Climate Change Essay for Students and Children

500+ words climate change essay.

Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ecosystem and ecology. Due to these changes, a number of species of plants and animals have gone extinct.

climate change and its impact on environment essay

When Did it Start?

The climate started changing a long time ago due to human activities but we came to know about it in the last century. During the last century, we started noticing the climatic change and its effect on human life. We started researching on climate change and came to know that the earth temperature is rising due to a phenomenon called the greenhouse effect. The warming up of earth surface causes many ozone depletion, affect our agriculture , water supply, transportation, and several other problems.

Reason Of Climate Change

Although there are hundreds of reason for the climatic change we are only going to discuss the natural and manmade (human) reasons.

Get the huge list of more than 500 Essay Topics and Ideas

Natural Reasons

These include volcanic eruption , solar radiation, tectonic plate movement, orbital variations. Due to these activities, the geographical condition of an area become quite harmful for life to survive. Also, these activities raise the temperature of the earth to a great extent causing an imbalance in nature.

Human Reasons

Man due to his need and greed has done many activities that not only harm the environment but himself too. Many plant and animal species go extinct due to human activity. Human activities that harm the climate include deforestation, using fossil fuel , industrial waste , a different type of pollution and many more. All these things damage the climate and ecosystem very badly. And many species of animals and birds got extinct or on a verge of extinction due to hunting.

Effects Of Climatic Change

These climatic changes have a negative impact on the environment. The ocean level is rising, glaciers are melting, CO2 in the air is increasing, forest and wildlife are declining, and water life is also getting disturbed due to climatic changes. Apart from that, it is calculated that if this change keeps on going then many species of plants and animals will get extinct. And there will be a heavy loss to the environment.

What will be Future?

If we do not do anything and things continue to go on like right now then a day in future will come when humans will become extinct from the surface of the earth. But instead of neglecting these problems we start acting on then we can save the earth and our future.

climate change and its impact on environment essay

Although humans mistake has caused great damage to the climate and ecosystem. But, it is not late to start again and try to undo what we have done until now to damage the environment. And if every human start contributing to the environment then we can be sure of our existence in the future.

{ “@context”: “https://schema.org”, “@type”: “FAQPage”, “mainEntity”: [ { “@type”: “Question”, “name”: “What is climate change and how it affects humans?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Climate change is a phenomenon that happens because of human and natural reasons. And it is one of the most serious problems that not only affect the environment but also human beings. It affects human in several ways but in simple language, we can say that it causes many diseases and disasters that destroy life on earth.” } }, { “@type”: “Question”, “name”: “Can we stop these climatic changes?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Yes, we can stop these climatic changes but for that, every one of us has to come forward and has to adapt ways that can reduce and control our bad habits that affect the environment. We have to the initiative and make everyone aware of the climatic changes.” } } ] }

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

climate change and its impact on environment essay

Lisa Hupp/USFWS

Arctic Match Live Now!

For a limited time, all gifts are being matched to stop Big Oil from blocking a new once-in-a-lifetime opportunity to protect the Arctic.

What Are the Effects of Climate Change?

A rapidly warming planet poses an existential threat to all life on earth. Just how bad it gets depends on how quickly we act.

An aerial view of floodwaters overtaking a cluster of buildings

An area flooded by Super Typhoon Noru in the Bulacan Province of the Philippines, September 26, 2022

Rouelle Umali/Xinhua via Getty Images

A headshot of Courtney Lindwall

  • Share this page block

Climate change is our planet’s greatest existential threat . If we don’t limit greenhouse gas emissions from the burning of fossil fuels, the consequences of rising global temperatures include massive crop and fishery collapse, the disappearance of hundreds of thousands of species, and entire communities becoming uninhabitable. While these outcomes may still be avoidable, climate change is already causing suffering and death. From raging wildfires and supercharged storms, its compounding effects can be felt today, outside our own windows.

Understanding these impacts can help us prepare for what’s here, what’s avoidable, and what’s yet to come, and to better prepare and protect all communities. Even though everyone is or will be affected by climate change, those living in the world’s poorest countries—which have contributed least to the problem—are the most climate-vulnerable. They have the fewest financial resources to respond to crises or adapt, and they’re closely dependent on a healthy, thriving natural world for food and income. Similarly, in the United States, it is most often low-income communities and communities of color that are on the frontlines of climate impacts. And because climate change and rising inequality are interconnected crises, decision makers must take action to combat both—and all of us must fight for climate justice. Here’s what you need to know about what we’re up against.

Effects of climate change on weather

Effects of climate change on the environment, effects of climate change on agriculture, effects of climate change on animals, effects of climate change on humans, future effects of climate change.

As global temperatures climb, widespread shifts in weather systems occur, making events like droughts , hurricanes , and floods more intense and unpredictable. Extreme weather events that may have hit just once in our grandparents’ lifetimes are becoming more common in ours. However, not every place will experience the same effects: Climate change may cause severe drought in one region while making floods more likely in another.

Already, the planet has warmed 1.1 degrees Celsius (1.9 degrees Fahrenheit) since the preindustrial era began 250 years ago, according to the Intergovernmental Panel on Climate Change (IPCC) . And scientists warn it could reach a worst-case scenario of 4 degrees Celsius (7.2 degrees Fahrenheit) by 2100 if we fail to tackle the causes of climate change —namely, the burning of fossil fuels (coal, oil, and gas) .

climate change and its impact on environment essay

Tokyo during a record-breaking heat wave, August 13, 2020

The Yomiuri Shimbun via AP Images

Higher average temperatures

This change in global average temperature—seemingly small but consequential and climbing—means that, each summer, we are likely to experience increasingly sweltering heat waves. Even local news meteorologists are starting to connect strings of record-breaking days to new long-term trends, which are especially problematic in regions where infrastructure and housing have not been built with intensifying heat in mind. And heat waves aren’t just uncomfortable—they’re the leading cause of weather-related fatalities in the United States.

Longer-lasting droughts

Hotter temperatures increase the rate at which water evaporates from the air, leading to more severe and pervasive droughts . Already, climate change has pushed the American West into a severe “megadrought”—the driest 22-year stretch recorded in at least 1,200 years—shrinking drinking water supplies, withering crops , and making forests more susceptible to insect infestations. Drought can also create a positive feedback loop in which drier soil and less plant cover cause even faster evaporation.

More intense wildfires

This drier, hotter climate also creates conditions that fuel more vicious wildfire seasons—with fires that spread faster and burn longer—putting millions of additional lives and homes at risk. The number of large wildfires doubled between 1984 and 2015 in the western United States. And in California alone, the annual area burned by wildfires increased 500 percent between 1972 and 2018.

Multiple rafts and boats travel through floodwaters on a multi-lane roadway, along with people walking in the waist-high water

Evacuation after Hurricane Harvey in Houston, August 28, 2017

David J. Phillip/AP Photo

Stronger storms

Warmer air also holds more moisture, making tropical cyclones wetter, stronger, and more capable of rapidly intensifying. In the latest report from the IPCC , scientists found that daily rainfall during extreme precipitation events would increase by about 7 percent for each degree Celsius of global warming, increasing the dangers of flooding . The frequency of severe Category 4 and 5 hurricanes is also expected to increase. In 2017, Hurricane Harvey, a devastating Category 4 storm, dumped a record 275 trillion pounds of rain and resulted in dozens of deaths in the Houston area.

From the poles to the tropics, climate change is disrupting ecosystems. Even a seemingly slight shift in temperature can cause dramatic changes that ripple through food webs and the environment.

Small chunks of ice melting in a body of water, with low, snowy mountains in the background

The lake at Jökulsárlón, a glacial lagoon in Iceland, which has grown because of continued glacial melting

Eskinder Debebe/UN Photo

Melting sea ice

The effects of climate change are most apparent in the world’s coldest regions—the poles. The Arctic is heating up twice as fast as anywhere else on earth, leading to the rapid melting of glaciers and polar ice sheets, where a massive amount of water is stored. As sea ice melts, darker ocean waters that absorb more sunlight become exposed, creating a positive feedback loop that speeds up the melting process. In just 15 years, the Arctic could be entirely ice-free in the summer.

Sea level rise

Scientists predict that melting sea ice and glaciers, as well as the fact that warmer water expands in volume, could cause sea levels to rise as much as 6.6 feet by the end of the century, should we fail to curb emissions. The extent (and pace) of this change would devastate low-lying regions, including island nations and densely populated coastal cities like New York City and Mumbai.

But sea level rise at far lower levels is still costly, dangerous, and disruptive. According to the 2022 Sea Level Rise Technical Report from the National Ocean Service, the United States will see a foot of sea level rise by 2050, which will regularly damage infrastructure, like roads, sewage treatment plants, and even power plants . Beaches that families have grown up visiting may be gone by the end of the century. Sea level rise also harms the environment, as encroaching seawater can both erode coastal ecosystems and invade freshwater inland aquifers, which we rely on for agriculture and drinking water. Saltwater incursion is already reshaping life in nations like Bangladesh , where one-quarter of the lands lie less than 7 feet above sea level.

People with umbrellas walk on a street through ankle-deep water

A waterlogged road, caused by rainstorm and upstream flood discharge, in the Shaoguan, Guangdong Province of China, June 21, 2022

Stringer/Anadolu Agency via Getty Images

In addition to coastal flooding caused by sea level rise, climate change influences the factors that result in inland and urban flooding: snowmelt and heavy rain. As global warming continues to both exacerbate sea level rise and extreme weather, our nation’s floodplains are expected to grow by approximately 45 percent by 2100. In 2022, deadly flooding in Pakistan—which inundated as much as a third of the country—resulted from torrential rains mixed with melting glaciers and snow.

Warmer ocean waters and marine heat waves

Oceans are taking the brunt of our climate crisis. Covering more than 70 percent of the planet’s surface, oceans absorb 93 percent of all the heat that’s trapped by greenhouse gases and up to 30 percent of all the carbon dioxide emitted from burning fossil fuels.

Temperature-sensitive fish and other marine life are already changing migration patterns toward cooler and deeper waters to survive, sending food webs and important commercial fisheries into disarray. And the frequency of marine heat waves has increased by more than a third . These spikes have led to mass die-offs of plankton and marine mammals.

To make matters worse, the elevated absorption of carbon dioxide by the ocean leads to its gradual acidification , which alters the fundamental chemical makeup of the water and threatens marine life that has evolved to live in a narrow pH band. Animals like corals, oysters, and mussels will likely feel these effects first, as acidification disrupts the calcification process required to build their shells.

Ecosystem stressors

Land-based ecosystems—from old-growth forests to savannahs to tropical rainforests—are faring no better. Climate change is likely to increase outbreaks of pests, invasive species, and pathogen infections in forests. It’s changing the kinds of vegetation that can thrive in a given region and disrupting the life cycles of wildlife, all of which is changing the composition of ecosystems and making them less resilient to stressors. While ecosystems have the capacity to adapt, many are reaching the hard limits of that natural capacity . More repercussions will follow as temperatures rise.

Climate change appears to be triggering a series of cascading ecological changes that we can neither fully predict nor, once they have enough momentum, fully stop. This ecosystem destabilization may be most apparent when it comes to keystone species that have an outsize- role in holding up an ecosystem’s structure.

An aerial view two people standing in a large field covered by a coffee plants

Coffee plants destroyed by frost due to extremely low temperatures near Caconde in the São Paulo state of Brazil, August 25, 2021

Jonne Roriz/Bloomberg via Getty Images

Less predictable growing seasons

In a warming world, farming crops is more unpredictable—and livestock, which are sensitive to extreme weather, become harder to raise. Climate change shifts precipitation patterns, causing unpredictable floods and longer-lasting droughts. More frequent and severe hurricanes can devastate an entire season’s worth of crops. Meanwhile, the dynamics of pests, pathogens, and invasive species—all of which are costly for farmers to manage—are also expected to become harder to predict. This is bad news, given that most of the world’s farms are small and family-run. One bad drought or flood could decimate an entire season’s crop or herd. For example, in June 2022, a triple-digit heat wave in Kansas wiped out thousands of cows. While the regenerative agriculture movement is empowering rural communities to make their lands more resilient to climate change, unfortunately, not all communities can equitably access the support services that can help them embrace these more sustainable farming tactics.

Reduced soil health

Healthy soil has good moisture and mineral content and is teeming with bugs, bacteria, fungi, and microbes that in turn contribute to healthy crops. But climate change, particularly extreme heat and changes in precipitation, can degrade soil quality. These impacts are exacerbated in areas where industrial, chemical-dependent monoculture farming has made soil and crops less able to withstand environmental changes.

Food shortages

Ultimately, impacts to our agricultural systems pose a direct threat to the global food supply. And food shortages and price hikes driven by climate change will not affect everyone equally: Wealthier people will continue to have more options for accessing food, while potentially billions of others will be plummeted into food insecurity—adding to the billions that already have moderate or severe difficulty getting enough to eat.

A small blue frog sits on a browb leaf.

The poison dart frog’s survival is currently threatened by habitat loss and climate change.

Chris Mattison/Minden Pictures

It’s about far more than just the polar bears: Half of all animal species in the world’s most biodiverse places, like the Amazon rainforest and the Galapagos Islands, are at risk of extinction from climate change. And climate change is threatening species that are already suffering from the biodiversity crisis, which is driven primarily by changes in land and ocean use (like converting wild places to farmland) and direct exploitation of species (like overfishing and wildlife trade). With species already in rough shape—more than 500,000 species have insufficient habitat for long-term survival—unchecked climate change is poised to push millions over the edge.

Climate change rapidly and fundamentally alters (or in some cases, destroys) the habitat that wildlife have incrementally adapted to over millennia. This is especially harmful for species’ habitats that are currently under threat from other causes. Ice-dependent mammals like walruses and penguins, for example, won’t fare well as ice sheets shrink. Rapid shifts in ocean temperatures stress the algae that nourishes coral reefs, causing reefs to starve—an increasingly common phenomenon known as coral bleaching . Disappearing wetlands in the Midwest’s Prairie Pothole Region means the loss of watering holes and breeding grounds for millions of migratory birds. (Many species are now struggling to survive, as more than 85 percent of wetlands have been lost since 1700). And sea level rise will inundate or erode away many coastal habitats, where hundreds of species of birds, invertebrates, and other marine species live.

Many species’ behaviors—mating, feeding, migration—are closely tied to subtle seasonal shifts, as in temperature , precipitation level, and foliage. In some cases, changes to the environment are happening quicker than species are able to adapt. When the types and quantity of plant life change across a region, or when certain species bloom or hatch earlier or later than in the past, it impacts food and water supplies and reverberates up food chains.

A thick smog hangs over a mostly-deserted city street.

Wildfire smoke–filled air in Multnomah County, Oregon, September 16, 2020

Motoya Nakamura/Multnomah County Communications, CC BY NC-ND 4.0

Ultimately, the way climate change impacts weather, the environment, animals, and agriculture affects humanity as well. But there’s more. Around the world, our ways of life—from how we get our food to the industries around which our economies are based—have all developed in the context of relatively stable climates. As global warming shakes this foundation, it promises to alter the very fabric of society. At worst, this could lead to widespread famine, disease, war, displacement , injury, and death. For many around the world, this grim forecast is already their reality. In this way, climate change poses an existential threat to all human life.

Human health

Climate change worsens air quality . It increases exposure to hazardous wildfire smoke and ozone smog triggered by warmer conditions, both of which harm our health, particularly for those with pre-existing illnesses like asthma or heart disease.

