Critical Thinking Definition, Skills, and Examples

  • Homework Help
  • Private School
  • College Admissions
  • College Life
  • Graduate School
  • Business School
  • Distance Learning

critical thinking is sparked by

  • Indiana University, Bloomington
  • State University of New York at Oneonta

Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings.

Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions. These skills are especially helpful at school and in the workplace, where employers prioritize the ability to think critically. Find out why and see how you can demonstrate that you have this ability.

Examples of Critical Thinking

The circumstances that demand critical thinking vary from industry to industry. Some examples include:

  • A triage nurse analyzes the cases at hand and decides the order by which the patients should be treated.
  • A plumber evaluates the materials that would best suit a particular job.
  • An attorney reviews the evidence and devises a strategy to win a case or to decide whether to settle out of court.
  • A manager analyzes customer feedback forms and uses this information to develop a customer service training session for employees.

Why Do Employers Value Critical Thinking Skills?

Employers want job candidates who can evaluate a situation using logical thought and offer the best solution.

Someone with critical thinking skills can be trusted to make decisions independently, and will not need constant handholding.

Hiring a critical thinker means that micromanaging won't be required. Critical thinking abilities are among the most sought-after skills in almost every industry and workplace. You can demonstrate critical thinking by using related keywords in your resume and cover letter and during your interview.

How to Demonstrate Critical Thinking in a Job Search

If critical thinking is a key phrase in the job listings you are applying for, be sure to emphasize your critical thinking skills throughout your job search.

Add Keywords to Your Resume

You can use critical thinking keywords (analytical, problem solving, creativity, etc.) in your resume. When describing your work history, include top critical thinking skills that accurately describe you. You can also include them in your resume summary, if you have one.

For example, your summary might read, “Marketing Associate with five years of experience in project management. Skilled in conducting thorough market research and competitor analysis to assess market trends and client needs, and to develop appropriate acquisition tactics.”

Mention Skills in Your Cover Letter

Include these critical thinking skills in your cover letter. In the body of your letter, mention one or two of these skills, and give specific examples of times when you have demonstrated them at work. Think about times when you had to analyze or evaluate materials to solve a problem.

Show the Interviewer Your Skills

You can use these skill words in an interview. Discuss a time when you were faced with a particular problem or challenge at work and explain how you applied critical thinking to solve it.

Some interviewers will give you a hypothetical scenario or problem, and ask you to use critical thinking skills to solve it. In this case, explain your thought process thoroughly to the interviewer. He or she is typically more focused on how you arrive at your solution rather than the solution itself. The interviewer wants to see you analyze and evaluate (key parts of critical thinking) the given scenario or problem.

Of course, each job will require different skills and experiences, so make sure you read the job description carefully and focus on the skills listed by the employer.

Top Critical Thinking Skills

Keep these in-demand skills in mind as you refine your critical thinking practice —whether for work or school.

Part of critical thinking is the ability to carefully examine something, whether it is a problem, a set of data, or a text. People with analytical skills can examine information, understand what it means, and properly explain to others the implications of that information.

  • Asking Thoughtful Questions
  • Data Analysis
  • Interpretation
  • Questioning Evidence
  • Recognizing Patterns

Communication

Often, you will need to share your conclusions with your employers or with a group of classmates or colleagues. You need to be able to communicate with others to share your ideas effectively. You might also need to engage in critical thinking in a group. In this case, you will need to work with others and communicate effectively to figure out solutions to complex problems.

  • Active Listening
  • Collaboration
  • Explanation
  • Interpersonal
  • Presentation
  • Verbal Communication
  • Written Communication

Critical thinking often involves creativity and innovation. You might need to spot patterns in the information you are looking at or come up with a solution that no one else has thought of before. All of this involves a creative eye that can take a different approach from all other approaches.

  • Flexibility
  • Conceptualization
  • Imagination
  • Drawing Connections
  • Synthesizing

Open-Mindedness

To think critically, you need to be able to put aside any assumptions or judgments and merely analyze the information you receive. You need to be objective, evaluating ideas without bias.

  • Objectivity
  • Observation

Problem-Solving

Problem-solving is another critical thinking skill that involves analyzing a problem, generating and implementing a solution, and assessing the success of the plan. Employers don’t simply want employees who can think about information critically. They also need to be able to come up with practical solutions.

  • Attention to Detail
  • Clarification
  • Decision Making
  • Groundedness
  • Identifying Patterns

More Critical Thinking Skills

  • Inductive Reasoning
  • Deductive Reasoning
  • Noticing Outliers
  • Adaptability
  • Emotional Intelligence
  • Brainstorming
  • Optimization
  • Restructuring
  • Integration
  • Strategic Planning
  • Project Management
  • Ongoing Improvement
  • Causal Relationships
  • Case Analysis
  • Diagnostics
  • SWOT Analysis
  • Business Intelligence
  • Quantitative Data Management
  • Qualitative Data Management
  • Risk Management
  • Scientific Method
  • Consumer Behavior

Key Takeaways

  • Demonstrate you have critical thinking skills by adding relevant keywords to your resume.
  • Mention pertinent critical thinking skills in your cover letter, too, and include an example of a time when you demonstrated them at work.
  • Finally, highlight critical thinking skills during your interview. For instance, you might discuss a time when you were faced with a challenge at work and explain how you applied critical thinking skills to solve it.

University of Louisville. " What is Critical Thinking ."

American Management Association. " AMA Critical Skills Survey: Workers Need Higher Level Skills to Succeed in the 21st Century ."

  • Questions for Each Level of Bloom's Taxonomy
  • Critical Thinking in Reading and Composition
  • Bloom's Taxonomy in the Classroom
  • How To Become an Effective Problem Solver
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • Introduction to Critical Thinking
  • Creativity & Creative Thinking
  • Higher-Order Thinking Skills (HOTS) in Education
  • 6 Skills Students Need to Succeed in Social Studies Classes
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Types of Medical School Interviews and What to Expect
  • The Horse Problem: A Math Challenge
  • What to Do When the Technology Fails in Class
  • What Are Your Strengths and Weaknesses? Interview Tips for Teachers
  • A Guide to Business Letters Types
  • Landing Your First Teaching Job
  • Partnerships

Critical thinking

Critical thinking

Effective lifelong learning

Executive summary

  • One of the most striking characteristics of the XX and XXI centuries is the “exponential growth” of knowledge generated in any discipline, which is available to most of the world’s citizens.
  • As it is no longer possible to comprehend all the information available, in relation to disciplines or even subdisciplines, education should promote the acquisition of learning abilities related to modes of thought rather than solely the accumulation or memorization of, in many cases, information that may be only infrequently useful.
  • One mode of thought, reflective thinking or critical thinking, is a metacognitive process—a set of habituated intellectual resources put purposefully into action—that enables a deeper understanding of new information. It also provides a secure foundation for more effective problem-solving, decision-making, and appropriate argumentation of ideas and opinions.
  • The global output of teaching critical thinking is adding new competences to everyone’s basic capacities for greater cognitive development and freedom.

“… Nothing better for the mental development of the child and the adolescent than to teach them superior ways of learning that complement, continue, rectify and elevate the spontaneous ways. Originality is a precious heritage that the pedagogue must not only guard, but lead, in the domain of values, to its maximum expression. And with superior ways of learning, culture and originality grow in parallel. To teach superior ways of learning is to add to the native powers, new powers for greater independence of the spirit in all its manifestations. It is teaching to move only upwards…Teaching to observe well, to think well, to feel good, to express oneself well and to act well is what, in sum, every pedagogical doctrine, new or old, revolutionary or conservative, of now and forever, is materialized.” (Clemente Estable, 1947 1 ).

Introduction and historical background

The brain is the organ that allows us to think. This confronts us with a philosophical challenge that has been accompanying human civilization for more than 2,500 years: H ow can the brain help us to understand how the brain enables us to understand? 2

Ancient Greek philosophers have already questioned themselves about the source of knowledge and cognitive functions and hypothesized about the fundamental role of the brain, in opposition to the heart or even the air or fire 3-6 . The Socratic method, involving the introspective scrutiny of thought guided by questioning, paved the long-lasting way to contemporary approaches and conceptions about “good thinking,” also called “reflective thinking,” 7 and more recently, “critical thinking” 8 .

As in any area of knowledge, most of the accumulated content—which is vast and always evolving—is nowadays accessible to everyone who has access to the internet. Thus, it can be argued that educational efforts should concentrate on improving the next generation’s modes of thinking. It is desirable to promote engagement with knowledge rather than transmitting the requirement of accumulating data—usually disposable information—through mastery or memorization 9 .

Critical thinking is a fundamental pillar in every field of learning within disciplines as diverse as science, technology, engineering, and mathematics as well as the humanities including literature, history, art, and philosophy 5,9,10 .

No matter the discipline, critical thinking pursues some end or purpose, such as answering a question, deciding, solving a problem, devising a plan, or carrying out a project to face present and future challenges 11 . Hence, it is also applicable to everyday life and is desirable for a plural society with citizenship literacy and scientific competence for participation in diverse situations, including dilemmas of scientific tenor 7,12 .

In spite of the explicit valuing of critical thinking, and iterative efforts to promote its effective incorporation in the curricula at different levels of education of science, humanities, and education itself, difficulties for deeper grasping of critical thinking and challenges for its fruitful integration in educational curricula persist 13,14 . Such difficulty is in part caused by a lack of consensus regarding a definition of critical thinking.

Defining critical thinking

Critical thinking is a mental process 11 like creative thinking, intuition, and emotional reasoning, all of which are important to the psychological life of an individual 10 . It pertains to a family of forms of higher order thinking, including problem-solving, creative thinking, and decision-making 15 . However, there is not a single or direct definition of critical thinking, probably reflecting the emphasis made on different features or aspects by several authors from diverse disciplines as education, philosophy, and neurosciences 7,10,16-18 .

Some of the distinguishing features of critical thinking and critical thinkers are ( 7, 11, 12, 16, 19, 20 ; see Figure 1):

Figure 1. Diagram of the principal features of critical thinking, including some of the necessary cognitive functions and intellectual resources. The arrows indicate the main mechanisms of modulation: top-down, involving the effect of upper on lower level intellectual resources (for example, the effect of metacognition on motivation that in turn affects perception), and bottom-up (such as the influence of self-analysis and habituation on self-regulation and metacognition).

  • Critical thinkers pursue some end or purpose such as answering a question, making a decision, solving a problem, devising a plan, or carrying out a project to cope with present or future challenges.
  • Accordingly, critical thinking is purposively put into action and driven by .
  • As a result of this top-down influence, critical thinking is an attitude which does not occur spontaneously.
  • Critical thinking also involves the knowledge, acquisition, and improvement of a spectrum of intellectual resources such as: –  methods of logical inquiry; – information literacy to gather significant information about the problem and the context for embracing comprehensive background knowledge; – operational knowledge of processing skills for generation of concepts and beliefs: analysis, evaluation, inference, reflective judgment.
  • To accomplish these intellectual resources, critical thinkers need to put into action the most basic cognitive functions such as perception, motor coordination and action, sensory-motor coordination, language perception and production, memory, and decision-making.
  • Critical thinkers apply these procedures and methods in a systematic and reasonable way.
  • As a result, critical thinking is not an immediate cognitive event but a process .
  • The main outcome of critical thinking is a reflective, ordered, causal flow of ideas .
  • Critical thinkers self-analyze and self-assess the mode of thinking.
  • Consequently, critical thinking is a metacognitive process .
  • Self-evaluation launches a bottom-up process for modulation and improvement of critical thinking, enabling greater adaptability to different situations.
  • Thus, critical thinking also requires training and habituation .
  • As a global outcome, critical thinking, as a metacognitive process, also refines self-regulation (i.e., the ability to understand and control our learning environments) 20 .

In sum, critical thinking is a purposeful, intellectually demanding, disciplined, plastic, and trainable mode of thinking in which motivation, self-analysis, and self-regulation play key roles. Several of these aspects were stressed by Santiago Ramón y Cajal (see Figure 2A). Cajal—founder of modern neuroscience and Nobel Prize of Medicine in 1906—hypothesized about the role of brain plasticity, metanalysis habituation, and self-regulation for the acquisition of knowledge about objects or problems: “When one thinks about the curious property that man possesses of changing and refining his mental activity in relation to a profoundly meditated object or problem, one cannot but suspect that the brain, thanks to its plasticity, evolves anatomically and dynamically, adapting progressively to the subject. This adequate and specific organization acquired by the nerve cells eventually produces what I would call professional talent or adaptation, and has its own will, that is, the energetic resolution to adapt our understanding to the nature of the matter.” 20

Figure 2. Left: Portrait of Santiago Ramón y Cajal. Oil painted by the Spanish Postimpressionist painter Joaquín Sorolla in 1906, the year Cajal received the Nobel Prize in Medicine21. Right: Microphotography of an original preparation of Cajal showing a pyramidal neuron of the human brain cortex. Staining: Golgi staining. Original handwritten label: Pyramid. Boy22.

Figure 2. Left: Portrait of Santiago Ramón y Cajal. Oil painted by the Spanish Postimpressionist painter Joaquín Sorolla in 1906, the year Cajal received the Nobel Prize in Medicine 21 . Right: Microphotography of an original preparation of Cajal showing a pyramidal neuron of the human brain cortex. Staining: Golgi staining. Original handwritten label: Pyramid. Boy 22 .

Neural basis of critical thinking

Figure 3. Mapping of cognitive functions. The diagram superposed on the lateral view of the human brain indicates the location of distributed neural assemblies activated in relation to cognitive functions. Note that the indicated cognitive functions are involved in the same or successive phases of critical thinking. (Modified from ref. 26 ).

The cognitive functions and intellectual resources involved in critical thinking are emergent properties of the human brain’s structure and function which depend on the activity of its building blocks, the neurons (see Figure 2B). Neurons are specialized cells which are almost equal in number to nonneuronal cells in human brains. Of the total amount of 86 billon neurons, 19% form the cerebral cortex and 78% the cerebellum 23 . Neurons are interconnected and intercommunicate through specialized junctions called synapses, of which there are about 0,15 quadrillion in the cerebral cortex 24 and more than 3 trillion in the cerebellar cortex (considering the total number of Purkinje cells and the total amount of synapses/Purkinje cell 25 ). These stellar numbers help us imagine the density of the entangled brain web. This web is not fully active at any time. Instead, distributed groups of neurons or “distributed neural assemblies” are more active at certain topographies when particular cognitive functions are taking place 26 . Considering the spectrum of cognitive functions involved in the process of critical thinking, it will increase activation in much of the brain cortex (see Figure 3).

Teaching critical thinking

 “It is not enough to know how we learn, we must know how to teach.” (Tracey Tokuhama-Espinosa, 2010 27 ).

Teachers have the invaluable potential power of fostering knowledge in the next generations of students and citizens. However, this power is expressed when teachers, instead of teaching what they know—and hence limiting students’ knowledge to their own—teach students to think critically and so open up the possibility that students’ knowledge will expand beyond the borders of the teachers’ own knowledge 28 . Thus, it is important to be aware that—similar to electrical circuits and Ohm’s law—the wealth and depth of students’ knowledge that is achieved or expressed depends not only on the energy or effort that students put in the task but also their own (internal) resistance as well as teachers’ (external) resistance. This metaphor exemplifies that the expected outcomes of education may be better achieved if teachers are familiar with the foundations of critical thinking, better appreciate its worth, and themselves become proficient at thinking critically, particularly in relation to their professional activity.

Now more than ever it is possible for teachers to build a framework to improve the teaching and learning of critical thinking in the classroom 29 thanks to a wealth of information and guidelines resulting from contributions of diverse disciplines since the renewed interest in critical thinking and its promotion in education pioneered by Dewey 7 at the dawn of the 20th century.  According to Boisvert (1999 28 ), up to the 1980s, education focused on the abilities of critical thinking as goals to achieve.

Since then, a growing movement of critical thinking has been characterized by iterative attempts to define critical thinking, as well as by instructing teachers about this process and how to teach it. In parallel, several tools for assessment have been created 11, 30, 31, 32, 33 .

Nevertheless, the long-lasting aim has not been achieved. In trying to envisage more fruitful strategies, it is worth noting the difficulty of transmitting critical thinking as just a skill that can be trained without considering the context. On the contrary, the domain of knowledge and the development of critical thinking should be considered in parallel as related intellectual resources—as pointed out by Willimham 33 . It is worth pointing out that, parallel to the critical thinking movement, there has been an increasing simultaneous interest in the neural bases of critical thinking, leading to the emergence 5,34 of “educational neuroscience” 35 and “brain, mind and education” 36 . These interdisciplinary fields have been elucidating the fundamental mechanisms involved in critical thinking as well as the role of factors that impact on this ability. This, along with the tight collaboration between scientists and teachers, is forging a new (Machado) path or bridge over the “gulf” between these fields 35 .

References/Suggested Readings & Notes

  • Estable, C. 1947. Pedagogía de presión normativa y pedagogía de la personalidad y de la vocación. An. Ateneo Urug., 2ª ed., 1, 155-156. http://www.periodicas.edu.uy/Anales_Ateneo_Uruguay/pdfs/Anales_Ateneo_Uruguay_2a_epoca_n2.pdf
  • Shepherd, G, M. 1994. Neurobiology, 3rd edn , Oxford University Press.
  • Cope, E. M. 1875. Plato’s Phaedo, Literally translated , Cambridge University Press.
  • Adams, L. L. D. 1849. Hippocrates Translated from the Greek with a preliminary discourse and annotations. The Sydenham Society.
  • Vieira, R. M., Tenreiro-Vieira, C. & Martins, I. P. Critical thinking: conceptual clarification and its importance in science education. Science Education International 22,43–54 (2011).
  • Panegyres, K. P. & Panegyres, P. K. The ancient Greek discovery of the nervous system: Alcmaeon, Praxagoras and Herophilus. Journal of Clinical Neuroscience 29, 21–24 (2016).
  • Dewey, J. How we think. The Problem of Training Thought 14 (1910). doi:10.1037/10903-000
  • Glaser, E. M. (1941). An experiment in the development of critical thinking . New York: Columbia University Teachers College.
  • Edmonds, Michael, et al. History & Critical Thinking: A Handbook for Using Historical Documents to Improve Students’ Thinking Skills in the Secondary Grades. Wisconsin Historical Society, 2005. http://www.wisconsinhistory.org/pdfs/lessons/EDU-History-and-Critical-Thinking-Handbook.pdf
  • Mulnix, J. W. Thinking critically about critical thinking. Educational Philosophy and Theory 44, 464–479 (2012).
  • Bailin, S., Case, R., Coombs, J. R. & Daniels, L. B. Conceptualizing critical thinking.  Journal of Curriculum Studies 31, 285–302 (1999).
  • Dwyer, C. P., Hogan, M. J. & Stewart, I. An integrated critical thinking framework for the 21st century. Thinking Skills and Creativity 12, 43–52 (2014).
  • Paul, R. The state of critical thinking today. New Directions for Community Colleges 130, 27–39 (2005).
  • Lloyd, M. & Bahr, N. Thinking critically about critical thinking in higher education. International Journal for the Scholarship of Teaching & Learning 4, 1–16 (2010).
  • Rudd, R. D. Defining critical thinking. Techniques. 46 (2007).
  • Siegel, H. (1988) . Educating reason: Rationality, critical thinking, and education . Philosophy of education research library. Routledge Inc.
  • Siegel, H. in  International Encyclopedia of Education 141–145 (Elsevier Ltd, 2010). doi:10.1016/B978-0-08-044894-7.00582-0
  • Bailin, S. Critical thinking and science education. Science & Education (2002) 11: 361. https://doi.org/10.1023/A:1016042608621
  • Facione, P. A. Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction.  California Academic Press 1–19 (1990). doi:10.1080/00324728.2012.723893
  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: metacognition as part of a broader perspective on learning. Research in Science Education  36(1–2), 111–139. https://doi.org/10.1007/s11165-005-3917-8
  • Ramon y Cajal, S.  Recuerdos de mi vida .  Juan Fernández Santarén, Barcelona. Editorial Crítica ( 1899); Of Joaquín Sorolla y Bastida, Public domain, https://commons.wikimedia.org/w/index.php?curid=32562506).
  • From: http://www.montelouro.es/Cajal.html.
  • Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience 3, (2009).
  • Pakkenberg, B.  et al. Aging and the human neocortex. Experimental Gerontology 38, 95–99 (2003).
  • Nairn JG, Bedi KS, Mayhew TM, Campbell LF. On the number of Purkinje cells in the human cerebellum: unbiased estimates obtained by using the “fractionator”. J Comp Neurol. 290(4), 527-32 (1989).
  • Pulvermüller, F., Garagnani, M. & Wennekers, T. Thinking in circuits: toward neurobiological explanation in cognitive neuroscience.  Biological Cybernetics 108, 573–593 (2014).
  • Tokuhama-Espinosa, T. The New Science of Teaching and Learning: Using the Best of Mind, Brain, and Education Science in the Classroom.  Teachers College Press (2010).
  • Chavan, A. A. & Khandagale V. S. Development of critical thinking skill programme for the student teachers of diploma in teacher education colleges. Issues Ideas Educ. http://dspace.chitkara.edu.in/xmlui/handle/1/159.
  • Paul, R. & Elder, L. Guide for educators to critical thinking competency standards: standards, principles, performance indicators, and outcomes with a critical thinking master rubric. Foundation for Critical Thinking. (2007).
  • Paul, R. W. Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World. Foundation for Critical Thinking. (2000). Retrieved from http://assets00.grou.ps/0F2E3C/wysiwyg_files/FilesModule/criticalthinkingandwriting/20090921185639-uxlhmlnvedpammxrz/CritThink1.pdf
  • Paul, R. W., Elder, L. & Bartell, T. California Teacher Preparation for Instruction in Critical Thinking: Research Findings and Policy Recommendations. (1997). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1001.1087&rep=rep1&type=pdf
  • Vieira, R. M. Formação continuada de professores do 1.º e 2.º ciclos do Ensino Básico para uma educação em Ciências com orientação CTS/PC. Tese de doutoramento (não publicada), Universidade de Aveiro. (2003). Retrieved from: http://www.redalyc.org/pdf/374/37419205.pdf
  • Willingham, D. T. Critical Thinking: Why Is It So Hard to Teach? American Educator 31, 8-19. (2007). Retrieved from http://www.aft.org/sites/default/files/periodicals/Crit_Thinking.pdf
  • Zadina, J. N. The emerging role of educational neuroscience in education reform.  Psicología Educativa 21,71–77 (2015).
  • Goswami, U. Neurociencia y Educación: ¿podemos ir de la investigación básica a su aplicación? Un posible marco de referencia desde la investigación en dislexia.  Psicologia Educativa 21, 97–105 (2015).
  • Schwartz, M. Mind, brain and education: a decade of evolution. Mind, Brain, and Education 9, 64–71 (2015).

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

loading

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • What was education like in ancient Athens?
  • How does social class affect education attainment?
  • When did education become compulsory?
  • What are alternative forms of education?
  • Do school vouchers offer students access to better education?

Aristotle (384-322 BC), Ancient Greek philosopher and scientist. One of the most influential philosophers in the history of Western thought, Aristotle established the foundations for the modern scientific method of enquiry. Statue

critical thinking

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Stanford Encyclopedia of Philosophy - Critical Thinking
  • Internet Encyclopedia of Philosophy - Critical Thinking
  • Monash University - Student Academic Success - What is critical thinking?
  • Oklahoma State University Pressbooks - Critical Thinking - Introduction to Critical Thinking
  • University of Louisville - Critical Thinking

critical thinking , in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a disposition toward reflective open inquiry that can be cultivated . The term critical thinking was coined by American philosopher and educator John Dewey in the book How We Think (1910) and was adopted by the progressive education movement as a core instructional goal that offered a dynamic modern alternative to traditional educational methods such as rote memorization.

Critical thinking is characterized by a broad set of related skills usually including the abilities to

Socrates

  • break down a problem into its constituent parts to reveal its underlying logic and assumptions
  • recognize and account for one’s own biases in judgment and experience
  • collect and assess relevant evidence from either personal observations and experimentation or by gathering external information
  • adjust and reevaluate one’s own thinking in response to what one has learned
  • form a reasoned assessment in order to propose a solution to a problem or a more accurate understanding of the topic at hand

Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy , and persistence.

Although there is a generally accepted set of qualities that are associated with critical thinking, scholarly writing about the term has highlighted disagreements over its exact definition and whether and how it differs from related concepts such as problem solving . In addition, some theorists have insisted that critical thinking be regarded and valued as a process and not as a goal-oriented skill set to be used to solve problems. Critical-thinking theory has also been accused of reflecting patriarchal assumptions about knowledge and ways of knowing that are inherently biased against women.

Dewey, who also used the term reflective thinking , connected critical thinking to a tradition of rational inquiry associated with modern science. From the turn of the 20th century, he and others working in the overlapping fields of psychology , philosophy , and educational theory sought to rigorously apply the scientific method to understand and define the process of thinking. They conceived critical thinking to be related to the scientific method but more open, flexible, and self-correcting; instead of a recipe or a series of steps, critical thinking would be a wider set of skills, patterns, and strategies that allow someone to reason through an intellectual topic, constantly reassessing assumptions and potential explanations in order to arrive at a sound judgment and understanding.

