Database Search

What is Database Search?

Harvard Library licenses hundreds of online databases, giving you access to academic and news articles, books, journals, primary sources, streaming media, and much more.

The contents of these databases are only partially included in HOLLIS. To make sure you're really seeing everything, you need to search in multiple places. Use Database Search to identify and connect to the best databases for your topic.

In addition to digital content, you will find specialized search engines used in specific scholarly domains.

Related Services & Tools

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Nih clinical research trials and you, finding a clinical trial, around the nation and worldwide.

Three-dimensional world map in blue on a white background.

NIH conducts clinical research trials for many diseases and conditions, including cancer , Alzheimer’s disease , allergy and infectious diseases , and neurological disorders . To search for other diseases and conditions, you can visit ClinicalTrials.gov.

ClinicalTrials.gov [ How to Use Search ] This is a searchable registry and results database of federally and privately supported clinical trials conducted in the United States and around the world. ClinicalTrials.gov gives you information about a trial's purpose, who may participate, locations, and phone numbers for more details. This information should be used in conjunction with advice from health care professionals.

Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read the disclaimer on ClinicalTrials.gov for details.

Before participating in a study, talk to your health care provider and learn about the risks and potential benefits.

At the NIH Clinical Center in Bethesda, Maryland

Front entrance of the Mark O. Hatfield Clinical Research Center.

Search NIH Clinical Research Studies The NIH maintains an online database of clinical research studies taking place at its Clinical Center, which is located on the NIH campus in Bethesda, Maryland. Studies are conducted by most of the institutes and centers across the NIH. The Clinical Center hosts a wide range of studies from rare diseases to chronic health conditions, as well as studies for healthy volunteers. Visitors can search by diagnosis, sign, symptom or other key words.

Join a National Registry of Research Volunteers

ResearchMatch logo

ResearchMatch This is an NIH-funded initiative to connect 1) people who are trying to find research studies, and 2) researchers seeking people to participate in their studies. It is a free, secure registry to make it easier for the public to volunteer and to become involved in clinical research studies that contribute to improved health in the future.

This page last reviewed on November 6, 2018

Connect with Us

  • More Social Media from NIH
  • Department of Health and Human Services
  • National Institutes of Health

database research study

COVID-19 Research Studies

More information, about clinical center, clinical trials and you, participate in a study, referring a patient, about clinical research.

Research participants are partners in discovery at the NIH Clinical Center, the largest research hospital in America. Clinical research is medical research involving people The Clinical Center provides hope through pioneering clinical research to improve human health. We rapidly translate scientific observations and laboratory discoveries into new ways to diagnose, treat and prevent disease. More than 500,000 people from around the world have participated in clinical research since the hospital opened in 1953. We do not charge patients for participation and treatment in clinical studies at NIH. In certain emergency circumstances, you may qualify for help with travel and other expenses Read more , to see if clinical studies are for you.

Medical Information Disclaimer

Emailed inquires/requests.

Email sent to the National Institutes of Health Clinical Center may be forwarded to appropriate NIH or outside experts for response. We do not collect your name and e-mail address for any purpose other than to respond to your query. Nevertheless, email is not necessarily secure against interception. This statement applies to NIH Clinical Center Studies website. For additional inquiries regarding studies at the National Institutes of Health, please call the Office of Patient Recruitment at 1-800-411-1222

database research study

Find NIH Clinical Center Trials

The National Institutes of Health (NIH) Clinical Center Search the Studies site is a registry of publicly supported clinical studies conducted mostly in Bethesda, MD.

database research study

Study record managers: refer to the Data Element Definitions if submitting registration or results information.

Search for terms

Key Characteristics of Database Studies on Drug Effectiveness in the Postmarketing Stage: A Systematic Review

  • Systematic Review
  • Published: 01 November 2021
  • Volume 35 , pages 327–338, ( 2021 )

Cite this article

database research study

  • Chihaya Shiragasawa 1 &
  • Mamoru Narukawa 1  

203 Accesses

Explore all metrics

In recent years, real-world data (RWD) have been actively used in the field of pharmaceutical research. Database (DB) study, one of the observational studies using RWD, is a comprehensive, continuous, and rapid research method that plays an important role in the postmarketing stage of drugs, although the interpretation of the results may be limited. DB studies are often focused on drug safety, and previous research reviewing DB studies on drug effectiveness across different disease areas have been limited.

The objective of this review was to reveal the current status of DB studies on drug effectiveness in various therapeutic areas and to provide information that allows researchers to consider conducting appropriate DB studies on drug effectiveness in the postmarketing stage.

For this systematic review, we searched Embase and MEDLINE for DB studies on drug effectiveness published between 1 January 2018 and 31 December 2019. We reviewed the title, abstract, and methods to identify studies on drug effectiveness using medical information DBs, and excluded non-medical studies, studies on non-drug, and studies on drug safety, actual use, or cost outcomes that did not include any effectiveness outcomes. The name and type of the DB (administrative claims DB, clinical DB, pharmacy DB, and DB linkage), study design, comparison group, type of outcome, and presence or absence of reference to the outcome definition were extracted and summarized according to disease areas.

We obtained 225 articles on DB studies on drug effectiveness using DBs that integrate large-scale medical data for secondary use across different disease areas. Among the DB classifications, administrative claims DBs (70%, 158/225) were most commonly used, while pharmacy DBs were used in only three studies. The largest number of reported studies were associated with cardiovascular, respiratory, and infectious diseases. Outcomes were often inpatient diagnosis, and some ideas included defining effectiveness based on drug use. While various outcomes were uniformly used in studies for the treatment of infectious diseases and respiratory organs, death (overall survival [OS]) and drug continuation (progression-free survival [PFS]) in patients with cancer, laboratory values in the endocrine system (mainly diabetes) were used as the main outcomes. Outcome validation within the article was limited. New user design (32%, 73/225), propensity score analysis (58%, 131/225), and sensitivity analysis (40%, 90/225) were used as measures to reduce bias in these studies. Sixty-eight studies (30%, 68/225) were supported by pharmaceutical companies.

Conclusions

This systematic review summarized the status of cross-disease research articles on DB studies on drug effectiveness. While considering the strengths and limitations of DB studies, we hope that our comprehensive results would help to promote appropriate DB studies on drug effectiveness in the postmarketing stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

database research study

Similar content being viewed by others

database research study

Special FDA designations for drug development: orphan, fast track, accelerated approval, priority review, and breakthrough therapy

Daniel Tobias Michaeli, Thomas Michaeli, … Julia Caroline Michaeli

database research study

How Much Does It Cost to Research and Develop a New Drug? A Systematic Review and Assessment

Michael Schlander, Karla Hernandez-Villafuerte, … Michael Baumann

database research study

Ibuprofen Safety at the Golden Anniversary: Are all NSAIDs the Same? A Narrative Review

Giustino Varrassi, Joseph V. Pergolizzi, … Antonella Paladini

US FDA. Food and drug administration work plan and proposed funding allocations of FDA innovation account—required by section 1002 of the 21st Century Cures Act 6 (Public Law 114-225). 2017. https://www.fda.gov/files/Proposed-FDA-Work-Plan-for-21st-Century-Cures-Act-Innovation-Account-Activities-as-Submitted-to-Science-Board.pdf . Accessed 25 Sept 2021.

US FDA. Best practices for conducting and reporting pharmacoepidemiologic safety studies using electronic healthcare data. 2013. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/best-practices-conducting-and-reporting-pharmacoepidemiologic-safety-studies-using-electronic . Accessed 25 Sept 2021.

European Medicines Agency. Guideline on good pharmacovigilance practices(GVP): Module VIII-Post-authorisation safety studies (Rev 3). 2017. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-viii-post-authorisation-safety-studies-rev-3_en.pdf . Accessed 25 Sept 2021.

Pharmaceuticals and Medical Devices Agency. Guidelines for conducting drug epidemiology research in evaluating drug safety using medical information databases [in Japanese]. 2014. https://www.pmda.go.jp/safety/surveillance-analysis/0032.html . Accessed 25 Sept 2021.

European Medicines Agency. Scientific Guidance on Post-authorisation Efficacy Studies. 2016. https://www.ema.europa.eu/en/documents/scientific-guideline/scientific-guidance-post-authorisation-efficacy-studies-first-version_en.pdf . Accessed 26 Sept 2021.

The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) guide on methodological standards in pharmacoepidemiology (Revision 9). 2010. http://www.encepp.eu/standards_and_guidances/documents/1.ENCePPMethodsGuideRev.9.pdf . Accessed 25 Sept 2021

Berger ML, Sox H, Willke RJ, Brixner DL, Eichler HG, Goettsch W, et al. Good practices for real-world data studies of treatment and/or comparative effectiveness: recommendations from the joint ISPOR-ISPE Special Task Force on real-world evidence in health care decision making. Pharmacoepidemiol Drug Saf. 2017;26(9):1033–9.

Article   Google Scholar  

Weycker D, Li X, Wygant GD, Lee T, Hamilton M, Luo X, et al. Effectiveness and safety of apixaban versus warfarin as outpatient treatment of venous thromboembolism in US Clinical Practice. Thromb Haemost. 2018;118(11):1951–61.

Li X, Keshishian A, Hamilton M, Horblyuk R, Gupta K, Luo X, et al. Apixaban 5 and 2.5 mg twice-daily versus warfarin for stroke prevention in nonvalvular atrial fibrillation patients: comparative effectiveness and safety evaluated using a propensity-score-matched approach. PLoS ONE. 2018;13(1):191722.

Google Scholar  

Ito Y, Van Schyndle J, Nishimura T, Sugitani T, Kimura T. Real-world effectiveness of sodium glucose co-transporter-2 inhibitors in Japanese patients with diabetes mellitus. Diabetes Ther. 2019;10(6):2219–31.

Article   CAS   Google Scholar  

Ho JC, Hsieh ML, Chuang PH, Hsieh VC. Cost-Effectiveness of sorafenib monotherapy and selected combination therapy with sorafenib in patients with advanced hepatocellular carcinoma. Value Health Reg Issues. 2018;15:120–6.

Nakamura K. Diagnosis procedure combination database would develop nationwide clinical research in Japan. Circ J. 2016;80(11):2289–90.

Enomoto M, Endo A, Yatsushige H, Fushimi K, Otomo Y. Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke. 2019;50(3):652–8.

Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data resource profile: clinical practice research datalink (CPRD). Int J Epidemiol. 2015;44(3):827–36.

Duggan MA, Anderson WF, Altekruse S, Penberthy L, Sherman ME. The surveillance, epidemiology, and end results (SEER) program and pathology: toward strengthening the critical relationship. Am J Surg Pathol. 2016;40(12):e94–102.

Introducing MDV Database: Medical Data Vision Co., Ltd. https://www.mdv.co.jp/solution/pharmaceutical/english/ . Accessed 25 Sept 2021.

Introducing JMDC Database: JMDC Inc. https://www.jmdc.co.jp/en/jmdc-claims-database/ . Accessed 25 Sept 2021.

Machado MAÁ, Moura CS, Guerra SF, Curtis JR, Abrahamowicz M, Bernatsky S. Effectiveness and safety of tofacitinib in rheumatoid arthritis: a cohort study. Arthritis Res Ther. 2018;20(1):60. https://doi.org/10.1186/s13075-018-1539-6 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Zielen S, Devillier P, Heinrich J, Richter H, Wahn U. Sublingual immunotherapy provides long-term relief in allergic rhinitis and reduces the risk of asthma: a retrospective, real-world database analysis. Allergy. 2018;73(1):165–77.

Pharmaceuticals and Medical Devices Agency. Homepage for List of RMP Submissions [in Japanese]. https://www.pmda.go.jp/safety/info-services/drugs/items-information/rmp/0001.html . Accessed 25 Sept 2021.

CAC Croit Co. Post-marketing database survey and product list [in Japanese]. https://www.croit.com/service/ermp/ . Accessed 25 Sept 2021

Schneeweiss S, Gopalakrishnan C, Bartels DB, Franklin JM, Zint K, Kulldorff M, et al. Sequential monitoring of the comparative effectiveness and safety of dabigatran in routine care. Circ Cardiovasc Qual Outcomes. 2019;12(2):e005173. https://doi.org/10.1161/CIRCOUTCOMES.118.005173 .

Article   PubMed   Google Scholar  

Huybrechts KF, Gopalakrishnan C, Bartels DB, Zint K, Gurusamy VK, Landon J, et al. Safety and effectiveness of dabigatran and other direct oral anticoagulants compared with warfarin in patients with atrial fibrillation. Clin Pharmacol Ther. 2020;107(6):1405–19.

Khan NF, Harrison SE, Rose PW. Validity of diagnostic coding within the General Practice Research Database: a systematic review. Br J Gen Pract. 2010;60(572):e128–36.

Ooba N, Setoguchi S, Ando T, Sato T, Yamaguchi T, Mochizuki M, Kubota K. Claims-based definition of death in Japanese claims database: validity and implications. PLoS ONE. 2013;8(5):66116.

Sakai M, Ohtera S, Iwao T, Neff Y, Kato G, Takahashi Y, et al. BiDAME (Big Data Analysis of Medical care for the Elderly in Kyoto) Validation of claims data to identify death among aged persons utilizing enrollment data from health insurance unions. Environ Health Prev Med. 2019;24(1):63.

Kimura T, Sugitani T, Nishimura T, Ito M. Validation and Recalibration of Charlson and Elixhauser Comorbidity Indices Based on Data From a Japanese Insurance Claims Database. Jpn J Pharmacoepidemiol Yakuzai Ekigaku. 2019;24(2):53–64.

Koretsune Y, Yamashita T, Yasaka M, Oda E, Matsubayashi D, Ota K, et al. Usefulness of a healthcare database for epidemiological research in atrial fibrillation. J Cardiol. 2017;70(2):169–79.

Pharmaceuticals and Medical Devices Agency. Basic information for MID-NET users: List of outcomes to be considered [in Japanese]. https://www.pmda.go.jp/files/000225081.pdf . Accessed 25 Sept 2021

Yamana H, Moriwaki M, Horiguchi H, Kodan M, Fushimi K, Yasunaga H. Validity of diagnoses, procedures, and laboratory data in Japanese administrative data. J Epidemiol. 2017;27(10):476–82.

Iwamoto M, Higashi T, Miura H, Kawaguchi T, Tanaka S, Yamashita I, et al. Accuracy of using Diagnosis Procedure Combination administrative claims data for estimating the amount of opioid consumption among cancer patients in Japan. Jpn J Clin Oncol. 2015;45(11):1036–41.

Download references

Author information

Authors and affiliations.

Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo, 108-8641, Japan

Chihaya Shiragasawa & Mamoru Narukawa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Chihaya Shiragasawa .

Ethics declarations

No funding was received for this work.

Conflict of interest

Chihaya Shiragasawa is an employee of Astellas Pharma Inc., however this work was not undertaken as part of his employment. Mamoru Narukawa has no conflicts of interest directly relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Consent for publication, availability of data and material.

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Author contributions.

CS and MN designed the study; CS carried out the data collection; CS and MN performed the data analysis; CS drafted the manuscript; and MN reviewed and revised the manuscript. All authors have read and approved the final version and agree to be responsible for this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 57 kb)

Rights and permissions.

Reprints and permissions

About this article

Shiragasawa, C., Narukawa, M. Key Characteristics of Database Studies on Drug Effectiveness in the Postmarketing Stage: A Systematic Review. Pharm Med 35 , 327–338 (2021). https://doi.org/10.1007/s40290-021-00406-8

Download citation

Accepted : 03 October 2021

Published : 01 November 2021

Issue Date : November 2021

DOI : https://doi.org/10.1007/s40290-021-00406-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

Reference management. Clean and simple.

The top list of academic research databases

best research databases

2. Web of Science

5. ieee xplore, 6. sciencedirect, 7. directory of open access journals (doaj), get the most out of your academic research database, frequently asked questions about academic research databases, related articles.

Whether you are writing a thesis , dissertation, or research paper it is a key task to survey prior literature and research findings. More likely than not, you will be looking for trusted resources, most likely peer-reviewed research articles.

Academic research databases make it easy to locate the literature you are looking for. We have compiled the top list of trusted academic resources to help you get started with your research:

Scopus is one of the two big commercial, bibliographic databases that cover scholarly literature from almost any discipline. Besides searching for research articles, Scopus also provides academic journal rankings, author profiles, and an h-index calculator .

  • Coverage: 90.6 million core records
  • References: N/A
  • Discipline: Multidisciplinary
  • Access options: Limited free preview, full access by institutional subscription only
  • Provider: Elsevier

Search interface of Scopus

Web of Science also known as Web of Knowledge is the second big bibliographic database. Usually, academic institutions provide either access to Web of Science or Scopus on their campus network for free.

  • Coverage: approx. 100 million items
  • References: 1.4 billion
  • Access options: institutional subscription only
  • Provider: Clarivate (formerly Thomson Reuters)

Web of Science landing page

PubMed is the number one resource for anyone looking for literature in medicine or biological sciences. PubMed stores abstracts and bibliographic details of more than 30 million papers and provides full text links to the publisher sites or links to the free PDF on PubMed Central (PMC) .

  • Coverage: approx. 35 million items
  • Discipline: Medicine and Biological Sciences
  • Access options: free
  • Provider: NIH

Search interface of PubMed

For education sciences, ERIC is the number one destination. ERIC stands for Education Resources Information Center, and is a database that specifically hosts education-related literature.

  • Coverage: approx. 1.6 million items
  • Discipline: Education
  • Provider: U.S. Department of Education

Search interface of ERIC academic database

IEEE Xplore is the leading academic database in the field of engineering and computer science. It's not only journal articles, but also conference papers, standards and books that can be search for.

  • Coverage: approx. 6 million items
  • Discipline: Engineering
  • Provider: IEEE (Institute of Electrical and Electronics Engineers)

Search interface of IEEE Xplore

ScienceDirect is the gateway to the millions of academic articles published by Elsevier, 1.4 million of which are open access. Journals and books can be searched via a single interface.

  • Coverage: approx. 19.5 million items

Search interface of ScienceDirect

The DOAJ is an open-access academic database that can be accessed and searched for free.

  • Coverage: over 8 million records
  • Provider: DOAJ

Search interface of DOAJ database

JSTOR is another great resource to find research papers. Any article published before 1924 in the United States is available for free and JSTOR also offers scholarships for independent researchers.

  • Coverage: more than 12 million items
  • Provider: ITHAKA

Search interface of JSTOR

Start using a reference manager like Paperpile to save, organize, and cite your references. Paperpile integrates with PubMed and many popular databases, so you can save references and PDFs directly to your library using the Paperpile buttons:

database research study

Scopus is one of the two big commercial, bibliographic databases that cover scholarly literature from almost any discipline. Beside searching for research articles, Scopus also provides academic journal rankings, author profiles, and an h-index calculator .

PubMed is the number one resource for anyone looking for literature in medicine or biological sciences. PubMed stores abstracts and bibliographic details of more than 30 million papers and provides full text links to the publisher sites or links to the free PDF on PubMed Central (PMC)

database research study

Detail of a painting depicting the landscape of New Mexico with mountains in the distance

Explore millions of high-quality primary sources and images from around the world, including artworks, maps, photographs, and more.

Explore migration issues through a variety of media types

  • Part of The Streets are Talking: Public Forms of Creative Expression from Around the World
  • Part of The Journal of Economic Perspectives, Vol. 34, No. 1 (Winter 2020)
  • Part of Cato Institute (Aug. 3, 2021)
  • Part of University of California Press
  • Part of Open: Smithsonian National Museum of African American History & Culture
  • Part of Indiana Journal of Global Legal Studies, Vol. 19, No. 1 (Winter 2012)
  • Part of R Street Institute (Nov. 1, 2020)
  • Part of Leuven University Press
  • Part of UN Secretary-General Papers: Ban Ki-moon (2007-2016)
  • Part of Perspectives on Terrorism, Vol. 12, No. 4 (August 2018)
  • Part of Leveraging Lives: Serbia and Illegal Tunisian Migration to Europe, Carnegie Endowment for International Peace (Mar. 1, 2023)
  • Part of UCL Press

Harness the power of visual materials—explore more than 3 million images now on JSTOR.

Enhance your scholarly research with underground newspapers, magazines, and journals.

Explore collections in the arts, sciences, and literature from the world’s leading museums, archives, and scholars.

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections

Open Data is a strategy for incorporating research data into the permanent scientific record by releasing it under an Open Access license.  Whether data is deposited in a purpose-built repository or published as Supporting Information alongside a research article, Open Data practices ensure that data remains accessible and discoverable. For verification, replication, reuse, and enhanced understanding of research.

Benefits of Open Data

Readers rely on raw scientific data to enhance their understanding of published research, for purposes of verification, replication and reanalysis, and to inform future investigations.

Ensure reproducibility Proactively sharing data ensures that your work remains reproducible over the long term.

Inspire trust Sharing data demonstrates rigor and signals to the community that the work has integrity.

Receive  credit Making data public opens opportunities to get academic credit for collecting and curating data during the research process.

Make a contribution Access to data accelerates progress. According to the 2019 State of Open Data report, more than 70% of researchers use open datasets to inform their future research.

Preserve the scientific record Posting datasets in a repository or uploading them as Supporting Information prevents data loss.

Why do researchers choose to make their data public?

Watch the short video that explores the top benefits of data sharing, what types of research data you should share, and how you can get it ready to help ensure more impact for your research.

PLOS Open Data policy

Publishing in a PLOS journal carries with it a commitment to make the data underlying the conclusions in your research article publicly available upon publication.

Our data policy underscores the rigor of the research we publish, and gives readers a fuller understanding of each study.

Read more about Open Data

Data sharing has long been a hallmark of high-quality reproducible research. Now, Open Data is becoming...

For PLOS, increasing data-sharing rates—and especially increasing the amount of data shared in a repository—is a high priority.

Ensure that you’re publication-ready and ensure future reproducibility through good data management How you store your data matters. Even after…

Data repositories

All methods of data sharing data facilitate reproduction, improve trust in science, ensure appropriate credit, and prevent data loss. When you choose to deposit your data in a repository, those benefits are magnified and extended.

Data posted in a repository is…

…more discoverable.

Detailed metadata and bidirectional linking to and from related articles help to make data in public repositories easily findable.

…more reusable

Machine-readable data formatting allows research in a repository to be incorporated into future systematic reviews or meta analyses more easily.

…easier to cite

Repositories assign data its own unique DOI, distinct from that of related research articles, so datasets can accumulate citations in their own right, illustrating the importance and lasting relevance of the data itself.

…more likely to earn citations

A 2020 study of more than 500,000 published research articles found articles that link to data in a public repository were likely to have a 25% higher citation rate on average than articles where data is available on request or as Supporting Information.

Open Data is more discoverable and accessible than ever

Deposit your data in a repository and earn an accessible data icon.

database research study

You already know depositing research data in a repository yields benefits like improved reproducibility, discoverability, and more attention and citations for your research.

PLOS helps to magnify these benefits even further with our Accessible Data icon. When you link to select, popular data repositories, your article earns an eye-catching graphic with a link to the associated dataset, so it’s more visible to readers.

Participating data repositories include: 

  • Open Science Framework (OSF)
  • Gene Expression Omnibus
  • NCBI Bioproject
  • NCBI Sequence Read Archive
  • Demographic and Health Surveys

We aim to add more repositories to the list in future. Read more

The PLOS Open Science Toolbox

The future is open

The PLOS Open Science Toolbox is your source for sci-comm tips and best-practice. Learn practical strategies and hands-on tips to improve reproducibility, increase trust, and maximize the impact of your research through Open Science.

Sign up to have new issues delivered to your inbox every week.

Learn more about the benefits of Open Science.   Open Science

Oops, you're using an old version of your browser so some of the features on this page may not be displaying properly.

MINIMAL Requirements:  Google Chrome 24+ ,  Mozilla Firefox 20+ ,  Internet Explorer 11 ,  Opera 15–18 ,  Apple Safari 7 ,  SeaMonkey 2.15-2.23

  • Meeting Calendar
  • OncologyPRO
  • Research Groups, Tools and Database

Research and clinical trial databases

This non-exhaustive collection of research databases allows you to locate multiple study datasets as well as information on clinical trials free of charge., research databases.

  • Array Express ArrayExpress is a database of functional genomics experiments that can be queried and the data downloaded.
  • Cancer Cell Line Encyclopedia (CCLE)     The CCLE provides public access to genomic data, analysis and visualization for about 1,000 cell lines.
  • European-Genome-phenome Archive (EGA)  EGA allows you to explore datasets from genomic studies, provided by a range of data providers.
  • Gene Expression Omnibus (GEO) GEO is a public functional genomics data repository supporting MIAME-compliant data submissions.
  • International Cancer Genomics Consortium (ICGC) The ICGC Data Portal provides tools for visualizing, querying and downloading the data released quarterly by the consortium's member projects.
  • The Cancer Genome Atlas (TCGA)  The TCGA Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA.

Clinical Trial Databases

  • ClinicalTrials.gov      ClinicalTrials.gov is a U.S. registry and results database of publicly and privately supported clinical studies of human participants conducted around the world.
  • EORTC Clinical Trials Database The EORTC Clinical Trials Database contains information about EORTC clinical trials and clinical trials from other organisations with EORTC participation.
  • EORTC Investigator's Area This section gives access to the clinical trials applications designed for the investigators.
  • EU Clinical Trials Register (EU CTR) The EU CTR contains information on interventional clinical trials on medicines conducted in the European Union (EU), or the European Economic Area (EEA) which started after 1 May 2004. The Register enables you to search for information in the EudraCT database.
  • WHO International Clinical Trials Registry Platform The mission of the WHO International Clinical Trials Registry Platform is to ensure that a complete view of research is accessible to all those involved in health care decision making.  

This site uses cookies. Some of these cookies are essential, while others help us improve your experience by providing insights into how the site is being used.

For more detailed information on the cookies we use, please check our Privacy Policy .

Necessary cookies enable core functionality. The website cannot function properly without these cookies, and you can only disable them by changing your browser preferences.

Trending Articles

  • Efficacy and safety of eco-friendly inhalers: focus on combination ipratropium bromide and albuterol in chronic obstructive pulmonary disease. Panos RJ. Int J Chron Obstruct Pulmon Dis. 2013. PMID: 23658481 Free PMC article. Review.
  • Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. GBD 2021 Diseases and Injuries Collaborators. Lancet. 2024. PMID: 38642570
  • Labour promotes systemic mobilisation of monocytes, T cell activation and local secretion of chemotactic factors in the intervillous space of the placenta. Vikberg S, et al. Front Immunol. 2023. PMID: 36969250 Free PMC article.
  • QDPR deficiency drives immune suppression in pancreatic cancer. Liu J, et al. Cell Metab. 2024. PMID: 38642552
  • Dual-role transcription factors stabilize intermediate expression levels. He J, et al. Cell. 2024. PMID: 38631355

Latest Literature

  • Cell Metab (1)
  • J Am Acad Dermatol (1)
  • Nat Commun (26)
  • Nature (16)
  • Oncogene (5)
  • PLoS One (1)
  • Sci Rep (119)

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

  • skip to Main Navigation
  • skip to Main Content
  • skip to Footer
  • Accessibility feedback
  • Data & Visualization and Research Support
  • Data Management

Defining Research Data

One definition of research data is: "the recorded factual material commonly accepted in the scientific community as necessary to validate research findings." ( OMB Circular 110 ).

Research data covers a broad range of types of information (see examples below), and digital data can be structured and stored in a variety of file formats.

Note that properly managing data (and records) does not necessarily equate to sharing or publishing that data.

Examples of Research Data

Some examples of research data:

  • Documents (text, Word), spreadsheets
  • Laboratory notebooks, field notebooks, diaries
  • Questionnaires, transcripts, codebooks
  • Audiotapes, videotapes
  • Photographs, films
  • Protein or genetic sequences
  • Test responses
  • Slides, artifacts, specimens, samples
  • Collection of digital objects acquired and generated during the process of research
  • Database contents (video, audio, text, images)
  • Models, algorithms, scripts
  • Contents of an application (input, output, logfiles for analysis software, simulation software, schemas)
  • Methodologies and workflows
  • Standard operating procedures and protocols

Exclusions from Sharing

In addition to the other records to manage (below), some kinds of data may not be sharable due to the nature of the records themselves, or to ethical and privacy concerns. As defined by the OMB , this refers to:

  • preliminary analyses,
  • drafts of scientific papers,
  • plans for future research,
  • peer reviews, or
  • communications with colleagues

Research data also do not include:

  • Trade secrets, commercial information, materials necessary to be held confidential by a researcher until they are published, or similar information which is protected under law; and
  • Personnel and medical information and similar information the disclosure of which would constitute a clearly unwarranted invasion of personal privacy, such as information that could be used to identify a particular person in a research study.

Some types of data, particularly software, may require special license to share.  In those cases, contact the Office of Technology Transfer to review considerations for software generated in your research.

Other Records to Manage

Although they might not be addressed in an NSF data management plan, the following research records may also be important to manage during and beyond the life of a project.