Insect-borne diseases like malaria and Zika become more prevalent in a warming world as their carriers are able to exist in more regions or thrive for longer seasons. In the past 30 years, the incidence of Lyme disease from ticks has nearly doubled in the United States, according to the U.S. Environmental Protection Agency (EPA). Thousands of people face injury, illness , and death every year from more frequent or more intense extreme weather events. At a 2-degree Celsius rise in global average temperature, an estimated one billion people will face heat stress risk. In the summer of 2022 alone, thousands died in record-shattering heat waves across Europe. Weeks later, dozens were killed by record-breaking urban flooding in the United States and South Korea—and more than 1,500 people perished in the flooding in Pakistan , where resulting stagnant water and unsanitary conditions threaten even more.

The effects of climate change—and the looming threat of what’s yet to come—take a significant toll on mental health too. One 2021 study on climate anxiety, published in the journal Nature , surveyed 10,000 young people from 10 different countries. Forty-five percent of respondents said that their feelings about climate change, varying from anxiety to powerlessness to anger, impacted their daily lives.

A girl sits on a hospital bed that is covered in blue netting.

A patient with dengue fever, a mosquito-borne disease, in Karachi, Pakistan, where the spread of diseases worsened due to flooding, September 2022

Fareed Khan/AP Photo

Worsening inequity

The climate crisis exacerbates existing inequities. Though wealthy nations, such as the United States, have emitted the lion’s share of historical greenhouse gas emissions, it’s developing countries that may lack the resources to adapt and will now bear the brunt of the climate crisis. In some cases, low-lying island nations—like many in the Pacific —may cease to exist before developed economies make meaningful reductions to their carbon emissions.

Even within wealthier nations, disparities will continue to grow between those rich enough to shield themselves from the realities of climate change and those who cannot. Those with ample resources will not be displaced from their homes by wars over food or water—at least not right away. They will have homes with cool air during heat waves and be able to easily evacuate when a hurricane is headed their way. They will be able to buy increasingly expensive food and access treatment for respiratory illness caused by wildfire smoke. Billions of others can’t—and are paying the highest price for climate pollution they did not produce.

Hurricane Katrina, for example, displaced more than one million people around the Gulf Coast. But in New Orleans , where redlining practices promoted racial and economic segregation, the city’s more affluent areas tended to be located on higher ground—and those residents were able to return and rebuild much faster than others.

Displacement

Climate change will drive displacement due to impacts like food and water scarcities, sea level rise, and economic instability. It’s already happening. The United Nations Global Compact on Refugees recognizes that “climate, environmental degradation and disasters increasingly interact with the drivers of refugee movements.” Again, communities with the fewest resources—including those facing political instability and poverty—will feel the effects first and most devastatingly.

The walls of a small room are pulled down to the studs, with debris and mold visible on the floor.

A flood-damaged home in Queens, New York, December 1, 2021

K.C. Wilsey/FEMA

Economic impacts

According to the 2018 National Climate Assessment, unless action is taken, climate change will cost the U.S. economy as much as $500 billion per year by the end of the century. And that doesn’t even include its enormous impacts on human health . Entire local industries—from commercial fishing to tourism to husbandry—are at risk of collapsing, along with the economic support they provide.

Recovering from the destruction wrought by extreme weather like hurricanes, flash floods, and wildfires is also getting more expensive every year. In 2021, the price tag of weather disasters in the United States totaled $145 billion —the third-costliest year on record, including a number of billion-dollar weather events.

The first wave of impacts can already be felt in our communities and seen on the nightly news. The World Health Organization says that in the near future, between 2030 and 2050, climate change is expected to cause an additional 250,000 deaths per year from things like malnutrition, insect-borne diseases, and heat stress. And the World Bank estimates that climate change could displace more than 140 million people within their home countries in sub-Saharan Africa, South Asia, and Latin America by 2050.

But the degree to which the climate crisis upends our lives depends on whether global leaders decide to chart a different course. If we fail to curb greenhouse gas emissions, scientists predict a catastrophic 4.3 degrees Celsius , (or around 8 degrees Fahrenheit) of warming by the end of the century. What would a world that warm look like? Wars over water. Crowded hospitals to contend with spreading disease. Collapsed fisheries. Dead coral reefs. Even more lethal heat waves. These are just some of the impacts predicted by climate scientists .

Workers move a large solar panel into place in a row on the shore of a lake

Solar panel installation at a floating photovoltaic plant on a lake in Haltern am See, Germany, April 2022

Martin Meissner/AP Photo

Climate mitigation, or our ability to reverse climate change and undo its widespread effects, hinges on the successful enactment of policies that yield deep cuts to carbon pollution, end our dependence on dangerous fossil fuels and the deadly air pollution they generate, and prioritize the people and ecosystems on the frontlines. And these actions must be taken quickly in order to ensure a healthier present day and future. In one of its latest reports, the IPCC presented its most optimistic emissions scenario, in which the world only briefly surpasses 1.5 degrees of warming but sequestration measures cause it to dip back below by 2100. Climate adaptation , a term that refers to coping with climate impacts, is no longer optional ; it’s necessary, particularly for the world’s most vulnerable populations.

By following the urgent warnings of the IPCC and limiting warming, we may be able to avoid passing some of the critical thresholds that, once crossed, can lead to potentially irreversible, catastrophic impacts for the planet, including more warming. These thresholds are known as climate tipping points and refer to when a natural system "tips" into an entirely different state. One example would be Arctic permafrost, which stores carbon like a freezer: As the permafrost melts from warming temperatures, it releases carbon dioxide into the atmosphere.

Importantly, climate action is not a binary pass-fail test. Every fraction of a degree of warming that we prevent will reduce human suffering and death, and keep more of the planet’s natural systems intact. The good news is that a wide range of solutions exist to sharply reduce emissions, slow the pace of warming, and protect communities on the frontlines of climate impacts. Climate leaders the world over—those on major political stages as well as grassroots community activists—are offering up alternative models to systems that prioritize polluters over people. Many of these solutions are rooted in ancestral and Indigenous understandings of the natural world and have existed for millennia. Some solutions require major investments into clean, renewable energy and sustainable technologies. To be successful, climate solutions must also address intersecting crises—like poverty, racism, and gender inequality —that compound and drive the causes and impacts of the climate crisis. A combination of human ingenuity and immense political will can help us get there.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

We need climate action to be a top priority in Washington.

Tell President Biden and Congress to slash climate pollution and reduce our dependence on fossil fuels. 

A rainbow arches over lush green mountains and wind turbines in a valley

Urge President Biden and Congress to make equitable climate action a top priority

2023 was the hottest year on record, underscoring the urgency of shifting to clean energy and curbing the carbon pollution that is driving the climate crisis. President Biden and Congress have the tools to get the job done.

Related Stories

Protesters stand outside P&G headquarters with signs reading, "Charmin: Stop flushing our forests!"

When Customers and Investors Demand Corporate Sustainability

climate change and its impact on environment essay

COP27: The Issues, the Tensions, and the Urgent Need for Unity on Climate

Three men unload cases of water from the back of a delivery truck and into a brick building

Mutual Aid and Disaster Justice: “We Keep Us Safe”

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

  • Climate Change and the Media Biases Words: 1473
  • Climate Change: The Negative Effects Words: 1503
  • Social Issue: Climate Change Words: 1062
  • Climate Change Impacts Florida’s Biodiversity Words: 1805
  • The Controversies of Climate Change Words: 1421
  • “The Basics of Climate Change” Blog Words: 604
  • Climate Change Factors and Impacts on Blue Crab Populations Words: 5492
  • Climate Change from Different Perspectives Words: 1953
  • Climate Change as a Challenge to Australia Words: 2975
  • The Importance of Addressing Climate Change Words: 1144
  • Climate Change Prediction for the Caribbean Words: 483
  • Climate Change: The Impact on North America Words: 2798
  • Security and Climate Change Words: 3018
  • Climate Change and Crop Production Words: 1140
  • Climate Change: Causes, Dynamics, and Effects Words: 568
  • Climate Change and Related Issues in Canada Words: 680
  • Water Scarcity Due to Climate Change Words: 1206
  • Climate Change and Corporate Responsibility Words: 3614
  • Water Scarcity as Effect of Climate Change Words: 1317
  • Climate Change in Environmentally Vulnerable Countries Words: 1461
  • Climate Change: Factors and Future Words: 1487
  • The Health Impacts of Climate Change in China Words: 909
  • Climate Change: Changing Patterns of Malaria Words: 2996

Climate Change Impacts

Explore the impacts of climate change with our effects of climate change essay. Learn more about climate change causes, effects, and solutions with the help of our sample. Keep reading to gain inspiration for your essay on climate change and its impact.

Effects of Climate Change: Essay Conclusion

Climate change, climate change impacts, managing climate change, effects of climate change: essay introduction.

It is doubtless that global change has become one the challenges, which encompasses a wide range of human life, including social and economical aspects of human life. Research has indicated that climate change will continue affecting the world as long as proper measures are not taken to protect the environment.

In this line of thought, human activities have been widely blamed for escalating effects of climate change around the world (Hillel & Rosenzweig 2010). Only time will tell whether taming climate change is possible or not.

In this regard, this assessment covers the impact of climate change in our lives today even as world leaders burn midnight oil to develop strategies, aimed at taming the scourge. This proposal topic has an array of benefits, especially in understanding the fatal nature of climate change.

It will mainly focus on the effects of climate change and make proposals on how to counteract the effects of climate together some of the preventive measures being considered by international leaders.

Through literature review, this project will compare different views as argued by different authors in order to synthesize the issue with varying view points. This will be crucial in capturing the main objective of the projects, which revolves around the analysis of the effects of climate change in the world today.

How is climate change defined? Although different environmental experts tend to have different definitions, the Australian Government defines climate change as the weather pattern observed for several years. These changes are mainly caused by human activities, which negatively impact the environment.

With reference to the Intergovernmental Panel on Climate Change (IPCC) report released in the year 2007, climate change is no longer a myth, but a reality, whose impact has continually escalated from 1950s, mainly due to rising levels of greenhouse gases into the atmosphere.

This implies that human activities have significantly contributed this environmental scourge, which continues to affect most parts of the world. The IPCC report was a representation of the world view on climate change, collected from various scientific journals published around the world (Australian Government 2012).

The Australian Department of Climate Change and Energy Efficiency affirms that there is enough evidence to support the fact that the climate system of the earth has continuously been warming. Some of the observations made include the rising level of air in the world and high ocean temperatures. Others are the rising sea level, constant melting of snow and ice in most parts of the world.

One important fact to note about climate change is that it involves the rising temperatures of the climate system holistically, including all the oceans, atmosphere and the cryosphere. These findings concluded that the climate system is in a heating mode.

Even as we review other people’s work, it is important to note that climate change is more than mere global warming as perceived by most people. From scientific revelation, the climate will be varied broadly especially if the warming continues uncontrollably (Australian Government 2012). As a result, the world is likely to experience irregular rainfall patterns, occurrence of severe climatic events like heavy currents and droughts among others.

The impact of climate change has been felt in every part of the world. According to United Nations Framework Convention on Climate Change (UNFCCC), Asia, Africa and Latin America are among the regions of the world, which have severely been affected by the scourge. In a 2010 survey carried out by Climate Change Secretariat, Africa is under the pressure of climate change and remains vulnerable to these effects.

Unlike most parts of the world, Africa experiences varying climatic changes. Common occurrences in Africa are severe droughts and floods, which have had negative implications on the continent’s economy (UNFCCC 2010).

The two events are widely known to predispose famine and overall interference with the socio-well being of the society. According to the UNFCCC’s analysis, close to a third of Africa’s population inhabit drought-prone regions, while more than two million remain vulnerable to drought every year (UNFCCC 2010).

In understanding the implication of climate change in Africa, the survey found out that the issue of climate change is intertwined with several factors, which contribute to its escalation across the continent.

Some of these factors include poverty, weak institutions, illiteracy, lack of information and technology, limited infrastructure, poor accessibility to resources, poor management and conflicts. In addition, there is widespread exploitation of land, which remains a major threat to the climate.

Due to pressure on farming land, most farmers exert pressure through over-cultivation and deforestation. In addition, other factors like dunes and storms continue posing more negative threats to the environment and human beings (UNFCCC 2010).

As a result of these events, the continent experiences drought and overall scarcity of water. Due to this emerging trend, Africa is likely to face shortage of rainfall and overall scarcity of water. With Africa having several trans-boundary river basins, the continent is likely to experience conflicts over these basins. Another important aspect captured in the report is agriculture (UNFCCC 2010).

Since most subsistence farmers in Africa depend on rainfall and irrigation, the sector has been affected by insufficient supply in most Sub-Saharan regions. Besides this, UNFCCC notes that climate change has resulted into loss of agricultural land and a drop in subsistence crop production. With a good percentage of the population under the threat of starvation, climate change has undoubtedly led to escalation of insufficient food supply.

It is amazing to note that climate change has also contributed to the spread of some diseases like malaria, tuberculosis and diarrhea in most parts of Africa. As stated by the UNFCCC, there has been a shift in the distribution of disease vectors.

For instance, migration of mosquitoes to regions of higher altitude is likely to expose people in such regions to the risk of contracting malaria (UNFCCC 2010). Additionally, climate change is likely to result into negative impact on African ecosystems and habitats, which are already threatened by these changes. Due to reduced habitat and changing climatic conditions some species are likely to move to more tolerable regions.

In this line of though Robert Watson, Marufu Zinyowera and Richard Moss found out that climate change can have severe effects on human health. In a research carried out in 1998, the three reiterated that human health may be affected as a result of heat-stress mortality, urban air pollution and vector-borne diseases, which could be favored as a result of change in temperature or rainfall in a given ecosystem (Watson, Zinyowera & Moss 1998, p. 7).

Additionally, Watson, Zinyowera and Moss argued that these effects are commonly felt in developing countries, where lives are lost, communities affected and the cost in medical care rises due to high prevalence of some health complications.

With regard to the impact of climate change on biodiversity, Watson, Zinyowera and Moss, agree with UNFCCC’s findings. In their 1998 survey, the three argued that all ecosystems play a fundamental role in the society (Watson, Zinyowera & Moss 1998).

For instance, they are a source of goods and services to any society. In particular, these goods and services include provision of food, processing and storage of carbon and other nutrients, assimilation of wastes and provision of recreation and tourism opportunities among others.

As a result, they argued that climatic changes are known to alter the geographical local of various ecological systems, including the presence of certain species and their ability to remain productive to support the society. According to their findings, ecological systems are essentially dynamic and are commonly affected by climatic variations of whichever magnitude.

Nevertheless, the extreme to which the climate varies determines the changes, which occur in the ecosystem. In addition, the three authors noted the high level of carbon dioxide in the atmosphere was a major contributing factor towards climate changes taking place in the world today (Watson, Zinyowera & Moss 1998).

Besides influencing the ecosystems, Watson, Zinyowera and Moss noted that climate change may also have secondary effects, say, variations in soil characteristics and interference of regimes. These include diseases, pests and diseases, which are likely to support the existence of some species favorably than others (Watson, Zinyowera & Moss 1998).

This will automatically affect the survival of some species and the overall population of organisms. Similarly, they argued that that climate change has direct impact on food production in most parts of the world. According to the 1998 survey, the type of agricultural systems in place determines the manner in which crop productivity is affected by changes in climatic conditions and patterns.