In the progressive education movement in the United States , critical thinking was seen as a crucial component of raising citizens in a democratic society. Instead of imparting a particular series of lessons or teaching only canonical subject matter, theorists thought that teachers should train students in how to think. As critical thinkers, such students would be equipped to be productive and engaged citizens who could cooperate and rationally overcome differences inherent in a pluralistic society.

Beginning in the 1970s and ’80s, critical thinking as a key outcome of school and university curriculum leapt to the forefront of U.S. education policy. In an atmosphere of renewed Cold War competition and amid reports of declining U.S. test scores, there were growing fears that the quality of education in the United States was falling and that students were unprepared. In response, a concerted effort was made to systematically define curriculum goals and implement standardized testing regimens , and critical-thinking skills were frequently included as a crucially important outcome of a successful education. A notable event in this movement was the release of the 1980 report of the Rockefeller Commission on the Humanities that called for the U.S. Department of Education to include critical thinking on its list of “basic skills.” Three years later the California State University system implemented a policy that required every undergraduate student to complete a course in critical thinking.

Critical thinking continued to be put forward as a central goal of education in the early 21st century. Its ubiquity in the language of education policy and in such guidelines as the Common Core State Standards in the United States generated some criticism that the concept itself was both overused and ill-defined. In addition, an argument was made by teachers, theorists, and others that educators were not being adequately trained to teach critical thinking.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

critical thinking is sparked by

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

critical thinking is sparked by

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

William R. Klemm Ph.D.

How to Learn Critical Thinking

Learning how to think critically makes you smart..

Posted October 29, 2017 | Reviewed by Ekua Hagan

Some readers may think you have to be smart to think critically. But a corollary is that learning how to think critically makes you smart. The assumption is that one can learn to think critically (that is, be smart). The assumption is correct. Here, I hope to show you how you can become smarter by learning critical thinking skills.

Require Yourself to Think Critically

When you read or listening to others talk, force yourself to become more attentive and engaged with the information. Asking questions assures engagement.

Learn and Look for Common Thinking Errors

Unfortunately, most adults are not taught formal logic, even in college. College logic courses are electives and are made confusing by obtuse premises, propositions, and equations. But common-sense logic can suffice. I have posted a list of common thinking errors elsewhere.[1] Here are some of the more serious thinking errors:

Appeal to authority or consensus : attempting to justify the conclusion by quoting an authority in its support or on the basis of how many people hold the same view.

Argument selectivity : glossing over alternative perspectives (often called “cherry-picking.)” It is not only fair but usually helpful to include opposing positions when making arguments to support a position. Commonly, opposing arguments, even when wrong overall, usually have some grain of truth that needs to be accommodated.

Circular reasoning : reasoning where the premise of an argument or a conclusion is used as support for the argument. Usually, this happens when evidence is missing or glossed over.

Cognitive shortcut bias : doggedly sticking with a favored view or argument for a position, when other more fruitful possibilities exist. Even chess masters, for example, may use an established gambit when a better tactic is available.

Confusing correlation with causation : asserting that when two things happen together, and especially when one occurs just before the other, that one thing causes the other. Without other more direct evidence of causation, this assumption is not justified. Both events could be caused by something else. Example: rain and lightning go together, but neither causes the other.

Exclusivity confusion : failure to recognize elements of compatibility in multiple apparently conflicting ideas or facts. It is important to know whether they are independent, compatible, or mutually exclusive. Example: concepts of evolution and creationism, as they are typically used, are mutually exclusive. However, stated in other ways, they have shared elements of agreement.

False analogy : explaining an idea with an analogy that is not parallel, as in comparing apples and oranges. While analogies and metaphors are powerful rhetorical tools, they are not equivalent to what they reference.

Jumping to conclusions : using only a few facts for a definitive conclusion. The most common situation is failure to consider alternatives. An associated cause is failure to question and test assumptions used to arrive at a conclusion.

Overgeneralization : assuming that what is true for one is true for something else. Example: Some scientists studying free will claim that the decision-making process for making a button press is the same for more complex decisions.

Learn Specific Strategies

Be aware of your thinking . Explain to students the need to think about how they think. This is the art of introspection, focused on being aware of such things as one's own degree of alertness, attentiveness, bias, emotional state, exploration of interpretation options, self-assurance .

Train the ability to focus . In today's multi-tasking world, students commonly lack the ability to concentrate. They are easily distracted. They don't listen well and are not very effective at extracting meaning from what they read.

Use evidence-based reasoning . Don't confuse opinion with fact. When others make a claim, don't accept it without supporting evidence. Even then, look for contrary evidence that is omitted.

critical thinking is sparked by

Identify what is missing . In conversation or reading, the most important points may be what is not stated. This is especially true when someone is trying to persuade you of their viewpoint.

Ask questions and provide your own answer . I had a professor, C. S. Bachofer at Notre Dame who built a whole course based on this principle. For every reading assignment, he required the students to ask a provocative question about the reading and then write how it might be answered. Fellow students debated each other's questions and answers. Developing this as a thinking habit will ensure you will become a more critical thinker, learn more, and provide some degree of enlightenment to others with whom you interact.

[1] Klemm, W. R. (2014). Analytical thinking—logic errors 101. http://thankyoubrain.blogspot.com/2014/10/analytical-thinking-logic-err…

William R. Klemm Ph.D.

William Klemm , Ph.D ., is a senior professor of Neuroscience at Texas A&M University.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

More From Forbes

10 elements of critical thinking – and how to develop them.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

creative idea.Concept of idea and innovation

My 6/7/24 post here – “Your Three Most Important Career Skills” – focused on the importance – and paucity – of critical thinking, critical listening, and critical reading.

Predictably, it prompted much reader response, mostly asking for elaboration.

What Comprises Critical Thinking

1. open-mindedness.

Malcolm Forbes postulated, “The role of education is to replace an empty mind with an open one.” Critical thinking needs receptivity to new ideas and perspectives, and willingness to reconsider one’s beliefs or opinions – no matter how fundamental – when new evidence or arguments arise.

2. Curiosity

“I’m not necessarily smarter than anyone else,” explained Albert Einstein. “I’m infinitely more curious.” He had a natural inclination – from early childhood – to ask questions, seek information, and explore various viewpoints. His favorite question: “What if…?”

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024, 3. mental stamina.

Critical thinking is difficult, rigorous, almost always takes time and patience, and can be exhausting. That’s OK, but you should never let a conclusion be the place where you got tired of thinking. Push on.

4. Analysis

Analysis breaks down complex information into smaller parts, to understand its components and how they relate. It’s our left brain at work: linear, logical, methodical, sequential, rational, and objective. It engages in deductive thinking. Computers also do this.

5. Interpretation and Inference

Interpretation makes meaning out of data, relying not just on the brain, but also on experience. It’s our transcendental right brain having fun: creative, intuitive, random, holistic, and playful. It engages in inductive thinking, which today’s computers can’t do, but which A.I. is trying. Through inference, we make sensible deductions based on available information; reach reasonable, workable conclusions; and assess the viability of those conclusions.

6. Evaluation

What’s it worth? To make better decisions, we must accurately assess the credibility, relevance, and significance of information, arguments, and/or evidence.

7. Articulation

“If you can’t explain something to a six-year-old,” declared Albert Einstein, “you probably don’t understand it yourself.” Critical intake and critical output are one and the same.

8. Problem-solving

Both sides of our brains solve problems, just differently. Critical thinking is about the ability to do both with equal aplomb.

9. Self-Accountability and Reflection

Bertrand Russell advised, "In all affairs it's a healthy thing now and then to hang a question mark on the things you’ve long taken for granted." In this case – our own thinking processes, biases, and assumptions – “now and then” should mean “always and ever.”

10. Metacognition

Avid self-awareness of one's own thinking processes, cognitive strategies, and sphere of awareness can insure ongoing improvement of critical skills.

Developing Your Critical Thinking

1. think creatively.

“Curiosity is the key to creativity,” said Akio Morita, founder of Sony. Cultivate your creativity by exploring the unknown and the ambiguous. Welcome different perspectives, alternative solutions, and new thinking. Always be looking for the spark. Listen to the new guy.

2. Ask Questions

Nothing starts until there is a question – or better, multiple questions. Cultivate a curious mindset by asking probing questions. Question assumptions, biases, and implications. Nothing is off the table.

3. Seek Diverse Perspectives

Diversity is much more than demographics. “Diversity,” explained Malcolm Forbes, “is the art of thinking independently together.” Welcome a variety of viewpoints and opinions, especially those different from your own. Engage in active discussions with people who hold different beliefs. Constantly challenge what you know or believe.

4. Evaluate Information

Learn to critically – and objectively – evaluate the credibility, relevance, and reliability of sources of information. Today’s chaotic media circus, further manipulated by special interests, elevates this challenge.

5. Practice Analytical Thinking

As analytical thinking is more orderly than creative thinking, it can be practiced every day. Good idea.

6. Develop Logical Reasoning Skills

Practice deductive and inductive reasoning to draw logical conclusions from what you already have. But remember, logic and creativity are often at odds.

Things look different in the rear-view mirror, and a day (or more) later.

8. Learn Different Problem-Solving Techniques

Different problems can be solved different ways. Conversely, many problems can be solved many ways.

9. Learn Active Listening

Identify the barriers to active listening – presuppositions, for example – and eliminate them. Fast.

10. Read. Read. Read!

Reading is the most proactive and stimulating way of taking in the world, not by clicking on little blue links, but by real reading: wide, deep, and time-consuming reading, which has a positive effect on thinking. Great leaders are great readers. This we know.

None of this happens in a day, but starting it happens any day.

Eli Amdur

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Integrating Critical Thinking Into the Classroom

critical thinking is sparked by

  • Share article

(This is the second post in a three-part series. You can see Part One here .)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

Part One ‘s guests were Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

Today, Dr. Kulvarn Atwal, Elena Quagliarello, Dr. Donna Wilson, and Diane Dahl share their recommendations.

‘Learning Conversations’

Dr. Kulvarn Atwal is currently the executive head teacher of two large primary schools in the London borough of Redbridge. Dr. Atwal is the author of The Thinking School: Developing a Dynamic Learning Community , published by John Catt Educational. Follow him on Twitter @Thinkingschool2 :

In many classrooms I visit, students’ primary focus is on what they are expected to do and how it will be measured. It seems that we are becoming successful at producing students who are able to jump through hoops and pass tests. But are we producing children that are positive about teaching and learning and can think critically and creatively? Consider your classroom environment and the extent to which you employ strategies that develop students’ critical-thinking skills and their self-esteem as learners.

Development of self-esteem

One of the most significant factors that impacts students’ engagement and achievement in learning in your classroom is their self-esteem. In this context, self-esteem can be viewed to be the difference between how they perceive themselves as a learner (perceived self) and what they consider to be the ideal learner (ideal self). This ideal self may reflect the child that is associated or seen to be the smartest in the class. Your aim must be to raise students’ self-esteem. To do this, you have to demonstrate that effort, not ability, leads to success. Your language and interactions in the classroom, therefore, have to be aspirational—that if children persist with something, they will achieve.

Use of evaluative praise

Ensure that when you are praising students, you are making explicit links to a child’s critical thinking and/or development. This will enable them to build their understanding of what factors are supporting them in their learning. For example, often when we give feedback to students, we may simply say, “Well done” or “Good answer.” However, are the students actually aware of what they did well or what was good about their answer? Make sure you make explicit what the student has done well and where that links to prior learning. How do you value students’ critical thinking—do you praise their thinking and demonstrate how it helps them improve their learning?

Learning conversations to encourage deeper thinking

We often feel as teachers that we have to provide feedback to every students’ response, but this can limit children’s thinking. Encourage students in your class to engage in learning conversations with each other. Give as many opportunities as possible to students to build on the responses of others. Facilitate chains of dialogue by inviting students to give feedback to each other. The teacher’s role is, therefore, to facilitate this dialogue and select each individual student to give feedback to others. It may also mean that you do not always need to respond at all to a student’s answer.

Teacher modelling own thinking

We cannot expect students to develop critical-thinking skills if we aren’t modeling those thinking skills for them. Share your creativity, imagination, and thinking skills with the students and you will nurture creative, imaginative critical thinkers. Model the language you want students to learn and think about. Share what you feel about the learning activities your students are participating in as well as the thinking you are engaging in. Your own thinking and learning will add to the discussions in the classroom and encourage students to share their own thinking.

Metacognitive questioning

Consider the extent to which your questioning encourages students to think about their thinking, and therefore, learn about learning! Through asking metacognitive questions, you will enable your students to have a better understanding of the learning process, as well as their own self-reflections as learners. Example questions may include:

  • Why did you choose to do it that way?
  • When you find something tricky, what helps you?
  • How do you know when you have really learned something?

itseemskul

‘Adventures of Discovery’

Elena Quagliarello is the senior editor of education for Scholastic News , a current events magazine for students in grades 3–6. She graduated from Rutgers University, where she studied English and earned her master’s degree in elementary education. She is a certified K–12 teacher and previously taught middle school English/language arts for five years:

Critical thinking blasts through the surface level of a topic. It reaches beyond the who and the what and launches students on a learning journey that ultimately unlocks a deeper level of understanding. Teaching students how to think critically helps them turn information into knowledge and knowledge into wisdom. In the classroom, critical thinking teaches students how to ask and answer the questions needed to read the world. Whether it’s a story, news article, photo, video, advertisement, or another form of media, students can use the following critical-thinking strategies to dig beyond the surface and uncover a wealth of knowledge.

A Layered Learning Approach

Begin by having students read a story, article, or analyze a piece of media. Then have them excavate and explore its various layers of meaning. First, ask students to think about the literal meaning of what they just read. For example, if students read an article about the desegregation of public schools during the 1950s, they should be able to answer questions such as: Who was involved? What happened? Where did it happen? Which details are important? This is the first layer of critical thinking: reading comprehension. Do students understand the passage at its most basic level?

Ask the Tough Questions

The next layer delves deeper and starts to uncover the author’s purpose and craft. Teach students to ask the tough questions: What information is included? What or who is left out? How does word choice influence the reader? What perspective is represented? What values or people are marginalized? These questions force students to critically analyze the choices behind the final product. In today’s age of fast-paced, easily accessible information, it is essential to teach students how to critically examine the information they consume. The goal is to equip students with the mindset to ask these questions on their own.

Strike Gold

The deepest layer of critical thinking comes from having students take a step back to think about the big picture. This level of thinking is no longer focused on the text itself but rather its real-world implications. Students explore questions such as: Why does this matter? What lesson have I learned? How can this lesson be applied to other situations? Students truly engage in critical thinking when they are able to reflect on their thinking and apply their knowledge to a new situation. This step has the power to transform knowledge into wisdom.

Adventures of Discovery

There are vast ways to spark critical thinking in the classroom. Here are a few other ideas:

  • Critical Expressionism: In this expanded response to reading from a critical stance, students are encouraged to respond through forms of artistic interpretations, dramatizations, singing, sketching, designing projects, or other multimodal responses. For example, students might read an article and then create a podcast about it or read a story and then act it out.
  • Transmediations: This activity requires students to take an article or story and transform it into something new. For example, they might turn a news article into a cartoon or turn a story into a poem. Alternatively, students may rewrite a story by changing some of its elements, such as the setting or time period.
  • Words Into Action: In this type of activity, students are encouraged to take action and bring about change. Students might read an article about endangered orangutans and the effects of habitat loss caused by deforestation and be inspired to check the labels on products for palm oil. They might then write a letter asking companies how they make sure the palm oil they use doesn’t hurt rain forests.
  • Socratic Seminars: In this student-led discussion strategy, students pose thought-provoking questions to each other about a topic. They listen closely to each other’s comments and think critically about different perspectives.
  • Classroom Debates: Aside from sparking a lively conversation, classroom debates naturally embed critical-thinking skills by asking students to formulate and support their own opinions and consider and respond to opposing viewpoints.

Critical thinking has the power to launch students on unforgettable learning experiences while helping them develop new habits of thought, reflection, and inquiry. Developing these skills prepares students to examine issues of power and promote transformative change in the world around them.

criticalthinkinghasthepower

‘Quote Analysis’

Dr. Donna Wilson is a psychologist and the author of 20 books, including Developing Growth Mindsets , Teaching Students to Drive Their Brains , and Five Big Ideas for Effective Teaching (2 nd Edition). She is an international speaker who has worked in Asia, the Middle East, Australia, Europe, Jamaica, and throughout the U.S. and Canada. Dr. Wilson can be reached at [email protected] ; visit her website at www.brainsmart.org .

Diane Dahl has been a teacher for 13 years, having taught grades 2-4 throughout her career. Mrs. Dahl currently teaches 3rd and 4th grade GT-ELAR/SS in Lovejoy ISD in Fairview, Texas. Follow her on Twitter at @DahlD, and visit her website at www.fortheloveofteaching.net :

A growing body of research over the past several decades indicates that teaching students how to be better thinkers is a great way to support them to be more successful at school and beyond. In the book, Teaching Students to Drive Their Brains , Dr. Wilson shares research and many motivational strategies, activities, and lesson ideas that assist students to think at higher levels. Five key strategies from the book are as follows:

  • Facilitate conversation about why it is important to think critically at school and in other contexts of life. Ideally, every student will have a contribution to make to the discussion over time.
  • Begin teaching thinking skills early in the school year and as a daily part of class.
  • As this instruction begins, introduce students to the concept of brain plasticity and how their brilliant brains change during thinking and learning. This can be highly motivational for students who do not yet believe they are good thinkers!
  • Explicitly teach students how to use the thinking skills.
  • Facilitate student understanding of how the thinking skills they are learning relate to their lives at school and in other contexts.

Below are two lessons that support critical thinking, which can be defined as the objective analysis and evaluation of an issue in order to form a judgment.

Mrs. Dahl prepares her 3rd and 4th grade classes for a year of critical thinking using quote analysis .

During Native American studies, her 4 th grade analyzes a Tuscarora quote: “Man has responsibility, not power.” Since students already know how the Native Americans’ land had been stolen, it doesn’t take much for them to make the logical leaps. Critical-thought prompts take their thinking even deeper, especially at the beginning of the year when many need scaffolding. Some prompts include:

  • … from the point of view of the Native Americans?
  • … from the point of view of the settlers?
  • How do you think your life might change over time as a result?
  • Can you relate this quote to anything else in history?

Analyzing a topic from occupational points of view is an incredibly powerful critical-thinking tool. After learning about the Mexican-American War, Mrs. Dahl’s students worked in groups to choose an occupation with which to analyze the war. The chosen occupations were: anthropologist, mathematician, historian, archaeologist, cartographer, and economist. Then each individual within each group chose a different critical-thinking skill to focus on. Finally, they worked together to decide how their occupation would view the war using each skill.

For example, here is what each student in the economist group wrote:

  • When U.S.A. invaded Mexico for land and won, Mexico ended up losing income from the settlements of Jose de Escandon. The U.S.A. thought that they were gaining possible tradable land, while Mexico thought that they were losing precious land and resources.
  • Whenever Texas joined the states, their GDP skyrocketed. Then they went to war and spent money on supplies. When the war was resolving, Texas sold some of their land to New Mexico for $10 million. This allowed Texas to pay off their debt to the U.S., improving their relationship.
  • A detail that converged into the Mexican-American War was that Mexico and the U.S. disagreed on the Texas border. With the resulting treaty, Texas ended up gaining more land and economic resources.
  • Texas gained land from Mexico since both countries disagreed on borders. Texas sold land to New Mexico, which made Texas more economically structured and allowed them to pay off their debt.

This was the first time that students had ever used the occupations technique. Mrs. Dahl was astonished at how many times the kids used these critical skills in other areas moving forward.

explicitlyteach

Thanks to Dr. Auwal, Elena, Dr. Wilson, and Diane for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Teachers and administrator talking outside school building.

Sign Up & Sign In

module image 9

Ideas and insights from Harvard Business Publishing Corporate Learning

Learning and development professionals walking and talking

To Improve Critical Thinking, Don’t Fall into the Urgency Trap

critical thinking is sparked by

Too often at work, people rely on expertise and past experiences to jump to a conclusion. Yet research consistently shows that when we rush decisions, we often regret them—even if they end up being correct. [i]

Why we hasten decision making is quite clear. We’re inundated with incessant distractions that compete for our attention, and, at the same time, we’re facing profound pressure to go faster and drive our businesses forward, even when the path ahead is unclear.

In the aftermath of information overwhelm, evolving technology, and rapidly changing business environments, people often unconsciously fall into a pernicious paradox called the “urgency trap.”

The Urgency Trap

The urgency trap, which can be defined as the habitual, unbridled, and counterproductive tendencies to rush through decision making when under the pressure of too many demands, is a paradox because it limits the very thing that could help us be more innovative, efficient, and effective: Our critical thinking.

The ability to analyze and effectively break down an issue to make a decision or solve a problem in novel ways is sorely lacking in today’s workforce, with most employers reporting that their employees’ critical thinking skills are average at best. [ii]

The good news? Critical thinking is a teachable skill, and one that any person can learn to make time for when making decisions. To improve and devote time for critical thinking at work, consider the following best practices.

1. Question assumptions and biases

Consider this common scenario: A team is discussing a decision that they must make quickly. The team’s options—and the arguments for and against them—have been assembled, but no clear evidence supports a particular course of action. Under pressure to move fast, the team relies on their expertise and past experiences to rapidly provide a solution. Yet, in the months following their decision, the issues that prompted the original discussion persist, and the team wonders why.

The issue here may be that the team failed to question their own assumptions and biases. Indeed, when we view situations solely based on our own personal experiences and beliefs, we limit our options and provide solutions that are often short-sighted or superficial. [iii] To improve critical thinking skills, we must step back and ask ourselves,

  • “Am I seeking out information that confirms my pre-conceived idea?”
  • “Am I perceiving a past experience as more predictable than it actually was?”
  • “Am I overemphasizing information that comes to mind quickly, instead of calculating other probabilities?”

2. Reason through logic

When presented with an argument, it is important to analyze it logically in order to determine whether or not it is valid. This means looking at the evidence that is being used to support the argument and determining whether or not it actually does support the conclusion that is being drawn.

Additionally, consider the source of the information. Is it credible? Trustworthy? Finally, be aware of common logical fallacies people tend to use when trying to speed up decision making, such as false dilemma (erroneously limiting available options) and hasty generalizations (making a claim based on a few examples rather than substantial proof).

3. Listen actively and openly

When we’re in a rush to make a decision, we often focus more on how we want to respond rather than what the speaker is saying. Active listening, on the other hand, is a critical thinking skill that involves paying close attention to what someone else is saying with the intent to learn, and then asking questions to clarify and deepen understanding.

When engaging in active listening, it’s important to avoid interrupting and instead allow the other person to fully express their thoughts. Additionally, resist the urge to judge or criticize what the other person is saying. Rather, focus on truly understanding their perspective. This may mean practicing open-mindedness by considering new ideas, even if they challenge existing beliefs. By keeping an open mind, this ensures that all sides of an issue are considered before coming to a conclusion.

4. Ask better questions

In an article for Harvard Business Review, John Coleman, author of the HBR Guide to Crafting Your Purpose , writes, “At the heart of critical thinking is the ability to formulate deep, different, and effective questions.” [iv]

To ask better questions, first consider the audience for the question (who is hearing the question and who might respond?) and the purpose (what is the goal of asking this question?). Then, approach queries with rigor and curiosity by asking questions that:

  • Are open-ended yet short and direct (e.g., “How might you help me think about this differently?”)
  • Challenge a group’s conventional thinking (e.g., “What if we tried a new approach?”)
  • Help others reconsider their first principles or hypotheses (e.g., “As we look at the data, how might we reconsider our initial proposed solution?”)
  • Encourage further discussion and analysis (e.g., “How can we deepen our understanding of this issue?”)
  • Thoughtfully follow up on the solution (e.g., “How do we feel about the progress so far?”)

5. Create space for deliberation

The recommendations outlined thus far are behaviors and capabilities people can use in the moment, but sometimes, the best solutions are formulated after consideration. In fact, research shows that a deliberate process often leads to better conclusions. [v] And sleep has even been proven to help the brain assimilate a problem and see it more clearly. [vi]

When issues are complex, it’s important to find ways to resist unnecessary urgency. Start by mapping out a process that allows several days or longer to sit with a problem. Then, create space in the day to formulate in quiet reflection, whether that’s replacing your first thirty minutes in the morning with thinking instead of checking email, or going on a walk midday, or simply journaling for a few moments before bed.

Critical Thinking Cannot Be Overlooked

In the face of rapidly-evolving business environments, the ability to make smart decisions quickly is one of a company’s greatest assets—but to move fast, people must first slow down to reason through pressing issues, ask thoughtful questions, and evaluate a topic from multiple angles.

To learn more about how organizations can enhance their critical thinking and decision-making skills, download the full paper: Who Is Really Making the Decisions in Your Organization — and How?

[i] Grant Halvorson, Heidi, “Quick Decisions Create Regret, Even When They Are Good Decisions,” Fast Company. https://www.fastcompany.com/1758386/quick-decisions-create-regret-even-when-they-are-good-decisions .

[ii] Plummer, Matt, “A Short Guide to Building Your Team’s Critical Thinking Skills,” Harvard Business Review, October 2019. https://hbr.org/2019/10/a-short-guide-to-building-your-teams-critical-thinking-skills .