  • Correspondence (electronic mail and paper-based correspondence)
  • Project files
  • Grant applications
  • Ethics applications
  • Technical reports
  • Research reports
  • Signed consent forms

Adapted from Defining Research Data by the University of Oregon Libraries.

Opens in your default email client

URL copied to clipboard.

QR code for this page

database research study

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Advances in database systems education: Methods, tools, curricula, and way forward

Muhammad ishaq.

1 Department of Computer Science, National University of Computer and Emerging Sciences, Lahore, Pakistan

2 Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan

3 Department of Computer Science, University of Management and Technology, Lahore, Pakistan

Muhammad Shoaib Farooq

Muhammad faraz manzoor.

4 Department of Computer Science, Lahore Garrison University, Lahore, Pakistan

Uzma Farooq

Kamran abid.

5 Department of Electrical Engineering, University of the Punjab, Lahore, Pakistan

Mamoun Abu Helou

6 Faculty of Information Technology, Al Istiqlal University, Jericho, Palestine

Associated Data

Not Applicable.

Fundamentals of Database Systems is a core course in computing disciplines as almost all small, medium, large, or enterprise systems essentially require data storage component. Database System Education (DSE) provides the foundation as well as advanced concepts in the area of data modeling and its implementation. The first course in DSE holds a pivotal role in developing students’ interest in this area. Over the years, the researchers have devised several different tools and methods to teach this course effectively, and have also been revisiting the curricula for database systems education. In this study a Systematic Literature Review (SLR) is presented that distills the existing literature pertaining to the DSE to discuss these three perspectives for the first course in database systems. Whereby, this SLR also discusses how the developed teaching and learning assistant tools, teaching and assessment methods and database curricula have evolved over the years due to rapid change in database technology. To this end, more than 65 articles related to DSE published between 1995 and 2022 have been shortlisted through a structured mechanism and have been reviewed to find the answers of the aforementioned objectives. The article also provides useful guidelines to the instructors, and discusses ideas to extend this research from several perspectives. To the best of our knowledge, this is the first research work that presents a broader review about the research conducted in the area of DSE.

Introduction

Database systems play a pivotal role in the successful implementation of the information systems to ensure the smooth running of many different organizations and companies (Etemad & Küpçü, 2018 ; Morien, 2006 ). Therefore, at least one course about the fundamentals of database systems is taught in every computing and information systems degree (Nagataki et al., 2013 ). Database System Education (DSE) is concerned with different aspects of data management while developing software (Park et al., 2017 ). The IEEE/ACM computing curricula guidelines endorse 30–50 dedicated hours for teaching fundamentals of design and implementation of database systems so as to build a very strong theoretical and practical understanding of the DSE topics (Cvetanovic et al., 2010 ).

Practically, most of the universities offer one user-oriented course at undergraduate level that covers topics related to the data modeling and design, querying, and a limited number of hours on theory (Conklin & Heinrichs, 2005 ; Robbert & Ricardo, 2003 ), where it is often debatable whether to utilize a design-first or query-first approach. Furthermore, in order to update the course contents, some recent trends, including big data and the notion of NoSQL should also be introduced in this basic course (Dietrich et al., 2008 ; Garcia-Molina, 2008 ). Whereas, the graduate course is more theoretical and includes topics related to DB architecture, transactions, concurrency, reliability, distribution, parallelism, replication, query optimization, along with some specialized classes.

Researchers have designed a variety of tools for making different concepts of introductory database course more interesting and easier to teach and learn interactively (Brusilovsky et al., 2010 ) either using visual support (Nagataki et al., 2013 ), or with the help of gamification (Fisher & Khine, 2006 ). Similarly, the instructors have been improvising different methods to teach (Abid et al., 2015 ; Domínguez & Jaime, 2010 ) and evaluate (Kawash et al., 2020 ) this theoretical and practical course. Also, the emerging and hot topics such as cloud computing and big data has also created the need to revise the curriculum and methods to teach DSE (Manzoor et al., 2020 ).

The research in database systems education has evolved over the years with respect to modern contents influenced by technological advancements, supportive tools to engage the learners for better learning, and improvisations in teaching and assessment methods. Particularly, in recent years there is a shift from self-describing data-driven systems to a problem-driven paradigm that is the bottom-up approach where data exists before being designed. This mainly relies on scientific, quantitative, and empirical methods for building models, while pushing the boundaries of typical data management by involving mathematics, statistics, data mining, and machine learning, thus opening a multidisciplinary perspective. Hence, it is important to devote a few lectures to introducing the relevance of such advance topics.

Researchers have provided useful review articles on other areas including Introductory Programming Language (Mehmood et al., 2020 ), use of gamification (Obaid et al., 2020 ), research trends in the use of enterprise service bus (Aziz et al., 2020 ), and the role of IoT in agriculture (Farooq et al., 2019 , 2020 ) However, to the best of our knowledge, no such study was found in the area of database systems education. Therefore, this study discusses research work published in different areas of database systems education involving curricula, tools, and approaches that have been proposed to teach an introductory course on database systems in an effective manner. The rest of the article has been structured in the following manner: Sect.  2 presents related work and provides a comparison of the related surveys with this study. Section  3 presents the research methodology for this study. Section  4 analyses the major findings of the literature reviewed in this research and categorizes it into different important aspects. Section  5 represents advices for the instructors and future directions. Lastly, Sect.  6 concludes the article.

Related work

Systematic Literature Reviews have been found to be a very useful artifact for covering and understanding a domain. A number of interesting review studies have been found in different fields (Farooq et al., 2021 ; Ishaq et al., 2021 ). Review articles are generally categorized into narrative or traditional reviews (Abid et al., 2016 ; Ramzan et al., 2019 ), systematic literature review (Naeem et al., 2020 ) and meta reviews or mapping study (Aria & Cuccurullo, 2017 ; Cobo et al., 2012 ; Tehseen et al., 2020 ). This study presents a systematic literature review on database system education.

The database systems education has been discussed from many different perspectives which include teaching and learning methods, curriculum development, and the facilitation of instructors and students by developing different tools. For instance, a number of research articles have been published focusing on developing tools for teaching database systems course (Abut & Ozturk, 1997 ; Connolly et al., 2005 ; Pahl et al., 2004 ). Furthermore, few authors have evaluated the DSE tools by conducting surveys and performing empirical experiments so as to gauge the effectiveness of these tools and their degree of acceptance among important stakeholders, teachers and students (Brusilovsky et al., 2010 ; Nelson & Fatimazahra, 2010 ). On the other hand, some case studies have also been discussed to evaluate the effectiveness of the improvised approaches and developed tools. For example, Regueras et al. ( 2007 ) presented a case study using the QUEST system, in which e-learning strategies are used to teach the database course at undergraduate level, while, Myers and Skinner ( 1997 ) identified the conflicts that arise when theories in text books regarding the development of databases do not work on specific applications.

Another important facet of DSE research focuses on the curriculum design and evolution for database systems, whereby (Alrumaih, 2016 ; Bhogal et al., 2012 ; Cvetanovic et al., 2010 ; Sahami et al., 2011 ) have proposed solutions for improvements in database curriculum for the better understanding of DSE among the students, while also keeping the evolving technology into the perspective. Similarly, Mingyu et al. ( 2017 ) have shared their experience in reforming the DSE curriculum by adding topics related to Big Data. A few authors have also developed and evaluated different tools to help the instructors teaching DSE.

There are further studies which focus on different aspects including specialized tools for specific topics in DSE (Mcintyre et al, 1995 ; Nelson & Fatimazahra, 2010 ). For instance, Mcintyre et al. ( 1995 ) conducted a survey about using state of the art software tools to teach advanced relational database design courses at Cleveland State University. However, the authors did not discuss the DSE curricula and pedagogy in their study. Similarly, a review has been conducted by Nelson and Fatimazahra ( 2010 ) to highlight the fact that the understanding of basic knowledge of database is important for students of the computer science domain as well as those belonging to other domains. They highlighted the issues encountered while teaching the database course in universities and suggested the instructors investigate these difficulties so as to make this course more effective for the students. Although authors have discussed and analyzed the tools to teach database, the tools are yet to be categorized according to different methods and research types within DSE. There also exists an interesting systematic mapping study by Taipalus and Seppänen ( 2020 ) that focuses on teaching SQL which is a specific topic of DSE. Whereby, they categorized the selected primary studies into six categories based on their research types. They utilized directed content analysis, such as, student errors in query formulation, characteristics and presentation of the exercise database, specific or non-specific teaching approach suggestions, patterns and visualization, and easing teacher workload.

Another relevant study that focuses on collaborative learning techniques to teach the database course has been conducted by Martin et al. ( 2013 ) This research discusses collaborative learning techniques and adapted it for the introductory database course at the Barcelona School of Informatics. The motive of the authors was to introduce active learning methods to improve learning and encourage the acquisition of competence. However, the focus of the study was only on a few methods for teaching the course of database systems, while other important perspectives, including database curricula, and tools for teaching DSE were not discussed in this study.

The above discussion shows that a considerable amount of research work has been conducted in the field of DSE to propose various teaching methods; develop and test different supportive tools, techniques, and strategies; and to improve the curricula for DSE. However, to the best of our knowledge, there is no study that puts all these relevant and pertinent aspects together while also classifying and discussing the supporting methods, and techniques. This review is considerably different from previous studies. Table ​ Table1 1 highlights the differences between this study and other relevant studies in the field of DSE using ✓ and – symbol reflecting "included" and "not included" respectively. Therefore, this study aims to conduct a systematic mapping study on DSE that focuses on compiling, classifying, and discussing the existing work related to pedagogy, supporting tools, and curricula.

Comparison with other related research articles

Research methodology

In order to preserve the principal aim of this study, which is to review the research conducted in the area of database systems education, a piece of advice has been collected from existing methods described in various studies (Elberzhager et al., 2012 ; Keele et al., 2007 ; Mushtaq et al., 2017 ) to search for the relevant papers. Thus, proper research objectives were formulated, and based on them appropriate research questions and search strategy were formulated as shown in Fig.  1 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig1_HTML.jpg

Research objectives

The Following are the research objectives of this study:

  • i. To find high quality research work in DSE.
  • ii. To categorize different aspects of DSE covered by other researchers in the field.
  • iii. To provide a thorough discussion of the existing work in this study to provide useful information in the form of evolution, teaching guidelines, and future research directions of the instructors.

Research questions

In order to fulfill the research objectives, some relevant research questions have been formulated. These questions along with their motivations have been presented in Table ​ Table2 2 .

Study selection results

Search strategy

The Following search string used to find relevant articles to conduct this study. “Database” AND (“System” OR “Management”) AND (“Education*” OR “Train*” OR “Tech*” OR “Learn*” OR “Guide*” OR “Curricul*”).

Articles have been taken from different sources i.e. IEEE, Springer, ACM, Science Direct and other well-known journals and conferences such as Wiley Online Library, PLOS and ArXiv. The planning for search to find the primary study in the field of DSE is a vital task.

Study selection

A total of 29,370 initial studies were found. These articles went through a selection process, and two authors were designated to shortlist the articles based on the defined inclusion criteria as shown in Fig.  2 . Their conflicts were resolved by involving a third author; while the inclusion/exclusion criteria were also refined after resolving the conflicts as shown in Table ​ Table3. 3 . Cohen’s Kappa coefficient 0.89 was observed between the two authors who selected the articles, which reflects almost perfect agreement between them (Landis & Koch, 1977 ). While, the number of papers in different stages of the selection process for all involved portals has been presented in Table ​ Table4 4 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig2_HTML.jpg

Selection criteria

Title based search: Papers that are irrelevant based on their title are manually excluded in the first stage. At this stage, there was a large portion of irrelevant papers. Only 609 papers remained after this stage.

Abstract based search: At this stage, abstracts of the selected papers in the previous stage are studied and the papers are categorized for the analysis along with research approach. After this stage only 152 papers were left.

Full text based analysis: Empirical quality of the selected articles in the previous stage is evaluated at this stage. The analysis of full text of the article has been conducted. The total of 70 papers were extracted from 152 papers for primary study. Following questions are defined for the conduction of final data extraction.

Quality assessment criteria

Following are the criteria used to assess the quality of the selected primary studies. This quality assessment was conducted by two authors as explained above.

  • The study focuses on curricula, tools, approach, or assessments in DSE, the possible answers were Yes (1), No (0)
  • The study presents a solution to the problem in DSE, the possible answers to this question were Yes (1), Partially (0.5), No (0)
  • The study focuses on empirical results, Yes (1), No (0)

Score pattern of publication channels

Almost 50.00% of papers had scored more than average and 33.33% of papers had scored between the average range i.e., 2.50–3.50. Some articles with the score below 2.50 have also been included in this study as they present some useful information and were published in education-based journals. Also, these studies discuss important demography and technology based aspects that are directly related to DSE.

Threats to validity

The validity of this study could be influenced by the following factors during the literature of this publication.

Construct validity

In this study this validity identifies the primary study for research (Elberzhager et al., 2012 ). To ensure that many primary studies have been included in this literature two authors have proposed possible search keywords in multiple repetitions. Search string is comprised of different terms related to DS and education. Though, list might be incomplete, count of final papers found can be changed by the alternative terms (Ampatzoglou et al., 2013 ). IEEE digital library, Science direct, ACM digital library, Wiley Online Library, PLOS, ArXiv and Google scholar are the main libraries where search is done. We believe according to the statistics of search engines of literature the most research can be found on these digital libraries (Garousi et al., 2013 ). Researchers also searched related papers in main DS research sites (VLDB, ICDM, EDBT) in order to minimize the risk of missing important publication.

Including the papers that does not belong to top journals or conferences may reduce the quality of primary studies in this research but it indicates that the representativeness of the primary studies is improved. However, certain papers which were not from the top publication sources are included because of their relativeness wisth the literature, even though they reduce the average score for primary studies. It also reduces the possibility of alteration of results which might have caused by the improper handling of duplicate papers. Some cases of duplications were found which were inspected later whether they were the same study or not. The two authors who have conducted the search has taken the final decision to the select the papers. If there is no agreement between then there must be discussion until an agreement is reached.

Internal validity

This validity deals with extraction and data analysis (Elberzhager et al., 2012 ). Two authors carried out the data extraction and primary studies classification. While the conflicts between them were resolved by involving a third author. The Kappa coefficient was 0.89, according to Landis and Koch ( 1977 ), this value indicates almost perfect level of agreement between the authors that reduces this threat significantly.

