent ...

  3. Progress and challenges in stem cell biology

    Since stem cells were first discovered, researchers have identified distinct stem cell populations in different organs and with various functions, converging on the unique abilities of self ...

  4. Stem-cell research

    Stem-cell research articles from across Nature Portfolio. Stem-cell research is the area of research that studies the properties of stem cells and their potential use in medicine. As stem cells ...

  5. Recent trends in stem cell-based therapies and applications of

    Induced pluripotent stem cells were first successfully generated by Takahashi and Yamanaka in 2006: Fibroblast cells: These cells have the potential to differentiate into any cell type of the body. Overcomes the ethical concerns associated with embryonic stem cell research and clinical use. Organoid formation, and scope for personalized therapies

  6. Stem cells: a comprehensive review of origins and emerging clinical

    Embryonic stem cells have been utilized in the past for research, but ethical concerns have led to them being replaced largely by stem cells derived from other origins. 12 Common tissues from which adult oligopotent and unipotent stem cells are isolated include bone marrow, adipose tissue, and trabecular bone. 13 Bone marrow has traditionally ...

  7. Global Trends of Stem Cell Precision Medicine Research (2018-2022): A

    The research on the regenerative potential of stem cells corresponded to the current stem cell replacement therapy and future tissue engineering. The construction of patient-specific complete organs based on induced pluripotent stem cells was the ultimate goal of regenerative medicine and needed more research in the future. ... In the present ...

  8. Current News

    researchers expand human blood stem cells; growing new blood vessels; Overcoming Roadblocks to Stem Cell Therapies; Cell therapy for Alzheimer's; CHIP and cardiovascular disease; A new technique for studying stem cell development leads to a new understanding of germ cell development. Research. Mature Tissue Stem Cells; Embryonic Stem Cell; New ...

  9. Stem Cells in the Treatment of Disease

    Interview with Dr. Helen Blau on stem cells in the treatment of disease. 9m 12s Download. The derivation of induced pluripotent stem cells (iPSCs) has revolutionized stem-cell research (see the ...

  10. Stem cells: What they are and what they do

    Stem cells: The body's master cells. Stem cells are a special type of cells that have two important properties. They are able to make more cells like themselves. That is, they self-renew. And they can become other cells that do different things in a process known as differentiation. Stem cells are found in almost all tissues of the body.

  11. Stem cells: past, present, and future

    In recent years, stem cell therapy has become a very promising and advanced scientific research topic. The development of treatment methods has evoked great expectations. This paper is a review focused on the discovery of different stem cells and the potential therapies based on these cells. The genesis of stem cells is followed by laboratory steps of controlled stem cell culturing and derivation.

  12. A new era of stem cell and developmental biology: from ...

    Stem cells are self-renewing cells with the potential to differentiate into a wide variety of cell types 13. Based on their origin, they are divided into two major categories: ESCs and adult stem ...

  13. Focus On Stem Cell Research

    Focus On Stem Cell Research. Stem cells possess the unique ability to differentiate into many distinct cell types in the body, including brain cells, but they also retain the ability to produce more stem cells, a process termed self-renewal. There are multiple types of stem cell, such as embryonic stem (ES) cells, induced pluripotent stem (iPS ...

  14. Home

    Page citation: NIH Stem Cell Information Home Page. In Stem Cell Information [World Wide Web site]. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2016 [cited February 1, 2021] Available at Clinical Trial. U.S. Department of Health & Human Services (HHS) | USA.gov - Government Made Easy | HHS Vulnerability Disclosure

  15. Current Stem Cell Research & Therapy

    FBLN5 was Regulated by PRDM9, and Promoted Senescence and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Mengyao Zhao, ... Jianpeng Zhang. Read latest issue. Read the latest articles of Current Stem Cell Research & Therapy at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.