Like many other scholars, Barrie Pittock spent his life studying the environment and how it is affected by changes in climate. In his 2009, survey, Climate Change: The Science, Impacts and Solutions , Pittock outlined several reasons why there is cause for alarm, regarding climate change in the world today.

According to Pittock, the UNFCCC seeks to reduce the impact of climate change by being on the frontline in the war against global warming (Pittock 2009, p. 107). He further noted that human-induced climate change is a major security threat in the world today. This stance is mainly backed by the well-known effects of climate change described by the UNFCCC and the IPCC.

Moreover, Pittock reiterated that climate change has complex effects in the world today, citing a number of examples. In cases where there is high rainfall resulting from climate change, the world may experience direct or indirect implications.

This could be seen through high or low crop yield, depending on the type of soil or crop. On the other hand, indirect effects may refer to changes in demand and supply, emanating from either low or high yield, depending on other factors. He therefore agreed with several authors and researchers who have enumerated implications of climate change on the environment and human life at large.

For example, Pittock noted that climate change has been a major cause of water shortages in most parts of the world (Pittock 2009, p. 108). He however attributed this to a number of factors, including precipitation decrease in some regions, high rates of evaporation in the world and general loss of glaciers.

Economically, Pittock noted that climate change affects the economic progress of a nation since resources may be diverted to disease control instead of advancing developing projects.

Moreover, it is important to note that most of the countries, which suffer severely as a result of climate change, are poor nations that lack stable economic muscles. As a result, there is a likelihood of richer countries becoming stronger as developing economies weaken further. Lastly, Pittock noted that some of the threats emanating from climate change cause irreversible damages, which end up haunting human beings forever (Pittock 2009, p. 109).

With reference to a number of scholars who have done research on the impact of climate change, it is evident that human activities have a role in the escalation of these effects. In his 2010 survey, Martin Kernan noted that there is a relation between human activities and global warming.

As a result of this global relationship, the world has registered an increase in the concentration of carbon dioxide in the atmosphere. In this survey, he noted that the increase in green house gases is rampant in the northern hemisphere than any other part of the world.

As a result of high temperatures, Martin underscore that the changes have impact on the composition of natural ecosystems, regarding species population and their ability to survive (Kernan 2010, p. 15). What is most evident in Martin’s research is his comparison of the current state of the climate, to what was known hundreds of years ago.

Climate change also affects the quality of water in the United States. According to a research carried out by Robert Mendelsohn and James Neumann, water plays an important role in the life of a human being. Some of these functions include but not limited to power generation, food production, recreation and ecological processes (Mendelsohn & Mendelsohn 2004, p. 133).

However, this is only possible if the water is available and of good quality. Thus, changes in spatial distribution and quality can have direct social and economic effects on the society.

This alteration may occur as a result of increased concentration in greenhouse gases. Climate change can be detected by observing variation in temperatures, frequent and intense droughts and altered precipitation patterns among other factors (Mendelsohn & Mendelsohn 2004, p. 133).

The findings on the impact of climate change on the quality of water have also been pursued by Jan Dam, who argued that natural systems are usually sensitive to changes in climate variation. Hydrological quality is mainly affected by the temperature or concentration of water (Dam 2003, p. 95).

When oceans and other water bodies overheat because of high temperatures, this may result into negative impact on aquatic animals, which adapt to certain hydrological temperatures. Similarly, the quality of water is always altered when gases like carbon dioxide are dissolved in water basins. This may affect the mix of species present in a given ecosystem.

Based on the impact of climate change, it is doubtless that management of the risks has to be effected promptly before they become fatal and irreversible. One of the ways of controlling climate change is through reduction of greenhouse gases in the atmosphere.

This can be achieved through several ways, which minimize the emission of carbon dioxide into the atmosphere (McCarthy 2001, p. 222). According to James McCarthy, this can be realized by adopting alternative sources of energy unlike how most economies rely of oil and petroleum products as the main source of energy. Additionally, good methods of farming are important to maintain the value of the environment for sustainable support.

Use of international legislations is also necessary in ensuring that rich countries do not exploit developing nations as they are major contributors of effluents into the atmosphere (Hillel & Rosenzweig 2010). Above all, the fight against climate change calls for environmental campaign, which requires the efforts of everybody in the world.

From the above review of literature, it is clear that climate change is a major socio and environmental issue affecting the world today. Mainly caused by human activities, climate change poses a chain of challenges and threats to the environment.

For instance, there are several diseases, which affect human beings as a result of climate change (Rosenberg & Edmonds 2005). Of importance is also the alteration of the quality of the natural environment, which affects biodiversity. This has led to the extinction of some species, while others have increased exponentially in numbers.

Moreover, it is imperative to note that some of the occurrences, which are considered to be natural, are caused by climate change. Common ones include floods and draughts (Faure, Gupta & Nentjes 2003, p. 340).

Most of these calamities continue to be recognized as natural disasters yet they can be controlled using simple mitigation measures. In most cases, adoption of renewable sources of energy has always been considered to be the most important way of saving the world from climate change. Although it is a complex issue to handle, joint global efforts are important in making progress.

Australian Government 2012, Impacts of climate change .

Dam, J 2003, Impacts of Climate Change and Climate Variability on Hydrological Regimes , Cambridge University Press, Cambridge, England.

Faure, M, Gupta, J & Nentjes, A 2003, Climate Change and the Kyoto Protocol: The Role of Institutions and Instruments to Control Global Change , Edward Elgar Publishing, United Kingdom.

Hillel, D & Rosenzweig, C 2010, Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation , World Scientific, Singapore.

Kernan, M 2010, Climate Change Impacts on Freshwater Ecosystems , John Wiley & Sons, New Jersey.

Mendelsohn, R & Neumann, J 2004, The Impact Of Climate Change On The United States Economy , Cambridge University Press, Cambridge, England.

Pittock, B 2009, Climate Change: The Science, Impacts and Solutions , Csiro Publishing, Sydney.

Rosenberg, N, & Edmonds, J 2005, Climate Change Impacts for the Conterminous USA: An Integrated Assessment , Springer, New York.

UNFCCC 2010, Climate Change: Impacts, Vulnerabilities and Adaptation In Developing Countries.

Watson, R, Zinyowera, M & Moss, R 1998, The Regional Impacts of Climate Change: An Assessment of Vulnerability , Cambridge University Press, Cambridge, England.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2020, January 8). Climate Change Impacts. https://studycorgi.com/climate-change-impacts/

"Climate Change Impacts." StudyCorgi , 8 Jan. 2020, studycorgi.com/climate-change-impacts/.

StudyCorgi . (2020) 'Climate Change Impacts'. 8 January.

1. StudyCorgi . "Climate Change Impacts." January 8, 2020. https://studycorgi.com/climate-change-impacts/.

Bibliography

StudyCorgi . "Climate Change Impacts." January 8, 2020. https://studycorgi.com/climate-change-impacts/.

StudyCorgi . 2020. "Climate Change Impacts." January 8, 2020. https://studycorgi.com/climate-change-impacts/.

This paper, “Climate Change Impacts”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: October 7, 2022 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

NASA Logo

What Is Climate Change?

climate change and its impact on environment essay

Climate change is a long-term change in the average weather patterns that have come to define Earth’s local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

Changes observed in Earth’s climate since the mid-20th century are driven by human activities, particularly fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere, raising Earth’s average surface temperature. Natural processes, which have been overwhelmed by human activities, can also contribute to climate change, including internal variability (e.g., cyclical ocean patterns like El Niño, La Niña and the Pacific Decadal Oscillation) and external forcings (e.g., volcanic activity, changes in the Sun’s energy output , variations in Earth’s orbit ).

Scientists use observations from the ground, air, and space, along with computer models , to monitor and study past, present, and future climate change. Climate data records provide evidence of climate change key indicators, such as global land and ocean temperature increases; rising sea levels; ice loss at Earth’s poles and in mountain glaciers; frequency and severity changes in extreme weather such as hurricanes, heatwaves, wildfires, droughts, floods, and precipitation; and cloud and vegetation cover changes.

“Climate change” and “global warming” are often used interchangeably but have distinct meanings. Similarly, the terms "weather" and "climate" are sometimes confused, though they refer to events with broadly different spatial- and timescales.

What Is Global Warming?

global_warming_2022

Global warming is the long-term heating of Earth’s surface observed since the pre-industrial period (between 1850 and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth’s atmosphere. This term is not interchangeable with the term "climate change."

Since the pre-industrial period, human activities are estimated to have increased Earth’s global average temperature by about 1 degree Celsius (1.8 degrees Fahrenheit), a number that is currently increasing by more than 0.2 degrees Celsius (0.36 degrees Fahrenheit) per decade. The current warming trend is unequivocally the result of human activity since the 1950s and is proceeding at an unprecedented rate over millennia.

Weather vs. Climate

“if you don’t like the weather in new england, just wait a few minutes.” - mark twain.

Weather refers to atmospheric conditions that occur locally over short periods of time—from minutes to hours or days. Familiar examples include rain, snow, clouds, winds, floods, or thunderstorms.

Climate, on the other hand, refers to the long-term (usually at least 30 years) regional or even global average of temperature, humidity, and rainfall patterns over seasons, years, or decades.

Find Out More: A Guide to NASA’s Global Climate Change Website

This website provides a high-level overview of some of the known causes, effects and indications of global climate change:

Evidence. Brief descriptions of some of the key scientific observations that our planet is undergoing abrupt climate change.

Causes. A concise discussion of the primary climate change causes on our planet.

Effects. A look at some of the likely future effects of climate change, including U.S. regional effects.

Vital Signs. Graphs and animated time series showing real-time climate change data, including atmospheric carbon dioxide, global temperature, sea ice extent, and ice sheet volume.

Earth Minute. This fun video series explains various Earth science topics, including some climate change topics.

Other NASA Resources

Goddard Scientific Visualization Studio. An extensive collection of animated climate change and Earth science visualizations.

Sea Level Change Portal. NASA's portal for an in-depth look at the science behind sea level change.

NASA’s Earth Observatory. Satellite imagery, feature articles and scientific information about our home planet, with a focus on Earth’s climate and environmental change.

Header image is of Apusiaajik Glacier, and was taken near Kulusuk, Greenland, on Aug. 26, 2018, during NASA's Oceans Melting Greenland (OMG) field operations. Learn more here . Credit: NASA/JPL-Caltech

Discover More Topics From NASA

Explore Earth Science

climate change and its impact on environment essay

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

climate change and its impact on environment essay

Unbalanced: How Climate Change Is Shifting Earth’s Ecosystems

We can already see how climate change is impacting humans and wildlife. But what about the abiotic, or nonliving, parts of the environment?

Earth Science, Climatology

Melting Iceberg

Glaciers are disappearing, melting faster than they can be replenished, like this glacier located in Greenland. Melting is happening faster in Greenland and the rest of the Arctic, which is warming faster than anywhere else on Earth.

Photograph by Steve Allen

Glaciers are disappearing, melting faster than they can be replenished, like this glacier located in Greenland. Melting is happening faster in Greenland and the rest of the Arctic, which is warming faster than anywhere else on Earth.

Glaciers are melting, sea levels are rising, and storms are more intense. These are some of the visible impacts of global warming , caused by rising levels of carbon dioxide and other greenhouse gases that are due to warming in the atmosphere and ocean. In a 2018 report, the Intergovernmental Panel on Climate Change (IPCC) stated that the average global temperature has risen about 1ºC (1.8ºF) since pre-industrial times. If the current rate of warming continues, this number is expected to nearly double in a relatively short time, reaching 1.5ºC (2.7ºF) between 2030 and 2052. This could have devastating effects on ecosystems around the world, from tropical coral reefs to the icy Arctic Ocean. Why is such a small increase in global temperature causing such big problems for Earth’s ecosystems ? The Ocean Is Feeling the Heat More than 80 percent of global warming is absorbed by the ocean, which has a massive capacity to store and release heat. Elevated sea-surface temperatures are causing long-term damage to coral reefs. Corals are bleaching and dying. The IPCC report projects that up to 90 percent of coral reefs could disappear if the global warming reaches 1.5ºC (2.7ºF). Another reason corals are in trouble is because of ocean acidification. Higher carbon dioxide levels have shifted the chemistry of the ocean, making it more acidic, and corals and shelled sea creatures have trouble growing in acidic conditions. Sea Levels Are Rising When ocean water warms, it expands in volume. This is a major cause of the rise in sea levels, along with the water added to the ocean by the melting of land-based glaciers. The sea level has risen an average of 20 centimeters (8 inches) since the late 19th century, and research by scientists studying the last 25 years of satellite data found that the ocean water is rising faster and faster. If it continues at its current rate of acceleration, the rise in sea level by 2100 will be more than double current estimates. Sea level rise leads to the destruction of coastal wetlands, salt marshes, and mangrove swamps, as well as flooding and damage to aquatic ecosystems. Drought to Deluge: The Impacts of Shifting Temperature and Precipitation Temperature and precipitation are key ingredients of climate. A warmer climate means that more water evaporates from both the land and ocean, and a warmer atmosphere holds more of that water. Scientists have noticed that heavy rainfall events are increasing. Additionally, higher water temperature in streams, lakes, and reservoirs lead to lower levels of dissolved oxygen in the water, which impacts the survival and populations of fish and other aquatic life. Especially troubling are the extreme weather events that are happening more often around the world. Hurricanes are ramping up in intensity, particularly in the North Atlantic. The year 2017 was a busy one for Atlantic hurricanes. Hurricanes Harvey, Irma, and Maria unleashed their destructive power on Texas, Florida, and Puerto Rico. A group of scientists using high-resolution computer modeling determined that the main reason the 2017 hurricane season was so violent was due to warm sea-surface conditions in the North Atlantic. This led to a new way of predicting what to expect each year. The intensity of the Atlantic hurricane season depends on how much the tropical Atlantic warms in comparison to the rest of the global ocean. Meanwhile, in the western United States, the state of California has had record-setting drought conditions, which began in 2012. Researchers analyzing the history of California’s droughts found that the state is more likely to experience drought when low precipitation combines with warm weather conditions. Extended drought periods can lead to a higher fire risk. Today, large fires are five times more common and fire season is three months longer than it was 40 years ago. Besides the obvious loss of habitat for wildlife, new research has found that ecosystems burned out by a wildfire no longer regenerate and bounce back to life the way they used to. Melting Away: What Is Happening to the World’s Ice? Snow pack, sea ice, and glaciers are melting around the world. One of the most visible effects of climate change is the rapid disappearance of glaciers . Scientists from Glacier National Park in Montana, U.S., have documented the steady decline of the park’s iconic glaciers with photographs. Glaciers around the world are melting faster than snow and ice can replenish them. In fact, the Arctic is warming faster than any other place on Earth, at a rate of two to three times the global average. This has led to a 40 percent decrease in the minimum summer sea-ice cover since 1978. When ice melts in the ocean, fresher and less dense water is added to the North Atlantic, which could potentially disrupt a pattern of ocean circulation that is driven by the sinking of cold, salty water in the North Atlantic, known as thermohaline circulation . The Arctic ecosystem is especially vulnerable to global warming . Polar bears, narwhals, and walruses are all iconic species native to the Arctic , but as the ice melts, they may have to adapt to a new way of life, or risk dying out. In an interview published in the British newspaper, The Guardian , marine ecologist Tom Brown said, “The Arctic food chain relies on a stable sea ice platform and that is now disappearing, putting the region’s wildlife at risk.”