Conclusion validity

This threat deals with the identification of improper results which may cause the improper conclusions. In this case this threat deals with the factors like missing studies and wrong data extraction (Ampatzoglou et al., 2013 ). The objective of this is to limit these factors so that other authors can perform study and produce the proper conclusions (Elberzhager et al., 2012 ).

Interpretation of results might be affected by the selection and classification of primary studies and analyzing the selected study. Previous section has clearly described each step performed in primary study selection and data extraction activity to minimize this threat. The traceability between the result and data extracted was supported through the different charts. In our point of view, slight difference based on the publication selection and misclassification would not alter the main results.

External validity

This threat deals with the simplification of this research (Mateo et al., 2012 ). The results of this study were only considered that related to the DSE filed and validation of the conclusions extracted from this study only concerns the DSE context. The selected study representativeness was not affected because there was no restriction on time to find the published research. Therefore, this external validity threat is not valid in the context of this research. DS researchers can take search string and the paper classification scheme represented in this study as an initial point and more papers can be searched and categorized according to this scheme.

Analysis of compiled research articles

This section presents the analysis of the compiled research articles carefully selected for this study. It presents the findings with respect to the research questions described in Table ​ Table2 2 .

Selection results

A total of 70 papers were identified and analyzed for the answers of RQs described above. Table ​ Table6 6 represents a list of the nominated papers with detail of the classification results and their quality assessment scores.

Classification and quality assessment of selected articles

RQ1.Categorization of research work in DSE field

The analysis in this study reveals that the literature can be categorized as: Tools: any additional application that helps instructors in teaching and students in learning. Methods: any improvisation aimed at improving pedagogy or cognition. Curriculum: refers to the course content domains and their relative importance in a degree program, as shown in Fig.  3 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig3_HTML.jpg

Taxonomy of DSE study types

Most of the articles provide a solution by gathering the data and also prove the novelty of their research through results. These papers are categorized as experiments w.r.t. their research types. Whereas, some of them case study papers which are used to generate an in depth, multifaceted understanding of a complex issue in its real-life context, while few others are review studies analyzing the previously used approaches. On the other hand, a majority of included articles have evaluated their results with the help of experiments, while others conducted reviews to establish an opinion as shown in Fig.  4 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig4_HTML.jpg

Cross Mapping of DSE study type and research Types

Educational tools, especially those related to technology, are making their place in market faster than ever before (Calderon et al., 2011 ). The transition to active learning approaches, with the learner more engaged in the process rather than passively taking in information, necessitates a variety of tools to help ensure success. As with most educational initiatives, time should be taken to consider the goals of the activity, the type of learners, and the tools needed to meet the goals. Constant reassessment of tools is important to discover innovation and reforms that improve teaching and learning (Irby & Wilkerson, 2003 ). For this purpose, various type of educational tools such as, interactive, web-based and game based have been introduced to aid the instructors in order to explain the topic in more effective way.

The inclusion of technology into the classroom may help learners to compete in the competitive market when approaching the start of their career. It is important for the instructors to acknowledge that the students are more interested in using technology to learn database course instead of merely being taught traditional theory, project, and practice-based methods of teaching (Adams et al., 2004 ). Keeping these aspects in view many authors have done significant research which includes web-based and interactive tools to help the learners gain better understanding of basic database concepts.

Great research has been conducted with the focus of students learning. In this study we have discussed the students learning supportive with two major finding’s objectives i.e., tools which prove to be more helpful than other tools. Whereas, proposed tools with same outcome as traditional classroom environment. Such as, Abut and Ozturk ( 1997 ) proposed an interactive classroom environment to conduct database classes. The online tools such as electronic “Whiteboard”, electronic textbooks, advance telecommunication networks and few other resources such as Matlab and World Wide Web were the main highlights of their proposed smart classroom. Also, Pahl et al. ( 2004 ) presented an interactive multimedia-based system for the knowledge and skill oriented Web-based education of database course students. The authors had differentiated their proposed classroom environment from traditional classroom-based approach by using tool mediated independent learning and training in an authentic setting. On the other hand, some authors have also evaluated the educational tools based on their usage and impact on students’ learning. For example, Brusilovsky et al. ( 2010 )s evaluated the technical and conceptual difficulties of using several interactive educational tools in the context of a single course. A combined Exploratorium has been presented for database courses and an experimental platform, which delivers modified access to numerous types of interactive learning activities.

Also, Taipalus and Perälä ( 2019 ) investigated the types of errors that are persistent in writing SQL by the students. The authors also contemplated the errors while mapping them onto different query concepts. Moreover, Abelló Gamazo et al. ( 2016 ) presented a software tool for the e-assessment of relational database skills named LearnSQL. The proposed software allows the automatic and efficient e-learning and e-assessment of relational database skills. Apart from these, Yue ( 2013 ) proposed the database tool named Sakila as a unified platform to support instructions and multiple assignments of a graduate database course for five semesters. According to this study, students find this tool more useful and interesting than the highly simplified databases developed by the instructor, or obtained from textbook. On the other hand, authors have proposed tools with the main objective to help the student’s grip on the topic by addressing the pedagogical problems in using the educational tools. Connolly et al. ( 2005 ) discussed some of the pedagogical problems sustaining the development of a constructive learning environment using problem-based learning, a simulation game and interactive visualizations to help teach database analysis and design. Also, Yau and Karim ( 2003 ) proposed smart classroom with prevalent computing technology which will facilitate collaborative learning among the learners. The major aim of this smart classroom is to improve the quality of interaction between the instructors and students during lecture.

Student satisfaction is also an important factor for the educational tools to more effective. While it supports in students learning process it should also be flexible to achieve the student’s confidence by making it as per student’s needs (Brusilovsky et al., 2010 ; Connolly et al., 2005 ; Pahl et al., 2004 ). Also, Cvetanovic et al. ( 2010 ) has proposed a web-based educational system named ADVICE. The proposed solution helps the students to reduce the gap between DBMS, theory and its practice. On the other hand, authors have enhanced the already existing educational tools in the traditional classroom environment to addressed the student’s concerns (Nelson & Fatimazahra, 2010 ; Regueras et al., 2007 ) Table ​ Table7 7 .

Tools: Adopted in DSE and their impacts

Hands on database development is the main concern in most of the institute as well as in industry. However, tools assisting the students in database development and query writing is still major concern especially in SQL (Brusilovsky et al., 2010 ; Nagataki et al., 2013 ).

Student’s grades reflect their conceptual clarity and database development skills. They are also important to secure jobs and scholarships after passing out, which is why it is important to have the educational learning tools to help the students to perform well in the exams (Cvetanovic et al., 2010 ; Taipalus et al., 2018 ). While, few authors (Wang et al., 2010 ) proposed Metube which is a variation of YouTube. Subsequently, existing educational tools needs to be upgraded or replaced by the more suitable assessment oriented interactive tools to attend challenging students needs (Pahl et al., 2004 ; Yuelan et al., 2011 ).

One other objective of developing the educational tools is to increase the interaction between the students and the instructors. In the modern era, almost every institute follows the student centered learning(SCL). In SCL the interaction between students and instructor increases with most of the interaction involves from the students. In order to support SCL the educational based interactive and web-based tools need to assign more roles to students than the instructors (Abbasi et al., 2016 ; Taipalus & Perälä, 2019 ; Yau & Karim, 2003 ).

Theory versus practice is still one of the main issues in DSE teaching methods. The traditional teaching method supports theory first and then the concepts learned in the theoretical lectures implemented in the lab. Whereas, others think that it is better to start by teaching how to write query, which should be followed by teaching the design principles for database, while a limited amount of credit hours are also allocated for the general database theory topics. This part of the article discusses different trends of teaching and learning style along with curriculum and assessments methods discussed in DSE literature.

A variety of teaching methods have been designed, experimented, and evaluated by different researchers (Yuelan et al., 2011 ; Chen et al., 2012 ; Connolly & Begg, 2006 ). Some authors have reformed teaching methods based on the requirements of modern way of delivering lectures such as Yuelan et al. ( 2011 ) reform teaching method by using various approaches e.g. a) Modern ways of education: includes multimedia sound, animation, and simulating the process and working of database systems to motivate and inspire the students. b) Project driven approach: aims to make the students familiar with system operations by implementing a project. c) Strengthening the experimental aspects: to help the students get a strong grip on the basic knowledge of database and also enable them to adopt a self-learning ability. d) Improving the traditional assessment method: the students should turn in their research and development work as the content of the exam, so that they can solve their problem on their own.

The main aim of any teaching method is to make student learn the subject effectively. Student must show interest in order to gain something from the lectures delivered by the instructors. For this, teaching methods should be interactive and interesting enough to develop the interest of the students in the subject. Students can show interest in the subject by asking more relative questions or completing the home task and assignments on time. Authors have proposed few teaching methods to make topic more interesting such as, Chen et al. ( 2012 ) proposed a scaffold concept mapping strategy, which considers a student’s prior knowledge, and provides flexible learning aids (scaffolding and fading) for reading and drawing concept maps. Also, Connolly & Begg (200s6) examined different problems in database analysis and design teaching, and proposed a teaching approach driven by principles found in the constructivist epistemology to overcome these problems. This constructivist approach is based on the cognitive apprenticeship model and project-based learning. Similarly, Domínguez & Jaime ( 2010 ) proposed an active method for database design through practical tasks development in a face-to-face course. They analyzed results of five academic years using quasi experimental. The first three years a traditional strategy was followed and a course management system was used as material repository. On the other hand, Dietrich and Urban ( 1996 ) have described the use of cooperative group learning concepts in support of an undergraduate database management course. They have designed the project deliverables in such a way that students develop skills for database implementation. Similarly, Zhang et al. ( 2018 ) have discussed several effective classroom teaching measures from the aspects of the innovation of teaching content, teaching methods, teaching evaluation and assessment methods. They have practiced the various teaching measures by implementing the database technologies and applications in Qinghai University. Moreover, Hou and Chen ( 2010 ) proposed a new teaching method based on blending learning theory, which merges traditional and constructivist methods. They adopted the method by applying the blending learning theory on Access Database programming course teaching.

Problem solving skills is a key aspect to any type of learning at any age. Student must possess this skill to tackle the hurdles in institute and also in industry. Create mind and innovative students find various and unique ways to solve the daily task which is why they are more likeable to secure good grades and jobs. Authors have been working to introduce teaching methods to develop problem solving skills in the students(Al-Shuaily, 2012 ; Cai & Gao, 2019 ; Martinez-González & Duffing, 2007 ; Gudivada et al., 2007 ). For instance, Al-Shuaily ( 2012 ) has explored four cognitive factors such as i) Novices’ ability in understanding, ii) Novices’ ability to translate, iii) Novice’s ability to write, iv) Novices’ skills that might influence SQL teaching, and learning methods and approaches. Also, Cai and Gao ( 2019 ) have reformed the teaching method in the database course of two higher education institutes in China. Skills and knowledge, innovation ability, and data abstraction were the main objective of their study. Similarly, Martinez-González and Duffing ( 2007 ) analyzed the impact of convergence of European Union (EU) in different universities across Europe. According to their study, these institutes need to restructure their degree program and teaching methodologies. Moreover, Gudivada et al. ( 2007 ) proposed a student’s learning method to work with the large datasets. they have used the Amazon Web Services API and.NET/C# application to extract a subset of the product database to enhance student learning in a relational database course.

On the other hand, authors have also evaluated the traditional teaching methods to enhance the problem-solving skills among the students(Eaglestone & Nunes, 2004 ; Wang & Chen, 2014 ; Efendiouglu & Yelken, 2010 ) Such as, Eaglestone and Nunes ( 2004 ) shared their experiences of delivering a database design course at Sheffield University and discussed some of the issues they faced, regarding teaching, learning and assessments. Likewise, Wang and Chen ( 2014 ) summarized the problems mainly in teaching of the traditional database theory and application. According to the authors the teaching method is outdated and does not focus on the important combination of theory and practice. Moreover, Efendiouglu and Yelken ( 2010 ) investigated the effects of two different methods Programmed Instruction (PI) and Meaningful Learning (ML) on primary school teacher candidates’ academic achievements and attitudes toward computer-based education, and to define their views on these methods. The results show that PI is not favoured for teaching applications because of its behavioural structure Table ​ Table8 8 .

Methods: Teaching approaches adopted in DSE

Students become creative and innovative when the try to study on their own and also from different resources rather than curriculum books only. In the modern era, there are various resources available on both online and offline platforms. Modern teaching methods must emphasize on making the students independent from the curriculum books and educate them to learn independently(Amadio et al., 2003 ; Cai & Gao, 2019 ; Martin et al., 2013 ). Also, in the work of Kawash et al. ( 2020 ) proposed he group study-based learning approach called Graded Group Activities (GGAs). In this method students team up in order to take the exam as a group. On the other hand, few studies have emphasized on course content to prepare students for the final exams such as, Zheng and Dong ( 2011 ) have discussed the issues of computer science teaching with particular focus on database systems, where different characteristics of the course, teaching content and suggestions to teach this course effectively have been presented.

As technology is evolving at rapid speed, so students need to have practical experience from the start. Basic theoretical concepts of database are important but they are of no use without its implementation in real world projects. Most of the students study in the institutes with the aim of only clearing the exams with the help of theoretical knowledge and very few students want to have practical experience(Wang & Chen, 2014 ; Zheng & Dong, 2011 ). To reduce the gap between the theory and its implementation, authors have proposed teaching methods to develop the student’s interest in the real-world projects (Naik & Gajjar, 2021 ; Svahnberg et al., 2008 ; Taipalus et al., 2018 ). Moreover, Juxiang and Zhihong ( 2012 ) have proposed that the teaching organization starts from application scenarios, and associate database theoretical knowledge with the process from analysis, modeling to establishing database application. Also, Svahnberg et al. ( 2008 ) explained that in particular conditions, there is a possibility to use students as subjects for experimental studies in DSE and influencing them by providing responses that are in line with industrial practice.

On the other hand, Nelson et al. ( 2003 ) evaluated the different teaching methods used to teach different modules of database in the School of Computing and Technology at the University of Sunder- land. They outlined suggestions for changes to the database curriculum to further integrate research and state-of-the-art systems in databases.