  16. Current Stem Cell Research & Therapy

    Current Stem Cell Research & Therapy. Impact Factor: 2.7. Indexed in: Scopus, SCI Expanded, MEDLINE/PubMed... View all. Volume 19 , Issues 11, 2024. Current Stem Cell Research & Therapy publishes reviews, research articles, drug clinical trial on all aspects of basic research on stem cells and their uses in clinical therapy.

  17. Current state of stem cell-based therapies: an overview

    Current state of stem cell-based therapies: an overview. Recent research reporting successful translation of stem cell therapies to patients have enriched the hope that such regenerative strategies may one day become a treatment for a wide range of vexing diseases. In fact, the past few years witnessed, a rather exponential advancement in ...

  18. Home

    Overview. This journal publishes cutting-edge reviews on subjects pertinent to all aspects of stem cell research, therapy, ethics, commercialization, and policy. The contents are distinguished by their incisive, insightful, and balanced contributions from leading experts in each relevant domain. Leading authorities serve as Section Editors in ...

  19. Stem cell-based therapy for human diseases

    The discovery of hPSCs, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), has revolutionized stem cell research and cell-based therapy. 98 hESCs were ...

  20. Researchers discover a 'training program' driving parietal cell development

    Published in Cell Stem Cell, ... National Science Foundation-Graduate Research Fellowship Program DGE-2139839/1745038, as well as multiple grants from the National Institutes of Health including ...

  21. Uncovering the secret of long-lived stem cells

    Long live the stem cells! Dr. André Catic "A driving force of cellular aging is the accumulation of proteins that have reached the end of their useful life," said corresponding author Dr. André Catic , assistant professor and CPRIT Scholar in Cancer Research in the Huffington Center on Aging at Baylor .

  22. Stem Cell Therapy: a Look at Current Research, Regulations, and

    The study of stem cells offers great promise for better understanding basic mechanisms of human development, as well as the hope of harnessing these cells to treat a wide range of diseases and conditions. 2 However, stem cell research— particularly human embryonic stem cell (hESC) research, which involves the destruction of days-old embryos ...

  23. Researchers Develop 'Founding Document' on Synthetic Cell ...

    Cells are the fundamental units of life, forming the variety of all living things on Earth as individual cells and multi-cellular organisms. To better understand how cells perform the essential functions of life, scientists have begun developing synthetic cells - non-living bits of cellular biochemistry wrapped in a membrane that mimic specific biological processes.

  24. Stem-cell biotechnology

    An article in Nature Communications reports the development of cultured meat with organoleptic properties by regulating the differentiation of stem cells to produce muscle and fat blocks. Nesma El ...

  25. Establishment of Transgene‐Free Porcine Induced Pluripotent Stem Cells

    Current Protocols is a comprehensive journal for protocols and overviews covering experimental design, scientific research methods and analyses across life sciences. Abstract Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming ...

  26. Genome Editing and Advanced Manufacturing of Hematopoietic Stem Cell

    Fgd5 identifies hematopoietic stem cells in the murine bone marrow and is not required for definitive hematopoiesis J. Ex. Med. 211(7):1315-31 Content current as of:

  27. Next-generation stem cells

    The term 'stem cells' encompasses various cells with self-renewal and differentiation properties, many of which can potentially be used therapeutically 1. Multipotent somatic stem cells, such ...

  28. Cancer Stem Cells: From an Insight into the Basics to Recent Advances

    Fulawka L., Donizy P., Halon A. Cancer stem cells - the current status of an old concept: literature review and clinical approaches. Biological ... (low) molecular signature determines the cancer stem cell and EMT phenotype in oral squamous cell carcinoma. Stem Cell Research. 2016; 16:405-417. doi: 10.1016/j.scr.2016.02.028. [Google ...

  29. Scientists link oocyte-specific histone H1FOO to better iPS cell ...

    A joint research team led by Dr. Akira Kunitomi, a former postdoctoral fellow at CiRA (currently a researcher at the Gladstone Institute of Cardiovascular Disease), and ID Pharma Co., Ltd., has ...