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Newsroom Post

Climate change: a threat to human wellbeing and health of the planet. taking action now can secure our future.

BERLIN, Feb 28 – Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world, despite efforts to reduce the risks. People and ecosystems least able to cope are being hardest hit, said scientists in the latest Intergovernmental Panel on Climate Change (IPCC) report, released today.

“This report is a dire warning about the consequences of inaction,” said Hoesung Lee, Chair of the IPCC. “It shows that climate change is a grave and mounting threat to our wellbeing and a healthy planet. Our actions today will shape how people adapt and nature responds to increasing climate risks.”

The world faces unavoidable multiple climate hazards over the next two decades with global warming of 1.5°C (2.7°F). Even temporarily exceeding this warming level will result in additional severe impacts, some of which will be irreversible. Risks for society will increase, including to infrastructure and low-lying coastal settlements.

The Summary for Policymakers of the IPCC Working Group II report,  Climate Change 2022: Impacts, Adaptation and Vulnerability was approved on Sunday, February 27 2022, by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on February 14.

Urgent action required to deal with increasing risks

Increased heatwaves, droughts and floods are already exceeding plants’ and animals’ tolerance thresholds, driving mass mortalities in species such as trees and corals. These weather extremes are occurring simultaneously, causing cascading impacts that are increasingly difficult to manage. They have exposed millions of people to acute food and water insecurity, especially in Africa, Asia, Central and South America, on Small Islands and in the Arctic.

To avoid mounting loss of life, biodiversity and infrastructure, ambitious, accelerated action is required to adapt to climate change, at the same time as making rapid, deep cuts in greenhouse gas emissions. So far, progress on adaptation is uneven and there are increasing gaps between action taken and what is needed to deal with the increasing risks, the new report finds. These gaps are largest among lower-income populations. 

The Working Group II report is the second instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed this year.

“This report recognizes the interdependence of climate, biodiversity and people and integrates natural, social and economic sciences more strongly than earlier IPCC assessments,” said Hoesung Lee. “It emphasizes the urgency of immediate and more ambitious action to address climate risks. Half measures are no longer an option.”

Safeguarding and strengthening nature is key to securing a liveable future

There are options to adapt to a changing climate. This report provides new insights into nature’s potential not only to reduce climate risks but also to improve people’s lives.

“Healthy ecosystems are more resilient to climate change and provide life-critical services such as food and clean water”, said IPCC Working Group II Co-Chair Hans-Otto Pörtner. “By restoring degraded ecosystems and effectively and equitably conserving 30 to 50 per cent of Earth’s land, freshwater and ocean habitats, society can benefit from nature’s capacity to absorb and store carbon, and we can accelerate progress towards sustainable development, but adequate finance and political support are essential.”

Scientists point out that climate change interacts with global trends such as unsustainable use of natural resources, growing urbanization, social inequalities, losses and damages from extreme events and a pandemic, jeopardizing future development.

“Our assessment clearly shows that tackling all these different challenges involves everyone – governments, the private sector, civil society – working together to prioritize risk reduction, as well as equity and justice, in decision-making and investment,” said IPCC Working Group II Co-Chair Debra Roberts.

“In this way, different interests, values and world views can be reconciled. By bringing together scientific and technological know-how as well as Indigenous and local knowledge, solutions will be more effective. Failure to achieve climate resilient and sustainable development will result in a sub-optimal future for people and nature.”

Cities: Hotspots of impacts and risks, but also a crucial part of the solution

This report provides a detailed assessment of climate change impacts, risks and adaptation in cities, where more than half the world’s population lives. People’s health, lives and livelihoods, as well as property and critical infrastructure, including energy and transportation systems, are being increasingly adversely affected by hazards from heatwaves, storms, drought and flooding as well as slow-onset changes, including sea level rise.

“Together, growing urbanization and climate change create complex risks, especially for those cities that already experience poorly planned urban growth, high levels of poverty and unemployment, and a lack of basic services,” Debra Roberts said.

“But cities also provide opportunities for climate action – green buildings, reliable supplies of clean water and renewable energy, and sustainable transport systems that connect urban and rural areas can all lead to a more inclusive, fairer society.”

There is increasing evidence of adaptation that has caused unintended consequences, for example destroying nature, putting peoples’ lives at risk or increasing greenhouse gas emissions. This can be avoided by involving everyone in planning, attention to equity and justice, and drawing on Indigenous and local knowledge.

A narrowing window for action

Climate change is a global challenge that requires local solutions and that’s why the Working Group II contribution to the IPCC’s Sixth Assessment Report (AR6) provides extensive regional information to enable Climate Resilient Development.

The report clearly states Climate Resilient Development is already challenging at current warming levels. It will become more limited if global warming exceeds 1.5°C (2.7°F). In some regions it will be impossible if global warming exceeds 2°C (3.6°F). This key finding underlines the urgency for climate action, focusing on equity and justice. Adequate funding, technology transfer, political commitment and partnership lead to more effective climate change adaptation and emissions reductions.

“The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss a brief and rapidly closing window to secure a liveable future,” said Hans-Otto Pörtner.

For more information, please contact:

IPCC Press Office, Email: [email protected]   IPCC Working Group II:  Sina Löschke,  Komila Nabiyeva: [email protected]

Notes for Editors

Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group II report examines the impacts of climate change on nature and people around the globe. It explores future impacts at different levels of warming and the resulting risks and offers options to strengthen nature’s and society’s resilience to ongoing climate change, to fight hunger, poverty, and inequality and keep Earth a place worth living on – for current as well as for future generations. 

Working Group II introduces several new components in its latest report: One is a special section on climate change impacts, risks and options to act for cities and settlements by the sea, tropical forests, mountains, biodiversity hotspots, dryland and deserts, the Mediterranean as well as the polar regions. Another is an atlas that will present data and findings on observed and projected climate change impacts and risks from global to regional scales, thus offering even more insights for decision makers.

The Summary for Policymakers of the Working Group II contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg2/

Note : Originally scheduled for release in September 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is the second time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group II in numbers

270 authors from 67 countries

  • 47 – coordinating authors
  • 184 – lead authors
  • 39 – review editors
  • 675 – contributing authors

Over 34,000 cited references

A total of 62,418 expert and government review comments

(First Order Draft 16,348; Second Order Draft 40,293; Final Government Distribution: 5,777)

More information about the Sixth Assessment Report can be found  here .

Additional media resources

Assets available after the embargo is lifted on Media Essentials website .

Press conference recording, collection of sound bites from WGII authors, link to presentation slides, B-roll of approval session, link to launch Trello board including press release and video trailer in UN languages, a social media pack.

The website includes  outreach materials  such as videos about the IPCC and video recordings from  outreach events  conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our  YouTube  channel. Credit for artwork

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups:  Working Group I , dealing with the physical science basis of climate change;  Working Group II , dealing with impacts, adaptation and vulnerability; and  Working Group III , dealing with the mitigation of climate change. It also has a  Task Force on National Greenhouse Gas Inventories  that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty  was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems  was launched in August 2019, and the  Special Report on the Ocean and Cryosphere in a Changing Climate  was released in September 2019.

In May 2019 the IPCC released the  2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

In August 2021 the IPCC released the Working Group I contribution to the AR6, Climate Change 2021, the Physical Science Basis

The Working Group III contribution to the AR6 is scheduled for early April 2022.

The Synthesis Report of the Sixth Assessment Report will be completed in the second half of 2022.

For more information go to  www.ipcc.ch

Related Content

Remarks by the ipcc chair during the press conference to present the working group ii contribution to the sixth assessment report.

Monday, 28 February 2022 Distinguished representatives of the media, WMO Secretary-General Petteri, UNEP Executive Director Andersen, We have just heard …

February 2022

Fifty-fifth session of the ipcc (ipcc-55) and twelfth session of working group ii (wgii-12), february 14, 2022, working group report, ar6 climate change 2022: impacts, adaptation and vulnerability.

climate change and its impact on environment essay

45,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

climate change and its impact on environment essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

climate change and its impact on environment essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Climate Change: Check Samples in 100, 250 Words

climate change and its impact on environment essay

  • Updated on  
  • Sep 21, 2023

climate change and its impact on environment essay

Writing an essay on climate change is crucial to raise awareness and advocate for action. The world is facing environmental challenges, so in a situation like this such essay topics can serve as s platform to discuss the causes, effects, and solutions to this pressing issue. They offer an opportunity to engage readers in understanding the urgency of mitigating climate change for the sake of our planet’s future.

Must Read: Essay On Environment  

Table of Contents

  • 1 What Is Climate Change?
  • 2 What are the Causes of Climate Change?
  • 3 What are the effects of Climate Change?
  • 4 How to fight climate change?
  • 5 Essay On Climate Change in 100 Words
  • 6 Climate Change Sample Essay 250 Words

What Is Climate Change?

Climate change is the significant variation of average weather conditions becoming, for example, warmer, wetter, or drier—over several decades or longer. It may be natural or anthropogenic. However, in recent times, it’s been in the top headlines due to escalations caused by human interference.

What are the Causes of Climate Change?

Obama at the First Session of COP21 rightly quoted “We are the first generation to feel the impact of climate change, and the last generation that can do something about it.”.Identifying the causes of climate change is the first step to take in our fight against climate change. Below stated are some of the causes of climate change:

  • Greenhouse Gas Emissions: Mainly from burning fossil fuels (coal, oil, and natural gas) for energy and transportation.
  • Deforestation: The cutting down of trees reduces the planet’s capacity to absorb carbon dioxide.
  • Industrial Processes: Certain manufacturing activities release potent greenhouse gases.
  • Agriculture: Livestock and rice cultivation emit methane, a potent greenhouse gas.

What are the effects of Climate Change?

Climate change poses a huge risk to almost all life forms on Earth. The effects of climate change are listed below:

  • Global Warming: Increased temperatures due to trapped heat from greenhouse gases.
  • Melting Ice and Rising Sea Levels: Ice caps and glaciers melt, causing oceans to rise.
  • Extreme Weather Events: More frequent and severe hurricanes, droughts, and wildfires.
  • Ocean Acidification: Oceans absorb excess CO2, leading to more acidic waters harming marine life.
  • Disrupted Ecosystems: Shifting climate patterns disrupt habitats and threaten biodiversity.
  • Food and Water Scarcity: Altered weather affects crop yields and strains water resources.
  • Human Health Risks: Heat-related illnesses and the spread of diseases.
  • Economic Impact: Damage to infrastructure and increased disaster-related costs.
  • Migration and Conflict: Climate-induced displacement and resource competition.

How to fight climate change?

‘Climate change is a terrible problem, and it absolutely needs to be solved. It deserves to be a huge priority,’ says Bill Gates. The below points highlight key actions to combat climate change effectively.

  • Energy Efficiency: Improve energy efficiency in all sectors.
  • Protect Forests: Stop deforestation and promote reforestation.
  • Sustainable Agriculture: Adopt eco-friendly farming practices.
  • Advocacy: Raise awareness and advocate for climate-friendly policies.
  • Innovation: Invest in green technologies and research.
  • Government Policies: Enforce climate-friendly regulations and targets.
  • Corporate Responsibility: Encourage sustainable business practices.
  • Individual Action: Reduce personal carbon footprint and inspire others.

Essay On Climate Change in 100 Words

Climate change refers to long-term alterations in Earth’s climate patterns, primarily driven by human activities, such as burning fossil fuels and deforestation, which release greenhouse gases into the atmosphere. These gases trap heat, leading to global warming. The consequences of climate change are widespread and devastating. Rising temperatures cause polar ice caps to melt, contributing to sea level rise and threatening coastal communities. Extreme weather events, like hurricanes and wildfires, become more frequent and severe, endangering lives and livelihoods. Additionally, shifts in weather patterns can disrupt agriculture, leading to food shortages. To combat climate change, global cooperation, renewable energy adoption, and sustainable practices are crucial for a more sustainable future.

Must Read: Essay On Global Warming

Climate Change Sample Essay 250 Words

Climate change represents a pressing global challenge that demands immediate attention and concerted efforts. Human activities, primarily the burning of fossil fuels and deforestation, have significantly increased the concentration of greenhouse gases in the atmosphere. This results in a greenhouse effect, trapping heat and leading to a rise in global temperatures, commonly referred to as global warming.

The consequences of climate change are far-reaching and profound. Rising sea levels threaten coastal communities, displacing millions and endangering vital infrastructure. Extreme weather events, such as hurricanes, droughts, and wildfires, have become more frequent and severe, causing devastating economic and human losses. Disrupted ecosystems affect biodiversity and the availability of vital resources, from clean water to agricultural yields.

Moreover, climate change has serious implications for food and water security. Changing weather patterns disrupt traditional farming practices and strain freshwater resources, potentially leading to conflicts over access to essential commodities.

Addressing climate change necessitates a multifaceted approach. First, countries must reduce their greenhouse gas emissions through the transition to renewable energy sources, increased energy efficiency, and reforestation efforts. International cooperation is crucial to set emission reduction targets and hold nations accountable for meeting them.

In conclusion, climate change is a global crisis with profound and immediate consequences. Urgent action is needed to mitigate its impacts and secure a sustainable future for our planet. By reducing emissions and implementing adaptation strategies, we can protect vulnerable communities, preserve ecosystems, and ensure a livable planet for future generations. The time to act is now.

Climate change refers to long-term shifts in Earth’s climate patterns, primarily driven by human activities like burning fossil fuels and deforestation.

Five key causes of climate change include excessive greenhouse gas emissions from human activities, notably burning fossil fuels and deforestation. 

We hope this blog gave you an idea about how to write and present an essay on climate change that puts forth your opinions. The skill of writing an essay comes in handy when appearing for standardized language tests. Thinking of taking one soon? Leverage Edu provides the best online test prep for the same via Leverage Live . Register today to know more!

' src=

Amisha Khushara

Hey there! I'm a content writer who turns complex ideas into clear, engaging stories. Think of me as your translator, taking expert knowledge and making it interesting and relatable for everyone.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

climate change and its impact on environment essay

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

climate change and its impact on environment essay

Resend OTP in

climate change and its impact on environment essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

climate change and its impact on environment essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

climate change and its impact on environment essay

Make your study abroad dream a reality in January 2022 with

climate change and its impact on environment essay

India's Biggest Virtual University Fair

climate change and its impact on environment essay

Essex Direct Admission Day

Why attend .

climate change and its impact on environment essay

Don't Miss Out

  • Share full article

climate change and its impact on environment essay

The Science of Climate Change Explained: Facts, Evidence and Proof

Definitive answers to the big questions.

Credit... Photo Illustration by Andrea D'Aquino

Supported by

By Julia Rosen

Ms. Rosen is a journalist with a Ph.D. in geology. Her research involved studying ice cores from Greenland and Antarctica to understand past climate changes.

  • Published April 19, 2021 Updated Nov. 6, 2021

The science of climate change is more solid and widely agreed upon than you might think. But the scope of the topic, as well as rampant disinformation, can make it hard to separate fact from fiction. Here, we’ve done our best to present you with not only the most accurate scientific information, but also an explanation of how we know it.

How do we know climate change is really happening?