  • III. Curriculum

Database curriculum has been revisited many times in the form of guidelines that not only present the contents but also suggest approximate time to cover different topics. According to the ACM curriculum guidelines (Lunt et al., 2008 ) for the undergraduate programs in computer science, the overall coverage time for this course is 46.50 h distributed in such a way that 11 h is the total coverage time for the core topics such as, Information Models (4 core hours), Database Systems (3 core hours) and Data Modeling (4 course hours). Whereas, the remaining hours are allocated for elective topics such as Indexing, Relational Databases, Query Languages, Relational Database Design, Transaction Processing, Distributed Databases, Physical Database Design, Data Mining, Information Storage and Retrieval, Hypermedia, Multimedia Systems, and Digital Libraries(Marshall, 2012 ). While, according to the ACM curriculum guidelines ( 2013 ) for undergraduate programs in computer science, this course should be completed in 15 weeks with two and half hour lecture per week and lab session of four hours per week on average (Brady et al., 2004 ). Thus, the revised version emphasizes on the practice based learning with the help of lab component. Numerous organizations have exerted efforts in this field to classify DSE (Dietrich et al., 2008 ). DSE model curricula, bodies of knowledge (BOKs), and some standardization aspects in this field are discussed below:

Model curricula

There are standard bodies who set the curriculum guidelines for teaching undergraduate degree programs in computing disciplines. Curricula which include the guidelines to teach database are: Computer Engineering Curricula (CEC) (Meier et al., 2008 ), Information Technology Curricula (ITC) (Alrumaih, 2016 ), Computing Curriculum Software Engineering (CCSE) (Meyer, 2001 ), Cyber Security Curricula (CSC) (Brady et al., 2004 ; Bishop et al., 2017 ).

Bodies of knowledge (BOK)

A BOK includes the set of thoughts and activities related to the professional area, while in model curriculum set of guidelines are given to address the education issues (Sahami et al., 2011 ). Database body of Knowledge comprises of (a) The Data Management Body of Knowledge (DM- BOK), (b) Software Engineering Education Knowledge (SEEK) (Sobel, 2003 ) (Sobel, 2003 ), and (c) The SE body of knowledge (SWEBOK) (Swebok Evolution: IEEE Computer Society n.d. ).

Apart from the model curricula, and bodies of knowledge, there also exist some standards related to the database and its different modules: ISO/IEC 9075–1:2016 (Computing Curricula, 1991 ), ISO/IEC 10,026–1: 1998 (Suryn, 2003 ).

We also utilize advices from some studies (Elberzhager et al., 2012 ; Keele et al., 2007 ) to search for relevant papers. In order to conduct this systematic study, it is essential to formulate the primary research questions (Mushtaq et al., 2017 ). Since the data management techniques and software are evolving rapidly, the database curriculum should also be updated accordingly to meet these new requirements. Some authors have described ways of updating the content of courses to keep pace with specific developments in the field and others have developed new database curricula to keep up with the new data management techniques.

Furthermore, some authors have suggested updates for the database curriculum based on the continuously evolving technology and introduction of big data. For instance Bhogal et al. ( 2012 ) have shown that database curricula need to be updated and modernized, which can be achieved by extending the current database concepts that cover the strategies to handle the ever changing user requirements and how database technology has evolved to meet the requirements. Likewise, Picciano ( 2012 ) examines the evolving world of big data and analytics in American higher education. According to the author, the “data driven” decision making method should be used to help the institutes evaluate strategies that can improve retention and update the curriculum that has big data basic concepts and applications, since data driven decision making has already entered in the big data and learning analytic era. Furthermore, Marshall ( 2011 ) presented the challenges faced when developing a curriculum for a Computer Science degree program in the South African context that is earmarked for international recognition. According to the author, the Curricula needs to adhere both to the policy and content requirements in order to be rated as being of a particular quality.

Similarly, some studies (Abourezq & Idrissi, 2016 ; Mingyu et al., 2017 ) described big data influence from a social perspective and also proceeded with the gaps in database curriculum of computer science, especially, in the big data era and discovers the teaching improvements in practical and theoretical teaching mode, teaching content and teaching practice platform in database curriculum. Also Silva et al. ( 2016 ) propose teaching SQL as a general language that can be used in a wide range of database systems from traditional relational database management systems to big data systems.

On the other hand, different authors have developed a database curriculum based on the different academic background of students. Such as, Dean and Milani ( 1995 ) have recommended changes in computer science curricula based on the practice in United Stated Military Academy (USMA). They emphasized greatly on the practical demonstration of the topic rather than the theoretical explanation. Especially, for the non-computer science major students. Furthermore, Urban and Dietrich ( 2001 ) described the development of a second course on database systems for undergraduates, preparing students for the advanced database concepts that they will exercise in the industry. They also shared their experience with teaching the course, elaborating on the topics and assignments. Also, Andersson et al. ( 2019 ) proposed variations in core topics of database management course for the students with the engineering background. Moreover, Dietrich et al. ( 2014 ) described two animations developed with images and color that visually and dynamically introduce fundamental relational database concepts and querying to students of many majors. The goal is that the educators, in diverse academic disciplines, should be able to incorporate these animations in their existing courses to meet their pedagogical needs.

The information systems have evolved into large scale distributed systems that store and process a huge amount of data across different servers, and process them using different distributed data processing frameworks. This evolution has given birth to new paradigms in database systems domain termed as NoSQL and Big Data systems, which significantly deviate from conventional relational and distributed database management systems. It is pertinent to mention that in order to offer a sustainable and practical CS education, these new paradigms and methodologies as shown in Fig.  5 should be included into database education (Kleiner, 2015 ). Tables ​ Tables9 9 and ​ and10 10 shows the summarized findings of the curriculum based reviewed studies. This section also proposed appropriate text book based on the theory, project, and practice-based teaching methodology as shown in Table ​ Table9. 9 . The proposed books are selected purely on the bases of their usage in top universities around the world such as, Massachusetts Institute of Technology, Stanford University, Harvard University, University of Oxford, University of Cambridge and, University of Singapore and the coverage of core topics mentioned in the database curriculum.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig5_HTML.jpg

Concepts in Database Systems Education (Kleiner, 2015 )

Recommended text books for DSE

Curriculum: Findings of Reviewed Literature

RQ.2 Evolution of DSE research

This section discusses the evolution of database while focusing the DSE over the past 25 years as shown in Fig.  6 .

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig6_HTML.jpg

Evolution of DSE studies

This study shows that there is significant increase in research in DSE after 2004 with 78% of the selected papers are published after 2004. The main reason of this outcome is that some of the papers are published in well-recognized channels like IEEE Transactions on Education, ACM Transactions on Computing Education, International Conference on Computer Science and Education (ICCSE), and Teaching, Learning and Assessment of Database (TLAD) workshop. It is also evident that several of these papers were published before 2004 and only a few articles were published during late 1990s. This is because of the fact that DSE started to gain interest after the introduction of Body of Knowledge and DSE standards. The data intensive scientific discovery has been discussed as the fourth paradigm (Hey et al., 2009 ): where the first involves empirical science and observations; second contains theoretical science and mathematically driven insights; third considers computational science and simulation driven insights; while the fourth involves data driven insights of modern scientific research.

Over the past few decades, students have gone from attending one-room class to having the world at their fingertips, and it is a great challenge for the instructors to develop the interest of students in learning database. This challenge has led to the development of the different types of interactive tools to help the instructors teach DSE in this technology oriented era. Keeping the importance of interactive tools in DSE in perspective, various authors have proposed different interactive tools over the years, such as during 1995–2003, when different authors proposed various interactive tools. Some studies (Abut & Ozturk, 1997 ; Mcintyre et al., 1995 ) introduced state of the art interactive tools to teach and enhance the collaborative learning among the students. Similarly, during 2004–2005 more interactive tools in the field of DSE were proposed such as Pahl et al. ( 2004 ), Connolly et al. ( 2005 ) introduced multimedia system based interactive model and game based collaborative learning environment.

The Internet has started to become more common in the first decade of the twenty-first century and its positive impact on the education sector was undeniable. Cost effective, student teacher peer interaction, keeping in touch with the latest information were the main reasons which made the instructors employ web-based tools to teach database in the education sector. Due to this spike in the demand of web-based tools, authors also started to introduce new instruments to assist with teaching database. In 2007 Regueras et al. ( 2007 ) proposed an e-learning tool named QUEST with a feedback module to help the students to learn from their mistakes. Similarly, in 2010, multiple authors have proposed and evaluated various web-based tools. Cvetanovic et al. ( 2010 ) proposed ADVICE with the functionality to monitor student’s progress, while, few authors (Wang et al., 2010 ) proposed Metube which is a variation of YouTube. Furthermore, Nelson and Fatimazahra ( 2010 ) evaluated different web-based tools to highlight the complexities of using these web-based instruments.

Technology has changed the teaching methods in the education sector but technology cannot replace teachers, and despite the amount of time most students spend online, virtual learning will never recreate the teacher-student bond. In the modern era, innovation in technology used in educational sectors is not meant to replace the instructors or teaching methods.

During the 1990s some studies (Dietrich & Urban, 1996 ; Urban & Dietrich, 1997 ) proposed learning and teaching methods respectively keeping the evolving technology in view. The highlight of their work was project deliverables and assignments where students progressively advanced to a step-by-step extension, from a tutorial exercise and then attempting more difficult extension of assignment.

During 2002–2007 various authors have discussed a number of teaching and learning methods to keep up the pace with the ever changing database technology, such as Connolly and Begg ( 2006 ) proposing a constructive approach to teach database analysis and design. Similarly, Prince and Felder ( 2006 ) reviewed the effectiveness of inquiry learning, problem based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching. Also, McIntyre et al. (Mcintyre et al., 1995 ) brought to light the impact of convergence of European Union (EU) in different universities across Europe. They suggested a reconstruction of teaching and learning methodologies in order to effectively teach database.

During 2008–2013 more work had been done to address the different methods of teaching and learning in the field of DSE, like the work of Dominguez and Jaime ( 2010 ) who proposed an active learning approach. The focus of their study was to develop the interest of students in designing and developing databases. Also, Zheng and Dong ( 2011 ) have highlighted various characteristics of the database course and its teaching content. Similarly, Yuelan et al. ( 2011 ) have reformed database teaching methods. The main focus of their study were the Modern ways of education, project driven approach, strengthening the experimental aspects, and improving the traditional assessment method. Likewise, Al-Shuaily ( 2012 ) has explored 4 cognitive factors that can affect the learning process of database. The main focus of their study was to facilitate the students in learning SQL. Subsequently, Chen et al. ( 2012 ) also proposed scaffolding-based concept mapping strategy. This strategy helps the students to better understand database management courses. Correspondingly, Martin et al. ( 2013 ) discussed various collaborative learning techniques in the field of DSE while keeping database as an introductory course.

In the years between 2014 and 2021, research in the field of DSE increased, which was the main reason that the most of teaching, learning and assessment methods were proposed and discussed during this period. Rashid and Al-Radhy ( 2014 ) discussed the issues of traditional teaching, learning, assessing methods of database courses at different universities in Kurdistan and the main focus of their study being reformation issues, such as absence of teaching determination and contradiction between content and theory. Similarly, Wang and Chen ( 2014 ) summarized the main problems in teaching the traditional database theory and its application. Curriculum assessment mode was the main focus of their study. Eaglestone and Nunes ( 2004 ) shared their experiences of delivering a databases design course at Sheffield University. Their focus of study included was to teach the database design module to a diverse group of students from different backgrounds. Rashid ( 2015 ) discussed some important features of database courses, whereby reforming the conventional teaching, learning, and assessing strategies of database courses at universities were the main focus of this study. Kui et al. ( 2018 ) reformed the teaching mode of database courses based on flipped classroom. Initiative learning of database courses was their main focus in this study. Similarly, Zhang et al. ( 2018 ) discussed several effective classroom teaching measures. The main focus of their study was teaching content, teaching methods, teaching evaluation and assessment methods. Cai and Gao ( 2019 ) also carried out the teaching reforms in the database course of liberal arts. Diversified teaching modes, such as flipping classroom, case oriented teaching and task oriented were the focus of their study. Teaching Kawash et al. ( 2020 ) proposed a learning approach called Graded Group Activities (GGAs). Their main focus of the study was reforming learning and assessment method.

Database course covers several topics that range from data modeling to data implementation and examination. Over the years, various authors have given their suggestions to update these topics in database curriculum to meet the requirements of modern technologies. On the other hand, authors have also proposed a new curriculum for the students of different academic backgrounds and different areas. These reformations in curriculum helped the students in their preparation, practically and theoretically, and enabled them to compete in the competitive market after graduation.

During 2003 and 2006 authors have proposed various suggestions to update and develop computer science curriculum across different universities. Robbert and Ricardo ( 2003 ) evaluated three reviews from 1999 to 2002 that were given to the groups of educators. The focus of their study was to highlight the trends that occurred in database curriculum. Also, Calero et al. ( 2003 ) proposed a first draft for this Database Body of Knowledge (DBBOK). Database (DB), Database Design (DBD), Database Administration (DBAd), Database Application (DBAp) and Advance Databases (ADVDB) were the main focus of their study. Furthermore, Conklin and Heinrichs (Conklin & Heinrichs, 2005 ) compared the content included in 13 database textbooks and the main focus of their study was IS 2002, CC2001, and CC2004 model curricula.

The years from 2007 and 2011, authors managed to developed various database curricula, like Luo et al. ( 2008 ) developed curricula in Zhejiang University City College. The aim of their study to nurture students to be qualified computer scientists. Likewise, Dietrich et al. ( 2008 ) proposed the techniques to assess the development of an advanced database course. The purpose behind the addition of an advanced database course at undergraduate level was to prepare the students to respond to industrial requirements. Also, Marshall ( 2011 ) developed a new database curriculum for Computer Science degree program in the South African context.

During 2012 and 2021 various authors suggested updates for the database curriculum such as Bhogal et al. ( 2012 ) who suggested updating and modernizing the database curriculum. Data management and data analytics were the focus of their study. Similarly, Picciano ( 2012 ) examined the curriculum in the higher level of American education. The focus of their study was big data and analytics. Also, Zhanquan et al. ( 2016 ) proposed the design for the course content and teaching methods in the classroom. Massive Open Online Courses (MOOCs) were the focus of their study. Likewise, Mingyu et al. ( 2017 ) suggested updating the database curriculum while keeping new technology concerning the database in perspective. The focus of their study was big data.

The above discussion clearly shows that the SQL is most discussed topic in the literature where more than 25% of the studies have discussed it in the previous decade as shown in Fig.  7 . It is pertinent to mention that other SQL databases such as Oracle, MS access are discussed under the SQL banner (Chen et al., 2012 ; Hou & Chen, 2010 ; Wang & Chen, 2014 ). It is mainly because of its ability to handle data in a relational database management system and direct implementation of database theoretical concepts. Also, other database topics such as transaction management, application programming etc. are also the main highlights of the topics discussed in the literature.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11293_Fig7_HTML.jpg

Evolution of Database topics discussed in literature

Research synthesis, advice for instructors, and way forward

This section presents the synthesized information extracted after reading and analyzing the research articles considered in this study. To this end, it firstly contextualizes the tools and methods to help the instructors find suitable tools and methods for their settings. Similarly, developments in curriculum design have also been discussed. Subsequently, general advice for instructors have been discussed. Lastly, promising future research directions for developing new tools, methods, and for revising the curriculum have also been discussed in this section.