[iii] Benjamin Enke, Uri Gneezy, Brian Hall, David Martin, Vadim Nelidov, Theo Offerman, and Jeroen van de Ve, “Cognitive Biases: Mistakes or Missing Stakes?” Harvard Business School, 2021. https://www.hbs.edu/ris/Publication%20Files/21-102_1ed838f2-8ef3-4eec-b543-d00eb1efbe10.pdf

[iv] Coleman, John, “Critical Thinking Is About Asking Better Questions,” Harvard Business Review, April 2022. https://hbr.org/2022/04/critical-thinking-is-about-asking-better-questions .

[v] Markovitz, Daniel, “How to Avoid Rushing to Solutions When Problem-Solving,” Harvard Business Review, November 2020. https://hbr.org/2020/11/how-to-avoid-rushing-to-solutions-when-problem-solving .

[vi] Miller, Jared, “Does ‘Sleeping On It’ Really Work?” WebMD. https://www.webmd.com/sleep-disorders/features/does-sleeping-on-it-really-work .

Speech bubbles

Let’s talk

Change isn’t easy, but we can help. Together we’ll create informed and inspired leaders ready to shape the future of your business.

© 2024 Harvard Business School Publishing. All rights reserved. Harvard Business Publishing is an affiliate of Harvard Business School.

  • Privacy Policy
  • Copyright Information
  • Terms of Use
  • About Harvard Business Publishing
  • Higher Education
  • Harvard Business Review
  • Harvard Business School

LinkedIn

We use cookies to understand how you use our site and to improve your experience. By continuing to use our site, you accept our use of cookies and revised Privacy Policy .

Cookie and Privacy Settings

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

  • Grades 6-12
  • School Leaders

Check Out Our 32 Fave Amazon Picks! 📦

5 Critical Thinking Skills Every Kid Needs To Learn (And How To Teach Them)

Teach them to thoughtfully question the world around them.

Examples of critical thinking skills like correlation tick-tac-Toe, which teaches analysis skills and debates which teach evaluation skills.

Little kids love to ask questions. “Why is the sky blue?” “Where does the sun go at night?” Their innate curiosity helps them learn more about the world, and it’s key to their development. As they grow older, it’s important to encourage them to keep asking questions and to teach them the right kinds of questions to ask. We call these “critical thinking skills,” and they help kids become thoughtful adults who are able to make informed decisions as they grow older.

What is critical thinking?

Critical thinking allows us to examine a subject and develop an informed opinion about it. First, we need to be able to simply understand the information, then we build on that by analyzing, comparing, evaluating, reflecting, and more. Critical thinking is about asking questions, then looking closely at the answers to form conclusions that are backed by provable facts, not just “gut feelings” and opinion.

Critical thinkers tend to question everything, and that can drive teachers and parents a little crazy. The temptation to reply, “Because I said so!” is strong, but when you can, try to provide the reasons behind your answers. We want to raise children who take an active role in the world around them and who nurture curiosity throughout their entire lives.

Key Critical Thinking Skills

So, what are critical thinking skills? There’s no official list, but many people use Bloom’s Taxonomy to help lay out the skills kids should develop as they grow up.

A diagram showing Bloom's Taxonomy (Critical Thinking Skills)

Source: Vanderbilt University

Bloom’s Taxonomy is laid out as a pyramid, with foundational skills at the bottom providing a base for more advanced skills higher up. The lowest phase, “Remember,” doesn’t require much critical thinking. These are the skills kids use when they memorize math facts or world capitals or practice their spelling words. Critical thinking doesn’t begin to creep in until the next steps.

Understanding requires more than memorization. It’s the difference between a child reciting by rote “one times four is four, two times four is eight, three times four is twelve,” versus recognizing that multiplication is the same as adding a number to itself a certain number of times. Schools focus more these days on understanding concepts than they used to; pure memorization has its place, but when a student understands the concept behind something, they can then move on to the next phase.

Application opens up whole worlds to students. Once you realize you can use a concept you’ve already mastered and apply it to other examples, you’ve expanded your learning exponentially. It’s easy to see this in math or science, but it works in all subjects. Kids may memorize sight words to speed up their reading mastery, but it’s learning to apply phonics and other reading skills that allows them to tackle any new word that comes their way.

Analysis is the real leap into advanced critical thinking for most kids. When we analyze something, we don’t take it at face value. Analysis requires us to find facts that stand up to inquiry, even if we don’t like what those facts might mean. We put aside personal feelings or beliefs and explore, examine, research, compare and contrast, draw correlations, organize, experiment, and so much more. We learn to identify primary sources for information, and check into the validity of those sources. Analysis is a skill successful adults must use every day, so it’s something we must help kids learn as early as possible.

Almost at the top of Bloom’s pyramid, evaluation skills let us synthesize all the information we’ve learned, understood, applied, and analyzed, and to use it to support our opinions and decisions. Now we can reflect on the data we’ve gathered and use it to make choices, cast votes, or offer informed opinions. We can evaluate the statements of others too, using these same skills. True evaluation requires us to put aside our own biases and accept that there may be other valid points of view, even if we don’t necessarily agree with them.

In the final phase, we use every one of those previous skills to create something new. This could be a proposal, an essay, a theory, a plan—anything a person assembles that’s unique.

Note: Bloom’s original taxonomy included “synthesis” as opposed to “create,” and it was located between “apply” and “evaluate.” When you synthesize, you put various parts of different ideas together to form a new whole. In 2001, a group of cognitive psychologists removed that term from the taxonomy , replacing it with “create,” but it’s part of the same concept.

How To Teach Critical Thinking

Using critical thinking in your own life is vital, but passing it along to the next generation is just as important. Be sure to focus on analyzing and evaluating, two multifaceted sets of skills that take lots and lots of practice. Start with these 10 Tips for Teaching Kids To Be Awesome Critical Thinkers . Then try these critical thinking activities and games. Finally, try to incorporate some of these 100+ Critical Thinking Questions for Students into your lessons. They’ll help your students develop the skills they need to navigate a world full of conflicting facts and provocative opinions.

One of These Things Is Not Like the Other

This classic Sesame Street activity is terrific for introducing the ideas of classifying, sorting, and finding relationships. All you need are several different objects (or pictures of objects). Lay them out in front of students, and ask them to decide which one doesn’t belong to the group. Let them be creative: The answer they come up with might not be the one you envisioned, and that’s OK!

The Answer Is …

Post an “answer” and ask kids to come up with the question. For instance, if you’re reading the book Charlotte’s Web , the answer might be “Templeton.” Students could say, “Who helped save Wilbur even though he didn’t really like him?” or “What’s the name of the rat that lived in the barn?” Backwards thinking encourages creativity and requires a good understanding of the subject matter.

Forced Analogies

Forced Analogies: A Critical thinking Activity

Practice making connections and seeing relationships with this fun game. Kids write four random words in the corners of a Frayer Model and one more in the middle. The challenge? To link the center word to one of the others by making an analogy. The more far out the analogies, the better!

Learn more: Forced Analogies at The Owl Teacher

Primary Sources

Tired of hearing “I found it on Wikipedia!” when you ask kids where they got their answer? It’s time to take a closer look at primary sources. Show students how to follow a fact back to its original source, whether online or in print. We’ve got 10 terrific American history–based primary source activities to try here.

Science Experiments

Collage of students performing science experiments using critical thinking skills

Hands-on science experiments and STEM challenges are a surefire way to engage students, and they involve all sorts of critical thinking skills. We’ve got hundreds of experiment ideas for all ages on our STEM pages , starting with 50 Stem Activities To Help Kids Think Outside the Box .

Not the Answer

Multiple-choice questions can be a great way to work on critical thinking. Turn the questions into discussions, asking kids to eliminate wrong answers one by one. This gives them practice analyzing and evaluating, allowing them to make considered choices.

Learn more: Teaching in the Fast Lane

Correlation Tic-Tac-Toe

Two 3 by 3 grids of pictures showing mountains, islands, and other landforms, with Xs drawn in each grid to form tic-tac-toe lines.

Here’s a fun way to work on correlation, which is a part of analysis. Show kids a 3 x 3 grid with nine pictures, and ask them to find a way to link three in a row together to get tic-tac-toe. For instance, in the pictures above, you might link together the cracked ground, the landslide, and the tsunami as things that might happen after an earthquake. Take things a step further and discuss the fact that there are other ways those things might have happened (a landslide can be caused by heavy rain, for instance), so correlation doesn’t necessarily prove causation.

Learn more: Critical Thinking Tic-Tac-Toe at The Owl Teacher

Inventions That Changed the World

Explore the chain of cause and effect with this fun thought exercise. Start it off by asking one student to name an invention they believe changed the world. Each student then follows by explaining an effect that invention had on the world and their own lives. Challenge each student to come up with something different.

Learn more: Teaching With a Mountain View

Critical Thinking Games

Pile of board games that encourage critical thinking skills

There are so many board games that help kids learn to question, analyze, examine, make judgments, and more. In fact, pretty much any game that doesn’t leave things entirely up to chance (Sorry, Candy Land) requires players to use critical thinking skills. See one teacher’s favorites at the link below.

Learn more: Miss DeCarbo

This is one of those classic critical thinking activities that really prepares kids for the real world. Assign a topic (or let them choose one). Then give kids time to do some research to find good sources that support their point of view. Finally, let the debate begin! Check out 100 Middle School Debate Topics , 100 High School Debate Topics , and 60 Funny Debate Topics for Kids of All Ages .

How do you teach critical thinking skills in your classroom? Come share your ideas and ask for advice in the WeAreTeachers HELPLINE group on Facebook .

Plus, check out 38 simple ways to integrate social-emotional learning throughout the day ..

Get ideas and activities for teaching kids to use critical thinking skills to thoughtfully question the world and sort out fact from opinion.

You Might Also Like

"Critical thinking" written on sticky notes

10 Tips for Teaching Kids To Be Awesome Critical Thinkers

Help students dig deeper! Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

A Short Guide to Building Your Team’s Critical Thinking Skills

  • Matt Plummer

critical thinking is sparked by

Critical thinking isn’t an innate skill. It can be learned.

Most employers lack an effective way to objectively assess critical thinking skills and most managers don’t know how to provide specific instruction to team members in need of becoming better thinkers. Instead, most managers employ a sink-or-swim approach, ultimately creating work-arounds to keep those who can’t figure out how to “swim” from making important decisions. But it doesn’t have to be this way. To demystify what critical thinking is and how it is developed, the author’s team turned to three research-backed models: The Halpern Critical Thinking Assessment, Pearson’s RED Critical Thinking Model, and Bloom’s Taxonomy. Using these models, they developed the Critical Thinking Roadmap, a framework that breaks critical thinking down into four measurable phases: the ability to execute, synthesize, recommend, and generate.

With critical thinking ranking among the most in-demand skills for job candidates , you would think that educational institutions would prepare candidates well to be exceptional thinkers, and employers would be adept at developing such skills in existing employees. Unfortunately, both are largely untrue.

critical thinking is sparked by

  • Matt Plummer (@mtplummer) is the founder of Zarvana, which offers online programs and coaching services to help working professionals become more productive by developing time-saving habits. Before starting Zarvana, Matt spent six years at Bain & Company spin-out, The Bridgespan Group, a strategy and management consulting firm for nonprofits, foundations, and philanthropists.  

Partner Center

The Integrated Teacher

19 Short Stories and Questions For Critical Thinking

Apr 2, 2024

There have been rumblings in different online teacher groups recently about replacing novels with short stories and informational articles in middle and high school English classrooms. I have to admit I was shocked when I first read the comments because I am a book lover at heart, but since then, I’ve considered that there are several pros and cons to this approach.

Short stories and other smaller texts can provide a briefer timeline to complete tasks, and this process is helpful when there is already SO MUCH curriculum to cover. Short stories and related activities can also be more engaging for our students because of the exposure to diverse voices and themes! Using short stories and lessons provides students with amazing choices to meet their needs and preferences!

On the other hand, incorporating mainly short stories and other shorter passages means students’ already-pressed attention spans (as a result of social media influences and pervasive sources of technology) are reinforced. Plus, students miss out on the more complex stories within longer pieces of fiction that are, dare I say, life-altering! A novel can provide opportunities for sustained reading and layers for analysis that shorter pieces of literature like short stories and related texts cannot offer.

Ultimately, no matter where you find yourself on the issue, I think we can all agree that short stories and their counterparts can be vital, effective, and helpful in the modern classroom!

Continue reading for 19 Short Stories and Questions For Critical Thinking!!

Need help with Test Prep ?  Check out this  FREE Pack of 3 Test Prep Activities  to help students achieve success on standardized tests!

short stories and activities picture

Table of Contents

19 Short Stories and Questions – Suggestions for Teaching Them

You don’t need to remove all novels to be able to include short stories and smaller passages like vignettes, articles, and narratives; there’s a time and place for all genres! But if you’re thinking about ways to include more short stories and fun activities, check out this list of 19 varied short stories and critical thinking questions as well as suggestions for teaching them in middle school and high school.

1.  “The Most Dangerous Game” 

“The Most Dangerous Game” is one of my absolute favorite short stories and overall plots to teach! This suspenseful short story by Richard Connell follows the harrowing ordeal of Sanger Rainsford, a skilled hunter who becomes the prey of a deranged aristocrat named General Zaroff. Stranded on Zaroff’s secluded island, Rainsford must outwit the cunning general in a deadly game of survival, where the stakes are life and death. 

the most dangerous game short stories and activities

SUGGESTIONS FOR TEACHING:

  • You could focus on the setting (description of time and place) and examine how the setting changes throughout the story.
  • Students could learn about the plot (major events in the story) and list the major events and evidence as they read.
  • Define foreshadowing (hints for what will happen by the end of the story) and encourage students to hypothesize about what will happen after every page.
  • Analyze the character development (how a character changes over time) of Rainsford and highlight his traits/actions as you read along.

CRITICAL THINKING QUESTIONS:

  • How does the setting contribute to the tension and suspense in the story?
  • How does the author use foreshadowing? How does the author hint at the danger Rainford is facing?
  • What inferences can you make about the main character and the changes he undergoes from the beginning to the end of the story?

If you want to teach plot elements and plot analysis , check out this lesson bundle for the story , which includes comprehension quizzes and a variety of activities!

2.  “An Occurrence at Owl Creek Bridge”

Ambrose Bierce’s story is a gripping tale set during the American Civil War, where a Southern civilian named Peyton Farquhar faces execution by hanging after attempting to sabotage a Union railroad bridge. As Farquhar falls through the trapdoor, time seems to stretch, and he experiences a surreal moment, only to realize his grim reality. 

Integrating historical texts with other short stories and passages like “An Occurrence at Owl Creek Bridge” will make history come more alive and relevant for our students!

  • Teach about irony (when the opposite occurs from what is expected) and how it plays a role throughout the story.
  • Explain the term characterization (how a character is depicted) by looking at direct and indirect references while reading with your students.
  • Discuss the major themes (messages) of the story and how they connect to our modern era within a Socratic Seminar.
  • How does the author use characterization to convey Peyton Farquhar’s thoughts, emotions, and motivations?
  • What is the purpose of irony in this story? How does its use affect the reader’s interpretation and understanding of events?
  • What is the significance in our contemporary/real world of the themes of the story, including reality and fantasy, the passage of time, and the consequences of actions?

Ensure students’ understanding of the story with this set of reading questions that are perfect for state test prep, too !

an occurence at owl creek bridge short stories and questions

3.  “The Masque of the Red Death”

This chilling tale from Edgar Allan Poe is set in a secluded abbey where Prince Prospero and his wealthy guests attempt to escape a deadly plague known as the Red Death. Despite their isolation efforts, the guests are confronted with their own mortality as a mysterious figure in a blood-red mask appears.

If you have not read any short stories and poems from Poe, this story is a perfect journey into the horror genre!

  • The setting (description of time and place) plays a MAJOR role in the story, so following the Prince from room to room and highlighting the imagery (description that connects to the five senses) is very important when reading.
  • If you have not introduced mood  (emotion intended for the reader to experience), this story is PERFECT for delineating its progression from start to finish.
  • As students read, you might guide them through identifying various examples of  symbolism  (object, person, or place that represents something else); each room, objects within, and the “antagonist” is symbolic in some way!
  • How does the author convey the tone of the story? How would you, as the reader, describe the story’s mood?
  • What role does the plot structure (focus on the different rooms) play in shaping the reader’s understanding of the story?
  • What is the purpose of the symbolism in the story such as the clock and the masked figure?

Check out this EASY-TO-TEACH bundle , you can practice with your students, so they will feel more confident analyzing higher-level language in “The Masque of the Red Death!”

4.  “The Cask of Amontillado”

Another chilling tale from Poe is the classic story “The Cask of Amontillado.” This one is set during Carnival in an unnamed Italian city. The plot centers on a man seeking revenge on a ‘friend’ he believes has insulted him. If your students are anything like mine, they will relish the ending particularly!

This is just one more of Poe’s short stories and tales that will capture the mind of every reader!

  •  As you plan for this short story, be sure to encourage your students to analyze the changing setting (description of time and place); following Fortunato from scene to scene will help your students track what is really going on.
  • This story is the perfect moment to teach about dialogue (conversation within someone=internal and/or between someone and someone/thing else=external); Montresor certainly means more than what he SEEMS to say!
  • You might also offer a mini-lesson on the 3 types of irony and how each plays a role in the story: verbal (when a person says the opposite of what is really intended), situational (an action occurs that is the opposite from what the reader expects), and dramatic (a character expects a result, but the opposite occurs and the audience can tell what will happen)!
  • Describe Montresor. What are his motives and personality?
  • What inferences can you make about Montresor’s mindset based on his dialogue?
  • What is the purpose of the family’s motto and the carnival atmosphere? 

Check out this Short Story Activity & Quiz Bundle for Edgar Allan Poe’s “The Cask of Amontillado,” which contains questions and answers modeled after various reading standardized tests as well as pre-quiz reading comprehension questions, graphic organizers, and a writing activity to get students thinking critically about this classic short story involving REVENGE!

Want 7 more teaching ideas for one of Poe’s epic short stories and questions to go with it? Click below!

questions for the cask of amontillado

5.  “To Build a Fire”

This story by Jack London describes the treacherous journey of a man through the harsh Yukon wilderness during extreme cold. Despite warnings and the company of a loyal dog, the man’s arrogance and underestimation of nature’s power lead to a tragic end.

Short stories and ideas related to survival in nature are still relevant today! Who knows when you might get lost on a hike or crashland in no man’s land?

  • This story is PERFECT for a bit of  literary analysis  (examining the impact of various ideas, elements, or themes within a piece of literature); you could hone in on literary devices, characterization, theme, etc.!
  • Integrating clips from survival shows will help students see connections to the world and extend their thinking by comparing (recognizing similarities) and contrasting (recognizing differences) varied experiences!
  • Write a short narrative about surviving 24 hours in a different setting (description of time and place).
  • How does the author use irony? Provide an example and explain. 
  • What real-world connections can be made between this story and our contemporary life? 
  • What is the story’s message about preparedness and respecting nature?

Grab these engaging short stories and activities to make teaching this Jack London story stress-free!

6.  “The Cactus”

Told from the point of view of a young man at his former lover’s wedding, the narrator retells their story. Like most of O. Henry’s short stories and texts, this one has a twist that involves the titular cactus plant.

The ending will end in a bit of fun for your students!

  • Introduce diction (word choice) and its impact within the story by hyperfocusing on specific words within the story . Students can look up definitions, locate synonyms, create their own sentences, replace the words, etc.
  • Investigate twist endings (unexpected finish to a story); before reading the end of the story, ask students to guess why the girl “rejected” him. Some students may know the answer before reading it!
  • Describe the main characters. What similarities and differences are evident? How does this affect the story’s action?
  • What inferences can you make about Trysdale and his feelings about love and marriage?
  • What are the real and symbolic meanings of the cactus?

This resource packed with questions and answers, graphic organizers, and writing activities is sure to get your students thinking about this love story driven by misconceptions.

short stories and activities image

7.  “After Twenty Years”

This tale of friendship and betrayal focuses on the reunion of two old friends after twenty years apart on a New York City street corner. As they reminisce, something is revealed that demonstrates the reality of their bond as well as the choices they’ve made in life.

If you have not read O. Henry’s short stories and incorporated character analysis yet, this is your chance! The story is not long and can be completed in one to two class periods!

  • Sometimes, we ask students to visualize (create a picture) in their minds, but why not give them the opportunity to use their artistic skills to draw the two characters?
  • As students read, annotate for a description of each character; then, students can do a character analysis (investigation of the characters’ similarities and differences).
  • What type of irony is used in the story? How does its use affect your interpretation and understanding of the story?
  • How does the urban setting contribute to the mood of the story?
  • What is the story’s message about friendship and loyalty?

Examine the links between loyalty and duty with this set of resources designed specifically for this O. Henry story.

8.  “The Lottery”

“The Lottery” is the quintessential short story for middle school or high school English! Shirley Jackson’s “The Lottery” tells the story of an annual ritual that takes place in a seemingly idyllic town. When the townsfolk gather for the lottery drawing, a shocking turn of events demonstrates the dark side of human nature and their ties to (outdated) traditions.

  • Introduce the terms suspense (uncertainty and/or excitement leading up to a major event) and tension (anxiety or uneasy feelings experienced by characters). While reading, identify evidence that relates to each of these concepts and chat/write about their impact on meaning and plot.
  • Teach title (the name of the text) analysis. The title of “The Lottery” is perfect for teaching the impact of the title and audience expectations. Before reading, students may write what they believe the story will be about based on the title. After reading, students can complete a quick write responding to their previous expectations! You can do a text analysis for all short stories and poems!
  • What role does the plot structure play in building suspense and tension? (Consider the revelation of the lottery’s ‘prize’ in particular.)
  • What social commentary is being made through the story and its characters?
  • Describe Mr. Summers, Tessie, and Old Man Warner. What does the story reveal about their role in the community and their feelings about the lottery?

Give yours elf a breath of fresh air with this NO PREP curriculum that integrates test prep within the teaching of literature by using Shirley Jackson’s quintessential story!

the lottery short stories and activities

9.  “The Pedestrian”

This Ray Bradbury story follows a lone walker in a futuristic society in which everyone else is consumed by technology, particularly the television. One evening, the walker encounters a police car that questions his unusual behavior and the end is quite unexpected! (Most of Bradbury’s short stories and texts connect to the future and technology in some way!)

  • This story exemplifies Dystopian Literature (texts that include a supposedly perfect future society marred in some way by governmental or societal oppression). Using this story to introduce this type of literature is always fun for students because they will easily make connections to other dystopic short stories and poems!
  • Teach about mood (the emotional impact of a story’s description/action). The goal is to get students to deepen their critical thinking skills by recognizing how the mood changes and the purpose for that change!
  • How does the author use foreshadowing and suspense to build the mood of the story?
  • What is the central theme of the story? How might it connect with our current world?
  • What similes and metaphors does Bradbury use to describe the community and its members? What is notable about these comparisons?

With this resource about Bradbury’s “The Pedestrian,” you can just print and teach the lesson and activities with EASE! 

10.  “The Gift of the Magi”

This 1905 story by O. Henry relays a tale about a couple struggling to make ends meet. Throughout the story, they both figure out gifts to buy one another for Christmas and realize what love truly means!

  • Review character traits (how a character is depicted internally and externally). Log the traits of each character within the story and how they are important to the meaning of the story.
  • Extend (move beyond the text) critical thinking skills by encouraging students to think and write about other people. If they had $1,000 to spend on someone else, how would they spend the money and why?

the gift of the magi short stories and questions

  • How would you describe Della and Jim, and their relationship?
  • What values do the characters have, when you consider their actions and decisions?
  • Explain how dramatic irony is used in the story. Is it necessary? Is it effective? Why or why not?

This tale is a great addition to your short stories and questions unit around the winter holidays! Save yourself time at that time of the year with this lesson bundle . 

11.  “The Monkey’s Paw” 

“The Monkey’s Paw” is a classic horror story about the White family who come into possession of a mystical monkey’s paw that grants three wishes. Despite warnings, they use it and then face devastating consequences as a result.

  • Teach about the elements of the horror/suspense genre (Ex. Scary movies are typically dark, stormy, surprising, morbid, etc.).
  • Create a thematic statement (message relayed by the text in a complete sentence). There is no perfectly created theme (message) unless it is directly stated by the author; however, students can create a theme by supporting their ideas with evidence from the story!
  • What is the main theme of the story? Or how does the author communicate the themes of greed or fate? Is one stronger than the other?
  • Are Mr. and Mrs. White more alike or different from one another? How do you know?
  • Should we be afraid of the unknown? What message does the story share? Do you agree or disagree?

Examine W.W. Jacobs’ classic story with this set of questions and answers along with rigorous reading and writing activities . While it is ideal for a spooky season, the story is valuable for its ability to hook readers any time of year!

12.  “Lamb to the Slaughter” 

This classic story with a killer plot twist is about a woman who kills her husband and gets away with murder thanks to cooking a leg of lamb!

  • You could introduce the plot elements (exposition, rising action, climax, falling action, resolution), encourage students to identify major events to fit each element and write down textual evidence to support their ideas.
  • Complete a film analysis (examination of film techniques and their effects) to compare/contrast the short story with the classic Alfred Hitchcock television episode.
  • What is Mary Maloney’s state of mind? Does it remain the same or does it change throughout the story? Explain.
  • Is the resolution of the story satisfying? Why or why not? Why do you think the author ended it as he did?
  • How does irony contribute to the theme of deception in the story? Explain.