  • How much agreement is there among scientists about climate change?
  • Do we really only have 150 years of climate data? How is that enough to tell us about centuries of change?
  • How do we know climate change is caused by humans?
  • Since greenhouse gases occur naturally, how do we know they’re causing Earth’s temperature to rise?
  • Why should we be worried that the planet has warmed 2°F since the 1800s?
  • Is climate change a part of the planet’s natural warming and cooling cycles?
  • How do we know global warming is not because of the sun or volcanoes?
  • How can winters and certain places be getting colder if the planet is warming?
  • Wildfires and bad weather have always happened. How do we know there’s a connection to climate change?
  • How bad are the effects of climate change going to be?
  • What will it cost to do something about climate change, versus doing nothing?

Climate change is often cast as a prediction made by complicated computer models. But the scientific basis for climate change is much broader, and models are actually only one part of it (and, for what it’s worth, they’re surprisingly accurate ).

For more than a century , scientists have understood the basic physics behind why greenhouse gases like carbon dioxide cause warming. These gases make up just a small fraction of the atmosphere but exert outsized control on Earth’s climate by trapping some of the planet’s heat before it escapes into space. This greenhouse effect is important: It’s why a planet so far from the sun has liquid water and life!

However, during the Industrial Revolution, people started burning coal and other fossil fuels to power factories, smelters and steam engines, which added more greenhouse gases to the atmosphere. Ever since, human activities have been heating the planet.

climate change and its impact on environment essay

Where it was cooler or warmer in 2020 compared with the middle of the 20th century

climate change and its impact on environment essay

Global average temperature compared with the middle of the 20th century

+0.75°C

–0.25°

climate change and its impact on environment essay

30 billion metric tons

Carbon dioxide emitted worldwide 1850-2017

Rest of world

Other developed

European Union

Developed economies

Other countries

United States

climate change and its impact on environment essay

E.U. and U.K.

climate change and its impact on environment essay

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Advertisement

Climate Change Essay

500+ words essay on climate change.

Climate change is a major global challenge today, and the world is becoming more vulnerable to this change. Climate change refers to the changes in Earth’s climate condition. It describes the changes in the atmosphere which have taken place over a period ranging from decades to millions of years. A recent report from the United Nations predicted that the average global temperature could increase by 6˚ Celsius at the end of the century. Climate change has an adverse effect on the environment and ecosystem. With the help of this essay, students will get to know the causes and effects of climate change and possible solutions. Also, they will be able to write essays on similar topics and can boost their writing skills.

What Causes Climate Change?

The Earth’s climate has always changed and evolved. Some of these changes have been due to natural causes such as volcanic eruptions, floods, forest fires etc., but quite a few of them are due to human activities. Human activities such as deforestation, burning fossil fuels, farming livestock etc., generate an enormous amount of greenhouse gases. This results in the greenhouse effect and global warming which are the major causes of climate change.

Effects of Climate Change

If the current situation of climate change continues in a similar manner, then it will impact all forms of life on the earth. The earth’s temperature will rise, the monsoon patterns will change, sea levels will rise, and storms, volcanic eruptions and natural disasters will occur frequently. The biological and ecological balance of the earth will get disturbed. The environment will get polluted and humans will not be able to get fresh air to breathe and fresh water to drink. Life on earth will come to an end.

Steps to be Taken to Reduce Climate Change

The Government of India has taken many measures to improve the dire situation of Climate Change. The Ministry of Environment and Forests is the nodal agency for climate change issues in India. It has initiated several climate-friendly measures, particularly in the area of renewable energy. India took several steps and policy initiatives to create awareness about climate change and help capacity building for adaptation measures. It has initiated a “Green India” programme under which various trees are planted to make the forest land more green and fertile.

We need to follow the path of sustainable development to effectively address the concerns of climate change. We need to minimise the use of fossil fuels, which is the major cause of global warming. We must adopt alternative sources of energy, such as hydropower, solar and wind energy to make a progressive transition to clean energy. Mahatma Gandhi said that “Earth provides enough to satisfy every man’s need, but not any man’s greed”. With this view, we must remodel our outlook and achieve the goal of sustainable development. By adopting clean technologies, equitable distribution of resources and addressing the issues of equity and justice, we can make our developmental process more harmonious with nature.

We hope students liked this essay on Climate Change and gathered useful information on this topic so that they can write essays in their own words. To get more study material related to the CBSE, ICSE, State Board and Competitive exams, keep visiting the BYJU’S website.

Frequently Asked Questions on climate change Essay

What are the reasons for climate change.

1. Deforestation 2. Excessive usage of fossil fuels 3. Water, Soil pollution 4. Plastic and other non-biodegradable waste 5. Wildlife and nature extinction

How can we save this climate change situation?

1. Avoid over usage of natural resources 2. Do not use or buy items made from animals 3. Avoid plastic usage and pollution

Are there any natural causes for climate change?

Yes, some of the natural causes for climate change are: 1. Solar variations 2. Volcanic eruption and tsunamis 3. Earth’s orbital changes

CBSE Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

climate change and its impact on environment essay

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Yale Program on Climate Change Communication

  • About YPCCC
  • Yale Climate Connections
  • Student Employment
  • For The Media
  • Past Events
  • YPCCC in the News
  • Climate Change in the American Mind (CCAM)
  • Publications
  • Climate Opinion Maps
  • Climate Opinion Factsheets
  • Six Americas Super Short Survey (SASSY)
  • Resources for Educators
  • All Tools & Interactives
  • Partner with YPCCC

Home / For Educators: Grades 6-12 / Climate Explained: Introductory Essays About Climate Change Topics

Climate Explained: Introductory Essays About Climate Change Topics

Filed under: backgrounders for educators ,.

Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it’s cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

More Activities like this

climate change and its impact on environment essay

Climate Change Basics: Five Facts, Ten Words

Backgrounders for Educators

To simplify the scientific complexity of climate change, we focus on communicating five key facts about climate change that everyone should know. 

climate change and its impact on environment essay

Why should we care about climate change?

Having different perspectives about global warming is natural, but the most important thing that anyone should know about climate change is why it matters.  

climate change and its impact on environment essay

External Resources

Looking for resources to help you and your students build a solid climate change science foundation? We’ve compiled a list of reputable, student-friendly links to help you do just that!  

Subscribe to our mailing list

Please select all the ways you would like to hear from Yale Program on Climate Change Communication:

You can unsubscribe at any time by clicking the link in the footer of our emails. For information about our privacy practices, please visit our website.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices here.

climate change and its impact on environment essay

Advertisement

Advertisement

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

  • Review Article
  • Published: 04 April 2022
  • Volume 29 , pages 42539–42559, ( 2022 )

Cite this article

climate change and its impact on environment essay

  • Kashif Abbass 1 ,
  • Muhammad Zeeshan Qasim 2 ,
  • Huaming Song 1 ,
  • Muntasir Murshed   ORCID: orcid.org/0000-0001-9872-8742 3 , 4 ,
  • Haider Mahmood   ORCID: orcid.org/0000-0002-6474-4338 5 &
  • Ijaz Younis 1  

240k Accesses

542 Citations

34 Altmetric

Explore all metrics

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Similar content being viewed by others

climate change and its impact on environment essay

Morocco’s climate change impacts, adaptation and mitigation—a stocktake

climate change and its impact on environment essay

Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning

climate change and its impact on environment essay

A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan

Avoid common mistakes on your manuscript.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

figure 1

Source : constructed by authors

Methodology search for finalized articles for investigations.

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

figure 2

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

figure 3

Source EMDAT ( 2020 )

Global deaths from natural disasters, 1978 to 2020.

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

figure 4

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

figure 5

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

A typical interaction between the susceptible and resistant strains.

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table 2 ).

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

figure 6

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Seasonal variations and cultivation practices

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

New varieties of crops

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

Changes in management and other input factors

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Availability of data and material

Data sources and relevant links are provided in the paper to access data.

Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054

Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech

Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14

Abbass K, Song H, Shah SM, Aziz B (2019) Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff 8(370):2167–0234

Google Scholar  

Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan

Abraham E, Chain E (1988) An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10(4):677

CAS   Google Scholar  

Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86

Article   Google Scholar  

Akkari C, Bryant CR (2016) The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research 5(2):162–173

Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740

Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. https://doi.org/10.1007/s10668-021-01716-2

Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press

Arshad MI, Iqbal MA, Shahbaz M (2018) Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research 23(2):121–132

Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports 2(1):95–106

Article   CAS   Google Scholar  

Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3(9):827–832

Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.

Ayers J, Huq S, Wright H, Faisal A, Hussain S (2014) Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev 6:293–305

Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451

Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M (2022) The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy 185:1441–1455

Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank

Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)

Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38

Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T (2019) Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish 28(3):434–445

Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16(2):587–598

Blum A, Klueva N, Nguyen H (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117(2):117–123

Bonacci O (2019) Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia). Acta Hydrotechnica 32(57):135–150

Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214

Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S (2018) Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol 250:47–63

Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio 43(6):759–769

Bujosa A, Riera A, Torres CM (2015) Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage 47:233–239

Calderini D, Abeledo L, Savin R, Slafer GA (1999) Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci 132(4):453–459

Cammell M, Knight J (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci 111(2):723–727

Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF

Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag

Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513

Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587

Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R (2018) Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol 18(1):1–14

Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M (2009) Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet 373(9676):1693–1733

Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, https://doi.org/10.7208/9780226315072

Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare

Davidson D (2016) Gaps in agricultural climate adaptation research. Nat Clim Chang 6(5):433–435

Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886

Dimri A, Kumar D, Choudhary A, Maharana P (2018) Future changes over the Himalayas: mean temperature. Global Planet Change 162:235–251

Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Publishing Group, Nat Clim Chang

Book   Google Scholar  

Dupuis I, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94(2):665–670

Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res 142:58–67

Edreira JR, Carpici EB, Sammarro D, Otegui M (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res 123(2):62–73

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J (2017) Trees, forests and water: Cool insights for a hot world. Glob Environ Chang 43:51–61

Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER (2021) Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem 36(1):384–393

EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be

EPA U (2018) United States Environmental Protection Agency, EPA Year in Review

Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience

Fand BB, Kamble AL, Kumar M (2012) Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ 2(11):1–14

FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.

Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204

Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18

Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770

Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T (2013) Changing climates, changing forests: a western North American perspective. J Forest 111(3):214–228

Fischer AP (2019) Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan 188:72–79

Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. For Ecol Manage 294:54–61

Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5(7):673–677

Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer

Gambín BL, Borrás L, Otegui ME (2006) Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res 95(2–3):316–326

Gambín B, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology 156(1):91–102

Gampe D, Nikulin G, Ludwig R (2016) Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ 573:1503–1518

García GA, Dreccer MF, Miralles DJ, Serrago RA (2015) High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol 21(11):4153–4164

Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA (2019) Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res 151:75–86

Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509

Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701

Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134(3):371–385

Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G (2012) Consumer behaviour and demand response of tourists to climate change. Ann Tour Res 39(1):36–58

Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041

Grieg E Responsible Consumption and Production

Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)

Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D (2015) On climate change skepticism and denial in tourism. J Sustain Tour 23(1):4–25

Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10

Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J (2019) Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10(1):1124

Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06

Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C (2016) Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res 7(4):247–252

Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853

Hubbart JA, Guyette R, Muzika R-M (2016) More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ 566:463–467

Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48

Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR (2018) Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod 200:791–808

Intergov. Panel Clim Chang 33 from  https://doi.org/10.1017/CBO9781107415324

Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R (2009) Towards a formal framework of vulnerability to climate change. Environ Model Assess 14(1):1–16

IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep

Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham

Izaguirre C, Losada I, Camus P, Vigh J, Stenek V (2021) Climate change risk to global port operations. Nat Clim Chang 11(1):14–20

Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science

Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC (2020) Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE 15(3):e0229588

Jurgilevich A, Räsänen A, Groundstroem F, Juhola S (2017) A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett 12(1):013002

Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference

Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991

Karkman A, Do TT, Walsh F, Virta MP (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF (2005) Role of marine biology in glacial-interglacial CO2 cycles. Science 308(5718):74–78

Kongsager R (2018) Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land 7(4):158

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875

Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414

Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett 44(14):7419–7428

Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons

Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo

Lipczynska-Kochany E (2018) Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ 640:1548–1565

livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020

Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

Ma L, Li B, Zhang T (2019) New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res 152:191–201

Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza

Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier

Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070

Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier

Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ (2018) Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett 13(4):044002

Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4(2):90–93

Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228

Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing

Mihiretu A, Okoyo EN, Lemma T (2021) Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences 1(2):1–18

Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210

Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332

Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. https://doi.org/10.1007/s11356-020-09497-3

Murshed M (2022) Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption 30:396–412. https://doi.org/10.1016/j.spc.2021.12.016

Murshed M, Dao NTT (2020) Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. https://doi.org/10.1007/s10708-020-10270-9

Murshed M, Abbass K, Rashid S (2021) Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco 26(4):5425–5450

Murshed M, Nurmakhanova M, Elheddad M, Ahmed R (2020) Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res 27(31):38951–38973. https://doi.org/10.1007/s11356-020-09593-4

Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. https://doi.org/10.1080/15567249.2022.2038730

Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR (2015) Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour 11:64–79

npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.

Ogden LE (2018) Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience 68(10):733–739

Ortiz AMD, Outhwaite CL, Dalin C, Newbold T (2021) A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4(1):88–101

Ortiz R (2008) Crop genetic engineering under global climate change. Ann Arid Zone 47(3):343

Otegui MAE, Bonhomme R (1998) Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res 56(3):247–256

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc

Pal JK (2021) Visualizing the knowledge outburst in global research on COVID-19. Scientometrics 126(5):4173–4193

Panda R, Behera S, Kashyap P (2003) Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag 63(1):37–56

Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T (2019) Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 5(3):eaau9124

Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133(1):295–313

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975

Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A (2013) Essential biodiversity variables. Science 339(6117):277–278

Perera K, De Silva K, Amarasinghe M (2018) Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change 161:162–171

Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham

Phillips JD (2018) Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA 169:107–118

Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228

Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885

Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S (2020) The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res 27(1):133–142

Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity

Rahman M, Alam K (2016) Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate 4(1):12

Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815

Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460

Reichstein M, Carvalhais N (2019) Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys 40(4):693–707

Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100(1–3):51–60

Ritchie H, Roser M (2014) Natural disasters. Our World in Data

Rizvi AR, Baig S, Verdone M (2015) Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. IUCN, Gland, Switzerland, p 48

Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D (2013) What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol 14(3):187–198

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests

Sadras VO, Slafer GA (2012) Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res 127:215–224

Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F (2021) Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE 16(5):e0252071

Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

Schoene DH, Bernier PY (2012) Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ 24:12–19

Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press

Scott D (2021) Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability 13(4):1966

Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Climate Res 27(2):105–117

Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6(33):343–350

Shaffril HAM, Krauss SE, Samsuddin SF (2018) A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ 644:683–695

Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614

Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690

Sharma R (2012) Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev 32(4):480–486

Sharma R, Sinha A, Kautish P (2020) Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res 27(29):36970–36982

Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer

Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20

Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759

Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42(5):880–890

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p

Stone P, Nicolas M (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol 21(6):887–900

Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616:453–461

Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S (2005) Livelihoods, forests, and conservation in developing countries: an overview. World Dev 33(9):1383–1402

Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol 138(1–4):82–92

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79(3–4):185–211

Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as

Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest

Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780

Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28

Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P (2022b) Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy 183:90–102

Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515

Usman M, Khalid K, Mehdi MA (2021) What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy 168:1165–1176

Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer

Vedwan N, Rhoades RE (2001) Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res 19(2):109–117

Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR (2001) Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41(3):748–754

Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113(48):13791–13796

Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers

Waheed A, Fischer TB, Khan MI (2021) Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage 67(5):793–810

Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank

Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A (2015) Health and climate change: policy responses to protect public health. The Lancet 386(10006):1861–1914

Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83(4):441–470

Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)

Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295):169–172

WHO (2018) WHO, 2018. Antimicrobial resistance

Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers 9(2):127–140

Wiranata IJ, Simbolon K (2021) Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations 5(2):129–146

Wiréhn L (2018) Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 77:63–74

Wu D, Su Y, Xi H, Chen X, Xie B (2019) Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res 158:11–21

Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier

Wu H, Qian H, Chen J, Huo C (2017) Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management 31(5):1557–1574

Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev

Xu J, Sharma R, Fang J, Xu Y (2008) Critical linkages between land-use transition and human health in the Himalayan region. Environ Int 34(2):239–247

Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M (2015) Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol 17(2):179–184

Yang B, Usman M (2021) Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons 28:893–910

Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16

Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336(6088):1516–1518

Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S (2017) A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. https://doi.org/10.1016/j.renene.2022.03.050

Download references

Author information

Authors and affiliations.