Methods, tools, and curriculum

Methods and tools.

Web-based tools proposed by Cvetanovic et al. ( 2010 ) and Wang et al. ( 2010 ) have been quite useful, as they are growing increasingly pertinent as online mode of education is prevalent all around the globe during COVID-19. On the other hand, interactive tools and smart class room methodology has also been used successfully to develop the interest of students in database class. (Brusilovsky et al., 2010 ; Connolly et al., 2005 ; Pahl et al., 2004 ; Canedo et al., 2021 ; Ko et al., 2021 ).

One of the most promising combination of methodology and tool has been proposed by Cvetanovic et al. ( 2010 ), whereby they developed a tool named ADVICE that helps students learn and implement database concepts while using project centric methodology, while a game based collaborative learning environment was proposed by Connolly et al. ( 2005 ) that involves a methodology comprising of modeling, articulation, feedback, and exploration. As a whole, project centric teaching (Connolly & Begg, 2006 ; Domínguez & Jaime, 2010 ) and teaching database design and problem solving skills Wang and Chen ( 2014 ), are two successful approaches for DSE. Whereas, other studies (Urban & Dietrich, 1997 ) proposed teaching methods that are more inclined towards practicing database concepts. While a topic specific approach has been proposed by Abbasi et al. ( 2016 ), Taipalus et al. ( 2018 ) and Silva et al. ( 2016 ) to teach and learn SQL. On the other hand, Cai and Gao ( 2019 ) developed a teaching method for students who do not have a computer science background. Lastly, some useful ways for defining assessments for DSE have been proposed by Kawash et al. ( 2020 ) and Zhang et al. ( 2018 ).

Curriculum of database adopted by various institutes around the world does not address how to teach the database course to the students who do not have a strong computer science background. Such as Marshall ( 2012 ), Luo et al. ( 2008 ) and Zhanquan et al. ( 2016 ) have proposed the updates in current database curriculum for the students who are not from computer science background. While Abid et al. ( 2015 ) proposed a combined course content and various methodologies that can be used for teaching database systems course. On the other hand, current database curriculum does not include the topics related to latest technologies in database domain. This factor was discussed by many other studies as well (Bhogal et al., 2012 ; Mehmood et al., 2020 ; Picciano, 2012 ).

Guidelines for instructors

The major conclusion of this study are the suggestions based on the impact and importance for instructors who are teaching DSE. Furthermore, an overview of productivity of every method can be provided by the empirical studies. These instructions are for instructors which are the focal audience of this study. These suggestions are subjective opinions after literature analysis in form of guidelines according to the authors and their meaning and purpose were maintained. According to the literature reviewed, various issues have been found in this section. Some other issues were also found, but those were not relevant to DSE. Following are some suggestions that provide interesting information:

Project centric and applied approach

  • To inculcate database development skills for the students, basic elements of database development need to be incorporated into teaching and learning at all levels including undergraduate studies (Bakar et al., 2011 ). To fulfill this objective, instructors should also improve the data quality in DSE by assigning the projects and assignments to the students where they can assess, measure and improve the data quality using already deployed databases. They should demonstrate that the quality of data is determined not only by the effective design of a database, but also through the perception of the end user (Mathieu & Khalil, 1997 )
  • The gap between the database course theory and industrial practice is big. Fresh graduate students find it difficult to cope up with the industrial pressure because of the contrast between what they have been taught in institutes and its application in industry (Allsopp et al., 2006 ). Involve top performers from classes in industrial projects so that they are able to acquiring sufficient knowledge and practice, especially for post graduate courses. There must be some other activities in which industry practitioners come and present the real projects and also share their industrial experiences with the students. The gap between theoretical and the practical sides of database has been identified by Myers and Skinner ( 1997 ). In order to build practical DS concepts, instructors should provide the students an accurate view of reality and proper tools.

Importance of software development standards and impact of DB in software success

  • They should have the strategies, ability and skills that can align the DSE course with the contemporary Global Software Development (GSD) (Akbar & Safdar, 2015 ; Damian et al., 2006 ).
  • Enable the students to explain the approaches to problem solving, development tools and methodologies. Also, the DS courses are usually taught in normal lecture format. The result of this method is that students cannot see the influence on the success or failure of projects because they do not realize the importance of DS activities.

Pedagogy and the use of education technology

  • Some studies have shown that teaching through play and practical activities helps to improve the knowledge and learning outcome of students (Dicheva et al., 2015 ).
  • Interactive classrooms can help the instructors to deliver their lecture in a more effective way by using virtual white board, digital textbooks, and data over network(Abut & Ozturk, 1997 ). We suggest that in order to follow the new concept of smart classroom, instructors should use the experience of Yau and Karim ( 2003 ) which benefits in cooperative learning among students and can also be adopted in DSE.
  • The instructors also need to update themselves with full spectrum of technology in education, in general, and for DSE, in particular. This is becoming more imperative as during COVID the world is relying strongly on the use of technology, particularly in education sector.

Periodic Curriculum Revision

  • There is also a need to revisit the existing series of courses periodically, so that they are able to offer the following benefits: (a) include the modern day database system concepts; (b) can be offered as a specialization track; (c) a specialized undergraduate degree program may also be designed.

DSE: Way forward

This research combines a significant work done on DSE at one place, thus providing a point to find better ways forward in order to improvise different possible dimensions for improving the teaching process of a database system course in future. This section discusses technology, methods, and modifications in curriculum would most impact the delivery of lectures in coming years.

Several tools have already been developed for effective teaching and learning in database systems. However, there is a great room for developing new tools. Recent rise of the notion of “serious games” is marking its success in several domains. Majority of the research work discussed in this review revolves around web-based tools. The success of serious games invites researchers to explore this new paradigm of developing useful tools for learning and practice database systems concepts.

Likewise, due to COVID-19 the world is setting up new norms, which are expected to affect the methods of teaching as well. This invites the researchers to design, develop, and test flexible tools for online teaching in a more interactive manner. At the same time, it is also imperative to devise new techniques for assessments, especially conducting online exams at massive scale. Moreover, the researchers can implement the idea of instructional design in web-based teaching in which an online classroom can be designed around the learners’ unique backgrounds and effectively delivering the concepts that are considered to be highly important by the instructors.

The teaching, learning and assessment methods discussed in this study can help the instructors to improve their methods in order to teach the database system course in a better way. It is noticed that only 16% of authors have the assessment methods as their focus of study, which clearly highlights that there is still plenty of work needed to be done in this particular domain. Assessment techniques in the database course will help the learners to learn from their mistakes. Also, instructors must realize that there is a massive gap between database theory and practice which can only be reduced with maximum practice and real world database projects.

Similarly, the technology is continuously influencing the development and expansion of modern education, whereas the instructors’ abilities to teach using online platforms are critical to the quality of online education.

In the same way, the ideas like flipped classroom in which students have to prepare the lesson prior to the class can be implemented on web-based teaching. This ensures that the class time can be used for further discussion of the lesson, share ideas and allow students to interact in a dynamic learning environment.

The increasing impact of big data systems, and data science and its anticipated impact on the job market invites the researchers to revisit the fundamental course of database systems as well. There is a need to extend the boundaries of existing contents by including the concepts related to distributed big data systems data storage, processing, and transaction management, with possible glimpse of modern tools and technologies.

As a whole, an interesting and long term extension is to establish a generic and comprehensive framework that engages all the stakeholders with the support of technology to make the teaching, learning, practicing, and assessing easier and more effective.

This SLR presents review on the research work published in the area of database system education, with particular focus on teaching the first course in database systems. The study was carried out by systematically selecting research papers published between 1995 and 2021. Based on the study, a high level categorization presents a taxonomy of the published under the heads of Tools, Methods, and Curriculum. All the selected articles were evaluated on the basis of a quality criteria. Several methods have been developed to effectively teach the database course. These methods focus on improving learning experience, improve student satisfaction, improve students’ course performance, or support the instructors. Similarly, many tools have been developed, whereby some tools are topic based, while others are general purpose tools that apply for whole course. Similarly, the curriculum development activities have also been discussed, where some guidelines provided by ACM/IEEE along with certain standards have been discussed. Apart from this, the evolution in these three areas has also been presented which shows that the researchers have been presenting many different teaching methods throughout the selected period; however, there is a decrease in research articles that address the curriculum and tools in the past five years. Besides, some guidelines for the instructors have also been shared. Also, this SLR proposes a way forward in DSE by emphasizing on the tools: that need to be developed to facilitate instructors and students especially post Covid-19 era, methods: to be adopted by the instructors to close the gap between the theory and practical, Database curricula update after the introduction of emerging technologies such as big data and data science. We also urge that the recognized publication venues for database research including VLDB, ICDM, EDBT should also consider publishing articles related to DSE. The study also highlights the importance of reviving the curricula, tools, and methodologies to cater for recent advancements in the field of database systems.