Spice up your middle school English or high school English class with this short stories and activities bundle for Dahl’s famous story!

13.  “The Tell-Tale Heart” 

Poe’s classic psychological thriller is narrated by an unnamed protagonist who insists on their sanity while recounting how they murdered an old man. The narrator is haunted by the sound of the victim’s beating heart, which ultimately drives him to confess to the crime despite not originally being a suspect. 

  • Teach symbolism (object, person, or place that represents something else) by focusing on the heart and eye . The author used these symbols in various ways!
  • Investigate psychology (the study of the human mind) as a part of the story. Determine what is fact and what is fiction within the narrator’s mind.
  • What does the story reveal about the human psyche?
  • What is the deeper meaning of the two key symbols in the story – the beating heart and the eye of the old man?
  • What role do the narrator’s inner thoughts play in the development of the plot?

the tell tale heart short stories and activities

This Short Story Comprehension Bundle offers quick (and effective!) ways to assess students’ learning and understanding of the story. It’s easy to use and will no doubt save you time too!

14.  “The Scarlet Ibis” 

Emotional short stories and their counterparts have a place as well in English classrooms! This short story by James Hurst about two brothers is a heartbreaking must-read. Through flashbacks, the unnamed narrator tells the life story of his younger sickly brother William Armstrong, who is nicknamed Doodle. And the end…well, you’ll see.

  • Define and explain the purpose of a flashback (referring back to the past within a story). Think about the implications of never thinking back on the past or always thinking about the past.
  • Complete a comparison chart between Doodle and the Ibis as you read along. Then, students can create a visual of each after they have ready by using their own evidence!
  • What is the meaning of the story’s title and the presence of a scarlet ibis in the story?
  • What is the central theme of the story? How do the events of the story support this chosen theme?
  • How does the author use personification for the storm? What effect does this have on the story?

This flexible resource features critical thinking questions and answers as well as writing and reading activities for students to explore Hurst’s heartbreaking story.

15.  “The Veldt” 

This science fiction story by Ray Bradbury was first published as “The World the Children Made” and it is quite fitting as a title! The story focuses on a futuristic world in which a video screen can be controlled and it turns out to be more than simple virtual reality! By the story’s conclusion, the world the children made is the downfall of their parents. 

  • Compare and contrast “The Veldt” with “The Pedestrian,” two short stories and dystopic texts by Ray Bradbury. Analyze the similarities and differences of both short stories and create a thematic statement that connects to both texts!
  • Make connections to our current reality in the 21st century. Locate research about the implications of technology on young people and integrate this information as you discuss this short story.
  • How does the author address the theme of technology versus humanity in the story? Do you agree with this commentary? Why or why not?
  • How does the nursery reflect the personalities of Wendy and Peter in this story?
  • Do you know the story of Peter Pan and his friend Wendy? What connections can you make between it and this story by Ray Bradbury?

Ray Bradbury’s classic short stories and similar passages are the BEST to teach in middle and high school English! With so much to dive into, they are sure to be a hit with your students. Grab this set of activities to extend your students’ engagement with rigorous reading and writing activities about “The Veldt.” 

16.  “The Necklace” 

A woman who longs for a life of luxury and elegance beyond her means faces consequences when she loses a borrowed necklace. Guy de Maupassant’s story ends with a twist that has the reader question the value of material possessions. 

  • I love comparing this short story with O. Henry’s “The Gift of the Magi.” You might choose to focus on the theme, characterization, setting, etc.
  • Summarize (writing about the main idea with details) each chunk of the story as you read with your students. Instead of asking students to write a paragraph, you could ask students to create each summary in only one sentence.
  • The story explores vanity, deception, and the consequences of striving for social status. Which theme do you think is the most important? Explain with support from the story.
  • Is Mathilde Loisel a likable character? Does this change during the story? Does it matter if the reader likes her? Why or why not?
  • What clues does the author provide throughout the story that foreshadow the twist at the story’s end?

Focus on the standards with this Short Story Lesson Bundle for “The Necklace” by Guy de Maupassant!

Need help with implementing activities for “The Necklace?” See below!

the-necklace-by-guy-de-maupassant

17.  “A Vendetta” 

Guy de Maupassant’s late-19th-century story is all about REVENGE. A mother is obsessed with creating a plan to avenge her son’s murder and she then puts the plan into action with a morbid outcome.

  • There are so many texts that involve REVENGE! Why not use this concept as a focus for a thematic unit (texts linked to a similar concept and/or message)? You could read “A Poison Tree,” “The Cask of Amontillado,” and “Lamb to the Slaughter” as well as “A Vendetta” with the intention of writing about all 4 for a comparison/contrast paper, presentation, or seminar.
  • Analyze the development (how a character changes over time) of the mother and the dog throughout the story; you might annotate for similarities and differences as well as their motivations!
  • What comment is the story making about the nature (or need) for justice? Do you agree or disagree? Why or why not?
  • What similes and metaphors does the author use to communicate the main character’s feelings about the vendetta?
  • How does the author use details to explain the main character’s thoughts, feelings, and motivation?

Add these activities for this lesser-known work to your short story plans. It’s sure to keep things fresh for your short stories and activities unit! 

18.  “Thank You, Ma’am” (also known as “Thank You, M’am”)

This heartfelt story by Langston Hughes tells the story of Luella, an older woman in the neighborhood, who is nearly robbed by a young man named Roger. In response to Roger, Luella brings him back to her home and treats him with an abundance of kindness, which has a profound effect on Roger.

This tale is at the top of the list for the BEST short stories and passages for upper middle and younger high school students!

  • Introduce perspective and/or point of view (how a story is told: 1st, 2nd, 3rd omniscient, 3rd limited, 3rd objective). Students might rewrite the story from another perspective or extend the story using the perspective of one of the main characters.
  • Review plot elements with a focus on the exposition (introduction to the characters, setting, and conflict), climax (highest point of interest/turning point of the story), and resolution (how the story is concluded and/or resolved in some way.) You could assign an activity surrounding each concept: visualization of the scene, a journal response to the event, or a short response focused on how the element is important to the overall theme!

thank you maam short stories and questions

  • Do you believe in second chances? What does the story say about second chances? 
  • How might the climax of the story also be seen as the turning point in Roger’s life?
  • How would you describe Mrs. Luella Bates Washington Jones? Are her actions expected or unexpected in the story? Consider from Roger’s and the reader’s point of view.

Click to check out all of the details for this BUNDLE with differentiated options , which includes a Test Prep Quiz (with varied options), Venn Diagrams, Graphic Organizers, and Writing Responses!! 

19.  “Click Clack the Rattle Bag”

This short story by Neil Gaiman is creepy and fun in the best ways possible! The narrator is taking care of his girlfriend’s little brother and walking him to bed when the child asks for a story. Instead of the narrator sharing a story, the boy shares about the Click Clacks who drink their prey and leave behind rattling bodies. The end is too good to be missed!

Short stories and plots like those in “Click Clack the Rattle Bag” will most certainly engage even your most struggling learners!

  • We all know that test prep can be tough as many reading passages are, well, boring! Why not accomplish some test prep with your students and incorporate 5 standardized test-related questions ? You could focus on theme, structure, order of events, characterization, etc.!
  • Help students make inferences (acknowledging and hypothesizing about the impact of details that are not directly referenced or stated) as the scene moves along. Students can analyze the change in the setting, the little boy himself, the story the boy is telling, and specific phrases from the story.
  • What details in the story contribute to its eerie atmosphere or mood? Or what figurative language devices does Neil Gaiman use to create a sense of suspense in the story? 
  • How does the author use ambiguity in the story? Is it effective or not? Explain.
  • What inferences can you make about the relationship between the narrator and the young boy?

click clack the rattle bag short stories and questions

This “Click Clack the Rattle Bag” Quiz Pack for middle and high school students uses the Common Core standards and contains questions and answers modeled after various state standardized tests! Make teaching this amazing short story by Neil Gaiman SIMPLE & EASY!

Why should we incorporate more short stories and activities in our teaching?

While I would never advocate replacing all novels with short stories and smaller texts, there is still something to be said about spending quality time with short stories and excerpts. 

Including short stories and standards-based activities is an ideal option to improve reading comprehension and develop skills, especially in middle and high school English classes!

SHORT STORIES AND ACTIVITIES RESOURCES: 

short stories and questions unit

This  Short Stories and Test Prep Questions ULTIMATE BUNDLE with Lessons, Quizzes, and Activities uses the Common Core standards with reading comprehension QUESTIONS and ANSWERS for 18 short stories such as “The Most Dangerous Game,” “The Monkey’s Paw,” “The Tell-Tale Heart,” “After Twenty Years,” “The Gift of the Magi,” “The Veldt,” “The Lottery,” “The Pedestrian,” etc. modeled after various state reading exams.

Make teaching short stories and activities SIMPLE & EASY!

Just PRINT & TEACH with engaging short stories and lessons!!

Need more fun ideas for teaching short stories and corresponding activities? Check out my store Kristin Menke-Integrated ELA Test Prep !

critical thinking is sparked by

Hi, I’m KRISTIN!

I primarily focus on  integrating multiple disciplines and subjects. The goal is to make teaching simplified and effective!

Let's Connect

  • Follow Follow

Click below to download “13 Simple Strategies to make test prep a breeze!”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • PMC10672018

Logo of jintell

Critical Thinking, Intelligence, and Unsubstantiated Beliefs: An Integrative Review

Associated data.

This research did not involve collection of original data, and hence there are no new data to make available.

A review of the research shows that critical thinking is a more inclusive construct than intelligence, going beyond what general cognitive ability can account for. For instance, critical thinking can more completely account for many everyday outcomes, such as how thinkers reject false conspiracy theories, paranormal and pseudoscientific claims, psychological misconceptions, and other unsubstantiated claims. Deficiencies in the components of critical thinking (in specific reasoning skills, dispositions, and relevant knowledge) contribute to unsubstantiated belief endorsement in ways that go beyond what standardized intelligence tests test. Specifically, people who endorse unsubstantiated claims less tend to show better critical thinking skills, possess more relevant knowledge, and are more disposed to think critically. They tend to be more scientifically skeptical and possess a more rational–analytic cognitive style, while those who accept unsubstantiated claims more tend to be more cynical and adopt a more intuitive–experiential cognitive style. These findings suggest that for a fuller understanding of unsubstantiated beliefs, researchers and instructors should also assess specific reasoning skills, relevant knowledge, and dispositions which go beyond what intelligence tests test.

1. Introduction

Why do some people believe implausible claims, such as the QAnon conspiracy theory, that a cabal of liberals is kidnapping and trafficking many thousands of children each year, despite the lack of any credible supporting evidence? Are believers less intelligent than non-believers? Do they lack knowledge of such matters? Are they more gullible or less skeptical than non-believers? Or, more generally, are they failing to think critically?

Understanding the factors contributing to acceptance of unsubstantiated claims is important, not only to the development of theories of intelligence and critical thinking but also because many unsubstantiated beliefs are false, and some are even dangerous. Endorsing them can have a negative impact on an individual and society at large. For example, false beliefs about the COVID-19 pandemic, such as believing that 5G cell towers induced the spread of the COVID-19 virus, led some British citizens to set fire to 5G towers ( Jolley and Paterson 2020 ). Other believers in COVID-19 conspiracy theories endangered their own and their children’s lives when they refused to socially distance and be vaccinated with highly effective vaccines, despite the admonitions of scientific experts ( Bierwiaczonek et al. 2020 ). Further endangering the population at large, those who believe the false conspiracy theory that human-caused global warming is a hoax likely fail to respond adaptively to this serious global threat ( van der Linden 2015 ). Parents, who uncritically accept pseudoscientific claims, such as the false belief that facilitated communication is an effective treatment for childhood autism, may forego more effective treatments ( Lilienfeld 2007 ). Moreover, people in various parts of the world still persecute other people whom they believe are witches possessing supernatural powers. Likewise, many people still believe in demonic possession, which has been associated with mental disorders ( Nie and Olson 2016 ). Compounding the problems created by these various unsubstantiated beliefs, numerous studies now show that when someone accepts one of these types of unfounded claims, they tend to accept others as well; see Bensley et al. ( 2022 ) for a review.

Studying the factors that contribute to unfounded beliefs is important not only because of their real-world consequences but also because this can facilitate a better understanding of unfounded beliefs and how they are related to critical thinking and intelligence. This article focuses on important ways in which critical thinking and intelligence differ, especially in terms of how a comprehensive model of CT differs from the view of intelligence as general cognitive ability. I argue that this model of CT more fully accounts for how people can accurately decide if a claim is unsubstantiated than can views of intelligence, emphasizing general cognitive ability. In addition to general cognitive ability, thinking critically about unsubstantiated claims involves deployment of specific reasoning skills, dispositions related to CT, and specific knowledge, which go beyond the contribution of general cognitive ability.

Accordingly, this article begins with an examination of the constructs of critical thinking and intelligence. Then, it discusses theories proposing that to understand thinking in the real world requires going beyond general cognitive ability. Specifically, the focus is on factors related to critical thinking, such as specific reasoning skills, dispositions, metacognition, and relevant knowledge. I review research showing that that this alternative multidimensional view of CT can better account for individual differences in the tendency to endorse multiple types of unsubstantiated claims than can general cognitive ability alone.

2. Defining Critical Thinking and Intelligence

Critical thinking is an almost universally valued educational objective in the US and in many other countries which seek to improve it. In contrast, intelligence, although much valued, has often been viewed as a more stable characteristic and less amenable to improvement through specific short-term interventions, such as traditional instruction or more recently through practice on computer-implemented training programs. According to Wechsler’s influential definition, intelligence is a person’s “aggregate or global capacity to act purposefully, to think rationally, and to deal effectively with his environment” ( Wechsler 1944, p. 3 ).

Consistent with this definition, intelligence has long been associated with general cognitive or intellectual ability and the potential to learn and reason well. Intelligence (IQ) tests measure general cognitive abilities, such as knowledge of words, memory skills, analogical reasoning, speed of processing, and the ability to solve verbal and spatial problems. General intelligence or “g” is a composite of these abilities statistically derived from various cognitive subtests on IQ tests which are positively intercorrelated. There is considerable overlap between g and the concept of fluid intelligence (Gf) in the prominent Cattell–Horn–Carroll model ( McGrew 2009 ), which refers to “the ability to solve novel problems, the solution of which does not depend on previously acquired skills and knowledge,” and crystalized intelligence (Gc), which refers to experience, existing skills, and general knowledge ( Conway and Kovacs 2018, pp. 50–51 ). Although g or general intelligence is based on a higher order factor, inclusive of fluid and crystallized intelligence, it is technically not the same as general cognitive ability, a commonly used, related term. However, in this article, I use “general cognitive ability” and “cognitive ability” because they are the imprecise terms frequently used in the research reviewed.

Although IQ scores have been found to predict performance in basic real-world domains, such as academic performance and job success ( Gottfredson 2004 ), an enduring question for intelligence researchers has been whether g and intelligence tests predict the ability to adapt well in other real-world situations, which concerns the second part of Wechsler’s definition. So, in addition to the search for the underlying structure of intelligence, researchers have been perennially concerned with how general abilities associated with intelligence can be applied to help a person adapt to real-world situations. The issue is largely a question of how cognitive ability and intelligence can help people solve real-world problems and cope adaptively and succeed in dealing with various environmental demands ( Sternberg 2019 ).

Based on broad conceptual definitions of intelligence and critical thinking, both intelligence and CT should aid adaptive functioning in the real world, presumably because they both involve rational approaches. Their common association with rationality gives each term a positive connotation. However, complicating the definition of each of these is the fact that rationality also continues to have a variety of meanings. In this article, in agreement with Stanovich et al. ( 2018 ), rationality is defined in the normative sense, used in cognitive science, as the distance between a person’s response and some normative standard of optimal behavior. As such, degree of rationality falls on a continuous scale, not a categorical one.

Despite disagreements surrounding the conceptual definitions of intelligence, critical thinking, and rationality, a commonality in these terms is they are value-laden and normative. In the case of intelligence, people are judged based on norms from standardized intelligence tests, especially in academic settings. Although scores on CT tests seldom are, nor could be, used to judge individuals in this way, the normative and value-laden basis of CT is apparent in people’s informal judgements. They often judge others who have made poor decisions to be irrational or to have failed to think critically.

This value-laden aspect of CT is also apparent in formal definitions of CT. Halpern and Dunn ( 2021 ) defined critical thinking as “the use of those cognitive skills or strategies that increase the probability of a desirable outcome. It is used to describe thinking that is purposeful, reasoned, and goal-directed.” The positive conception of CT as helping a person adapt well to one’s environment is clearly implied in “desirable outcome”.

Robert Ennis ( 1987 ) has offered a simpler, yet useful definition of critical thinking that also has normative implications. According to Ennis, “critical thinking is reasonable, reflective thinking focused on deciding what to believe or do” ( Ennis 1987, p. 102 ). This definition implies that CT helps people know what to believe (a goal of epistemic rationality) and how to act (a goal of instrumental rationality). This is conveyed by associating “critical thinking” with the positive terms, “reasonable” and “reflective”. Dictionaries commonly define “reasonable” as “rational”, “logical”, “intelligent”, and “good”, all terms with positive connotations.

For critical thinkers, being reasonable involves using logical rules, standards of evidence, and other criteria that must be met for a product of thinking to be considered good. Critical thinkers use these to evaluate how strongly reasons or evidence supports one claim versus another, drawing conclusions which are supported by the highest quality evidence ( Bensley 2018 ). If no high-quality evidence is available for consideration, it would be unreasonable to draw a strong conclusion. Unfortunately, people’s beliefs are too often based on acceptance of unsubstantiated claims. This is a failure of CT, but is it also a failure of intelligence?

3. Does Critical Thinking “Go Beyond” What Is Meant by Intelligence?

Despite the conceptual overlap in intelligence and CT at a general level, one way that CT can be distinguished from the common view of intelligence as general cognitive ability is in terms of what each can account for. Although intelligence tests, especially measures of general cognitive ability, have reliably predicted academic and job performance, they may not be sufficient to predict other everyday outcomes for which CT measures have made successful predictions and have added to the variance accounted for in performance. For instance, replicating a study by Butler ( 2012 ), Butler et al. ( 2017 ) obtained a negative correlation ( r = −0.33) between scores on the Halpern Critical Thinking Appraisal (HCTA) and a measure of 134 negative, real-world outcomes, not expected to befall critical thinkers, such as engaging in unprotected sex or posting a message on social media which the person regretted. They found that higher HCTA scores not only predicted better life decisions, but also predicted better performance beyond a measure of general cognitive ability. These results suggest that CT can account for real-world outcomes and goes beyond general cognitive ability to account for additional variance.

Some theorists maintain that standardized intelligence tests do not capture the variety of abilities that people need to adapt well in the real world. For example, Gardner ( 1999 ), has proposed that additional forms of intelligence are needed, such as spatial, musical, and interpersonal intelligences in addition to linguistic and logical–mathematical intelligences, more typically associated with general cognitive ability and academic success. In other theorizing, Sternberg ( 1988 ) has proposed three additional types of intelligence: analytical, practical, and creative intelligence, to more fully capture the variety of intelligent abilities on which people differ. Critical thinking is considered part of analytical skills which involve evaluating the quality and applicability of ideas, products, and options ( Sternberg 2022 ). Regarding adaptive intelligence, Sternberg ( 2019 ) has emphasized how adaptive aspects of intelligence are needed to solve real-world problems both at the individual and species levels. According to Sternberg, core components of intelligence have evolved in humans, but intelligence takes different forms in different cultures, with each culture valuing its own skills for adaptation. Thus, the construct of intelligence must go beyond core cognitive ability to encompass the specific abilities needed for adaptive behavior in specific cultures and settings.

Two other theories propose that other components be added to intelligent and rational thinking. Ackerman ( 2022 ) has emphasized the importance of acquiring domain-specific knowledge for engaging in intelligent functioning in the wide variety of tasks found in everyday life. Ackerman has argued that declarative, procedural, and tacit knowledge, as well as non-ability variables, are needed to better predict job performance and performance of other everyday activities. Taking another approach, Halpern and Dunn ( 2021 ) have proposed that critical thinking is essentially the adaptive application of intelligence for solving real-world problems. Elsewhere, Butler and Halpern ( 2019 ) have argued that dispositions such as open-mindedness are another aspect of CT and that domain-specific knowledge and specific CT skills are needed to solve real-world problems.

Examples are readily available for how CT goes beyond what IQ tests test to include specific rules for reasoning and relevant knowledge needed to execute real-world tasks. Take the example of scientific reasoning, which can be viewed as a specialized form of CT. Drawing a well-reasoned inductive conclusion about a theory or analyzing the quality of a research study both require that a thinker possess relevant specialized knowledge related to the question and specific reasoning skills for reasoning about scientific methodology. In contrast, IQ tests are deliberately designed to be nonspecialized in assessing Gc, broadly sampling vocabulary and general knowledge in order to be fair and unbiased ( Stanovich 2009 ). Specialized knowledge and reasoning skills are also needed in non-academic domains. Jurors must possess specialized knowledge to understand expert, forensic testimony and specific reasoning skills to interpret the law and make well-reasoned judgments about a defendant’s guilt or innocence.

Besides lacking specific reasoning skills and domain-relevant knowledge, people may fail to think critically because they are not disposed to use their reasoning skills to examine such claims and want to preserve their favored beliefs. Critical thinking dispositions are attitudes or traits that make it more likely that a person will think critically. Theorists have proposed numerous CT dispositions (e.g., Bensley 2018 ; Butler and Halpern 2019 ; Dwyer 2017 ; Ennis 1987 ). Some commonly identified CT dispositions especially relevant to this discussion are open-mindedness, skepticism, intellectual engagement, and the tendency to take a reflective, rational–analytic approach. Critical thinking dispositions are clearly value-laden and prescriptive. A good thinker should be open-minded, skeptical, reflective, intellectually engaged, and value a rational–analytic approach to inquiry. Conversely, corresponding negative dispositions, such as “close-mindedness” and “gullibility”, could obstruct CT.

Without the appropriate disposition, individuals will not use their reasoning skills to think critically about questions. For example, the brilliant mystery writer, Sir Arthur Conan Doyle, who was trained as a physician and created the hyper-reasonable detective Sherlock Holmes, was not disposed to think critically about some unsubstantiated claims. Conan Doyle was no doubt highly intelligent in cognitive ability terms, but he was not sufficiently skeptical (disposed to think critically) about spiritualism. He believed that he was talking to his dearly departed son though a medium, despite the warnings of his magician friend, Harry Houdini, who told him that mediums used trickery in their seances. Perhaps influenced by his Irish father’s belief in the “wee folk”, Conan Doyle also believed that fairies inhabited the English countryside, based on children’s photos, despite the advice of experts who said the photos could be faked. Nevertheless, he was skeptical of a new theory of tuberculosis proposed by Koch when he reported on it, despite his wife suffering from the disease. So, in professional capacities, Conan Doyle used his CT skills, but in certain other domains for which he was motivated to accept unsubstantiated claims, he failed to think critically, insufficiently disposed to skeptically challenge certain implausible claims.

This example makes two important points. Conan Doyle’s superior intelligence was not enough for him to reject implausible claims about the world. In general, motivated reasoning can lead people, even those considered highly intelligent, to accept claims with no good evidentiary support. The second important point is that we would not be able to adequately explain cases like this one, considering only the person’s intelligence or even their reasoning skills, without also considering the person’s disposition. General cognitive ability alone is not sufficient, and CT dispositions should also be considered.

Supporting this conclusion, Stanovich and West ( 1997 ) examined the influence of dispositions beyond the contribution of cognitive ability on a CT task. They gave college students an argument evaluation test in which participants first rated their agreement with several claims about real social and political issues made by a fictitious person. Then, they gave them evidence against each claim and finally asked them to rate the quality of a counterargument made by the same fictitious person. Participants’ ratings of the counterarguments were compared to the median ratings of expert judges on the quality of the rebuttals. Stanovich and West also administered a new measure of rational disposition called the Actively Open-minded Thinking (AOT) scale and the SAT as a proxy for cognitive ability. The AOT was a composite of items from several other scales that would be expected to measure CT disposition. They found that both SAT and AOT scores were significant predictors of higher argument analysis scores. Even after partialing out cognitive ability, actively open-minded thinking was significant. These results suggest that general cognitive ability alone was not sufficient to account for thinking critically about real-world issues and that CT disposition was needed to go beyond it.

Further examining the roles of CT dispositions and cognitive ability on reasoning, Stanovich and West ( 2008 ) studied myside bias, a bias in reasoning closely related to one-sided thinking and confirmation bias. A critical thinker would be expected to not show myside bias and instead fairly evaluate evidence on all sides of a question. Stanovich and West ( 2007 ) found that college students often showed myside bias when asked their opinions about real-world policy issues, such as those concerning the health risks of smoking and drinking alcohol. For example, compared to non-smokers, smokers judged the health risks of smoking to be lower. When they divided participants into higher versus lower cognitive ability groups based on SAT scores, the two groups showed little difference on myside bias. Moreover, on the hazards of drinking issue, participants who drank less had higher scores on the CT disposition measure.