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, People’s Republic of China

Kashif Abbass, Huaming Song & Ijaz Younis

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, People’s Republic of China

Muhammad Zeeshan Qasim

School of Business and Economics, North South University, Dhaka, 1229, Bangladesh

Muntasir Murshed

Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942, Saudi Arabia

Haider Mahmood

You can also search for this author in PubMed   Google Scholar

Contributions

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Corresponding author

Correspondence to Huaming Song .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Abbass, K., Qasim, M.Z., Song, H. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29 , 42539–42559 (2022). https://doi.org/10.1007/s11356-022-19718-6

Download citation

Received : 26 August 2021

Accepted : 10 March 2022

Published : 04 April 2022

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11356-022-19718-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Climate change
  • Antimicrobial resistance
  • Biodiversity
  • Mitigation measures
  • Find a journal
  • Publish with us
  • Track your research

Explore Greyhound Nation

  • Loyola Today

Our Future Is Now - A Climate Change Essay by Francesca Minicozzi, '21

Francesca Minicozzi (class of 2021) is a Writing/Biology major who plans to study medicine after graduation. She wrote this essay on climate change for WR 355/Travel Writing, which she took while studying abroad in Newcastle in spring 2020. Although the coronavirus pandemic curtailed Francesca’s time abroad, her months in Newcastle prompted her to learn more about climate change. Terre Ryan Associate Professor, Writing Department

Our Future Is Now

By Francesca Minicozzi, '21 Writing and Biology Major

 “If you don’t mind me asking, how is the United States preparing for climate change?” my flat mate, Zac, asked me back in March, when we were both still in Newcastle. He and I were accustomed to asking each other about the differences between our home countries; he came from Cambridge, while I originated in Long Island, New York. This was one of our numerous conversations about issues that impact our generation, which we usually discussed while cooking dinner in our communal kitchen. In the moment of our conversation, I did not have as strong an answer for him as I would have liked. Instead, I informed him of the few changes I had witnessed within my home state of New York.

Francesca Minicozzi, '21

Zac’s response was consistent with his normal, diplomatic self. “I have been following the BBC news in terms of the climate crisis for the past few years. The U.K. has been working hard to transition to renewable energy sources. Similar to the United States, here in the United Kingdom we have converted over to solar panels too. My home does not have solar panels, but a lot of our neighbors have switched to solar energy in the past few years.”

“Our two countries are similar, yet so different,” I thought. Our conversation continued as we prepared our meals, with topics ranging from climate change to the upcoming presidential election to Britain’s exit from the European Union. However, I could not shake the fact that I knew so little about a topic so crucial to my generation.

After I abruptly returned home from the United Kingdom because of the global pandemic, my conversation with my flat mate lingered in my mind. Before the coronavirus surpassed climate change headlines, I had seen the number of internet postings regarding protests to protect the planet dramatically increase. Yet the idea of our planet becoming barren and unlivable in a not-so-distant future had previously upset me to the point where a part of me refused to deal with it. After I returned from studying abroad, I decided to educate myself on the climate crisis.

My quest for climate change knowledge required a thorough understanding of the difference between “climate change” and “global warming.” Climate change is defined as “a pattern of change affecting global or regional climate,” based on “average temperature and rainfall measurements” as well as the frequency of extreme weather events. 1   These varied temperature and weather events link back to both natural incidents and human activity. 2   Likewise, the term global warming was coined “to describe climate change caused by humans.” 3   Not only that, but global warming is most recently attributed to an increase in “global average temperature,” mainly due to greenhouse gas emissions produced by humans. 4

I next questioned why the term “climate change” seemed to take over the term “global warming” in the United States. According to Frank Luntz, a leading Republican consultant, the term “global warming” functions as a rather intimidating phrase. During George W. Bush’s first presidential term, Luntz argued in favor of using the less daunting phrase “climate change” in an attempt to overcome the environmental battle amongst Democrats and Republicans. 5   Since President Bush’s term, Luntz remains just one political consultant out of many politicians who has recognized the need to address climate change. In an article from 2019, Luntz proclaimed that political parties aside, the climate crisis affects everyone. Luntz argued that politicians should steer clear of trying to communicate “the complicated science of climate change,” and instead engage voters by explaining how climate change personally impacts citizens with natural disasters such as hurricanes, tornadoes, and forest fires. 6   He even suggested that a shift away from words like “sustainability” would gear Americans towards what they really want: a “cleaner, safer, healthier” environment. 7

The idea of a cleaner and heathier environment remains easier said than done. The Paris Climate Agreement, introduced in 2015, began the United Nations’ “effort to combat global climate change.” 8   This agreement marked a global initiative to “limit global temperature increase in this century to 2 degrees Celsius above preindustrial levels,” while simultaneously “pursuing means to limit the increase to 1.5 degrees.” 9    Every country on earth has joined together in this agreement for the common purpose of saving our planet. 10   So, what could go wrong here? As much as this sounds like a compelling step in the right direction for climate change, President Donald Trump thought otherwise. In June 2017, President Trump announced the withdrawal of the United States from the Paris Agreement with his proclamation of climate change as a “’hoax’ perpetrated by China.” 11   President Trump continued to question the scientific facts behind climate change, remaining an advocate for the expansion of domestic fossil fuel production. 12   He reversed environmental policies implemented by former President Barack Obama to reduce fossil fuel use. 13

Trump’s actions against the Paris Agreement, however, fail to represent the beliefs of Americans as a whole. The majority of American citizens feel passionate about the fight against climate change. To demonstrate their support, some have gone as far as creating initiatives including America’s Pledge and We Are Still In. 14   Although the United States officially exited the Paris Agreement on November 4, 2020, this withdrawal may not survive permanently. 15   According to experts, our new president “could rejoin in as short as a month’s time.” 16   This offers a glimmer of hope.

The Paris Agreement declares that the United States will reduce greenhouse gas emission levels by 26 to 28 percent by the year 2025. 17   As a leader in greenhouse gas emissions, the United States needs to accept the climate crisis for the serious challenge that it presents and work together with other nations. The concept of working coherently with all nations remains rather tricky; however, I remain optimistic. I think we can learn from how other countries have adapted to the increased heating of our planet. During my recent study abroad experience in the United Kingdom, I was struck by Great Britain’s commitment to combating climate change.

Since the United Kingdom joined the Paris Agreement, the country targets a “net-zero” greenhouse gas emission for 2050. 18   This substantial alteration would mark an 80% reduction of greenhouse gases from 1990, if “clear, stable, and well-designed policies are implemented without interruption.” 19   In order to stay on top of reducing emissions, the United Kingdom tracks electricity and car emissions, “size of onshore and offshore wind farms,” amount of homes and “walls insulated, and boilers upgraded,” as well as the development of government policies, including grants for electric vehicles. 20   A strong grip on this data allows the United Kingdom to target necessary modifications that keep the country on track for 2050. In my brief semester in Newcastle, I took note of these significant changes. The city of Newcastle is small enough that many students and faculty are able to walk or bike to campus and nearby essential shops. However, when driving is unavoidable, the majority of the vehicles used are electric, and many British citizens place a strong emphasis on carpooling to further reduce emissions. The United Kingdom’s determination to severely reduce greenhouse emissions is ambitious and particularly admirable, especially as the United States struggles to shy away from its dependence on fossil fuels.

So how can we, as Americans, stand together to combat global climate change? Here are five adjustments Americans can make to their homes and daily routines that can dramatically make a difference:

  • Stay cautious of food waste. Studies demonstrate that “Americans throw away up to 40 percent of the food they buy.” 21   By being more mindful of the foods we purchase, opting for leftovers, composting wastes, and donating surplus food to those in need, we can make an individual difference that impacts the greater good. 22   
  • Insulate your home. Insulation functions as a “cost-effective and accessible” method to combat climate change. 23   Homes with modern insulation reduce energy required to heat them, leading to a reduction of emissions and an overall savings; in comparison, older homes can “lose up to 35 percent of heat through their walls.” 24   
  • Switch to LED Lighting. LED stands for “light-emitting diodes,” which use “90 percent less energy than incandescent bulbs and half as much as compact fluorescents.” 25   LED lights create light without producing heat, and therefore do not waste energy. Additionally, these lights have a longer duration than other bulbs, which means they offer a continuing savings. 26  
  • Choose transportation wisely. Choose to walk or bike whenever the option presents itself. If walking or biking is not an option, use an electric or hybrid vehicle which emits less harmful gases. Furthermore, reduce the number of car trips taken, and carpool with others when applicable. 
  • Finally, make your voice heard. The future of our planet remains in our hands, so we might as well use our voices to our advantage. Social media serves as a great platform for this. Moreover, using social media to share helpful hints to combat climate change within your community or to promote an upcoming protest proves beneficial in the long run. If we collectively put our voices to good use, together we can advocate for change.

As many of us are stuck at home due to the COVID-19 pandemic, these suggestions are slightly easier to put into place. With numerous “stay-at-home” orders in effect, Americans have the opportunity to make significant achievements for climate change. Personally, I have taken more precautions towards the amount of food consumed within my household during this pandemic. I have been more aware of food waste, opting for leftovers when too much food remains. Additionally, I have realized how powerful my voice is as a young college student. Now is the opportunity for Americans to share how they feel about climate change. During this unprecedented time, our voice is needed now more than ever in order to make a difference.

However, on a much larger scale, the coronavirus outbreak has shed light on reducing global energy consumption. Reductions in travel, both on the roads and in the air, have triggered a drop in emission rates. In fact, the International Energy Agency predicts a 6 percent decrease in energy consumption around the globe for this year alone. 27   This drop is “equivalent to losing the entire energy demand of India.” 28   Complete lockdowns have lowered the global demand for electricity and slashed CO2 emissions. However, in New York City, the shutdown has only decreased carbon dioxide emissions by 10 percent. 29   This proves that a shift in personal behavior is simply not enough to “fix the carbon emission problem.” 30   Climate policies aimed to reduce fossil fuel production and promote clean technology will be crucial steppingstones to ameliorating climate change effects. Our current reduction of greenhouse gas emissions serves as “the sort of reduction we need every year until net-zero emissions are reached around 2050.” 31   From the start of the coronavirus pandemic, politicians came together for the common good of protecting humanity; this demonstrates that when necessary, global leaders are capable of putting humankind above the economy. 32

After researching statistics comparing the coronavirus to climate change, I thought back to the moment the virus reached pandemic status. I knew that a greater reason underlay all of this global turmoil. Our globe is in dire need of help, and the coronavirus reminds the world of what it means to work together. This pandemic marks a turning point in global efforts to slow down climate change. The methods we enact towards not only stopping the spread of the virus, but slowing down climate change, will ultimately depict how humanity will arise once this pandemic is suppressed. The future of our home planet lies in how we treat it right now. 

  • “Climate Change: What Do All the Terms Mean?,” BBC News (BBC, May 1, 2019), https://www.bbc.com/news/science-environment-48057733 )
  • Ibid. 
  • Kate Yoder, “Frank Luntz, the GOP's Message Master, Calls for Climate Action,” Grist (Grist, July 26, 2019), https://grist.org/article/the-gops-most-famous-messaging-strategist-calls-for-climate-action
  • Melissa Denchak, “Paris Climate Agreement: Everything You Need to Know,” NRDC, April 29, 2020, https://www.nrdc.org/stories/paris-climate-agreement-everything-you-need-know)
  • “Donald J. Trump's Foreign Policy Positions,” Council on Foreign Relations (Council on Foreign Relations), accessed May 7, 2020, https://www.cfr.org/election2020/candidate-tracker/donald-j.-trump?gclid=CjwKCAjw4871BRAjEiwAbxXi21cneTRft_doA5if60euC6QCL7sr-Jwwv76IkgWaUTuyJNx9EzZzRBoCdjsQAvD_BwE#climate and energy )
  • David Doniger, “Paris Climate Agreement Explained: Does Congress Need to Sign Off?,” NRDC, December 15, 2016, https://www.nrdc.org/experts/david-doniger/paris-climate-agreement-explained-does-congress-need-sign )
  • “How the UK Is Progressing,” Committee on Climate Change, March 9, 2020, https://www.theccc.org.uk/what-is-climate-change/reducing-carbon-emissions/how-the-uk-is-progressing/)
  • Ibid.  
  • “Top 10 Ways You Can Fight Climate Change,” Green America, accessed May 7, 2020, https://www.greenamerica.org/your-green-life/10-ways-you-can-fight-climate-change )
  • Matt McGrath, “Climate Change and Coronavirus: Five Charts about the Biggest Carbon Crash,” BBC News (BBC, May 5, 2020), https://www.bbc.com/news/amp/science-environment-52485712 )

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

What Is Climate Change?

Climate change refers to long-term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes in the sun’s activity or large volcanic eruptions. But since the 1800s, human activities have been the main driver of climate change , primarily due to the burning of fossil fuels like coal, oil and gas.

Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped around the Earth, trapping the sun’s heat and raising temperatures.

The main greenhouse gases that are causing climate change include carbon dioxide and methane. These come from using gasoline for driving a car or coal for heating a building, for example. Clearing land and cutting down forests can also release carbon dioxide. Agriculture, oil and gas operations are major sources of methane emissions. Energy, industry, transport, buildings, agriculture and land use are among the main sectors  causing greenhouse gases.

Illustration reads: $90 Trillion for infrastructure by 2030

Humans are responsible for global warming

Climate scientists have showed that humans are responsible for virtually all global heating over the last 200 years. Human activities like the ones mentioned above are causing greenhouse gases that are warming the world faster than at any time in at least the last two thousand years.

The average temperature of the Earth’s surface is now about 1.2°C warmer than it was in the late 1800s (before the industrial revolution) and warmer than at any time in the last 100,000 years. The last decade (2011-2020) was the warmest on record , and each of the last four decades has been warmer than any previous decade since 1850.

Many people think climate change mainly means warmer temperatures. But temperature rise is only the beginning of the story. Because the Earth is a system, where everything is connected, changes in one area can influence changes in all others.

The consequences of climate change now include, among others, intense droughts, water scarcity, severe fires, rising sea levels, flooding, melting polar ice, catastrophic storms and declining biodiversity.

The Earth is asking for help.

People are experiencing climate change in diverse ways

Climate change can affect our health , ability to grow food, housing, safety and work. Some of us are already more vulnerable to climate impacts, such as people living in small island nations and other developing countries. Conditions like sea-level rise and saltwater intrusion have advanced to the point where whole communities have had to relocate, and protracted droughts are putting people at risk of famine. In the future, the number of people displaced by weather-related events is expected to rise.