Data availability

Code availability, declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abbasi, S., Kazi, H., Khowaja, K., Abelló Gamazo, A., Burgués Illa, X., Casany Guerrero, M. J., Martin Escofet, C., Quer, C., Rodriguez González, M. E., Romero Moral, Ó., Urpi Tubella, A., Abid, A., Farooq, M. S., Raza, I., Farooq, U., Abid, K., Hussain, N., Abid, K., Ahmad, F., …, Yatim, N. F. M. (2016). Research trends in enterprise service bus (ESB) applications: A systematic mapping study. Journal of Informetrics, 27 (1), 217–220.
  • Abbasi, S., Kazi, H., & Khowaja, K. (2017). A systematic review of learning object oriented programming through serious games and programming approaches. 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS) , 1–6.
  • Abelló Gamazo A, Burgués Illa X, Casany Guerrero MJ, Martin Escofet C, Quer C, Rodriguez González ME, Romero Moral Ó, Urpi Tubella A. A software tool for E-assessment of relational database skills. International Journal of Engineering Education. 2016; 32 (3A):1289–1312. [ Google Scholar ]
  • Abid A, Farooq MS, Raza I, Farooq U, Abid K. Variants of teaching first course in database systems. Bulletin of Education and Research. 2015; 37 (2):9–25. [ Google Scholar ]
  • Abid A, Hussain N, Abid K, Ahmad F, Farooq MS, Farooq U, Khan SA, Khan YD, Naeem MA, Sabir N. A survey on search results diversification techniques. Neural Computing and Applications. 2016; 27 (5):1207–1229. [ Google Scholar ]
  • Abourezq, M., & Idrissi, A. (2016). Database-as-a-service for big data: An overview. International Journal of Advanced Computer Science and Applications (IJACSA) , 7 (1).
  • Abut, H., & Ozturk, Y. (1997). Interactive classroom for DSP/communication courses. 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing , 1 , 15–18.
  • Adams ES, Granger M, Goelman D, Ricardo C. Managing the introductory database course: What goes in and what comes out? ACM SIGCSE Bulletin. 2004; 36 (1):497–498. [ Google Scholar ]
  • Akbar, R., & Safdar, S. (2015). A short review of global software development (gsd) and latest software development trends. 2015 International Conference on Computer, Communications, and Control Technology (I4CT) , 314–317.
  • Allsopp DH, DeMarie D, Alvarez-McHatton P, Doone E. Bridging the gap between theory and practice: Connecting courses with field experiences. Teacher Education Quarterly. 2006; 33 (1):19–35. [ Google Scholar ]
  • Alrumaih, H. (2016). ACM/IEEE-CS information technology curriculum 2017: status report. Proceedings of the 1st National Computing Colleges Conference (NC3 2016) .
  • Al-Shuaily, H. (2012). Analyzing the influence of SQL teaching and learning methods and approaches. 10 Th International Workshop on the Teaching, Learning and Assessment of Databases , 3.
  • Amadio, W., Riyami, B., Mansouri, K., Poirier, F., Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., Mahmood, A., Hey, A. J. G., Tansley, S., Tolle, K. M., others, Tehseen, R., Farooq, M. S., Abid, A., …, Fatimazahra, E. (2003). The fourth paradigm: data-intensive scientific discovery. Innovation in Teaching and Learning in Information and Computer Sciences , 1 (1), 823–828. https://www.iso.org/standard/27614.html
  • Amadio, W. (2003). The dilemma of Team Learning: An assessment from the SQL programming classroom . 823–828.
  • Ampatzoglou A, Charalampidou S, Stamelos I. Research state of the art on GoF design patterns: A mapping study. Journal of Systems and Software. 2013; 86 (7):1945–1964. [ Google Scholar ]
  • Andersson C, Kroisandt G, Logofatu D. Including active learning in an online database management course for industrial engineering students. IEEE Global Engineering Education Conference (EDUCON) 2019; 2019 :217–220. [ Google Scholar ]
  • Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics. 2017; 11 (4):959–975. [ Google Scholar ]
  • Aziz O, Farooq MS, Abid A, Saher R, Aslam N. Research trends in enterprise service bus (ESB) applications: A systematic mapping study. IEEE Access. 2020; 8 :31180–31197. [ Google Scholar ]
  • Bakar MA, Jailani N, Shukur Z, Yatim NFM. Final year supervision management system as a tool for monitoring computer science projects. Procedia-Social and Behavioral Sciences. 2011; 18 :273–281. [ Google Scholar ]
  • Beecham S, Baddoo N, Hall T, Robinson H, Sharp H. Motivation in Software Engineering: A systematic literature review. Information and Software Technology. 2008; 50 (9–10):860–878. [ Google Scholar ]
  • Bhogal, J. K., Cox, S., & Maitland, K. (2012). Roadmap for Modernizing Database Curricula. 10 Th International Workshop on the Teaching, Learning and Assessment of Databases , 73.
  • Bishop, M., Burley, D., Buck, S., Ekstrom, J. J., Futcher, L., Gibson, D., ... & Parrish, A. (2017, May). Cybersecurity curricular guidelines . In IFIP World Conference on Information Security Education (pp. 3–13). Cham: Springer.
  • Brady A, Bruce K, Noonan R, Tucker A, Walker H. The 2003 model curriculum for a liberal arts degree in computer science: preliminary report. ACM SIGCSE Bulletin. 2004; 36 (1):282–283. [ Google Scholar ]
  • Brusilovsky P, Sosnovsky S, Lee DH, Yudelson M, Zadorozhny V, Zhou X. An open integrated exploratorium for database courses. AcM SIGcSE Bulletin. 2008; 40 (3):22–26. [ Google Scholar ]
  • Brusilovsky P, Sosnovsky S, Yudelson MV, Lee DH, Zadorozhny V, Zhou X. Learning SQL programming with interactive tools: From integration to personalization. ACM Transactions on Computing Education (TOCE) 2010; 9 (4):1–15. [ Google Scholar ]
  • Cai, Y., & Gao, T. (2019). Teaching Reform in Database Course for Liberal Arts Majors under the Background of" Internet Plus". 2018 6th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2018) , 208–213.
  • Calderon KR, Vij RS, Mattana J, Jhaveri KD. Innovative teaching tools in nephrology. Kidney International. 2011; 79 (8):797–799. [ PubMed ] [ Google Scholar ]
  • Calero C, Piattini M, Ruiz F. Towards a database body of knowledge: A study from Spain. ACM SIGMOD Record. 2003; 32 (2):48–53. [ Google Scholar ]
  • Canedo, E. D., Bandeira, I. N., & Costa, P. H. T. (2021). Challenges of database systems teaching amidst the Covid-19 pandemic. In 2021 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE.
  • Chen H-H, Chen Y-J, Chen K-J. The design and effect of a scaffolded concept mapping strategy on learning performance in an undergraduate database course. IEEE Transactions on Education. 2012; 56 (3):300–307. [ Google Scholar ]
  • Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F. SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology. 2012; 63 (8):1609–1630. [ Google Scholar ]
  • Conklin M, Heinrichs L. In search of the right database text. Journal of Computing Sciences in Colleges. 2005; 21 (2):305–312. [ Google Scholar ]
  • Connolly, T. M., & Begg, C. E. (2006). A constructivist-based approach to teaching database analysis and design. Journal of Information Systems Education , 17 (1).
  • Connolly, T. M., Stansfield, M., & McLellan, E. (2005). An online games-based collaborative learning environment to teach database design. Web-Based Education: Proceedings of the Fourth IASTED International Conference(WBE-2005) .
  • Curricula Computing. (1991). Report of the ACM/IEEE-CS Joint Curriculum Task Force. Technical Report . New York: Association for Computing Machinery.
  • Cvetanovic M, Radivojevic Z, Blagojevic V, Bojovic M. ADVICE—Educational system for teaching database courses. IEEE Transactions on Education. 2010; 54 (3):398–409. [ Google Scholar ]
  • Damian, D., Hadwin, A., & Al-Ani, B. (2006). Instructional design and assessment strategies for teaching global software development: a framework. Proceedings of the 28th International Conference on Software Engineering , 685–690.
  • Dean, T. J., & Milani, W. G. (1995). Transforming a database systems and design course for non computer science majors. Proceedings Frontiers in Education 1995 25th Annual Conference. Engineering Education for the 21st Century , 2 , 4b2--17.
  • Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Journal of Educational Technology \& Society , 18 (3), 75–88.
  • Dietrich SW, Urban SD, Haag S. Developing advanced courses for undergraduates: A case study in databases. IEEE Transactions on Education. 2008; 51 (1):138–144. [ Google Scholar ]
  • Dietrich SW, Goelman D, Borror CM, Crook SM. An animated introduction to relational databases for many majors. IEEE Transactions on Education. 2014; 58 (2):81–89. [ Google Scholar ]
  • Dietrich, S. W., & Urban, S. D. (1996). Database theory in practice: learning from cooperative group projects. Proceedings of the Twenty-Seventh SIGCSE Technical Symposium on Computer Science Education , 112–116.
  • Dominguez, C., & Jaime, A. (2010). Database design learning: A project-based approach organized through a course management system. Computers \& Education , 55 (3), 1312–1320.
  • Eaglestone, B., & Nunes, M. B. (2004). Pragmatics and practicalities of teaching and learning in the quicksand of database syllabuses. Journal of Innovations in Teaching and Learning for Information and Computer Sciences , 3 (1).
  • Efendiouglu A, Yelken TY. Programmed instruction versus meaningful learning theory in teaching basic structured query language (SQL) in computer lesson. Computers & Education. 2010; 55 (3):1287–1299. [ Google Scholar ]
  • Elberzhager F, Münch J, Nha VTN. A systematic mapping study on the combination of static and dynamic quality assurance techniques. Information and Software Technology. 2012; 54 (1):1–15. [ Google Scholar ]
  • Etemad M, Küpçü A. Verifiable database outsourcing supporting join. Journal of Network and Computer Applications. 2018; 115 :1–19. [ Google Scholar ]
  • Farooq MS, Riaz S, Abid A, Abid K, Naeem MA. A Survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access. 2019; 7 :156237–156271. [ Google Scholar ]
  • Farooq MS, Riaz S, Abid A, Umer T, Zikria YB. Role of IoT technology in agriculture: A systematic literature review. Electronics. 2020; 9 (2):319. [ Google Scholar ]
  • Farooq U, Rahim MSM, Sabir N, Hussain A, Abid A. Advances in machine translation for sign language: Approaches, limitations, and challenges. Neural Computing and Applications. 2021; 33 (21):14357–14399. [ Google Scholar ]
  • Fisher, D., & Khine, M. S. (2006). Contemporary approaches to research on learning environments: Worldviews . World Scientific.
  • Garcia-Molina, H. (2008). Database systems: the complete book . Pearson Education India.
  • Garousi V, Mesbah A, Betin-Can A, Mirshokraie S. A systematic mapping study of web application testing. Information and Software Technology. 2013; 55 (8):1374–1396. [ Google Scholar ]
  • Gudivada, V. N., Nandigam, J., & Tao, Y. (2007). Enhancing student learning in database courses with large data sets. 2007 37th Annual Frontiers In Education Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports , S2D--13.
  • Hey, A. J. G., Tansley, S., Tolle, K. M., & others. (2009). The fourth paradigm: data-intensive scientific discovery (Vol. 1). Microsoft research Redmond, WA.
  • Holliday, M. A., & Wang, J. Z. (2009). A multimedia database project and the evolution of the database course. 2009 39th IEEE Frontiers in Education Conference , 1–6.
  • Hou, S., & Chen, S. (2010). Research on applying the theory of Blending Learning on Access Database Programming Course teaching. 2010 2nd International Conference on Education Technology and Computer , 3 , V3--396.
  • Irby DM, Wilkerson L. Educational innovations in academic medicine and environmental trends. Journal of General Internal Medicine. 2003; 18 (5):370–376. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ishaq K, Zin NAM, Rosdi F, Jehanghir M, Ishaq S, Abid A. Mobile-assisted and gamification-based language learning: A systematic literature review. PeerJ Computer Science. 2021; 7 :e496. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Joint Task Force on Computing Curricula, A. F. C. M. (acm), & Society, I. C. (2013). Computer science curricula 2013: Curriculum guidelines for undergraduate degree programs in computer science . New York, NY, USA: Association for Computing Machinery.
  • Juxiang R, Zhihong N. Taking database design as trunk line of database courses. Fourth International Conference on Computational and Information Sciences. 2012; 2012 :767–769. [ Google Scholar ]
  • Kawash, J., Jarada, T., & Moshirpour, M. (2020). Group exams as learning tools: Evidence from an undergraduate database course. Proceedings of the 51st ACM Technical Symposium on Computer Science Education , 626–632.
  • Keele, S., et al. (2007). Guidelines for performing systematic literature reviews in software engineering .
  • Kleiner, C. (2015). New Concepts in Database System Education: Experiences and Ideas. Proceedings of the 46th ACM Technical Symposium on Computer Science Education , 698.
  • Ko J, Paek S, Park S, Park J. A news big data analysis of issues in higher education in Korea amid the COVID-19 pandemic. Sustainability. 2021; 13 (13):7347. [ Google Scholar ]
  • Kui, X., Du, H., Zhong, P., & Liu, W. (2018). Research and application of flipped classroom in database course. 2018 13th International Conference on Computer Science \& Education (ICCSE) , 1–5.
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics , 159–174. [ PubMed ]
  • Lunt, B., Ekstrom, J., Gorka, S., Hislop, G., Kamali, R., Lawson, E., ... & Reichgelt, H. (2008). Curriculum guidelines for undergraduate degree programs in information technology . ACM.
  • Luo, R., Wu, M., Zhu, Y., & Shen, Y. (2008). Exploration of Curriculum Structures and Educational Models of Database Applications. 2008 The 9th International Conference for Young Computer Scientists , 2664–2668.
  • Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott, M. J., Sheard, J., & Szabo, C. (2018). Introductory programming: a systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education , 55–106.
  • Manzoor MF, Abid A, Farooq MS, Nawaz NA, Farooq U. Resource allocation techniques in cloud computing: A review and future directions. Elektronika Ir Elektrotechnika. 2020; 26 (6):40–51. doi: 10.5755/j01.eie.26.6.25865. [ CrossRef ] [ Google Scholar ]
  • Marshall, L. (2011). Developing a computer science curriculum in the South African context. CSERC , 9–19.
  • Marshall, L. (2012). A comparison of the core aspects of the acm/ieee computer science curriculum 2013 strawman report with the specified core of cc2001 and cs2008 review. Proceedings of Second Computer Science Education Research Conference , 29–34.
  • Martin C, Urpi T, Casany MJ, Illa XB, Quer C, Rodriguez ME, Abello A. Improving learning in a database course using collaborative learning techniques. The International Journal of Engineering Education. 2013; 29 (4):986–997. [ Google Scholar ]
  • Martinez-González MM, Duffing G. Teaching databases in compliance with the European dimension of higher education: Best practices for better competences. Education and Information Technologies. 2007; 12 (4):211–228. [ Google Scholar ]
  • Mateo PR, Usaola MP, Alemán JLF. Validating second-order mutation at system level. IEEE Transactions on Software Engineering. 2012; 39 (4):570–587. [ Google Scholar ]
  • Mathieu, R. G., & Khalil, O. (1997). Teaching Data Quality in the Undergraduate Database Course. IQ , 249–266.
  • Mcintyre, D. R., Pu, H.-C., & Wolff, F. G. (1995). Use of software tools in teaching relational database design. Computers \& Education , 24 (4), 279–286.
  • Mehmood E, Abid A, Farooq MS, Nawaz NA. Curriculum, teaching and learning, and assessments for introductory programming course. IEEE Access. 2020; 8 :125961–125981. [ Google Scholar ]
  • Meier, R., Barnicki, S. L., Barnekow, W., & Durant, E. (2008). Work in progress-Year 2 results from a balanced, freshman-first computer engineering curriculum. In 38th Annual Frontiers in Education Conference (pp. S1F-17). IEEE.
  • Meyer B. Software engineering in the academy. Computer. 2001; 34 (5):28–35. [ Google Scholar ]
  • Mingyu, L., Jianping, J., Yi, Z., & Cuili, Z. (2017). Research on the teaching reform of database curriculum major in computer in big data era. 2017 12th International Conference on Computer Science and Education (ICCSE) , 570–573.
  • Morien, R. I. (2006). A Critical Evaluation Database Textbooks, Curriculum and Educational Outcomes. Director , 7 .
  • Mushtaq Z, Rasool G, Shehzad B. Multilingual source code analysis: A systematic literature review. IEEE Access. 2017; 5 :11307–11336. [ Google Scholar ]
  • Myers M, Skinner P. The gap between theory and practice: A database application case study. Journal of International Information Management. 1997; 6 (1):5. [ Google Scholar ]
  • Naeem A, Farooq MS, Khelifi A, Abid A. Malignant melanoma classification using deep learning: Datasets, performance measurements, challenges and opportunities. IEEE Access. 2020; 8 :110575–110597. [ Google Scholar ]
  • Nagataki, H., Nakano, Y., Nobe, M., Tohyama, T., & Kanemune, S. (2013). A visual learning tool for database operation. Proceedings of the 8th Workshop in Primary and Secondary Computing Education , 39–40.
  • Naik, S., & Gajjar, K. (2021). Applying and Evaluating Engagement and Application-Based Learning and Education (ENABLE): A Student-Centered Learning Pedagogy for the Course Database Management System. Journal of Education , 00220574211032319.
  • Nelson, D., Stirk, S., Patience, S., & Green, C. (2003). An evaluation of a diverse database teaching curriculum and the impact of research. 1st LTSN Workshop on Teaching, Learning and Assessment of Databases, Coventry .
  • Nelson D, Fatimazahra E. Review of Contributions to the Teaching, Learning and Assessment of Databases (TLAD) Workshops. Innovation in Teaching and Learning in Information and Computer Sciences. 2010; 9 (1):78–86. [ Google Scholar ]
  • Obaid I, Farooq MS, Abid A. Gamification for recruitment and job training: Model, taxonomy, and challenges. IEEE Access. 2020; 8 :65164–65178. [ Google Scholar ]
  • Pahl C, Barrett R, Kenny C. Supporting active database learning and training through interactive multimedia. ACM SIGCSE Bulletin. 2004; 36 (3):27–31. [ Google Scholar ]
  • Park, Y., Tajik, A. S., Cafarella, M., & Mozafari, B. (2017). Database learning: Toward a database that becomes smarter every time. Proceedings of the 2017 ACM International Conference on Management of Data , 587–602.
  • Picciano AG. The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks. 2012; 16 (3):9–20. [ Google Scholar ]
  • Prince MJ, Felder RM. Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education. 2006; 95 (2):123–138. [ Google Scholar ]
  • Ramzan M, Abid A, Khan HU, Awan SM, Ismail A, Ahmed M, Ilyas M, Mahmood A. A review on state-of-the-art violence detection techniques. IEEE Access. 2019; 7 :107560–107575. [ Google Scholar ]
  • Rashid, T. A., & Al-Radhy, R. S. (2014). Transformations to issues in teaching, learning, and assessing methods in databases courses. 2014 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) , 252–256.
  • Rashid, T. (2015). Investigation of instructing reforms in databases. International Journal of Scientific \& Engineering Research , 6 (8), 64–72.
  • Regueras, L. M., Verdú, E., Verdú, M. J., Pérez, M. A., & De Castro, J. P. (2007). E-learning strategies to support databases courses: a case study. First International Conference on Technology, Training and Communication .
  • Robbert MA, Ricardo CM. Trends in the evolution of the database curriculum. ACM SIGCSE Bulletin. 2003; 35 (3):139–143. [ Google Scholar ]
  • Sahami, M., Guzdial, M., McGettrick, A., & Roach, S. (2011). Setting the stage for computing curricula 2013: computer science--report from the ACM/IEEE-CS joint task force. Proceedings of the 42nd ACM Technical Symposium on Computer Science Education , 161–162.
  • Sciore E. SimpleDB: A simple java-based multiuser syst for teaching database internals. ACM SIGCSE Bulletin. 2007; 39 (1):561–565. [ Google Scholar ]
  • Shebaro B. Using active learning strategies in teaching introductory database courses. Journal of Computing Sciences in Colleges. 2018; 33 (4):28–36. [ Google Scholar ]
  • Sibia, N., & Liut, M. (2022, June). The Positive Effects of using Reflective Prompts in a Database Course. In 1st International Workshop on Data Systems Education (pp. 32–37).
  • Silva, Y. N., Almeida, I., & Queiroz, M. (2016). SQL: From traditional databases to big data. Proceedings of the 47th ACM Technical Symposium on Computing Science Education , 413–418.
  • Sobel, A. E. K. (2003). Computing Curricula--Software Engineering Volume. Proc. of the Final Draft of the Software Engineering Education Knowledge (SEEK) .
  • Suryn, W., Abran, A., & April, A. (2003). ISO/IEC SQuaRE: The second generation of standards for software product quality .
  • Svahnberg, M., Aurum, A., & Wohlin, C. (2008). Using students as subjects-an empirical evaluation. Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement , 288–290.
  • Swebok evolution: IEEE Computer Society. (n.d.). In IEEE Computer Society SWEBOK Evolution Comments . Retrieved March 24, 2021 https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-committee/swebok-evolution
  • Taipalus T, Seppänen V. SQL education: A systematic mapping study and future research agenda. ACM Transactions on Computing Education (TOCE) 2020; 20 (3):1–33. [ Google Scholar ]
  • Taipalus T, Siponen M, Vartiainen T. Errors and complications in SQL query formulation. ACM Transactions on Computing Education (TOCE) 2018; 18 (3):1–29. [ Google Scholar ]
  • Taipalus, T., & Perälä, P. (2019). What to expect and what to focus on in SQL query teaching. Proceedings of the 50th ACM Technical Symposium on Computer Science Education , 198–203.
  • Tehseen R, Farooq MS, Abid A. Earthquake prediction using expert systems: A systematic mapping study. Sustainability. 2020; 12 (6):2420. [ Google Scholar ]
  • Urban, S. D., & Dietrich, S. W. (2001). Advanced database concepts for undergraduates: experience with teaching a second course. Proceedings of the Thirty-Second SIGCSE Technical Symposium on Computer Science Education , 357–361.
  • Urban SD, Dietrich SW. Integrating the practical use of a database product into a theoretical curriculum. ACM SIGCSE Bulletin. 1997; 29 (1):121–125. [ Google Scholar ]
  • Wang, J., & Chen, H. (2014). Research and practice on the teaching reform of database course. International Conference on Education Reform and Modern Management, ERMM .
  • Wang, J. Z., Davis, T. A., Westall, J. M., & Srimani, P. K. (2010). Undergraduate database instruction with MeTube. Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education , 279–283.
  • Yau, G., & Karim, S. W. (2003). Smart classroom: Enhancing collaborative learning using pervasive computing technology. II American Society… .
  • Yue K-B. Using a semi-realistic database to support a database course. Journal of Information Systems Education. 2013; 24 (4):327. [ Google Scholar ]
  • Yuelan L, Yiwei L, Yuyan H, Yuefan L. Study on teaching methods of database application courses. Procedia Engineering. 2011; 15 :5425–5428. [ Google Scholar ]
  • Zhang, X., Wang, X., Liu, Z., Xue, W., & ZHU, X. (2018). The Exploration and Practice on the Classroom Teaching Reform of the Database Technologies Course in colleges. 2018 3rd International Conference on Modern Management, Education Technology, and Social Science (MMETSS 2018) , 320–323.
  • Zhanquan W, Zeping Y, Chunhua G, Fazhi Z, Weibin G. Research of database curriculum construction under the environment of massive open online courses. International Journal of Educational and Pedagogical Sciences. 2016; 10 (12):3873–3877. [ Google Scholar ]
  • Zheng, Y., & Dong, J. (2011). Teaching reform and practice of database principles. 2011 6th International Conference on Computer Science \& Education (ICCSE) , 1460–1462.