Other research supports the need for both reasoning ability and CT disposition in predicting outcomes in the real world. Ren et al. ( 2020 ) found that CT disposition, as measured by a Chinese critical thinking disposition inventory, and a CT skill measure together contributed a significant amount of the variance in predicting academic performance beyond the contribution of cognitive ability alone, as measured by a test of fluid intelligence. Further supporting the claim that CT requires both cognitive ability and CT disposition, Ku and Ho ( 2010 ) found that a CT disposition measure significantly predicted scores on a CT test beyond the significant contribution of verbal intelligence in high school and college students from Hong Kong.

The contribution of dispositions to thinking is related to another way that CT goes beyond the application of general cognitive ability, i.e., by way of the motivation for reasoning. Assuming that all reasoning is motivated ( Kunda 1990 ), then CT is motivated, too, which is implicit within the Halpern and Dunn ( 2021 ) and Ennis ( 1987 ) definitions. Critical thinking is motivated in the sense of being purposeful and directed towards the goal of arriving at an accurate conclusion. For instance, corresponding to pursuit of the goal of accurate reasoning, the CT disposition of “truth-seeking” guides a person towards reaching the CT goal of arriving at an accurate conclusion.

Also, according to Kunda ( 1990 ), a second type of motivated reasoning can lead to faulty conclusions, often by directing a person towards the goal of maintaining favored beliefs and preconceptions, as in illusory correlation, belief perseverance, and confirmation bias. Corresponding to this second type, negative dispositions, such as close-mindedness and self-serving motives, can incline thinkers towards faulty conclusions. This is especially relevant in the present discussion because poorer reasoning, thinking errors, and the inappropriate use of heuristics are related to the endorsement of unsubstantiated claims, all of which are CT failures. The term “thinking errors” is a generic term referring to logical fallacies, informal reasoning fallacies, argumentation errors, and inappropriate uses of cognitive heuristics ( Bensley 2018 ). Heuristics are cognitive shortcuts, commonly used to simplify judgment tasks and reduce mental effort. Yet, when used inappropriately, heuristics often result in biased judgments.

Stanovich ( 2009 ) has argued that IQ tests do not test people’s use of heuristics, but heuristics have been found to be negatively correlated with CT performance ( West et al. 2008 ). In this same study, they found that college students’ cognitive ability, as measured by performance on the SAT, was not correlated with thinking biases associated with use of heuristics. Although Stanovich and West ( 2008 ) found that susceptibility to biases, such as the conjunction fallacy, framing effect, base-rate neglect, affect bias, and myside bias were all uncorrelated with cognitive ability (using SAT as a proxy), other types of thinking errors were correlated with SAT.

Likewise, two types of knowledge are related to the two forms of motivated reasoning. For instance, inaccurate knowledge, such as misconceptions, can derail reasoning from moving towards a correct conclusion, as in when a person reasons from false premises. In contrast, reasoning from accurate knowledge is more likely to produce an accurate conclusion. Taking into account inaccurate knowledge and thinking errors is important to understanding the endorsement of unsubstantiated claims because these are also related to negative dispositions, such as close-mindedness and cynicism, none of which are measured by intelligence tests.

Critical thinking questions are often situated in real-world examples or in simulations of them which are designed to detect thinking errors and bias. As described in Halpern and Butler ( 2018 ), an item like one on the “Halpern Critical Thinking Assessment” (HCTA) provides respondents with a mock newspaper story about research showing that first-graders who attended preschool were better able to learn how to read. Then the question asks if preschool should be made mandatory. A correct response to this item requires recognizing that correlation does not imply causation, that is, avoiding a common reasoning error people make in thinking about research implications in everyday life. Another CT skills test, “Analyzing Psychological Statements” (APS) assesses the ability to recognize thinking errors and apply argumentation skills and psychology to evaluate psychology-related examples and simulations of real-life situations ( Bensley 2021 ). For instance, besides identifying thinking errors in brief samples of thinking, questions ask respondents to distinguish arguments from non-arguments, find assumptions in arguments, evaluate kinds of evidence, and draw a conclusion from a brief psychological argument. An important implication of the studies just reviewed is that efforts to understand CT can be further informed by assessing thinking errors and biases, which, as the next discussion shows, are related to individual differences in thinking dispositions and cognitive style.

4. Dual-Process Theory Measures and Unsubstantiated Beliefs

Dual-process theory (DPT) and measures associated with it have been widely used in the study of the endorsement of unsubstantiated beliefs, especially as they relate to cognitive style. According to a cognitive style version of DPT, people have two modes of processing, a fast intuitive–experiential (I-E) style of processing and a slower, reflective, rational–analytic (R-A) style of processing. The intuitive cognitive style is associated with reliance on hunches, feelings, personal experience, and cognitive heuristics which simplify processing, while the R-A cognitive style is a reflective, rational–analytic style associated with more elaborate and effortful processing ( Bensley et al. 2022 ; Epstein 2008 ). As such, the rational–analytic cognitive style is consistent with CT dispositions, such as those promoting the effortful analysis of evidence, objective truth, and logical consistency. In fact, CT is sometimes referred to as “critical-analytic” thinking ( Byrnes and Dunbar 2014 ) and has been associated with analytical intelligence Sternberg ( 1988 ) and with rational thinking, as discussed before.

People use both modes of processing, but they show individual differences in which mode they tend to rely upon, although the intuitive–experiential mode is the default ( Bensley et al. 2022 ; Morgan 2016 ; Pacini and Epstein 1999 ), and they accept unsubstantiated claims differentially based on their predominate cognitive style ( Bensley et al. 2022 ; Epstein 2008 ). Specifically, individuals who rely more on an I-E cognitive style tend to endorse unsubstantiated claims more strongly, while individuals who rely more on a R-A cognitive style tend to endorse those claims less. Note, however, that other theorists view the two processes and cognitive styles somewhat differently, (e.g., Kahneman 2011 ; Stanovich et al. 2018 ).

Researchers have often assessed the contribution of these two cognitive styles to endorsement of unsubstantiated claims, using variants of three measures: the Cognitive Reflection Test (CRT) of Frederick ( 2005 ), the Rational–Experiential Inventory of Epstein and his colleagues ( Pacini and Epstein 1999 ), and the related Need for Cognition scale of Cacioppo and Petty ( 1982 ). The CRT is a performance-based test which asks participants to solve problems that appear to require simple mathematical calculations, but which actually require more reflection. People typically do poorly on the CRT, which is thought to indicate reliance on an intuitive cognitive style, while better performance is thought to indicate reliance on the slower, more deliberate, and reflective cognitive style. The positive correlation of the CRT with numeracy scores suggests it also has a cognitive skill component ( Patel et al. 2019 ). The Rational–Experiential Inventory (REI) of Pacini and Epstein ( 1999 ) contains one scale designed to measure an intuitive–experiential cognitive style and a second scale intended to measure a rational–analytic (R-A) style. The R-A scale was adapted from the Need for Cognition (NFC) scale of Cacioppo and Petty ( 1982 ), another scale associated with rational–analytic thinking and expected to be negatively correlated with unsubstantiated beliefs. The NFC was found to be related to open-mindedness and intellectual engagement, two CT dispositions ( Cacioppo et al. 1996 ).

The cognitive styles associated with DPT also relate to CT dispositions. Thinking critically requires that individuals be disposed to use their reasoning skills to reject unsubstantiated claims ( Bensley 2018 ) and that they be inclined to take a rational–analytic approach rather than relying on their intuitions and feelings. For instance, Bensley et al. ( 2014 ) found that students who endorsed more psychological misconceptions adopted a more intuitive cognitive style, were less disposed to take a rational–scientific approach to psychology, and scored lower on a psychological critical thinking skills test. Further supporting this connection, West et al. ( 2008 ) found that participants who tended to use cognitive heuristics more, thought to be related to intuitive processing and bias, scored lower on a critical thinking measure. As the Bensley et al. ( 2014 ) results suggest, in addition to assessing reasoning skills and dispositions, comprehensive CT assessment research should assess knowledge and unsubstantiated beliefs because these are related to failures of critical thinking.

5. Assessing Critical Thinking and Unsubstantiated Beliefs

Assessing endorsement of unsubstantiated claims provides another way to assess CT outcomes related to everyday thinking, which goes beyond what intelligence tests test ( Bensley and Lilienfeld 2020 ). From the perspective of the multi-dimensional model of CT, endorsement of unsubstantiated claims could result from deficiencies in a person’s CT reasoning skills, a lack of relevant knowledge, and in the engagement of inappropriate dispositions. Suppose an individual endorses an unsubstantiated claim, such as believing the conspiracy theory that human-caused global warming is a hoax. The person may lack the specific reasoning skills needed to critically evaluate the conspiracy. Lantian et al. ( 2020 ) found that scores on a CT skills test were negatively correlated with conspiracy theory beliefs. The person also must possess relevant scientific knowledge, such as knowing the facts that each year humans pump about 40 billion metric tons of carbon dioxide into the atmosphere and that carbon dioxide is a greenhouse gas which traps heat in the atmosphere. Or, the person may not be scientifically skeptical or too cynical or mistrustful of scientists or governmental officials.

Although endorsing unsubstantiated beliefs is clearly a failure of CT, problems arise in deciding which ones are unsubstantiated, especially when considering conspiracy theories. Typically, the claims which critical thinkers should reject as unsubstantiated are those which are not supported by objective evidence. But of the many conspiracies proposed, few are vigorously examined. Moreover, some conspiracy theories which authorities might initially deny turn out to be real, such as the MK-Ultra theory that the CIA was secretly conducting mind-control research on American citizens.

A way out of this quagmire is to define unsubstantiated beliefs on a continuum which depends on the quality of evidence. This has led to the definition of unsubstantiated claims as assertions which have not been supported by high-quality evidence ( Bensley 2023 ). Those which are supported have the kind of evidentiary support that critical thinkers are expected to value in drawing reasonable conclusions. Instead of insisting that a claim must be demonstrably false to be rejected, we adopt a more tentative acceptance or rejection of claims, based on how much good evidence supports them. Many claims are unsubstantiated because they have not yet been carefully examined and so totally lack support or they may be supported only by low quality evidence such as personal experience, anecdotes, or non-scientific authority. Other claims are more clearly unsubstantiated because they contradict the findings of high-quality research. A critical thinker should be highly skeptical of these.

Psychological misconceptions are one type of claim that can be more clearly unsubstantiated. Psychological misconceptions are commonsense psychological claims (folk theories) about the mind, brain, and behavior that are contradicted by the bulk of high-quality scientific research. Author developed the Test of Psychological Knowledge and Misconceptions (TOPKAM), a 40-item, forced-choice measure with each item posing a statement of a psychological misconception and the other response option stating the evidence-based alternative ( Bensley et al. 2014 ). They found that higher scores on the APS, the argument analysis test applying psychological concepts to analyze real-world examples, were associated with more correct answers on the TOPKAM. Other studies have found positive correlations between CT skills tests and other measures of psychological misconceptions ( McCutcheon et al. 1992 ; Kowalski and Taylor 2004 ). Bensley et al. ( 2014 ) also found that higher correct TOPKAM scores were positively correlated with scores on the Inventory of Thinking Dispositions in Psychology (ITDP) of Bensley ( 2021 ), a measure of the disposition to take a rational and scientific approach to psychology but were negatively correlated with an intuitive cognitive style.

Bensley et al. ( 2021 ) conducted a multidimensional study, assessing beginner psychology students starting a CT course on their endorsement of psychological misconceptions, recognition of thinking errors, CT dispositions, and metacognition, before and after CT instruction. Two classes received explicit instruction involving considerable practice in argument analysis and scientific reasoning skills, with one class receiving CT instruction focused more on recognizing psychological misconceptions and a second class focused more on recognizing various thinking errors. Bensley et al. assessed both classes before and after instruction on the TOPKAM and on the Test of Thinking Errors, a test of the ability to recognize in real-world examples 17 different types of thinking errors, such as confirmation bias, inappropriate use of the availability and representativeness heuristics, reasoning from ignorance/possibility, gambler’s fallacy, and hasty generalization ( Bensley et al. 2021 ). Correct TOPKAM and TOTE scores were positively correlated, and after CT instruction both were positively correlated with the APS, the CT test of argument analysis skills.

Bensley et al. found that after explicit instruction of CT skills, students improved significantly on both the TOPKAM and TOTE, but those focusing on recognizing misconceptions improved the most. Also, those students who improved the most on the TOTE scored higher on the REI rational–analytic scale and on the ITDP, while those improving the most on the TOTE scored higher on the ITDP. The students receiving explicit CT skill instruction in recognizing misconceptions also significantly improved the accuracy of their metacognitive monitoring in estimating their TOPKAM scores after instruction.

Given that before instruction neither class differed in GPA nor on the SAT, a proxy for general cognitive ability, CT instruction provided a good accounting for the improvement in recognition of thinking errors and misconceptions without recourse to intelligence. However, SAT scores were positively correlated with both TOTE scores and APS scores, suggesting that cognitive ability contributed to CT skill performance. These results replicated the earlier findings of Bensley and Spero ( 2014 ) showing that explicit CT instruction improved performance on both CT skills tests and metacognitive monitoring accuracy while controlling for SAT, which was positively correlated with the CT skills test performance.

Taken together, these findings suggest that cognitive ability contributes to performance on CT tasks but that CT instruction goes beyond it to further improve performance. As the results of Bensley et al. ( 2021 ) show, and as discussed next, thinking errors and bias from heuristics are CT failures that should also be assessed because they are related to endorsement of unsubstantiated beliefs and cognitive style.

6. Dual-Processing Theory and Research on Unsubstantiated Beliefs

Consistent with DPT, numerous other studies have obtained significant positive correlations between intuitive cognitive style and paranormal belief, often using the REI intuitive–experiential scale and the Revised Paranormal Belief Scale (RPBS) of Tobacyk ( 2004 ) (e.g., Genovese 2005 ; Irwin and Young 2002 ; Lindeman and Aarnio 2006 ; Pennycook et al. 2015 ; Rogers et al. 2018 ; Saher and Lindeman 2005 ). Studies have also found positive correlations between superstitious belief and intuitive cognitive style (e.g., Lindeman and Aarnio 2006 ; Maqsood et al. 2018 ). REI intuitive–experiential thinking style was also positively correlated with belief in complementary and alternative medicine ( Lindeman 2011 ), conspiracy theory belief ( Alper et al. 2020 ), and with endorsement of psychological misconceptions ( Bensley et al. 2014 ; Bensley et al. 2022 ).

Additional evidence for DPT has been found when REI R-A and NFC scores were negatively correlated with scores on measures of unsubstantiated beliefs, but studies correlating them with measures of paranormal belief and conspiracy theory belief have shown mixed results. Supporting a relationship, REI rational–analytic and NFC scores significantly and negatively predicted paranormal belief ( Lobato et al. 2014 ; Pennycook et al. 2012 ). Other studies have also obtained a negative correlation between NFC and paranormal belief ( Lindeman and Aarnio 2006 ; Rogers et al. 2018 ; Stahl and van Prooijen 2018 ), but both Genovese ( 2005 ) and Pennycook et al. ( 2015 ) found that NFC was not significantly correlated with paranormal belief. Swami et al. ( 2014 ) found that although REI R-A scores were negatively correlated with conspiracy theory belief, NFC scores were not.

Researchers often refer to people who are doubtful of paranormal and other unfounded claims as “skeptics” and so have tested whether measures related to skepticism are associated with less endorsement of unsubstantiated claims. They typically view skepticism as a stance towards unsubstantiated claims taken by rational people who reject them, (e.g., Lindeman and Aarnio 2006 ; Stahl and van Prooijen 2018 ), rather than as a disposition inclining a person to think critically about unsubstantiated beliefs ( Bensley 2018 ).

Fasce and Pico ( 2019 ) conducted one of the few studies using a measure related to skeptical disposition, the Critical Thinking Disposition Scale (CTDS) of Sosu ( 2013 ), in relation to endorsement of unsubstantiated claims. They found that scores on the CTDS were negatively correlated with scores on the RPBS but not significantly correlated with either a measure of pseudoscience or of conspiracy theory belief. However, the CRT was negatively correlated with both RPBS and the pseudoscience measure. Because Fasce and Pico ( 2019 ) did not examine correlations with the Reflective Skepticism subscale of the CTDS, its contribution apart from full-scale CTDS was not found.

To more directly test skepticism as a disposition, we recently assessed college students on how well three new measures predicted endorsement of psychological misconceptions, paranormal claims, and conspiracy theories ( Bensley et al. 2022 ). The dispositional measures included a measure of general skeptical attitude; a second measure, the Scientific Skepticism Scale (SSS), which focused more on waiting to accept claims until high-quality scientific evidence supported them; and a third measure, the Cynicism Scale (CS), which focused on doubting the sincerity of the motives of scientists and people in general. We found that although the general skepticism scale did not predict any of the unsubstantiated belief measures, SSS scores were a significant negative predictor of both paranormal belief and conspiracy theory belief. REI R-A scores were a less consistent negative predictor, while REI I-E scores were more consistent positive predictors, and surprisingly CS scores were the most consistent positive predictors of the unsubstantiated beliefs.

Researchers commonly assume that people who accept implausible, unsubstantiated claims are gullible or not sufficiently skeptical. For instance, van Prooijen ( 2019 ) has argued that conspiracy theory believers are more gullible (less skeptical) than non-believers and tend to accept unsubstantiated claims more than less gullible people. van Prooijen ( 2019 ) reviewed several studies supporting the claim that people who are more gullible tend to endorse conspiracy theories more. However, he did not report any studies in which a gullible disposition was directly measured.

Recently, we directly tested the gullibility hypothesis in relation to scientific skepticism ( Bensley et al. 2023 ) using the Gullibility Scale of Teunisse et al. ( 2019 ) on which people skeptical of the paranormal had been shown to have lower scores. We found that Gullibility Scale and the Cynicism Scale scores were positively correlated, and both were significant positive predictors of unsubstantiated beliefs, in general, consistent with an intuitive–experiential cognitive style. In contrast, we found that scores on the Cognitive Reflection Test, the Scientific Skepticism Scale, and the REI rational–analytic scale were all positively intercorrelated and significant negative predictors of unsubstantiated beliefs, in general, consistent with a rational–analytic/reflective cognitive style. Scientific skepticism scores negatively predicted general endorsement of unsubstantiated claims beyond the REI R-A scale, but neither the CTDS nor the CTDS Reflective Skepticism subscale were significant. These results replicated findings from the Bensley et al. ( 2023 ) study and supported an elaborated dual-process model of unsubstantiated belief. The SSS was not only a substantial negative predictor, it was also negatively correlated with the Gullibility Scale, as expected.

These results suggest that both CT-related dispositions and CT skills are related to endorsement of unsubstantiated beliefs. However, a measure of general cognitive ability or intelligence must be examined along with measures of CT and unsubstantiated beliefs to determine if CT goes beyond intelligence to predict unsubstantiated beliefs. In one of the few studies that also included a measure of cognitive ability, Stahl and van Prooijen ( 2018 ) found that dispositional characteristics helped account for acceptance of conspiracies and paranormal belief beyond cognitive ability. Using the Importance of Rationality Scale (IRS), a rational–analytic scale designed to measure skepticism towards unsubstantiated beliefs, Stahl and van Prooijen ( 2018 ) found that the IRS was negatively correlated with paranormal belief and belief in conspiracy theories. In separate hierarchical regressions, cognitive ability was the strongest negative predictor of both paranormal belief and of conspiracy belief, but IRS scores in combination with cognitive ability negatively predicted endorsement of paranormal belief but did not significantly predict conspiracy theory belief. These results provided partial support that that a measure of rational–analytic cognitive style related to skeptical disposition added to the variance accounted for beyond cognitive ability in negatively predicting unsubstantiated belief.

In another study that included a measure of cognitive ability, Cavojova et al. ( 2019 ) examined how CT-related dispositions and the Scientific Reasoning Scale (SRS) were related to a measure of paranormal, pseudoscientific, and conspiracy theory beliefs. The SRS of Drummond and Fischhoff ( 2017 ) likely measures CT skill in that it measures the ability to evaluate scientific research and evidence. As expected, the unsubstantiated belief measure was negatively correlated with the SRS and a cognitive ability measure, similar to Raven’s Progressive Matrices. Unsubstantiated beliefs were positively correlated with dogmatism (the opposite of open-mindedness) but not with REI rational–analytic cognitive style. The SRS was a significant negative predictor of both unsubstantiated belief and susceptibility to bias beyond the contribution of cognitive ability, but neither dogmatism nor analytic thinking were significant predictors. Nevertheless, this study provides some support that a measure related to CT reasoning skill accounts for variance in unsubstantiated belief beyond cognitive ability.

The failure of this study to show a correlation between rational–analytic cognitive style and unsubstantiated beliefs, when some other studies have found significant correlations with it and related measures, has implications for the multidimensional assessment of unsubstantiated beliefs. One implication is that the REI rational–analytic scale may not be a strong predictor of unsubstantiated beliefs. In fact, we have recently found that the Scientific Skepticism Scale was a stronger negative predictor ( Bensley et al. 2022 ; Bensley et al. 2023 ), which also suggests that other measures related to rational–analytic thinking styles should be examined. This could help triangulate the contribution of self-report cognitive style measures to endorsement of unsubstantiated claims, recognizing that the use of self-report measures has a checkered history in psychological research. A second implication is that once again, measures of critical thinking skill and cognitive ability were negative predictors of unsubstantiated belief and so they, too, should be included in future assessments of unsubstantiated beliefs.

7. Discussion

This review provided different lines of evidence supporting the claim that CT goes beyond cognitive ability in accounting for certain real-world outcomes. Participants who think critically reported fewer problems in everyday functioning, not expected to befall critical thinkers. People who endorsed unsubstantiated claims less showed better CT skills, more accurate domain-specific knowledge, less susceptibility to thinking errors and bias, and were more disposed to think critically. More specifically, they tended to be more scientifically skeptical and adopt a more rational–analytic cognitive style. In contrast, those who endorsed them more tended to be more cynical and adopt an intuitive–experiential cognitive style. These characteristics go beyond what standardized intelligence tests test. In some studies, the CT measures accounted for additional variance beyond the variance contributed by general cognitive ability.

That is not to say that measures of general cognitive ability are not useful. As noted by Gottfredson ( 2004 ), “g” is a highly successful predictor of academic and job performance. More is known about g and Gf than about many other psychological constructs. On average, g is closely related to Gf, which is highly correlated with working memory ( r = 0.70) and can be as high as r = 0.77 ( r 2 = 0.60) based on a correlated two-factor model ( Gignac 2014 ). Because modern working memory theory is, itself, a powerful theory ( Chai et al. 2018 ), this lends construct validity to the fluid intelligence construct. Although cognitive scientists have clearly made progress in understanding the executive processes underlying intelligence, they have not yet identified the specific cognitive components of intelligence ( Sternberg 2022 ). Moreover, theorists have acknowledged that intelligence must also include components beyond g, including domain-specific knowledge ( Ackerman 2022 ; Conway and Kovacs 2018 ) which are not yet clearly understood,

This review also pointed to limitations in the research that should be addressed. So far, not only have few studies of unsubstantiated beliefs included measures of intelligence, but they have also often used proxies for intelligence test scores, such as SAT scores. Future studies, besides using more and better measures of intelligence, could benefit from inclusion of more specifically focused measures, such as measures of Gf and Gc. Also, more research should be carried out to develop additional high-quality measures of CT, including ones that assess specific reasoning skills and knowledge relevant to thinking about a subject, which could help resolve perennial questions about the domain-general versus domain-specific nature of intelligence and CT. Overall, the results of this review encourage taking a multidimensional approach to investigating the complex constructs of intelligence, CT, and unsubstantiated belief. Supporting these recommendations were results of studies in which the improvement accrued from explicit CT skill instruction could be more fully understood when CT skills, relevant knowledge, CT dispositions, metacognitive monitoring accuracy, and a proxy for intelligence were used.

8. Conclusions

Critical thinking, broadly conceived, offers ways to understand real-world outcomes of thinking beyond what general cognitive ability can provide and intelligence tests test. A multi-dimensional view of CT which includes specific reasoning and metacognitive skills, CT dispositions, and relevant knowledge can add to our understanding of why some people endorse unsubstantiated claims more than others do, going beyond what intelligence tests test. Although general cognitive ability and domain-general knowledge often contribute to performance on CT tasks, thinking critically about real-world questions also involves applying rules, criteria, and knowledge which are specific to the question under consideration, as well as the appropriate dispositions and cognitive styles for deploying these.

Despite the advantages of taking this multidimensional approach to CT in helping us to more fully understand everyday thinking and irrationality, it presents challenges for researchers and instructors. It implies the need to assess and instruct multidimensionally, including not only measures of reasoning skills but also addressing thinking errors and biases, dispositions, the knowledge relevant to a task, and the accuracy of metacognitive judgments. As noted by Dwyer ( 2023 ), adopting a more complex conceptualization of CT beyond just skills is needed, but it presents challenges for those seeking to improve students’ CT. Nevertheless, the research reviewed suggests that taking this multidimensional approach to CT can enhance our understanding of the endorsement of unsubstantiated claims beyond what standardized intelligence tests contribute. More research is needed to resolve remaining controversies and to develop evidence-based applications of the findings.

Funding Statement

This research received no external funding.

Institutional Review Board Statement

This research involved no new testing of participants and hence did not require Institutional Review Board approval.