Every increase in global warming matters

In a series of UN reports , thousands of scientists and government reviewers agreed that limiting global temperature rise to no more than 1.5°C would help us avoid the worst climate impacts and maintain a livable climate. Yet policies currently in place point to a 3°C temperature rise by the end of the century.

The emissions that cause climate change come from every part of the world and affect everyone, but some countries produce much more than others .The seven biggest emitters alone (China, the United States of America, India, the European Union, Indonesia, the Russian Federation, and Brazil) accounted for about half of all global greenhouse gas emissions in 2020.

Everyone must take climate action, but people and countries creating more of the problem have a greater responsibility to act first.

Photocomposition: an image of the world globe looking worried to a thermometer with raising temperatures

We face a huge challenge but already know many solutions

Many climate change solutions can deliver economic benefits while improving our lives and protecting the environment. We also have global frameworks and agreements to guide progress, such as the Sustainable Development Goals , the UN Framework Convention on Climate Change and the Paris Agreement . Three broad categories of action are: cutting emissions, adapting to climate impacts and financing required adjustments.

Switching energy systems from fossil fuels to renewables like solar or wind will reduce the emissions driving climate change. But we have to act now. While a growing number of countries is committing to net zero emissions by 2050, emissions must be cut in half by 2030 to keep warming below 1.5°C. Achieving this means huge declines in the use of coal, oil and gas: over two-thirds of today’s proven reserves of fossil fuels need to be kept in the ground by 2050 in order to prevent catastrophic levels of climate change.

Growing coalition

Adapting to climate consequences protects people, homes, businesses, livelihoods, infrastructure and natural ecosystems. It covers current impacts and those likely in the future. Adaptation will be required everywhere, but must be prioritized now for the most vulnerable people with the fewest resources to cope with climate hazards. The rate of return can be high. Early warning systems for disasters, for instance, save lives and property, and can deliver benefits up to 10 times the initial cost.

We can pay the bill now, or pay dearly in the future

Climate action requires significant financial investments by governments and businesses. But climate inaction is vastly more expensive. One critical step is for industrialized countries to fulfil their commitment to provide $100 billion a year to developing countries so they can adapt and move towards greener economies.

Climate finance

To get familiar with some of the more technical terms used in connection with climate change, consult the Climate Dictionary .

Learn more about…

photocomposition: two hands, each one holding a megaphone

The facts on climate and energy

Climate change is a hot topic – with myths and falsehoods circulating widely. Find some essential facts here .

The science

The science

See the latest climate reports from the United Nations as well as climate action facts .

Photocomposition: an image showing causes and effects of climate change - a smokestack and a storm

Causes and Effects

Fossil fuels are by far the largest contributor to the greenhouse gas emissions that cause climate change, which poses many risks to all forms of life on Earth. Learn more .

The science

From the Secretary-General

Read the UN Chief’s latest statements on climate action.

Net zero

What is net zero? Why is it important? Our  net-zero page  explains why we need steep emissions cuts now and what efforts are underway.

Sustainable Development Goals

Renewable energy – powering a safer future

What is renewable energy and why does it matter? Learn more about why the shift to renewables is our only hope for a brighter and safer world.

Finance

How will the world foot the bill? We explain the issues and the value of financing climate action.

Adaptation

What is climate adaptation? Why is it so important for every country? Find out how we can protect lives and livelihoods as the climate changes.

A butterfly on the tip of a branch

Climate Issues

Learn more about how climate change impacts are felt across different sectors and ecosystems.

A butterfly on the tip of a branch

Why women are key to climate action

Women and girls are on the frontlines of the climate crisis and uniquely situated to drive action. Find out why it’s time to invest in women.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Climate change and its impact on biodiversity and human welfare

K. r. shivanna.

Ashoka Trust for Research in Ecology and the Environment, Srirampura, Jakkur Post, Bengaluru, 560064 India

Climate change refers to the long-term changes in temperature and weather due to human activities. Increase in average global temperature and extreme and unpredictable weather are the most common manifestations of climate change. In recent years, it has acquired the importance of global emergency and affecting not only the wellbeing of humans but also the sustainability of other lifeforms. Enormous increase in the emission of greenhouse gases (CO 2 , methane and nitrous oxide) in recent decades largely due to burning of coal and fossil fuels, and deforestation are the main drivers of climate change. Marked increase in the frequency and intensity of natural disasters, rise in sea level, decrease in crop productivity and loss of biodiversity are the main consequences of climate change. Obvious mitigation measures include significant reduction in the emission of greenhouse gases and increase in the forest cover of the landmass. Conference of Parties (COP 21), held in Paris in 2015 adapted, as a legally binding treaty, to limit global warming to well below 2 °C, preferably to 1.5 °C by 2100, compared to pre-industrial levels. However, under the present emission scenario, the world is heading for a 3–4 °C warming by the end of the century. This was discussed further in COP 26 held in Glasgow in November 2021; many countries pledged to reach net zero carbon emission by 2050 and to end deforestation, essential requirements to keep 1.5 °C target. However, even with implementation of these pledges, the rise is expected to be around 2.4 °C. Additional measures are urgently needed to realize the goal of limiting temperature rise to 1.5 °C and to sustain biodiversity and human welfare.

Introduction

Climate change refers to long-term changes in local, global or regional temperature and weather due to human activities. For 1000s of years, the relationship between lifeforms and the weather have been in a delicate balance conducive for the existence of all lifeforms on this Planet. After the industrial revolution (1850) this balance is gradually changing and the change has become apparent from the middle of the twentieth century. Now it has become a major threat to the wellbeing of humans and the sustainability of biodiversity. An increase in average global temperature, and extreme and unpredictable weather are the most common manifestations of climate change. It has now acquired the importance of global emergency. According to the report of the latest Intergovernmental Panel for Climate Change (AR6 Climate Change 2021 ), human-induced climate change as is prevalent now is unprecedented at least in the last 2000 years and is intensifying in every region across the globe. In this review the drivers of climate change, its impact on human wellbeing and biodiversity, and mitigation measures being taken at global level are briefly discussed.

Drivers of climate change

Emission of green-house gases.

Steady increase in the emission of greenhouse gases (GHGs) due to human activities has been the primary driver for climate change. The principal greenhouse gases are carbon dioxide (76%), methane (16%), and to a limited extent nitrous oxide (2%). Until recent decades, the temperature of the atmosphere was maintained within a reasonable range as some of the sunlight that hits the earth was reflected back into the space while the rest becomes heat that keeps the earth and the atmosphere warm enough for the sustenance of life forms. Accumulation of greenhouse gases combine with water vapour to form a transparent layer in the atmosphere that traps infrared radiation (net heat energy) emitted from the Earth’s surface and reradiates it back to Earth’s surface, thus contributing to the increasing temperature (greenhouse effect). Methane is 25 times and nitrous oxide 300 times more potent than CO 2 in trapping heat. Until 2019, the US, UK, European Union, Canada, Australia, Japan and Russia were the major CO 2 producers and were responsible for 61% of world’s emissions. Now, China produces the maximum amount of CO 2 (27%) followed by USA (11%) and India (6.6%); on per capita basis, however, India stands ninth.

The emission of GHGs is largely due to the burning of fossil fuels (coal, oil and natural gas) for automobiles and industries which result in carbon emissions during their extraction as well as consumption. The amount of CO 2 in the atmosphere before the industrial revolution used to be around 280 ppm and now it has increased to 412 ppm (as of 2019). Increase in the atmospheric temperature also leads to an increase in the temperature of the ocean. The oceans play an important role in the global carbon cycle and remove about 25% of the carbon dioxide emitted by human activities. Further, some CO 2 dissolves in the ocean water releasing carbonic acid which increases the acidity of the sea water. Rising ocean temperatures and acidification not only reduce their capacity to act as carbon sinks but also affect ocean ecosystems and the populations that relay on them.

Increasing demand for meat and milk has led to a significant increase in the population of livestock and conversion of enormous amount of the land to pasture and farm land to raise livestock. Ruminant animals (largely cows, buffaloes and sheep) produce large amounts of methane when they digest food (through enteric fermentation by microbes), adding to the greenhouse gases in the atmosphere (Sejiyan et al. 2016 ). To produce 1 kg of meat it requires 7 kg of grain and between 5000 and 20,000 L of water whereas to produce 1 kg of wheat it requires between 500 and 4000 L of water (Pimentel and Pimentel 2003 ). Anaerobic fermentation of livestock manure also produces methane. According to Patrick Brown, our animal farming industry needs to be changed; using readily available plant ingredients, the nutritional value of any type of meat can be matched with about one twentieth of the cost (See Leeming 2021 ).

The main natural source of nitrous oxide released to the atmosphere (60%) comes from the activity of microbes on nitrogen-based organic material from uncultivated soil and waste water. The remaining nitrous oxide comes from human activities, particularly agriculture. Application of nitrogenous fertilizers to crop plants is a routine practice to increase the yield; many of the farmers tend to apply more than the required amount. However, it results in nitrous oxide emissions from the soil through nitrification and denitrification processes by microbes. Both synthetic and organic fertilizers increase the amount of nitrogen available in the soil to microbial action leading to the release of nitrous oxide. Organic fertilizers, however, release nitrogen more slowly than synthetic ones so that most of it gets absorbed by the plants as they become available. Synthetic fertilizers release nitrogen rapidly which cannot be used by plants right away, thus making the excess nitrogen available to microbes to convert to nitrous oxide. Presently CO 2 concentration in the atmosphere is higher than at any time in at least 2 million years, and methane and nitrous oxide are higher than at any time in the last 800,000 years (AR6 Climate Change 2021 ).

Permafrost (permanently frozen soil), widespread in Arctic regions of Siberia, Canada, Greenland, Alaska, and Tibetan plateau contains large quantities of organic carbon in the top soil leftover from dead plants that could not be decomposed or rot away due to the cold. Global warming-induced thawing of permafrost facilitates decomposition of this material by microbes thus releasing additional amount of carbon dioxide and methane to the atmosphere.

Deforestation

Limited deforestation in early part of human civilization was the result of subsistence farming; farmers used to cut down trees to grow crops for consumption of their families and local population. In preindustrial period also, there was a balance between the amount of CO 2 emitted through various processes and the amount absorbed by the plants. Forests are the main sinks of atmospheric CO 2 . After the industrial revolution, the trend began to change; increasing proportion of deforestation is being driven by the demands of urbanization, industrial activities and large-scale agriculture. A new satellite map has indicated that field crops have been extended to one million additional km 2 of land over the last two decades and about half of this newly extended land has replaced forests and other ecosystems (Potapov et al. 2021 ).

In recent decades the demands on forest to grow plantation crops such as oil palm, coffee, tea and rubber, and for cattle ranching and mining have increased enormously thus reducing the forest cover. According to the World Wildlife Fund (WWF), over 43 million hectares of forest was lost between 2004 and 2017 out of 377 million hectares monitored around the world (Pacheco et al. 2021 ). Amazon Rain Forest is the largest tropical rain forest of the world and covers over 5 million km 2 . It is undergoing extensive degradation and has reached its highest point in recent years. According to National Geographic, about 17% of Amazon rain forest has been destroyed over the past 50 years and is increasing in recent years; during the last 1 year it has lost over 10,000 km 2 . In most of the countries the forest cover is less than 33%, considered necessary. For example, India’s forest and tree cover is only about 24.56% of the geographical area (Indian State Forest Report 2019 ).

Impacts of climate change

Increase in atmospheric temperature has serious consequences on biodiversity and ecosystems, and human wellbeing. The most important evidences of climate change is the long term data available on the CO 2 levels, global temperature and weather patterns. The impacts of climate change in the coming decades are based on published models on the basis of the analysis of the available data. Comparison of the performance of climate models published between 1970 and 2007 in projecting global mean surface temperature and associated changes with actual observations have shown that the models were consistent in predicting global warming in the years after publication (Hausfather et al. 2019 ). This correlation between predicted models and actual data indicates that the models are indeed reliable in accurately predicting the global warming and its impacts on weather pattern in the coming decades and their consequences on biodiversity and human welfare.

Weather pattern and natural disasters

One of the obvious changes observed in recent years is the extreme and unpredictable weather, and an increase in the frequency and intensity of natural disasters. Brazil’s south central region saw one of the worst droughts in 2021with the result many major reservoirs reached < 20% capacity, seriously affecting farming and energy generation (Getirana et al. 2021 ). In earlier decades, it was possible to predict with reasonable certainty annual weather pattern including the beginning and ending of monsoon rains; farmers could plan sowing periods of their crops in synchrony with the prevailing weather. Now the weather pattern is changing almost every year and the farmers are suffering huge losses. Similarly the extent of annual rainfall and the locations associated with heavy and scanty rainfall are no more predictable with certainty. Many areas which were associated with scanty rainfall have started getting much heavier rains and the extent of rainfall is getting reduced in areas traditionally associated with heavy rainfall. Similarly the period and the extent of snowfall in temperate regions have also become highly variable.

Increase in the frequency and intensity of natural disasters such as floods and droughts, cyclones, hurricanes and typhoons, and wildfires have become very obvious. Top five countries affected by climate change in 2021 include Japan, Philippines, Germany, Madagascar and India. Apart from causing death of a large number of humans and other animals, economic losses suffered by both urban and rural populations have been enormous. Deadly floods and landslides during 2020 forced about 12 million people leave their homes in India, Nepal and Bangladesh. According to World Meteorological Organization’s comprehensive report published in August 2021 (WMO-No.1267), climate change related disasters have increased by a factor of five over the last 50 years; however, the number of deaths and economic losses were reduced to 2 million and US$ 3.64 trillion respectively, due to improved warning and disaster management. More than 91% of these deaths happened in developing countries. Largest human losses were brought about by droughts, storms, floods and extreme temperatures. The report highlights that the number of weather, climate and water-extremes will become more frequent and severe as a result of climate change.

Global warming enhances the drying of organic matter in forests, thus increasing the risks of wildfires. Wildfires have become very common in recent years, particularly is some countries such as Western United States, Southern Europe and Australia, and are becoming more frequent and widespread. They have become frequent in India also and a large number of them have been recorded in several states. According to European Space Agency, fire affected an estimated four million km 2 of Earth’s land each year. Wildfires also release large amounts of carbon dioxide, carbon monoxide, and fine particulate matter into the atmosphere causing air pollution and consequent health problems. In 2021, wildfires around the world, emitted 1.76 billion tonnes of carbon (European Union’s Copernicus Atmospheric Monitoring Service). In Australia, more than a billion native animals reported to have been killed during 2020 fires, and some species and ecosystems may never recover (OXFAM International 2021 ).

Sea level rise

Global warming is causing mean sea level to rise in two ways. On one hand, the melting of the glaciers, the polar ice cap and the Atlantic ice shelf are adding water to the ocean and on the other hand the volume of the ocean is expanding as the water warms. Incomplete combustion of fossil fuels, biofuels and biomass releases tiny particles of carbon (< 2.5 µm), referred to as black carbon. While suspended in the air (before they settle down on earth’s surface) black carbon particles absorb sun’s heat 1000s of times more effectively than CO 2 thus contributing to global warming. When black particles get deposited over snow, glaciers or ice caps, they enhance their melting further adding to the rise in sea level. Global mean sea level has risen faster since 1900 than over any preceding century in at least the last 3000 years. Between 2006 and 2016, the rate of sea-level rise was 2.5 times faster than it was for almost the whole of the twentieth century (OXFAM International 2021 ). Precise data gathered from satellite radar measurements reveal an accelerating rise of 7.5 cm from 1993 to 2017, an average of 31 mm per decade (WCRP Global Sea Level Budget Group 2018 ).