Librarians/Admins

  • EBSCOhost Collection Manager
  • EBSCO Experience Manager
  • EBSCO Connect
  • Start your research
  • EBSCO Mobile App

Clinical Decisions Users

  • DynaMed Decisions
  • Dynamic Health
  • Waiting Rooms
  • NoveList Blog

Free Databases

EBSCO provides free research databases covering a variety of subjects for students, researchers and librarians.

Exploring Race in Society

This free research database offers essential content covering important issues related to race in society today. Essays, articles, reports and other reliable sources provide an in-depth look at the history of race and provide critical context for learning more about topics associated with race, ethnicity, diversity and inclusiveness.

EBSCO Open Dissertations

EBSCO Open Dissertations is a collaboration between EBSCO and BiblioLabs to increase traffic and discoverability of ETD research. You can join the movement and add your theses and dissertations to the database, making them freely available to researchers everywhere.

GreenFILE is a free research database covering all aspects of human impact to the environment. Its collection of scholarly, government and general-interest titles includes content on global warming, green building, pollution, sustainable agriculture, renewable energy, recycling, and more. 

Library, Information Science and Technology Abstracts

Library, Information Science & Technology Abstracts (LISTA) is a free research database for library and information science studies. LISTA provides indexing and abstracting for hundreds of key journals, books, research reports. It is EBSCO's intention to provide access to this resource on a continual basis.

Teacher Reference Center

A complimentary research database for teachers,  Teacher Reference Center  (TRC) provides indexing and abstracts for more than 230 peer-reviewed journals.

European Views of the Americas: 1493 to 1750

European Views of the Americas: 1493 to 1750 is a free archive of indexed publications related to the Americas and written in Europe before 1750. It includes thousands of valuable primary source records covering the history of European exploration as well as portrayals of Native American peoples.

Recommended Reading

Top 10 Support Resources for K-12 Schools on EBSCO Connect

The RePORT Expenditures and Results (RePORTER) module allows users to search a repository of NIH-funded research projects and access publications and patents resulting from NIH funding. Enter just about anything in the RePORTER Quick Search box above (text, PI names, project numbers, fiscal year, agency) or launch the Advanced Search to precisely configure searches using separate search fields.

RePORTER Home Advanced Search

Enter abstracts or other scientific text and Matchmaker will return lists of similar projects from RePORTER or program officials associated with those projects. These matches are based on the terms and concepts used in the submitted text. Matchmaker summarizes the projects by the program official, institute or center, review panel, and activity code.

Find a Match

Awards by Location

NIH Awards by Location - Explore year-by-year NIH funding by institution, state, congressional district, and more!

Categorical Spending

Categorical Spending displays the annual support level for various research, condition, and disease categories based on grants, contracts, and other funding mechanisms used across the National Institutes of Health (NIH), as well as disease burden data. The NIH does not expressly budget by category. The annual estimates reflect amounts that change as a result of science, actual research projects funded, and the NIH budget.

See Details

NIH Data Book

The NIH Data Book (NDB) provides basic summary statistics on extramural grants and contract awards, grant applications, the organizations that NIH supports, the trainees and fellows supported through NIH programs, and the national biomedical workforce.

Launch Data Book

Highlights

Research Portfolio Online Reporting Tools (RePORT)

In addition to carrying out its scientific mission, the NIH exemplifies and promotes the highest level of public accountability. To that end, the Research Portfolio Online Reporting Tools provides access to reports, data, and analyses of NIH research activities, including information on NIH expenditures and the results of NIH supported research.

NIH COVID-19 Research Explore NIH’s comprehensive summary of ongoing COVID-19 research, including funding, clinical trials, and more. Preview a modernized RePORTER , which offers faster searches and mobile-friendly interface. Subscribe to the NIH RePORT ListServ to stay up to date on changes to these sites.

RePORT Statistics

Projects by institute/center, projects by state.

database research study

Trends in Major Fields of Study of NIH-Supported Ph.D. Recipients

database research study

Research News

News highlights.

  • Increases for National Research Service Award Stipends and Childcare Subsidies - Apr 2024
  • Updated Analyses Suggest Continued Decline in Research Project Grant Funding Inequalities for NIH-Supported Investigators, but Organizational Inequalities Remain: FY 1998 to FY 2023 - Apr 2024
  • Announcing Revisions to the NIH Fellowship Review and Application Process - Apr 2024
  • Changes Coming to Applications and Peer Review in January 2025 - Apr 2024
  • Preparing for Funding Opportunities Using the Simplified Review Framework  - Apr 2024

NIH… Turning Discovery Into Health ®

Jump to navigation

  • Bahasa Indonesia
  • Bahasa Malaysia

Home

New Cochrane Library Editorial

Latest news and events.

On laptop

COMMENTS

  1. Database Search

    A catalog to find the specialized search engine that has what you need—identifying and connecting to the best databases for your research topic. What is Database Search? Harvard Library licenses hundreds of online databases, giving you access to academic and news articles, books, journals, primary sources, streaming media, and much more.

  2. Finding a Clinical Trial

    The NIH maintains an online database of clinical research studies taking place at its Clinical Center, which is located on the NIH campus in Bethesda, Maryland. Studies are conducted by most of the institutes and centers across the NIH. The Clinical Center hosts a wide range of studies from rare diseases to chronic health conditions, as well as ...

  3. NIH Clinical Center: Search the Studies

    More than 500,000 people from around the world have participated in clinical research since the hospital opened in 1953. We do not charge patients for participation and treatment in clinical studies at NIH. In certain emergency circumstances, you may qualify for help with travel and other expenses Read more, to see if clinical studies are for you.

  4. How to set up a database?—a five-step process

    Database set-up directly impacts the quality and viability of research data, and therefore is a crucial part of the quality of clinical research. Setting up a quality database implies following a strict data-management process. Too much collected information threatens the quality of the information required to achieve the objectives of the study.

  5. ClinicalTrials.gov

    Glossary. Study record managers: refer to the Data Element Definitions if submitting registration or results information.. Search for terms

  6. Search NCBI databases

    Search all biomedical databases provided by the National Center for Biotechnology Information (NCBI), an agency of the U.S. National Library of Medicine at the NIH ... Gene sequences and annotations used as references for the study of orthologs structure, expression, and evolution. Gene. Collected information about gene loci. ... NIH Research ...

  7. Key Characteristics of Database Studies on Drug ...

    Background. In recent years, real-world data (RWD) have been actively used in the field of pharmaceutical research. Database (DB) study, one of the observational studies using RWD, is a comprehensive, continuous, and rapid research method that plays an important role in the postmarketing stage of drugs, although the interpretation of the results may be limited.

  8. The best academic research databases [Update 2024]

    Organize your papers in one place. Try Paperpile. 1. Scopus. Scopus is one of the two big commercial, bibliographic databases that cover scholarly literature from almost any discipline. Besides searching for research articles, Scopus also provides academic journal rankings, author profiles, and an h-index calculator. 2.

  9. JSTOR Home

    Harness the power of visual materials—explore more than 3 million images now on JSTOR. Enhance your scholarly research with underground newspapers, magazines, and journals. Explore collections in the arts, sciences, and literature from the world's leading museums, archives, and scholars. JSTOR is a digital library of academic journals ...

  10. Open Data

    Open Data is a strategy for incorporating research data into the permanent scientific record by releasing it under an Open Access license. Whether data is deposited in a purpose-built repository or published as Supporting Information alongside a research article, Open Data practices ensure that data remains accessible and discoverable.

  11. Research and clinical trial databases

    This non-exhaustive collection of research databases allows you to locate multiple study datasets as well as information on clinical trials free of charge. Research Databases. Array Express ArrayExpress is a database of functional genomics experiments that can be queried and the data downloaded. Cancer Cell Line Encyclopedia (CCLE)

  12. Data management in clinical research: An overview

    Clinical Data Management (CDM) is a critical phase in clinical research, which leads to generation of high-quality, reliable, and statistically sound data from clinical trials. This helps to produce a drastic reduction in time from drug development to marketing. Team members of CDM are actively involved in all stages of clinical trial right ...

  13. How to Build a Research Database From Data You Collect to Guide Your

    We describe our own experience creating a research database based on our clinical data, and we describe the published empirical studies based on the database. In the main body of the article, we offer step-by-step guidance to clinicians who wish to create their own research database. We list 13 steps, beginning with "Select a measure or ...

  14. Use of databases for clinical research

    Databases are electronic filing systems that have been set up to capture patient data in a variety of clinical and administrative settings. While randomised controlled trials are the gold standard for the evaluation of healthcare interventions, electronic databases are valuable research options for studies of aetiology and prognosis, or where trials are too expensive/not logistically feasible.

  15. Google Scholar

    Google Scholar provides a simple way to broadly search for scholarly literature. Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions.

  16. PubMed

    Moved Permanently. The document has moved here.

  17. ResearchGate

    Access 160+ million publications and connect with 25+ million researchers. Join for free and gain visibility by uploading your research.

  18. APA PsycInfo

    For over 55 years, APA PsycInfo has been the most trusted index of psychological science in the world. With more than 5,000,000 interdisciplinary bibliographic records, our database delivers targeted discovery of credible and comprehensive research across the full spectrum of behavioral and social sciences. This indispensable resource continues ...

  19. Defining Research Data

    Defining Research Data. One definition of research data is: "the recorded factual material commonly accepted in the scientific community as necessary to validate research findings." ( OMB Circular 110 ). Research data covers a broad range of types of information (see examples below), and digital data can be structured and stored in a variety of ...

  20. Advances in database systems education: Methods, tools, curricula, and

    In order to preserve the principal aim of this study, which is to review the research conducted in the area of database systems education, a piece of advice has been collected from existing methods described in various studies (Elberzhager et al., 2012; Keele et al., 2007; Mushtaq et al., 2017) to search for the

  21. Free Research Databases from EBSCO

    Library, Information Science & Technology Abstracts (LISTA) is a free research database for library and information science studies. LISTA provides indexing and abstracting for hundreds of key journals, books, research reports. It is EBSCO's intention to provide access to this resource on a continual basis. Access now.

  22. Home

    Research Portfolio Online Reporting Tools. (RePORT) In addition to carrying out its scientific mission, the NIH exemplifies and promotes the highest level of public accountability. To that end, the Research Portfolio Online Reporting Tools provides access to reports, data, and analyses of NIH research activities, including information on NIH ...

  23. Cochrane

    8 April 2024. News. What are the benefits and risks of different corticosteroid treatments delivered intravenously for the prevention of bronchopulmonary dysplasia in infants born prematurely? 3 April 2024. Podcast. Cochrane is a global independent network of researchers, professionals, patients, carers and people interested in health.