Informed Consent Statement

This research involved no new testing of participants and hence did not require an Informed Consent Statement.

Data Availability Statement

Conflicts of interest.

The author declares no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

  • Ackerman Phillip L. Intelligence … Moving beyond the lowest common denominator. American Psychologist. 2022; 78 :283–97. doi: 10.1037/amp0001057. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Alper Sinan, Bayrak Faith, Yilmaz Onurcan. Psychological correlates of COVID-19 conspiracy beliefs and preventive measures: Evidence from Turkey. Current Psychology. 2020; 40 :5708–17. doi: 10.1007/s12144-020-00903-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bensley D. Alan. Critical Thinking in Psychology and Everyday Life: A Guide to Effective Thinking. Worth Publishers; New York: 2018. [ Google Scholar ]
  • Bensley D. Alan. The Critical Thinking in Psychology Assessment Battery (CTPAB) and Test Guide. 2021. Unpublished manuscript. Frostburg State University, Frostburg, MD, USA.
  • Bensley D. Alan. “I can’t believe you believe that”: Identifying unsubstantiated claims. Skeptical Inquirer. 2023; 47 :53–56. [ Google Scholar ]
  • Bensley D. Alan, Spero Rachel A. Improving critical thinking skills and metacognitive monitoring through direct infusion. Thinking Skills and Creativity. 2014; 12 :55–68. doi: 10.1016/j.tsc.2014.02.001. [ CrossRef ] [ Google Scholar ]
  • Bensley D. Alan, Lilienfeld Scott O. Assessment of Unsubstantiated Beliefs. Scholarship of Teaching and Learning in Psychology. 2020; 6 :198–211. doi: 10.1037/stl0000218. [ CrossRef ] [ Google Scholar ]
  • Bensley D. Alan, Masciocchi Christopher M., Rowan Krystal A. A comprehensive assessment of explicit critical thinking instruction on recognition of thinking errors and psychological misconceptions. Scholarship of Teaching and Learning in Psychology. 2021; 7 :107. doi: 10.1037/stl0000188. [ CrossRef ] [ Google Scholar ]
  • Bensley D. Alan, Watkins Cody, Lilienfeld Scott O., Masciocchi Christopher, Murtagh Michael, Rowan Krystal. Skepticism, cynicism, and cognitive style predictors of the generality of unsubstantiated belief. Applied Cognitive Psychology. 2022; 36 :83–99. doi: 10.1002/acp.3900. [ CrossRef ] [ Google Scholar ]
  • Bensley D. Alan, Rodrigo Maria, Bravo Maria, Jocoy Kathleen. Dual-Process Theory and Cognitive Style Predictors of the General Endorsement of Unsubstantiated Claims. 2023. Unpublished manuscript. Frostburg State University, Frostburg, MD, USA.
  • Bensley D. Alan, Lilienfeld Scott O., Powell Lauren. A new measure of psychological. misconceptions: Relations with academic background, critical thinking, and acceptance of paranormal and pseudoscientific claims. Learning and Individual Differences. 2014; 36 :9–18. doi: 10.1016/j.lindif.2014.07.009. [ CrossRef ] [ Google Scholar ]
  • Bierwiaczonek Kinga, Kunst Jonas R., Pich Olivia. Belief in COVID-19 conspiracy theories reduces social distancing over time. Applied Psychology Health and Well-Being. 2020; 12 :1270–85. doi: 10.1111/aphw.12223. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Butler Heather A. Halpern critical thinking assessment predicts real-world outcomes of critical thinking. Applied Cognitive Psychology. 2012; 26 :721–29. doi: 10.1002/acp.2851. [ CrossRef ] [ Google Scholar ]
  • Butler Heather A., Halpern Diane F. Is critical thinking a better model of intelligence? In: Sternberg Robert J., editor. The Nature of Intelligence. Cambridge University Press; Cambridge: 2019. pp. 183–96. [ Google Scholar ]
  • Butler Heather A., Pentoney Christopher, Bong Maebelle P. Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence. Thinking Skills and Creativity. 2017; 25 :38–46. doi: 10.1016/j.tsc.2017.06.005. [ CrossRef ] [ Google Scholar ]
  • Byrnes James P., Dunbar Kevin N. The nature and development of critical-analytic thinking. Educational Research Review. 2014; 26 :477–93. doi: 10.1007/s10648-014-9284-0. [ CrossRef ] [ Google Scholar ]
  • Cacioppo John T., Petty Richard E. The need for cognition. Journal of Personality and Social Psychology. 1982; 42 :116–31. doi: 10.1037/0022-3514.42.1.116. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cacioppo John T., Petty Richard E., Feinstein Jeffrey A., Jarvis W. Blair G. Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological Bulletin. 1996; 119 :197. doi: 10.1037/0033-2909.119.2.197. [ CrossRef ] [ Google Scholar ]
  • Cavojova Vladimira, Srol Jakub, Jurkovic Marek. Why we should think like scientists? Scientific reasoning and susceptibility to epistemically suspect beliefs and cognitive biases. Applied Cognitive Psychology. 2019; 34 :85–95. doi: 10.1002/acp.3595. [ CrossRef ] [ Google Scholar ]
  • Chai Wen Jia, Hamid Abd, Ismafairus Aini, Abdullah Jafri Malin. Working memory from the psychological and neuroscience perspective. Frontiers in Psychology. 2018; 9 :401. doi: 10.3389/fpsyg.2018.00401. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Conway Andrew R., Kovacs Kristof. The nature of the general factor of intelligence. In: Sternberg Robert J., editor. The Nature of Human Intelligence. Cambridge University Press; Cambridge: 2018. pp. 49–63. [ Google Scholar ]
  • Drummond Caitlin, Fischhoff Baruch. Development and validation of the Scientific Reasoning Scale. Journal of Behavioral Decision Making. 2017; 30 :26–38. doi: 10.1002/bdm.1906. [ CrossRef ] [ Google Scholar ]
  • Dwyer Christopher P. Conceptual Perspectives and Practical Guidelines. Cambridge University Press; Cambridge: 2017. [ Google Scholar ]
  • Dwyer Christopher P. An evaluative review of barriers to critical thinking in educational and real-world settings. Journal of Intelligence. 2023; 11 :105. doi: 10.3390/jintelligence11060105. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ennis Robert H. A taxonomy of critical thinking dispositions and abilities. In: Baron Joan, Sternberg Robert., editors. Teaching Thinking Skills: Theory and Practice. W. H. Freeman; New York: 1987. [ Google Scholar ]
  • Epstein Seymour. Intuition from the perspective of cognitive-experiential self-theory. In: Plessner Henning, Betsch Tilmann., editors. Intuition in Judgment and Decision Making. Erlbaum; Washington, DC: 2008. pp. 23–37. [ Google Scholar ]
  • Fasce Angelo, Pico Alfonso. Science as a vaccine: The relation between scientific literacy and unwarranted beliefs. Science & Education. 2019; 28 :109–25. doi: 10.1007/s11191-018-00022-0. [ CrossRef ] [ Google Scholar ]
  • Frederick Shane. Cognitive reflection and decision making. Journal of Economic Perspectives. 2005; 19 :25–42. doi: 10.1257/089533005775196732. [ CrossRef ] [ Google Scholar ]
  • Gardner Howard. Intelligence Reframed: Multiple Intelligence for the 21st Century. Basic Books; New York: 1999. [ Google Scholar ]
  • Genovese Jeremy E. C. Paranormal beliefs, schizotypy, and thinking styles among teachers and future teachers. Personality and Individual Differences. 2005; 39 :93–102. doi: 10.1016/j.paid.2004.12.008. [ CrossRef ] [ Google Scholar ]
  • Gignac Gilles E. Fluid intelligence shares closer to 60% of its variance with working memory capacity and is a better indicator of general intelligence. Intelligence. 2014; 47 :122–33. doi: 10.1016/j.intell.2014.09.004. [ CrossRef ] [ Google Scholar ]
  • Gottfredson Linda S. Life, death, and intelligence. Journal of Cognitive Education and Psychology. 2004; 4 :23–46. doi: 10.1891/194589504787382839. [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F., Dunn Dana. Critical thinking: A model of intelligence for solving real-world problems. Journal of Intelligence. 2021; 9 :22. doi: 10.3390/jintelligence9020022. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F., Butler Heather A. Is critical thinking a better model of intelligence? In: Sternberg Robert J., editor. The Nature of Human Intelligence. Cambridge University Press; Cambridge: 2018. pp. 183–196. [ Google Scholar ]
  • Irwin Harvey J., Young J. M. Intuitive versus reflective processes in the formation of paranormal beliefs. European Journal of Parapsychology. 2002; 17 :45–55. [ Google Scholar ]
  • Jolley Daniel, Paterson Jenny L. Pylons ablaze: Examining the role of 5G COVID-19 conspiracy beliefs and support for violence. British Journal of Social Psychology. 2020; 59 :628–40. doi: 10.1111/bjso.12394. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kahneman Daniel. Thinking Fast and Slow. Farrar, Strauss and Giroux; New York: 2011. [ Google Scholar ]
  • Kowalski Patricia, Taylor Annette J. Ability and critical thinking as predictors of change in students’ psychological misconceptions. Journal of Instructional Psychology. 2004; 31 :297–303. [ Google Scholar ]
  • Ku Kelly Y. L., Ho Irene T. Dispositional Factors predicting Chinese students’ critical thinking performance. Personality and Individual Differences. 2010; 48 :54–58. doi: 10.1016/j.paid.2009.08.015. [ CrossRef ] [ Google Scholar ]
  • Kunda Ziva. The case for motivated reasoning. Psychological Bulletin. 1990; 98 :480–98. doi: 10.1037/0033-2909.108.3.480. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lantian Anthony, Bagneux Virginie, Delouvee Sylvain, Gauvrit Nicolas. Maybe a free thinker but not a critical one: High conspiracy belief is associated with low critical thinking ability. Applied Cognitive Psychology. 2020; 35 :674–84. doi: 10.1002/acp.3790. [ CrossRef ] [ Google Scholar ]
  • Lilienfeld Scott O. Psychological treatments that cause harm. Perspectives on Psychological Science. 2007; 2 :53–70. doi: 10.1111/j.1745-6916.2007.00029.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lindeman Marjaana. Biases in intuitive reasoning and belief in complementary and alternative medicine. Psychology and Health. 2011; 26 :371–82. doi: 10.1080/08870440903440707. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lindeman Marjaana, Aarnio Kia. Paranormal beliefs: Their dimensionality and correlates. European Journal of Personality. 2006; 20 :585–602. [ Google Scholar ]
  • Lobato Emilio J., Mendoza Jorge, Sims Valerie, Chin Matthew. Explaining the relationship between conspiracy theories, paranormal beliefs, and pseudoscience acceptance among a university population. Applied Cognitive Psychology. 2014; 28 :617–25. doi: 10.1002/acp.3042. [ CrossRef ] [ Google Scholar ]
  • Maqsood Alisha, Jamil Farhat, Khalid Ruhi. Thinking styles and belief in superstitions: Moderating role of gender in young adults. Pakistan Journal of Psychological Research. 2018; 33 :335–348. [ Google Scholar ]
  • McCutcheon Lynn E., Apperson Jenneifer M., Hanson Esher, Wynn Vincent. Relationships among critical thinking skills, academic achievement, and misconceptions about psychology. Psychological Reports. 1992; 71 :635–39. doi: 10.2466/pr0.1992.71.2.635. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • McGrew Kevin S. CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence. 2009; 37 :1–10. doi: 10.1016/j.intell.2008.08.004. [ CrossRef ] [ Google Scholar ]
  • Morgan Jonathan. Religion and dual-process cognition: A continuum of styles or distinct types. Religion, Brain, & Behavior. 2016; 6 :112–29. doi: 10.1080/2153599X.2014.966315. [ CrossRef ] [ Google Scholar ]
  • Nie Fanhao, Olson Daniel V. A. Demonic influence: The negative mental health effects of belief in demons. Journal for the Scientific Study of Religion. 2016; 55 :498–515. doi: 10.1111/jssr.12287. [ CrossRef ] [ Google Scholar ]
  • Pacini Rosemary, Epstein Seymour. The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. Journal of Personality and Social Psychology. 1999; 76 :972–87. doi: 10.1037/0022-3514.76.6.972. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patel Niraj, Baker S. Glenn, Scherer Laura D. Evaluating the cognitive reflection test as a measure of intuition/reflection, numeracy, and insight problem solving, and the implications for understanding real-world judgments and beliefs. Journal of Experimental Psychology: General. 2019; 148 :2129–53. doi: 10.1037/xge0000592. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pennycook Gordon, Cheyne James Allen, Barr Nathaniel, Koehler Derek J., Fugelsang Jonathan A. On the reception and detection of pseudo-profound bullshit. Judgment and Decision Making. 2015; 10 :549–63. doi: 10.1017/S1930297500006999. [ CrossRef ] [ Google Scholar ]
  • Pennycook Gordon, Cheyne James Allen, Seti Paul, Koehler Derek J., Fugelsang Jonathan A. Analytic cognitive style predicts religious and paranormal belief. Cognition. 2012; 123 :335–46. doi: 10.1016/j.cognition.2012.03.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ren Xuezhu, Tong Yan, Peng Peng, Wang Tengfei. Critical thinking predicts academic performance beyond cognitive ability: Evidence from adults and children. Intelligence. 2020; 82 :10187. doi: 10.1016/j.intell.2020.101487. [ CrossRef ] [ Google Scholar ]
  • Rogers Paul, Fisk John E., Lowrie Emma. Paranormal belief, thinking style preference and susceptibility to confirmatory conjunction errors. Consciousness and Cognition. 2018; 65 :182–95. doi: 10.1016/j.concog.2018.07.013. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Saher Marieke, Lindeman Marjaana. Alternative medicine: A psychological perspective. Personality and Individual Differences. 2005; 39 :1169–78. doi: 10.1016/j.paid.2005.04.008. [ CrossRef ] [ Google Scholar ]
  • Sosu Edward M. The development and psychometric validation of a Critical Thinking Disposition Scale. Thinking Skills and Creativity. 2013; 9 :107–19. doi: 10.1016/j.tsc.2012.09.002. [ CrossRef ] [ Google Scholar ]
  • Stahl Tomas, van Prooijen Jan-Wilem. Epistemic irrationality: Skepticism toward unfounded beliefs requires sufficient cognitive ability and motivation to be rational. Personality and Individual Differences. 2018; 122 :155–63. doi: 10.1016/j.paid.2017.10.026. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E. What Intelligence Tests Miss: The Psychology of Rational Thought. Yale University Press; New Haven: 2009. [ Google Scholar ]
  • Stanovich Keith E., West Richard F. Reasoning independently of prior belief and individual differences in actively open-minded thinking. Journal of Educational Psychology. 1997; 89 :345–57. doi: 10.1037/0022-0663.89.2.342. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E., West Richard F. Natural myside bias is independent of cognitive ability. Thinking & Reasoning. 2007; 13 :225–47. [ Google Scholar ]
  • Stanovich Keith E., West Richard F. On the failure of cognitive ability to predict myside and one-sided thinking bias. Thinking and Reasoning. 2008; 14 :129–67. doi: 10.1080/13546780701679764. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E., West Richard F., Toplak Maggie E. The Rationality Quotient: Toward a Test of Rational Thinking. The MIT Press; Cambridge, MA: 2018. [ Google Scholar ]
  • Sternberg Robert J. The Triarchic Mind: A New Theory of Intelligence. Penguin Press; London: 1988. [ Google Scholar ]
  • Sternberg Robert J. A theory of adaptive intelligence and its relation to general intelligence. Journal of Intelligence. 2019; 7 :23. doi: 10.3390/jintelligence7040023. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. The search for the elusive basic processes underlying human intelligence: Historical and contemporary perspectives. Journal of Intelligence. 2022; 10 :28. doi: 10.3390/jintelligence10020028. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Swami Viren, Voracek Martin, Stieger Stefan, Tran Ulrich S., Furnham Adrian. Analytic thinking reduces belief in conspiracy theories. Cognition. 2014; 133 :572–85. doi: 10.1016/j.cognition.2014.08.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Teunisse Alessandra K., Case Trevor I., Fitness Julie, Sweller Naomi. I should have known better: Development of a self-report measure of gullibility. Personality and Social Psychology Bulletin. 2019; 46 :408–23. doi: 10.1177/0146167219858641. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tobacyk Jerome J. A revised paranormal belief scale. The International Journal of Transpersonal Studies. 2004; 23 :94–98. doi: 10.24972/ijts.2004.23.1.94. [ CrossRef ] [ Google Scholar ]
  • van der Linden Sander. The conspiracy-effect: Exposure to conspiracy theories (about global warming) leads to decreases pro-social behavior and science acceptance. Personality and Individual Differences. 2015; 87 :173–75. doi: 10.1016/j.paid.2015.07.045. [ CrossRef ] [ Google Scholar ]
  • van Prooijen Jan-Willem. Belief in conspiracy theories: Gullibility or rational skepticism? In: Forgas Joseph P., Baumeister Roy F., editors. The Social Psychology of Gullibility: Fake News, Conspiracy Theories, and Irrational Beliefs. Routledge; London: 2019. pp. 319–32. [ Google Scholar ]
  • Wechsler David. The Measurement of Intelligence. 3rd ed. Williams & Witkins; Baltimore: 1944. [ Google Scholar ]
  • West Richard F., Toplak Maggie E., Stanovich Keith E. Heuristics and biases as measures of critical thinking: Associations with cognitive ability and thinking dispositions. Journal of Educational Psychology. 2008; 100 :930–41. doi: 10.1037/a0012842. [ CrossRef ] [ Google Scholar ]

Critical thinking definition

critical thinking is sparked by

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - Logical Fallacies

Critical thinking and decision-making  -, logical fallacies, critical thinking and decision-making logical fallacies.

GCFLearnFree Logo

Critical Thinking and Decision-Making: Logical Fallacies

Lesson 7: logical fallacies.

/en/problem-solving-and-decision-making/how-critical-thinking-can-change-the-game/content/

Logical fallacies

If you think about it, vegetables are bad for you. I mean, after all, the dinosaurs ate plants, and look at what happened to them...

illustration of a dinosaur eating leaves while a meteor falls in the background

Let's pause for a moment: That argument was pretty ridiculous. And that's because it contained a logical fallacy .

A logical fallacy is any kind of error in reasoning that renders an argument invalid . They can involve distorting or manipulating facts, drawing false conclusions, or distracting you from the issue at hand. In theory, it seems like they'd be pretty easy to spot, but this isn't always the case.

Watch the video below to learn more about logical fallacies.

Sometimes logical fallacies are intentionally used to try and win a debate. In these cases, they're often presented by the speaker with a certain level of confidence . And in doing so, they're more persuasive : If they sound like they know what they're talking about, we're more likely to believe them, even if their stance doesn't make complete logical sense.

illustration of a politician saying, "I know for a fact..."

False cause

One common logical fallacy is the false cause . This is when someone incorrectly identifies the cause of something. In my argument above, I stated that dinosaurs became extinct because they ate vegetables. While these two things did happen, a diet of vegetables was not the cause of their extinction.

illustration showing that extinction was not caused by some dinosaurs being vegetarians

Maybe you've heard false cause more commonly represented by the phrase "correlation does not equal causation ", meaning that just because two things occurred around the same time, it doesn't necessarily mean that one caused the other.

A straw man is when someone takes an argument and misrepresents it so that it's easier to attack . For example, let's say Callie is advocating that sporks should be the new standard for silverware because they're more efficient. Madeline responds that she's shocked Callie would want to outlaw spoons and forks, and put millions out of work at the fork and spoon factories.

illustration of Maddie accusing Callie of wanting to outlaw spoons and forks

A straw man is frequently used in politics in an effort to discredit another politician's views on a particular issue.

Begging the question

Begging the question is a type of circular argument where someone includes the conclusion as a part of their reasoning. For example, George says, “Ghosts exist because I saw a ghost in my closet!"

illustration of George claiming that ghosts exists and him seeing one in his closet

George concluded that “ghosts exist”. His premise also assumed that ghosts exist. Rather than assuming that ghosts exist from the outset, George should have used evidence and reasoning to try and prove that they exist.

illustration of George using math and reasoning to try and prove that ghosts exist

Since George assumed that ghosts exist, he was less likely to see other explanations for what he saw. Maybe the ghost was nothing more than a mop!

illustration of a splitscreen showing a ghost in a closet on the left, and that same closet with a mop in it on the right

False dilemma

The false dilemma (or false dichotomy) is a logical fallacy where a situation is presented as being an either/or option when, in reality, there are more possible options available than just the chosen two. Here's an example: Rebecca rings the doorbell but Ethan doesn't answer. She then thinks, "Oh, Ethan must not be home."

illustration showing the false dilemma of either Ethan being home or his home being empty

Rebecca posits that either Ethan answers the door or he isn't home. In reality, he could be sleeping, doing some work in the backyard, or taking a shower.

illustration of Ethan sleeping, doing yard work, and taking a shower

Most logical fallacies can be spotted by thinking critically . Make sure to ask questions: Is logic at work here or is it simply rhetoric? Does their "proof" actually lead to the conclusion they're proposing? By applying critical thinking, you'll be able to detect logical fallacies in the world around you and prevent yourself from using them as well.

previous

Groupthink: Definition, Signs, Examples, and How to Avoid It

Derek Schaedig

Outreach Specialist

B.A., Psychology, Harvard University

Derek Schaedig, who holds a B.A. in Psychology from Harvard University, is a mental health advocate. His lived experience with mental illness has been showcased in various podcasts and articles. He currently serves as a part-time outreach specialist for the Mental Health Foundation of West Michigan.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

Groupthink refers to the tendency for certain types of groups to reach decisions that are extreme and which tend to be unwise or unrealistic

Groupthink occurs when individuals in cohesive groups fail to consider alternative perspectives because they are motivated to reach a consensus which typically results in making less-than-desirable decisions.

For example, group members may ignore or discount information that is inconsistent with their chosen decision and express strong disapproval against any group member who might disagree.

3 stick figures all having the same thought - shared thought bubble with 'groupthink' inside it.

Janis (1971, 1982) popularized the term groupthink; however, he did not originate the concept. That is generally accredited to George Orwell as he describes the psychological phenomenon as “crimethink” or “doublethink” in his famous dystopian novel titled 1984 (Orwell, 1949).

Janis described groupthink early on as “the mode of thinking that persons engage in when concurrence seeking becomes so dominant in a cohesive ingroup that it tends to override realistic appraisal of alternative courses of action” (1972, p. 9).

Groupthink typically connotes a negative effect. In fact, Janis described it originally in his book published in 1972 titled Victims of Groupthink: A psychological study of foreign-policy decisions and fiascoes as “a deterioration of mental efficiency, reality testing, and moral judgment that results from in-group pressures” (Janis, 1972, p. 9).

Lack of diversity in groups : Groups that have members who are very similar to one another can be a cause of groupthink. With a lack of diverse perspectives, the group fails to consider outside perspectives.

Furthermore, these group embers may engage in more negative attitudes towards outgroup members, which can exacerbate groupthink.

Lack of impartial leadership : Groups with particularly powerful leaders who fail to seriously consider perspectives other than their own are prone to groupthink as well.

These leaders can overpower group members’ opinions that oppose their own ideas.

Stress : Placing a decision-making group under stress in scenarios such as one where there are moral dilemmas can increase the chances of groupthink occurring.

These groups may try to reach a consensus irrationally.

Time constraints : Related to stress, placing time constraints on a decision being made can increase the amount of anxiety, also leading to groupthink.

Highly cohesive groups : Groups that are particularly close-knit typically display more groupthink symptoms than groups that are not.

Lack of outside perspectives : Only considering the perspectives of in-group members can lead to groupthink as well.

Motivation to maintain group members’ self-esteem : If group members are motivated to maintain each other’s self-esteem, they may not raise their voices against the group consensus.

In Janis’s first book, he cited eight symptoms of groupthink to look out for in order to avoid the phenomena from occurring (Janis, 1972).

Invulnerability : When groups begin to believe their decisions and actions are untouchable or that the group is invincible, they ignore warnings or signs of danger that run contrary to their consensus.

Rationale : Groups that engage in groupthink rationalize their decisions even in the face of obvious warning signs or negative feedback that they receive.

This is typically thought to be the case because if the group took into further consideration these pushbacks, the group members’ egos, as well as the time needed to make the decision, may be harmed.

Morality : Groups may also believe that their group is inherently morally correct, and they may therefore ignore potential moral or ethical consequences of their decision.

Stereotypes : People or groups that oppose the group engaging in groupthink may be rendered enemies as well. This results in mislabeling the enemy group as “stupid” or “weak” when they may not be.

Pressure : Groups may directly pressure members of the group who contradict the policy advocated by the group.

This forces them to not be able to push back against any arguments being made. This can leave groups prone to making irrational decisions.

Self-censorship : Members of groups can sometimes censor themselves too.

These individuals may hold off on raising an opinion contrary to the group consensus or convince themselves their opposing viewpoint is unimportant for fear of judgment from the group.

Unanimity : Sometimes, the false assumption can be made that if everyone in the group is silent, then everyone must agree with what is being put forth.

Mindguards : This term refers to when members of the group appoint themselves as protectors of the leader or other important group members.

Mindguards dismiss information that contradicts popular opinion or about past decisions to maintain group self-esteem.

Consequences

Poor decisions : Potentially, the largest overall impact groupthink can have on decision-making groups is that they are more prone to making poor decisions.

The effects of groupthink can be especially harmful in the military, medical, and political courses of action.

Self-censorship :  Individuals within the group affected by groupthink may not be as effective as possible when helping make decisions because they may hold back their potentially helpful opinions if they run contrary to the group’s popular opinion.

Inefficient problem solving : Because groups who experience the effects of groupthink fail to consider alternative perspectives, they can sometimes fail to consider ways to solve problems that deviate from their original plan of action.

This can lead to inefficiencies in the group’s problem-solving capabilities.

Harmful stereotypes can develop : Groups may begin to believe that their group is inherently morally right.

They, therefore, consider themselves the “in-group” and label others as outsiders or the “out-group,” which can become harmful to those on the outside as irrational thoughts about them begin to develop.

Lack of creativity : Because members of these groups may self-censor themselves or have pressure put on them by the group to conform, a lack of creativity may result due to the group not encouraging different ideas than the norm.

Blindness to negative outcomes : Since groups affected by groupthink can sometimes believe they are inherently correct, they may be unable to see the potentially negative outcomes of their decisions.

They, therefore, will not be able to plan accordingly if a negative outcome occurs.

Lack of preparation to manage negative outcomes : Because these groups can be overconfident in their decisions, they are more likely to be ill-prepared if their plan does not succeed.

Inability to see other solutions : Groupthink can lead to the group failing to consider other opinions or ideas. This leads to the group viewing only the group consensus as the correct solution.

Obedience to authority without question : Members of the group are more likely to follow their leaders blindly, never raising their opinion against whether the actions the group agrees on are moral or the correct course of action.

Can Groupthink Ever be a Good Thing?

Groupthink is generally considered a negative phenomenon.

Groups generally can benefit from hearing a diverse set of perspectives and information, and failing to do so can result in suboptimal decisions being made.

However, it is true that groups who engage in groupthink can make decisions quickly (although they may not be the best decision possible).

Also, anxiety can be reduced in the group because the group believes their decisions cannot be flawed. Groups who suffer from groupthink view themselves as untouchable (Janis, 1972).

Furthermore, groups rationalize the decision they made, whether it was the best option or not, and therefore convince themselves that the risks they are assuming are not as great as they truly are.

Lastly, the group may also believe that they are inherently morally right, which helps the members of the group cease to feel shame or guilt.

Overall though, groups should take precautions to avoid groupthink as much as possible.

Real-Life Scenarios

The social and political consequences of groupthink may be far-reaching, and history has many examples of major blunders that have been the result of decisions reached in this way.

Many case scenarios have been analyzed, such as the Invasion of Iraq (Badie, 2010), the attempt to rescue the American prisoners in the Vietnam War in the Son Tay raid (Amidon, 2005), and fraudulent behavior at WorldCom (Scharff, 2005) among many other flawed decisions cited for failing due to groupthink.

However, the original real-life scenarios of groupthink discussed by Janis were the escalation of the Vietnam War, the Bay of Bigs Scandal, and the bombing of Pearl Harbor.

The Vietnam War

Elected United States (U.S.) government officials during Vietnam showed signs of invulnerability (Janis, 1972).

The U.S. suffered multiple failures and setbacks, but they continued with their war efforts ignoring the danger and warning signs because they believed they would win no matter what.

Furthermore, the U.S. leaders rationalized their escalated bombing campaigns ignoring the negative feedback that they continuously received.

The U.S. also viewed their decisions as inherently morally right. President Johnson considered the same four factors every Tuesday: the military advantage of the U.S., the risk to American aircraft and pilots, the danger of forcing other countries into the fighting, and the danger of heavy civilian causalities. By engaging in this ritualization, they failed to effectively consider the morality of their decisions.

President Lyndon B. Johnson’s domino theory was an example of stereotyping as well. By viewing the enemy and its surrounding countries as too incompetent to make their own correct decisions, the U.S. administration made decisions that escalated the war.

Reportedly, Johnson once pressured former White House Press Secretary Bill Moyers to stop pushing back against the U.S. bombing campaign. Once, when Moyers entered a meeting, Johnson said of Moyers, “Well, here comes Mr. Stop-the-bombings.”

Bay of Pigs

President John F. Kennedy’s administration suffered from the illusion of invulnerability as well. Despite the plans to invade the Bay of Pigs leaking out, Kennedy’s administration proceeded with the plans ignoring the negative warning signs (Janis, 1972).

Historian Arthur J. Schlesinger expressed his strong objections against the war to both President Kennedy and Secretary of State Dean Rusk individually, but when it came to the group discussions on the decision to invade or not, Schlesinger stayed quiet.

He fell prey to believing that the ingroup was inherently moral, so Janis argued and kept his qualms quiet.

Another symptom of groupthink that Kennedy and his group experienced was stereotyping (Janis, 1972). Kennedy and his team made three assumptions about the capabilities of Fidel Castro’s administration that proved to be incorrect.

Kennedy’s administration assumed that Castro’s forces were so weak that a small group of U.S. troops could establish a beachhead at the Bay of Pigs. Secondly, the U.S. administration thought that just a fleet of B-26s could knock out Castro’s entire air force. The third assumption was that Castro was not smart enough to stop any internal uprisings.

Kennedy and his team were wrong in all three assumptions because they negatively stereotyped the enemy and made faulty assumptions.

Many members of the group self-censored as well. It seemed as if there was a unanimous decision within the ingroup to continue with the Bay of Pigs invasion, but Rusk failed to voice his contrary opinion even when three government officials outside of the group expressed their concerns.

Pearl Harbor

Despite warning signs, the U.S. government failed to prepare for the attack on Pearl Harbor because they were subject to the illusion of invulnerability (Janis, 1972). They believed they were invincible against any attacks from the Japanese.

The U.S. leaders also rationalized that the Japanese would never dare to attack the U.S. because that would be an act of war, and the U.S. believed they would win and that their opponent viewed this the same.

This stereotype and failure to view the situation from the enemy’s point of view led to the poor decision to not adequately prepare for the bombing of Pearl Harbor.

Opposition to the Theory

Despite a lot of support for the theory over the years, it has received some pushback as well. Sally Fuller and Ramon Aldag argue that being in a cohesive group has been proven to be effective (Aldag & Fuller, 1993; Fuller S.R. & Aldag R.J., 1998).

They also argue that Janis’s theory is not empirically supported and can be inconsistent.  Robert Baron reflects on the many years of research conducted on groupthink and concludes that the body of evidence has largely failed to support the theory (Baron, 2005).

There has been a large body of experimental research conducted on groupthink, especially in the years directly following the introduction of the theory. Notably, one study found mixed support for the theory (Flowers, 1977).

Aligning with the groupthink theory, the groups in the study with directive leaders came up with fewer solutions, shared less information, and utilized fewer facts about the case before making a decision.

On the other hand, the more surprising finding was that the more cohesive groups did not perform worse than the less cohesive ones.

Opposing the group cohesion aspect of the groupthink theory as well, John Courtright found that group cohesion had no effect on a number of factors, including creativity, feasibility, significance, competence, and a number of possible solutions (Courtright, 1978).

Another set of researchers found similar results when it comes to group cohesion (Fodor & Smith, 1982).

Furthermore, both Callaway and Esser reported that both group cohesion and whether or not groups were told to consider all of the possible alternatives or given no instruction had no effect on task performance (Callaway & Esser, 1984).

However, despite the opposition, many researchers have advocated for the theory in their work as well, and groupthink is widely cited today (Hensley & Griffin, 1986; Tetlock, 1979).

Also, many scholars have adjusted the theory to address the opposition’s findings, including the ubiquity model (Baron, 2005), the general group problem-solving model (GGPS) (Aldag & Fuller, 1993), and the sociocognitive theory (Tsoukalas, 2007) to name a few.

How to Avoid Groupthink

To avoid groupthink, leaders and group members alike can take a variety of steps to help prevent the phenomenon from occurring. Some potential solutions are below.

Leaders or impactful group members should create a safe space for discussion. They should be open to opposition to the group consensus, accept criticism, and encourage new ideas regardless of a person’s status within the organization (Janis, 1972, 1982).

Key members of the group and leaders should hold back their opinions initially to reduce their influence over the group consensus.

Outside groups could be set up to work on the same problem to compare potential solutions.

If setting up an entire outside group is not feasible, the ingroup should discuss its ideas with experts outside of the group.

Another way to reduce groupthink is by having a “devil’s advocate” or someone who raises ideas contrary to the ones presented despite their own opinion to help produce debates, create new ideas, or help determine the strength of an existing idea.

Considering the opposing groups’ points of view is key as well.

Groups can be split up into smaller subgroups and asked to create their own possible solutions. These groups can then be reconvened to discuss the various options collectively.

After the group has reached a preliminary decision, the group could hold another meeting which gives group members one more chance to raise opposition to the consensus.

When possible, allow as much time as possible to make a decision.

Educating groups about the groupthink phenomenon can be helpful as well.

Lastly, it’s important to have a diverse set of group members in order to have different perspectives, which can help reach a more balanced, optimal conclusion.

Learning check

Which statement about groupthink is correct?
  • Groupthink always occurs in small groups.
  • Groupthink helps to maintain peace and avoid conflict within the group.
  • Groupthink is a phenomenon where the desire for group consensus leads to the suppression of dissenting viewpoints.
  • Groupthink tends to maximize the effectiveness of a team’s performance.

Answer : The correct statement is 3. Groupthink is a phenomenon where the desire for group consensus leads to the suppression of dissenting viewpoints.

Derek’s team is struggling to come to a consensus because several people are unwilling to share their thoughts. What would be the best question for the group to ask themselves to avoid groupthink?

Answer : “Are we creating an environment where everyone feels safe to express their honest opinions and concerns without fear of judgment or backlash?” This encourages open dialogue and reduces the risk of groupthink.

What is groupthink in psychology?

Groupthink in psychology is a phenomenon where the desire for group consensus and harmony leads to poor decision-making.

Members suppress dissenting viewpoints, ignore external views, and may take irrational actions that devalue independent critical thinking.

What causes groupthink?

Groupthink is often caused by group pressure, strong directive leadership, high group cohesion, and isolation from outside opinions.

It is also more likely in stressful situations where decision-making becomes rushed and critical evaluation is minimized.

What are the common results of groupthink?

Common groupthink results include poor decision-making, lack of creativity, ignored alternatives, suppressed dissent, and potentially irrational actions.

It may also lead to overlooking risks, not considering all possible outcomes, and failing to re-evaluate initially rejected options.

Further Information

Lunenburg FC. Group decision making: The potential for groupthink. International Journal of Management, Business, and Administration. 2010;13(1).

Bang, D., & Frith, C. D. (2017). Making better decisions in groups. Royal Society open science, 4(8), 170193.

Rose, J. D. (2011). Diverse perspectives on the groupthink theory–a literary review. Emerging Leadership Journeys, 4(1), 37-57.

Aldag, R. J., & Fuller, S. R. (1993). Beyond Fiasco: A Reappraisal of the Groupthink Phenomenon and a New Model of Group Decision Processes. Psychological Bulletin, 113 (3), 533–552. https://doi.org/10.1037/0033-2909.113.3.533

Amidon, M. (2005). Groupthink, politics, and the decision to attempt the Son Tay rescue. Parameters (Carlisle, Pa.), 35(3), 119.

Badie, D. (2010). Groupthink, Iraq, and the War on Terror: Explaining US Policy Shift toward Iraq: Groupthink, Iraq, and the War on Terror. Foreign Policy Analysis, 6 (4), 277–296. https://doi.org/10.1111/j.1743-8594.2010.00113.x

Baron, R. S. (2005). So Right It’s Wrong: Groupthink and the Ubiquitous Nature of Polarized Group Decision Making. In Advances in Experimental Social Psychology (Vol. 37, pp. 219–253). Academic Press. https://doi.org/10.1016/S0065-2601(05)37004-3

Callaway, M. R., & Esser, J. K. (1984). Groupthink: Effects of Cohesiveness and Problem-Solving Procedures on Group Decision Making. Social Behavior & Personality: An International Journal, 12 (2), 157–164. https://doi.org/10.2224/sbp.1984.12.2.157

Courtright, J. A. (1978). A laboratory investigation of groupthink. Communication Monographs, 45 (3), 229–246. https://doi.org/10.1080/03637757809375968

Flowers, M. L. (1977). A laboratory test of some implications of Janis’s groupthink hypothesis. Journal of Personality and Social Psychology, 35(12), 888–896. https://doi.org/10.1037//0022-3514.35.12.888

Fodor, E. M., & Smith, T. (1982). The power motive as an influence on group decision making. Journal of Personality and Social Psychology, 42 (1), 178–185. https://doi.org/10.1037/0022-3514.42.1.178

Fuller S.R. & Aldag R.J. (1998). Organizational Tonypandy: Lessons from a Quarter Century of the Groupthink Phenomenon. Organizational Behavior and Human Decision Processes, 73 (23), 163–184.

Hensley, T. R., & Griffin, G. W. (1986). Victims of Groupthink: The Kent State University Board of Trustees and the 1977 Gymnasium Controversy. Journal of Conflict Resolution, 30 (3), 497–531. https://doi.org/10.1177/0022002786030003006

Janis, I. (1971, November). Groupthink. Psychology Today, 84–89.

Janis, I. (1972). Victims of groupthink: A psychological study of foreign-policy decisions and fiascoes (pp. viii, 277). Houghton Mifflin.

Janis, I. (1982). Groupthink: Psychological studies of policy decisions and fiascoes (2nd ed.). Houghton Mifflin. https://espace.library.uq.edu.au/view/UQ:734003

Orwell, G. (1949). 1984. Signet Classic.

Raven, B. H. (1998). Groupthink, Bay of Pigs, and Watergate reconsidered: Theoretical perspectives on groupthink: a twenty-fifth anniversary appraisal. Organizational Behavior and Human Decision Processes, 73 (2–3), 352–361.

Scharff, M. M. (2005). WorldCom: A Failure of Moral and Ethical Values. The Journal of Applied Management and Entrepreneurship, 10(3), 35-.

Tetlock, P. E. (1979). Identifying victims of groupthink from public statements of decision makers. Journal of Personality and Social Psychology, 37 (8), 1314–1324. https://doi.org/10.1037/0022-3514.37.8.1314

Tsoukalas, I. (2007). Exploring the Microfoundations of Group Consciousness. Culture & Psychology, 13 (1), 39–81. https://doi.org/10.1177/1354067X07073650

Print Friendly, PDF & Email

Related Articles

Hard Determinism: Philosophy & Examples (Does Free Will Exist?)

Social Science

Hard Determinism: Philosophy & Examples (Does Free Will Exist?)

Functions of Attitude Theory

Functions of Attitude Theory

Understanding Conformity: Normative vs. Informational Social Influence

Understanding Conformity: Normative vs. Informational Social Influence

Social Control Theory of Crime

Social Control Theory of Crime

Emotional Labor: Definition, Examples, Types, and Consequences

Emotions , Mood , Social Science

Emotional Labor: Definition, Examples, Types, and Consequences

Solomon Asch Conformity Line Experiment Study

Famous Experiments , Social Science

Solomon Asch Conformity Line Experiment Study

Covering the business and politics of space

China’s ‘worst-case thinking’ could spark space crisis, study finds

critical thinking is sparked by

  • Click to share on X (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to share on Clipboard (Opens in new window)

critical thinking is sparked by

The report, titled “China’s Growing Risk Tolerance in Space,” was written by RAND Project Air Force, a division of the company that serves as the Department of the Air Force’s federally funded research and development center for studies and analyses. 

  • Chinese leaders harbor deep suspicions of the United States, viewing it as a dominant but declining power likely to lash out against rising powers like China. This has led to inflated perceptions of U.S. threats and a policy approach that resists cooperation with the United States to prevent unintended crisis escalation.
  • The PLA views crisis communications mechanisms as tools for leverage rather than genuine efforts to prevent conflict. Chinese leaders tend to interpret U.S.-led efforts to establish such mechanisms as attempts to control China’s behavior, making them reluctant to engage in these efforts.
  • While a “space hotline” was established in 2015, there are no indications that China would be inclined to use it during a crisis.

Sandra Erwin

Sandra Erwin writes about military space programs, policy, technology and the industry that supports this sector. She has covered the military, the Pentagon, Congress and the defense industry for nearly two decades as editor of NDIA’s National Defense... More by Sandra Erwin

critical thinking is sparked by

Sign up for a SpaceNews newsletter

Get top stories, military space news and more delivered to your inbox.

Africa Brief: Africa’s Critical Mineral Race Heats Up

Create an FP account to save articles to read later.

ALREADY AN FP SUBSCRIBER? LOGIN

World Brief

  • Editors’ Picks
  • Africa Brief

China Brief

  • Latin America Brief

South Asia Brief

Situation report.

  • Flash Points
  • War in Ukraine
  • Israel and Hamas
  • U.S.-China competition
  • U.S. election 2024
  • Biden's foreign policy
  • Trade and economics
  • Artificial intelligence
  • Asia & the Pacific
  • Middle East & Africa

The Biden-Trump Presidential Debate

How to defend europe, ones and tooze, foreign policy live.

Spring 2024 magazine cover image

Spring 2024 Issue

Print Archive

FP Analytics

  • In-depth Special Reports
  • Issue Briefs
  • Power Maps and Interactive Microsites
  • FP Simulations & PeaceGames
  • Graphics Database

The Future of Cancer Care

Fp at nato’s 75th summit, nato in a new era, fp security forum, fp @ unga79.

By submitting your email, you agree to the Privacy Policy and Terms of Use and to receive email correspondence from us. You may opt out at any time.

Your guide to the most important world stories of the day

critical thinking is sparked by

Essential analysis of the stories shaping geopolitics on the continent

critical thinking is sparked by

The latest news, analysis, and data from the country each week

Weekly update on what’s driving U.S. national security policy

Evening roundup with our editors’ favorite stories of the day

critical thinking is sparked by

One-stop digest of politics, economics, and culture

critical thinking is sparked by

Weekly update on developments in India and its neighbors

A curated selection of our very best long reads

Africa’s Critical Mineral Race Heats Up

Competing railway corridors pit the united states against china; kenya faces a violent crackdown on tax protests..

  • Science and Technology
  • United States
  • Nosmot Gbadamosi

Welcome to Foreign Policy ’s Africa Brief.

The highlights this week: Protests in Kenya turn violent, Ghana reaches a debt deal, and Namibia decriminalizes homosexuality.

If you would like to receive Africa Brief in your inbox every Wednesday, please sign up  here .

Can the Lobito Corridor Counter China in Africa?

The U.S. government is helping to revive a railway line linking critical mineral mines in Zambia and the Democratic Republic of the Congo to the port of Lobito in Angola. The corridor is a key to the Biden administration’s plan to counter China in Africa . (Chinese companies have made extensive infrastructure investments in all three countries.)

The end goal of the Lobito Corridor is to create an efficient route for exporting critical minerals to the European Union and the United States. Last week, Italy announced a $320 million investment in the project as part of Prime Minister Giorgia Meloni’s bid for African resource access, named the Mattei Plan for Africa . A consortium of European companies—Mota-Engil, Vecturis, and Singapore-based Swiss commodity trader Trafigura—have won a 30-year concession from the three African nations to operate the railway.

The United States has committed $250 million , mostly in concessionary loans from the Development Finance Corporation and the Export-Import Bank. Other major funders include the African Development Bank ( $500 million ) and Africa Finance Corporation. The Lobito project is ultimately expected to cost $2.3 billion.

Congo is the world’s largest producer of cobalt, accounting for about 70 percent of production globally. Congo and Zambia are Africa’s main copper producers; meanwhile, Angola has 36 of the 51 minerals that are critical to green energy technologies. Belgium and Portugal built the original rail line between 1902 and 1929, but it collapsed following a civil war and Angola’s 1975 independence from Portugal.

However, once the roughly 800-mile line is built, it could still be accessed by Beijing’s state mining companies for export. So far, only the Canadian firm Ivanhoe Mines has committed to using the railway.

Meanwhile, China has proposed rebuilding and running a rival railway, the Tazara line—which is 300 miles shorter than the Lobito Corridor—as a faster way to transport critical minerals from Congo and Zambia. Tazara, first built by Chinese leader Mao Zedong’s government in the 1970s, runs from Zambia to the Indian Ocean port of Dar es Salaam in Tanzania and is just one part of China’s infrastructure investments in Africa over the past four decades.

“The reality of the Lobito Corridor development is that it may be coming too late in the day … since most of the supply has already been locked in by China,” wrote Evans Wala Chabala, a policy consultant and former chief executive of the Securities and Exchange Commission of Zambia.

Congo, which sells most of its raw minerals to China for processing, hopes that the Lobito Corridor will also draw investments in a battery precursor plant that could cost just one-third of an equivalent plant in China or the United States.

However, Kinshasa is contending with ongoing violence in the eastern region of the country as well as a lack of specialized workers; the most likely candidates to risk such a project would be Chinese operators. Experts believe that Chinese mine operators would be able to use the corridor for export.

“With the EU and the US lagging in terms of EV [electric vehicle] technology, it is very likely that the DRC and Zambia will end up looking to the East for the capacity and capability building of EV battery value chains,” Wala Chabala noted.

“Just compare the number of essential EV players in China to that of the United States. Whereas only a handful of B-level companies meet Tesla’s dominance in the United States, China has powerhouses in BYD, Geely, XPeng, Nio, Chery, and others” Jorge Guajardo wrote in Foreign Policy .

Some analysts argue that the Lobito corridor is little more than a minerals extraction project, and that the United States needs to look beyond that to outmaneuver China. “Washington’s attempt to borrow a page from Beijing’s book could prove to be a day late and a dollar short at a time when the nature of the relationship between Beijing and African capitals is changing,” wrote Chris O. Ògúnmọ́dẹdé, an analyst studying African politics.

Beijing is attempting to build local value-added chains. Zimbabwe, Namibia, and Nigeria, in which Chinese companies have a monopoly, have restricted the export of raw lithium in favor of processing it locally in Chinese built refineries. To be fair, Washington has also pledged along with China to help Zambia add value to raw minerals and create jobs in EV battery manufacturing.

Yet “one of Beijing’s considerable advantages over its rivals is its ability to get the private and public sectors to align with its geopolitical and strategic objectives,” wrote Christian Géraud Neema Byamungu, an expert on China-Africa relations.

Success hinges on whether the U.S. government and EU leaders can convince private companies to compete against state-owned Chinese companies that face little regulation and accountability.

The Week Ahead

Tuesday, June 25, to Thursday, June 27: A global event to discuss investment in vaccine manufacturing in Africa will be held in Nairobi.

Thursday, June 27: The U.N. Security Council discusses its mission in the Central African Republic and sanctions on the Democratic Republic of the Congo, which are due to expire on June 29.

Friday, June 28: A Security Council report is due on possible support to a regional force in Congo.

Saturday, June 29: Presidential elections are held in Mauritania.

Saturday, June 29, to Sunday, June 30: Egypt-EU Investment Conference held in Cairo.

What We’re Watching  

Kenya’s anti-tax protests. At least five people have been shot dead and 200 others injured after a nationwide strike on Tuesday turned violent when protesters stormed the Kenyan parliament in Nairobi, setting fire to parts of the building. The country’s army was deployed by the evening, and more than 50 people were arrested, with live ammunition used against some protesters. Auma Obama, a Kenyan activist and the half sister of former U.S. President Barack Obama, was among those who were tear-gassed, CNN reported.

Earlier that day, lawmakers had passed an amended finance bill with wide-ranging tax increases. Demonstrators want the bill scrapped. President William Ruto’s reforms include hiked wage taxes, a social health tax, and higher levies on imports. Kenyans have nicknamed him “ Zakayo ” after the biblical tax collector Zacchaeus. Amnesty International said prior to the planned marches that at least 12 people with links to the protests have been “abducted” in recent days.

U.S. military conference in Botswana. The U.S.-led Africa Chiefs of Defense Conference was held in Africa for the first time this week when Botswana co-hosted the meeting. The conference brings together defense leaders from around a dozen African nations including Niger’s top military chief, Brig. Gen. Moussa Salaou Barmou at a time when the United States has been asked to withdraw from Niger and is losing political influence across the Sahel. Marine Corps Gen. Michael Langley, the commander of U.S. Africa Command, said the movement of equipment and personnel out of Niger would be completed by Sept. 15. Washington is seeking an alternative military base in West African coastal nations such as Benin, Ghana, and Ivory Coast.

Rwanda election rally stampede. One person died and dozens were injured on Sunday during a stampede at a campaign rally for incumbent President Paul Kagame, Rwanda’s state-run broadcaster reported. The crush happened in Rubavu district in the country’s western region, near the border with Congo. Kagame’s Rwandan Patriotic Front-Inkotanyi party said it was “deeply saddened” by the death.

Rwandans head to the polls on July 15 in an election that Kagame is widely expected to win, giving him a fourth term and continuing his nearly 25 years in office. Only two candidates have been cleared to run against Kagame, and both won less than 1 percent of the votes in the last election; all other candidates have been barred.

Niger revokes French uranium license. Niger, the world’s seventh-largest uranium supplier, has withdrawn the permit for French company Orano to operate a large mine in the country. Operations at the Imouraren mine, located in the northern region, restarted on June 4 after a pause in 2015 following a crash in uranium prices. However, Niger’s mining ministry wrote to Orano in a letter dated June 20 that the company’s plan “did not meet our expectations.”

Orano has been operating in Niger for more than 50 years, and the mine has one of the largest uranium deposits in the world, with reserves estimated at 200,000 tons. But relations have soured between military governments in the Sahel and former colonial power France, which analysts say could mark the end of Françafrique —a policy of preferential benefits for France that often go against African countries’ national interests. In a statement, Orano said it was “willing to keep all channels of communication open” but reserves “the right to challenge the decision” in a national or international court.

Ghana’s strikes debt deal. Ghana on Monday reached an agreement in principle with private creditors to restructure $13 billion worth of foreign bond debt. Bondholders will forgo about $4.7 billion of their claims, accepting losses of 37 percent on their holdings. Ghana agreed a $3 billion International Monetary Fund bailout in 2022 , and hardship experienced under IMF terms will be a core issue for voters when Ghanaians head to the polls in presidential elections in December. Incumbent President Nana Akufo-Addo is stepping down when his term ends, respecting the country’s two-term limit.

This Week in Law

Namibia LGBT ruling. Namibia has decriminalized homosexuality. In a landmark judgment, Namibia’s high court ruled that laws banning sex between men were unconstitutional. The case was brought by Friedel Dausab, a gay Namibian man who argued the laws infringed on citizens’ fundamental rights and freedoms. “Because of this decision, I no longer feel like a criminal on the run in my own country simply because of who I am,” he told French news agency AFP. There are no laws in Namibia banning sex between women; however, same-sex couples are still unable to marry . A same-sex union is only recognized if they wed abroad and one member is not a Namibian citizen . Although around 20 African nations have legalized homosexuality, neighboring South Africa is the only African country to allow same-sex couples to marry and adopt children.

Chart of the Week

Fewer than 1 in 4 (23 percent) of workers globally are “engaged” and enthusiastic on the job, according to Gallup’s latest State of the Global Workplace report, which estimates that low employee engagement costs the global economy $8. 8 trillion , or 9 percent of global GDP. Engagement levels in Africa fall below the global average, at 20 percent, yet above that of Europe and South Asia at just 13 percent. As the chart below shows, bulking the trend is Africa’s largest economy, South Africa.

FP’s Most Read This Week

  • NATO’s New Leader Was Planning This the Whole Time by Caroline de Gruyter
  • What a War Between Israel and Hezbollah Might Look Like by Amy Mackinnon
  • What the United States Can Learn From China by Stephen M. Walt

What We’re Reading

Embracing risqué literature. In New Lines Magazine , Ahmed Mahjoub writes that classical Arabic literature courses taught in North Africa often exclude its rich history of discussions on sex, alcohol, drugs, and politics. “Classical Arabic writers enjoyed a level of freedom that feels alien in today’s Arab world,” Mahjoub writes. “Self-proclaimed moral authorities exhibit a profound fear of anything perceived as Western or culturally incongruous. However, the reality is that the themes explored in these works are not foreign imports.”

Kenya’s green roofs. Fast urbanization across Africa’s major economies has led cities from Cairo to Johannesburg to Lagos to build rooftop meadows. Leading the pack is Nairobi, writes Gitonga Njeru in African Arguments . So far, there are nearly 200 green roofs in Kenya’s capital—growing by about 12 percent a year but this cannot replace ground level biodiversity Njeru writes. “Nairobi’s diminishing natural habitats has contributed to a growing urban heat island effect and greater vulnerability to rapid flooding as seen in the recent devastating torrential rains.”

U.S. Apathy Paved the Way for China in Africa

Despite a strong foothold during the Cold War, Washington has since fumbled on the continent.

Washington Wants to Revive a Critical Minerals Mega-Railway Through Africa

The move comes straight out of China’s Belt-and-Road playbook.

Beijing Tightens Its Grip on the Critical Minerals Sector

The West has taken steps to slash its dependence on China, but it still commands supply chains—for now.

Nosmot Gbadamosi is a multimedia journalist and the writer of Foreign Policy ’s weekly Africa Brief. She has reported on human rights, the environment, and sustainable development from across the African continent. Twitter:  @nosmotg

Join the Conversation

Commenting on this and other recent articles is just one benefit of a Foreign Policy subscription.

Already a subscriber? Log In .

Subscribe Subscribe

View Comments

Join the conversation on this and other recent Foreign Policy articles when you subscribe now.

Not your account? Log out

Please follow our comment guidelines , stay on topic, and be civil, courteous, and respectful of others’ beliefs.

Change your username:

I agree to abide by FP’s comment guidelines . (Required)

Confirm your username to get started.

The default username below has been generated using the first name and last initial on your FP subscriber account. Usernames may be updated at any time and must not contain inappropriate or offensive language.

Newsletters

Sign up for Editors' Picks

A curated selection of fp’s must-read stories..

You’re on the list! More ways to stay updated on global news:

Recent Coverage

Kenya’s ruto concedes to protesters’ demands over finance bill, washington fails to ‘read the room’ in kenya, the empty promise of africa’s oil and gas boom, how africa’s war on disinformation can save democracies everywhere, editors’ picks.

  • 1 Trump’s Return Would Transform Europe
  • 2 The Man Leading Israel’s Not-So-Quiet Annexation of the West Bank
  • 3 Washington Fails to ‘Read the Room’ in Kenya
  • 4 A New Era of Financial Warfare Has Begun
  • 5 NATO’s New Leader Was Planning This the Whole Time
  • 6 What the United States Can Learn From China

Kenya's Ruto Concedes to Protesters' Demands to Scrap Finance Bill

Pakistan unveils counterterrorism plan, with an eye to china ties, indian temples use facial recognition to screen visitors, biden administration invests big in lithium mining to boost u.s. energy security, kenya protests: u.s. partner ruto faces political turmoil, more from foreign policy, nato’s new leader was planning this the whole time.

Mark Rutte, a workaholic obsessed with routine, is about to take over the West’s military alliance.

What the United States Can Learn From China

Amid China’s rise, Americans should ask what Beijing is doing right—and what they’re doing wrong.

What a War Between Israel and Hezbollah Might Look Like

The Lebanese armed group is trained and equipped much better than Hamas.

The Hidden Critique of U.S. Foreign Policy in ‘Red Dawn’

Forty years ago, Hollywood released a hit movie with a surprisingly subversive message.

Trump’s Return Would Transform Europe

Biden and trump’s debate could make foreign-policy history, the man leading israel’s not-so-quiet annexation of the west bank, pakistan unveils new counterterrorism plan, indian temples are scanning visitors’ faces, washington wants a white gold rush.

Sign up for World Brief

FP’s flagship evening newsletter guiding you through the most important world stories of the day, written by Alexandra Sharp . Delivered weekdays.

share this!

June 18, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Enhancing children's understanding, critical thinking and creativity through collaborative designing of AI apps

by University of Eastern Finland

school children

Children and young people's understanding of artificial intelligence and AI technologies improved when the basics of AI were taught in school through hands-on activities supported by new educational technology, a recent study among more than 200 Finnish 4th and 7th graders shows.

The study explored how children's understanding and explanations of AI evolved as they engaged in collaborative designing of AI apps and explored the impact and ethics of AI. The work is published in Informatics in Education and New Media & Society .

AI technologies are an integral part of our daily lives, even if we don't notice their existence. For instance, AI algorithms give us recommendations of news, music and movies that we might like, and they target personalized advertising to us. However, many schools are falling short when it comes to teaching children about where AI is used, how it works and what its impacts are.

Led by the University of Eastern Finland and involving three other universities and various other partners, the Generation AI project strives to respond to this challenge by developing research-based pedagogical models, educational technologies and curriculum materials for AI education. Spring 2023 saw the first round of AI education organized in schools in Joensuu, Finland, which also formed the basis for research.

Children were introduced to the basics of AI in three workshops. Researchers studied how children explained algorithmic bias and how these explanations evolved during the workshops. The findings show that children's data-driven explanations of the causes of algorithmic bias developed significantly during the workshops.

"Our findings suggest that the workshops enhanced children's conceptual understanding of artificial intelligence and of the ethical aspects associated with it. The workshops also taught them to critically evaluate AI technologies," Senior Researcher Henriikka Vartiainen of the University of Eastern Finland notes.

According to her, the findings highlight the importance of pedagogically sound AI education in schools, facilitated by educational technologies and curriculum activities that foster children's agency, understanding and ethical awareness in the age of AI.

"The workshops utilized concrete examples from children's everyday lives. During the first workshops, children brainstormed and created their own AI apps with the support of our new educational technology , designed for novice learners," Postdoctoral Researcher Juho Kahila of the University of Eastern Finland says.

"Using the learning tool, children made an image classifier-based app of their own by following the data-driven design workflow, and they also tested those created by others. This enhanced children's understanding of how artificial intelligence works."

The third and final workshop focused on the societal and ethical implications of artificial intelligence. For instance, children created images with generative AI, searched for algorithmic biases in them and engaged in critical reflections and discussions of societal and ethical implications of AI.

"Connecting artificial intelligence with children's daily lives and giving them the opportunity to co-design and create AI apps together with classmates made learning from and with AI meaningful and exciting for children ," Kahila notes.

Henriikka Vartiainen et al, Enhancing children's understanding of algorithmic biases in and with text-to-image generative AI, New Media & Society (2024). DOI: 10.1177/14614448241252820

Journal information: New Media & Society

Provided by University of Eastern Finland

Explore further

Feedback to editors

critical thinking is sparked by

Early childhood problems linked to persistent school absenteeism

critical thinking is sparked by

Researchers find genetic stability in a long-term Panamanian hybrid zone of manakins

3 hours ago

critical thinking is sparked by

Detective work enables Perseverance Mars rover team to revive SHERLOC instrument

critical thinking is sparked by

NASA's Juno probe gets a close-up look at lava lakes on Jupiter's moon Io

critical thinking is sparked by

Simple new process stores carbon dioxide in concrete without compromising strength

critical thinking is sparked by

Surprising phosphate finding in NASA's OSIRIS-REx asteroid sample

4 hours ago

critical thinking is sparked by

First case of Down syndrome in Neanderthals documented in new study

critical thinking is sparked by

Understanding quantum states: New research shows importance of precise topography in solid neon qubits

critical thinking is sparked by

New study reveals comet airburst evidence from 12,800 years ago

5 hours ago

critical thinking is sparked by

Time-compression in electron microscopy: Terahertz light controls and characterizes electrons in space and time

6 hours ago

Relevant PhysicsForums posts

How is physics taught without calculus.

Jun 25, 2024

Is "College Algebra" really just high school "Algebra II"?

Jun 16, 2024

UK School Physics Exam from 1967

May 27, 2024

Physics education is 60 years out of date

May 16, 2024

Plagiarism & ChatGPT: Is Cheating with AI the New Normal?

May 13, 2024

Physics Instructor Minimum Education to Teach Community College

May 11, 2024

More from STEM Educators and Teaching

Related Stories

critical thinking is sparked by

Children may overestimate smart speakers' abilities

Mar 21, 2024

critical thinking is sparked by

Pediatrician explains how AI may affect children

May 24, 2024

critical thinking is sparked by

Billions are spent on educational technology, but we don't know if it works

critical thinking is sparked by

Emergency remote teaching during COVID-19 lockdown brought families closer together, introduced challenges

Jan 10, 2023

critical thinking is sparked by

Safe-guarding an ethical future for AI in education

Mar 28, 2024

critical thinking is sparked by

Top-rated educational math apps may not be best for children's learning

May 30, 2022

Recommended for you

critical thinking is sparked by

AI-generated exam submissions evade detection at UK university

critical thinking is sparked by

AI predicts upper secondary education dropout as early as the end of primary school

critical thinking is sparked by

Study reveals complex dynamics of philanthropic funding for US science

Jun 10, 2024

critical thinking is sparked by

First-generation medical students face unique challenges and need more targeted support, say researchers

critical thinking is sparked by

Investigation reveals varied impact of preschool programs on long-term school success

May 2, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

NTSB reveals cause of 2023 toxic train crash in East Palestine, Ohio

The derailment prompted the evacuation of more than 2,000 residents.

Federal investigators confirmed Tuesday that a hot railcar wheel bearing sparked a fire and caused the massive derailment of a Norfolk Southern train carrying tank cars with hazardous materials in East Palestine, Ohio, in 2023. Investigators said a series of missteps, faulty track sensors and delayed communications about the train's toxic cargo from the railroad company contributed to the disaster.

In its final report on the Feb. 3, 2023, crash , the National Transportation Safety Board concluded that the crash which caused the evacuation of more than 2,000 residents and endangered the lives of first responders could have been avoided.

"Today we present our findings mindful of the challenges faced by those affected. We are here to ensure that the lessons learned from this derailment will lead to meaningful change so no other community has to relive the challenges faced by the people of East Palestine," Mike Graham, an NTSB board member, said Tuesday during a public hearing in East Palestine.

Jennifer Homendy, chair of the NTSB, opened the hearing by apologizing on behalf of her agency to the residents of East Palestine, saying some outside the NTSB sought to minimize the toxic threat caused by the crash because no one was killed or injured.

PHOTO: This video screenshot released by the U.S. National Transportation Safety Board (NTSB) shows the site of a derailed freight train in East Palestine, Ohio that ocurres on Feb. 3, 2023.

"The absence of a fatality or injury does not mean the presence of safety," Homendy said.

Researchers estimate that 110 million residents in 16 states, or one-third of the nation's population, were impacted by pollution, according to a study published in the Environmental Research Letters.

The findings released Tuesday confirmed and expanded on findings in the preliminary investigative report the NTSB released about three weeks after the crash.

Officials said the train comprised three locomotives and 149 freight rail cars, including 17 tank cars loaded with hazardous materials. The crash caused 38 rail cars to derail, officials said.

Eleven of the derailed cars were tank cars carrying flammable and combustible material, including vinyl chloride chloroethene.

"Post-accident inspections revealed that about 25% of the cars had federal defective conditions," NTSB investigator Ruben Payan said while giving a summary of the agency's investigative findings.

The investigation focused on the wheel bearing of rail car 23 that caught fire and caused the axle to fall off and derail the train in East Palestine around 8:54 p.m. local time, resulting in an explosion and fire, Payan said.

The crash occurred as the train was en route from Madison, Illinois, to the Conway Yard in Pennsylvania.

Before the crash, the train's rail cars were inspected in Toledo, Ohio, and again in Decatur, Illinois, and no obvious defects were detected, Payan said.

He said investigators reviewed video taken from security cameras of private homes and businesses along the route from Decatur to East Palestine and saw the wheel bearing of car 23 initially glowing from being overheated to being in flames as the train approached East Palestine.

PHOTO: This photo taken with a drone shows the continuing cleanup of portions of a Norfolk Southern freight train that derailed in East Palestine, Ohio, Feb. 9, 2023.

NTSB investigators said the train tracks are equipped with sensors to detect dangerously overheated bearings and trigger critical alarms to the crew.

As the train passed through Salem, Ohio, about 17 miles from East Palestine, an alarm was triggered and alerted a Norfolk back office analyst, who deemed it non-critical because the trackside sensor only showed car 23's wheel bearing at 103 degrees, the NTSB investigation found. Investigators said the sensor did not properly detect the true temperature of the overheated bearing and that Norfolk Southern's policies don't call for a train to be stopped and inspected until the hot bearing reaches at least 115 degrees.

As the train approached East Palestine, critical alarms sounded on the train indicating that the overheated bearing had reached 253 degrees, prompting the train operator to apply the brakes in an attempt to stop the train, which was traveling at 42 mph, NTSB investigators said. By then, investigators said it was too late to avoid the derailment.

MORE: Whistleblower claims EPA wasted critical time after devastating Ohio train derailment

The NTSB also found that when East Palestine police and firefighters arrived on the scene at around 9 p.m. the incident commander called the Norfolk Southern center in Atlanta to ask what hazardous materials were in the derailed tank cars. The person who picked up the phone said they would check but did not get back to the incident commander, NTSB officials said.

Fire crews attempting to extinguish the fire with water didn't learn of the specific hazardous materials on the train until 10 p.m.

MORE: Norfolk Southern agrees to $600 million settlement in East Palestine train derailment

About 2,000 residents in the vicinity of the crash were initially ordered to shelter in place, NTSB officials said. But around 11 p.m., fire officials, who learned some of the derailed tankers contained vinyl chloride chloroethene, ordered the residents to evacuate. Around midnight, volunteer firefighters stopped batting the blaze, retreated to a safe distance and moved the command center back, according to the NTSB.

NTSB also found it was unnecessary for Norfolk Southern to recommend firefighters perform what was described as a "vent and burn" procedure on the tank cars containing vinyl chloride, sending a toxic plume of smoke into the air and causing further potential health hazards.

MORE: Why the toxins from the Ohio train derailment could have posed deadly threats for residents nearby

The NTSB made several recommendations to prevent similar incidents, including ways to advance the speed of communication between Norfolk Southern and first responders and establishing standards for how railroads should respond to bearing failure alarms. The agency, whose recommendations are not binding, also suggested that the Federal Railroad Administration establish rules governing railroad responses to the alarms.

In addition, the agency recommended establishing a database to report hot wheel-bearing incidents.

The agency also recommended that volunteer firefighters receive training on how to handle emergencies involving hazardous materials.

"We will continue to pursue and advocate for these safety recommendations until each one is implemented," Graham said.

In April, Norfolk Southern agreed to a $600 million settlement to resolve a class action lawsuit stemming from the train derailment. The settlement was approved by a judge in May.

"The agreement is designed to provide finality and flexibility for settlement class members," the company said in a statement at the time. "Individuals and businesses will be able to use compensation from the settlement in any manner they see fit to address potential adverse impacts from the derailment. This could include healthcare needs and medical monitoring, property restoration and diminution, and compensation for any net business loss."

On Tuesday, the company issued a new statement saying it has implemented measures to address the Federal Railroad Administration's recommendation from its 2023 Safety Culture Assessment.

Some of the recommendations Norfolk Southern addressed are similar to those of the NTSB, including approving communications, training, trust and "going above and beyond" regulatory minimums.

"We appreciate the strong partnership with FRA on advancing safety and are grateful for its thorough assessment of our culture and their thoughtful recommendations, all of which serve as building blocks to our goal of becoming the gold standard for safety in the industry," said Alan H. Shaw, president and CEO of Norfolk Southern.

Related Topics

  • Ohio Train Derailment

Trending Reader Picks

critical thinking is sparked by

Family sues over 'unlawful' taking of their kids

  • Jun 25, 4:22 PM

critical thinking is sparked by

Detroit bans gas stations from locking people in

  • Jun 25, 4:33 PM

critical thinking is sparked by

Shares of Nvidia have plummeted. Here's why.

  • Jun 25, 12:50 PM

critical thinking is sparked by

5 killed, 1 hurt in shootings at 2 apartments

  • Jun 25, 4:01 PM

critical thinking is sparked by

US docs warned as dengue cases ramp up worldwide

  • Jun 25, 2:53 PM

ABC News Live

24/7 coverage of breaking news and live events

IMAGES

  1. How to Improve Critical Thinking

    critical thinking is sparked by

  2. Critical Thinking Skills Chart

    critical thinking is sparked by

  3. why is Importance of Critical Thinking Skills in Education

    critical thinking is sparked by

  4. 6 Main Types of Critical Thinking Skills (With Examples)

    critical thinking is sparked by

  5. How You Can Improve Your Critical Thinking Skills

    critical thinking is sparked by

  6. Critical Thinking strategies for students and teachers

    critical thinking is sparked by

COMMENTS

  1. Critical Thinking Definition, Skills, and Examples

    Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings. Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful ...

  2. Critical Thinking: Definition, Examples, & Skills

    The exact definition of critical thinking is still debated among scholars. It has been defined in many different ways including the following: . "purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or ...

  3. IBE

    Defining critical thinking. Critical thinking is a mental process 11 like creative thinking, intuition, and emotional reasoning, all of which are important to the psychological life of an individual 10. It pertains to a family of forms of higher order thinking, including problem-solving, creative thinking, and decision-making 15.

  4. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  5. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. ... Brown Spark. Kenyon, Tim, and Guillaume Beaulac, 2014, "Critical Thinking Education and Debasing", Informal Logic ...

  6. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind; thus, a critical thinker is a person who practices the ...

  7. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  8. Critical thinking

    Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy, and persistence. Although there is a generally accepted set of qualities that are associated with critical ...

  9. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  10. How to Learn Critical Thinking

    Learn Specific Strategies. Be aware of your thinking. Explain to students the need to think about how they think. This is the art of introspection, focused on being aware of such things as one's ...

  11. Critical Thinking Is About Asking Better Questions

    Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep ...

  12. a guide to creative and critical thinking

    The open step goes on to outline some of the critical thinking processes that tie into the definitions we've seen. These critical thinking skills include: Analysing and weighing up arguments. Evaluating evidence that has been presented. Distinguishing between fact and opinion.

  13. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  14. 10 Elements Of Critical Thinking

    What Comprises Critical Thinking. 1. Open-mindedness. Malcolm Forbes postulated, "The role of education is to replace an empty mind with an open one.". Critical thinking needs receptivity to ...

  15. Integrating Critical Thinking Into the Classroom (Opinion)

    There are vast ways to spark critical thinking in the classroom. Here are a few other ideas: Critical Expressionism: In this expanded response to reading from a critical stance, students are ...

  16. Critical Thinking and the Urgency Trap

    The good news? Critical thinking is a teachable skill, and one that any person can learn to make time for when making decisions. To improve and devote time for critical thinking at work, consider the following best practices. 1. Question assumptions and biases. Consider this common scenario: A team is discussing a decision that they must make ...

  17. Employers rate it, universities teach it, but what is critical thinking

    In 2006, a major reportby a consortium of more than 400 US employers ranked "critical thinking" as the most desirable skill in new employees. It was ranked higher than skills in "innovation" and "application of information technology". Surprisingly, 92.1% regarded critical thinking as important, but 69.6% of employers regarded ...

  18. Critical Thinking Skills for Kids (& How to Teach Them)

    Debates. This is one of those classic critical thinking activities that really prepares kids for the real world. Assign a topic (or let them choose one). Then give kids time to do some research to find good sources that support their point of view. Finally, let the debate begin!

  19. Is technology producing a decline in critical thinking and analysis

    January 27, 2009. As technology has played a bigger role in our lives, our skills in critical thinking and analysis have declined, while our visual skills have improved, according to research by Patricia Greenfield, UCLA distinguished professor of psychology and director of the Children's Digital Media Center, Los Angeles. Learners have changed ...

  20. A Short Guide to Building Your Team's Critical Thinking Skills

    Summary. Most employers lack an effective way to objectively assess critical thinking skills and most managers don't know how to provide specific instruction to team members in need of becoming ...

  21. 19 Short Stories and Questions For Critical Thinking

    Table of Contents. 19 Short Stories and Questions - Suggestions for Teaching Them. 1. "The Most Dangerous Game". 2. "An Occurrence at Owl Creek Bridge". 3. "The Masque of the Red Death". 4.

  22. Critical Thinking, Intelligence, and Unsubstantiated Beliefs: An

    Critical thinking questions are often situated in real-world examples or in simulations of them which are designed to detect thinking errors and bias. As described in Halpern and Butler ( 2018 ), an item like one on the "Halpern Critical Thinking Assessment" (HCTA) provides respondents with a mock newspaper story about research showing that ...

  23. 11 Activities That Promote Critical Thinking In The Class

    6. Start a Debate. In this activity, the teacher can act as a facilitator and spark an interesting conversation in the class on any given topic. Give a small introductory speech on an open-ended topic. The topic can be related to current affairs, technological development or a new discovery in the field of science.

  24. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  25. Critical Thinking and Decision-Making: Logical Fallacies

    Maybe you've heard false cause more commonly represented by the phrase "correlation does not equal causation", meaning that just because two things occurred around the same time, it doesn't necessarily mean that one caused the other.. Straw man. A straw man is when someone takes an argument and misrepresents it so that it's easier to attack.For example, let's say Callie is advocating that ...

  26. What Is Groupthink In Psychology? Definition & Examples

    Groupthink occurs when individuals within a group prioritize harmony and conformity over critical thinking, leading to a suppression of dissenting opinions and potential flawed decision-making. ... Groupthink is often caused by group pressure, strong directive leadership, high group cohesion, and isolation from outside opinions. ...

  27. China's 'worst-case thinking' could spark space crisis, study finds

    RAND's analysis highlights a pattern of "worst-case thinking" in PLA scholarship, which often exaggerates the threat posed by U.S. space capabilities, increasing the risk of further ...

  28. Africa's Critical Minerals Spark U.S.-China Competition Over Railway

    Congo and Zambia are Africa's main copper producers; meanwhile, Angola has 36 of the 51 minerals that are critical to green energy technologies. Belgium and Portugal built the original rail line ...

  29. Enhancing children's understanding, critical thinking and creativity

    Children and young people's understanding of artificial intelligence and AI technologies improved when the basics of AI were taught in school through hands-on activities supported by new ...

  30. NTSB reveals cause of 2023 toxic train crash in East Palestine, Ohio

    The investigation focused on the wheel bearing of rail car 23 that caught fire and caused the axle to fall off and derail the train in East Palestine around 8:54 p.m. local time, resulting in an ...