Snow accounts for almost all current precipitation in the Arctic region. However, it continues to warm four times faster than the rest of the world as the melting ice uncovers darker land or ocean beneath, which absorbs more sunlight causing more heating. The latest projections indicate more rapid warming and sea ice loss in the Arctic region by the end of the century than predicted in previous projections (McCrystall et al. 2021 ). It also indicates that the transition from snow to rain-dominated Arctic in the summer and autumn is likely to occur decades earlier than estimated. In fact this transition has already begun; rain fell at Greenland’s highest summit (3216 m) on 14 August 2021 for several hours for the first time on record and air temperature remained above freezing for about 9 h (National Snow and Ice Sheet Centre Today, August 18, 2021).

In the annual meeting of the American Geophysical Union (13 December 2021) researchers warned that rapid melting and deterioration of one of western Antarctica’s biggest glaciers, roughly the size of Florida, Thwaites (often called as Doomsday Glacier), could lead to ice shelf’s complete collapse in just a few years. It holds enough water to raise sea level over 65 cm. Thwaites glacier is holding the entire West Antarctic ice sheet and is being undermined from underneath by warm water linked to the climate change. Melting of Thwaites could eventually lead to the loss of the entire West Antarctic Ice Sheet, which locks up 3.3 m of global sea level rise. Such doomsday may be coming sooner than expected (see Voosen 2021 ). If this happens, its consequences on human tragedy and biodiversity loss are beyond imagination.

The Himalayan mountain range is considered to hold the world’s third largest amount of glacier ice after Arctic and Antarctic regions. It is considered as Asian water tower (Immerzeel et al. 2020 ); the meltwater from the Himalayan glaciers provide the source of fresh water to nearly 2 billion people living along the mountain valleys and lowlands around the Himalayas. These glaciers are melting at unprecedented rates. Recently King et al. ( 2021 ) studied 79 glaciers close to Mt. Everest by analysing mass-change measurements from satellite archives and reported that the rate of ice loss from glaciers consistently increased since the early 1960s. This loss is likely to increase in the coming years due to further warming. In another study, a tenfold acceleration in ice loss was observed across the Himalayas than the average rate in recent decades over the past centuries (Lee et al. 2021 ). Melting of glaciers also results in drying up of perennial rivers in summer leading to the water scarcity for billions of humans and animals, and food and energy production downstream. See level rise and melting of glaciers feeding the rivers could lead to migration of huge population, creating additional problems. Even when the increase in global temperature rise is limited to 1.5 °C (discussed later), it generates a global sea-level rise between 1.7 and 3.2 feet by 2100. If it increases to 2 °C, the result could be more catastrophic leading to the submergence of a large number of islands, and flooding and submergence of vast coastal areas, saltwater intrusion into surface waters and groundwater, and increased soil erosion. A number of islands of Maldives for example, would get submerged as 80% of its land area is located less than one meter above the sea level. The biodiversity in such islands and coastal areas becomes extinct. China, Vietnam, Fiji, Japan, Indonesia, India and Bangladesh are considered to be the most at risk. Sundarbans National Park (UNESCO world heritage Site), the world’s largest Mangrove Forest spread over 140,000 hectares across India and Bangladesh, is the habitat for Royal Bengal Tiger and several other animal species. The area has already lost 12% of its shoreline in the last four decades by rising see level; it is likely to be completely submerged. Jakarta in Indonesia is the fastest sinking city in the world; the city has already sunk 2.5 m in the last 10 years and by 2050, most of it would be submerged. In Europe also, about three quarters of all cities will be affected by rising sea levels, especially in the Netherlands, Spain, Belgium, Greece and Italy. The entire city of Venice may get submerged (Anonymous 2018 ). In USA, New York City and Miami would be particularly vulnerable.

Crop productivity and human health

Many studies have indicated that climate change is driving increasing losses in crop productivity (Zhu et al. 2021 ). The models on global yield loss for wheat, maize and rice indicate an increase in yield losses by 10 to 25% per degree Celsius warming (Deutsch et al. 2018 ). Bras et al. ( 2021 ) reported that heatwave and drought roughly tripled crop losses over the last 50 years, from − 2.2% (1964–1990) to − 7.3% (1991–2015). Overall, the loss in crop production from climate-driven abiotic stresses may exceed US$ 170 billion year –1  and represents a major threat to global food security (Razaaq et al. 2021 ). Analysis of annual field trials of common wheat in California from 1985 to 2019 (35 years), during which the global atmospheric CO 2  concentration increased by 19%, revealed that the yield declined by 13% (Bloom and Plant 2021 ). Apart from crop yield, climate change is reported to result in the decline of nutritional value of food grains (Jagermeyr et al. 2021 ). For example, rising atmospheric CO 2 concentration reduces the amounts of proteins, minerals and vitamins in rice (Zhu et al. 2018 ). This may be true in other cereal crops also. As rice supplies 25% of all global calories, this would greatly affect the food and nutritional security of predominantly rice growing countries. Climate change would also increase the prevalence of insect pests adding to the yield loss of crops. The prevailing floods and droughts also affect food production significantly. Global warming also affects crop productivity through its impact on pollinators. Insect pollinators contribute to crop production in 75% of the leading food crops (Rader et al. 2013 ). Climate change contributes significantly to the decline in density and diversity of pollinators (Shivanna 2020 ; Shivanna et al. 2020 ). Under high as well as low temperatures, bees spend less time in foraging (Heinrich 1979 ) adding additional constraints to pollination efficiency of crop species.

The IPCC Third Assessment Report (Climate change 2001: The scientific basis – IPCC) concluded that the poorest countries would be hardest hit with reductions in crop yields in most tropical and sub-tropical regions due to increased temperature, decreased water availability and new or changed insect pest incidence. Rising ocean temperatures and ocean acidification affect marine ecosystems. Loss of fish habitats is modifying the distribution and productivity of both marine and freshwater species thus affecting the sustainability of fisheries and populations dependent on them (Salvatteci 2022 ).

Air pollution is considered as the major environmental risk of climate change due to its impact on public health causing increasing morbidity and mortality (Manisalidis 2020 ). Particulate matter, carbon monoxide, nitrogen oxide, and sulphur dioxide are the major air pollutants. They cause respiratory problems such as asthma and bronchiolitis and lung cancer. Recent studies have indicated that exposure to air pollution is linked to methylation of immunoregulatory genes, altered immune cell profiles and increased blood pressure in children (Prunicki et al. 2021 ). In another study wildfire smoke has been reported to be more harmful to humans than automobiles emissions (Aquilera et al. 2021 ). Stubble burning (intentional incineration of stubbles by farmers after crop harvest) has been a common practice in some parts of South Asia particularly in India; it releases large amount of toxic gases such as carbon monoxide and methane and causes serious damage to the environment and health (Abdurrahman et al. 2020 ). It also affects soil fertility by destroying the nutrients and microbes of the soil. Attempts are being made to use alternative methods to prevent this practice.

A number of diseases such as zika fever, dengue and chikungunya are transmitted by Aedes mosquitoes and are now largely restricted to the monsoon season. Global warming facilitates their spread in time and space thus exposing new populations and regions for extended period to these diseases. Lyme disease caused by a bacterium is transmitted through the bite of the infected blacklegged ticks. It is one of the most common disease in the US. The cases of Lyme disease have tripled in the past two decades. Recent studies have suggested that variable winter conditions due to climate change could increase tick’s activity thus increasing the infections (see Pennisi 2022 ).

Biodiversity

Biodiversity and associated ecoservices are the basic requirements for human livelihood and for maintenance of ecological balance in Nature. Documentation of biodiversity, and its accelerating loss and urgent need for its conservation have become the main concern for humanity since several decades (Wilson and Peter 1988 ; Wilson 2016 ; Heywood 2017 ; IPBES 2019 ; Genes and Dirzo 2021 ; Shivanna and Sanjappa 2021 ). It is difficult to analyse the loss of biodiversity exclusively due to climate change as other human-induced environmental changes such as habitat loss and degradation, overexploitation of bioresources and introduction of alien species also interact with climate change and affect biodiversity and ecosystems. In recent decades there has been a massive loss of biodiversity leading to initiation of the sixth mass extinction crisis due to human-induced environmental changes. These details are not discussed here; they are dealt in detail in many other reviews (Leech and Crick 2007 ; Sodhi and Ehrlich 2010 ; Lenzen et al. 2012 ; Dirzo and Raven 2003 ; Raven 2020 ; Ceballos et al. 2015 ; Beckman et al. 2020 ; Shivanna 2020 ; Negrutiu et al. 2020 ; Soroye et al. 2020 ; Wagner 2020 ,  2021 ; Anonymous 2021 ; Zattara and Aizen 2021 ).

Terrestrial species

There are several effects on biodiversity caused largely by climate change. Maxwell et al. ( 2019 ) reviewed 519 studies on ecological responses to extreme climate events (cyclones, droughts, floods, cold waves and heat waves) between 1941 and 2015 covering amphibians, birds, fish, invertebrates, mammals, reptiles and plants. Negative ecological responses have been reported for 57% of all documented groups including 31 cases of local extirpations and 25% of population decline.

Increase in temperature impacts two aspects of growth and development in plants and animals. One of them is a shift in distributional range of species and the other is the shift in phenological events. Plant and animal species have adapted to their native habitat over 1000s of years. As the temperature gets warmer in their native habitat, species tend to move to higher altitudes and towards the poles in search of suitable temperature and other environmental conditions. There are a number of reports on climate change-induced shifts in the distributional range of both plant and animal species (Grabherr et al. 1994 ; Cleland et al. 2007 ; Parmesan and Yohe 2003 ; Beckage et al. 2008 ; Pimm 2009 ; Miller-Rushing et al. 2010 ; Lovejoy and Hannah 2005 ; Lobell et al. 2011 ). Many species may not be able to keep pace with the changing weather conditions and thus lag behind leading to their eventual extinction. Long-term observations extending for over 100 years have shown that many species of bumblebees in North-America and Europe are not keeping up with the changing climate and are disappearing from the southern portions of their range (Kerr et al. 2015 ). Most of the flowering plants depend on animals for seed dispersal (Beckman et al. 2020 ). Defaunation induced by climate change and other environmental disturbances has reduced long-distance seed dispersal. Prediction of dispersal function for fleshly-fruited species has already reduced the capacity of plants to track climate change by 60%, thus severely affecting their range shifts (Fricke et al. 2022 ).

Climate change induced shifts in species would threaten their sustenance even in protected areas as they hold a large number of species with small distributional range (Velasquez-Tibata et al. 2013 ). Pautasso ( 2012 ) has highlighted the sensitivity of European birds to the impacts of climate change in their phenology (breeding time), migration patterns, species distribution and abundance. Metasequoia glyptostroboides is one of the critically endangered species with extremely small populations distributed in South-Central China. Zhao et al. ( 2020 ) analysed detailed meteorological and phenological data from 1960 to 2016 and confirmed that climate warming has altered the phenology and compressed the climatically suitable habitat of this species. Their studies revealed that the temperature during the last 57 years has increased significantly with the expansion of the length of growing season of this species. Climatically suitable area of the species has contracted at the rate of 370.8 km 2 per decade and the lower and upper elevation limits shrunk by 27 m over the last 57 years.

The other impact of climate change on plant and animal species has been in their phenological shift. Phenology is the timing of recurring seasonal events; it is a sort of Nature’s calendar for plants and animals. In flowering plants, various reproductive events such as the timing of flowering, fruiting, their intensity, and longevity are important phenological events, and in animals some of the phenological events include building of nests in birds, migration of animal species, timing of egg laying and development of the larva, pupa and adult in insects. Phenological events of both plants and animals are generally fixed in specific time of the year as they are based on environmental cues such as temperature, light, precipitation and snow melt. Phenological timings of species are the results of adaptations over 100 s of years to the prevailing environment. Wherever there is a mutualism between plants and animals, there is a synchrony between the two partners. For example in flowering plants, flowering is associated with the availability of pollinators and fruiting is associated with the availability of seed dispersers and optimal conditions for seed germination and seedling establishment. In animals also, phenological events are adapted to suit normal growth and reproduction. In temperate regions, melting of ice initiates leafing in plants; this is followed by the flowering in the spring. Similarly, warming of the climate before the spring induces hatching of the hibernating insects which feed on newly developed foliage. Insects emerge and ready to pollinate the flowers by the time the plants bloom.

The dates of celebration of the cherry blossom festival, an important cultural event in Japan that coincides with the peak of flowering period of this species and for which > 1000 years of historical records are available, has shown advances in the dates of the festival in recent decades (Primack et al. 2009 ). The records between 1971 and 2000 showed that the trees flowered an average of 7 days earlier than all the earlier years (Allen et al. 2013 ). These advances were correlated with increasing temperature over the years. Spring temperatures in the Red River valley, North Dakota, USA have extended the period of the growing season of plants significantly over the years. Flowering times, for which data are available from1910 to1961, have been shown to be sensitive to at least one variable related to temperature or precipitation for 75% of the 178 species investigated (Dunnell and Traverse 2011 ). The first flowering time has been significantly shifted earlier or later over the last 4 years of their study in 5–15% of the observed species relative to the previous century. Rhododendron arboretum , one of the central Himalayan tree species, flowers from early February to mid-March. Generalized additive model using real-time field observations (2009–2011) and herbarium records (1893–2003) indicated 88–97 days of early flowering in this species over the last 100 years (Gaira et al. 2014 ). This early flowering was correlated with an increase in the temperature.

One of the consequences of a shift in the distributional range of species and phenological timings is the possible uncoupling of synchronization between the time of flowering of plant species and availability of its pollinators (see Gerard et al. 2020 ). When a plant species migrates, its pollinator may not be able to migrate; similarly when a pollinator migrates, the plant species on which it depends for sustenance may not migrate. Memmott et al. ( 2007 ) explored potential disruption of pollination services due to climate change using a network of 1420 pollinators and 429 plant species by simulating consequences of phenological shifts that can be expected with doubling of atmospheric CO 2 . They reported phenological shifts which reduced available floral resources to 17–50% of all pollinator species. A long-term study since the mid-1970s in the Mediterranean Basin has indicated that unlike the synchrony present in the earlier decades between the flowering of plant species and their pollinators, insect phenoevents during the last decade showed a steeper advance than those of plants (Gordo and Sanz 2005 ). Similar asynchrony has been reported between the flowering of Lathyrus and one of its pollinators, Hoplitis fulgida (Forrest and Thomson 2011 ). Asynchrony between flowering and appearance of pollinator has also been reported in a few other cases (Kudo and Ida 2013 ; Kudo 2014 ). Such asynchrony could affect the sustenance of plant and/or pollinator species in the new environment.

Marine species

Amongst the marine species, corals are the most affected groups due to the rise in temperature and acidity of oceans. Corals live in a symbiotic relationship with algae which provide colour and photosynthates to the corals. Corals are extremely sensitive to heat and acidity; even an increase of 2–3°F of ocean water above normal results in expulsion of the symbiotic algae from their tissues leading to their bleaching (Hoegh-Guldberg et al. 2017 ). When this bleached condition continues for several weeks, corals die. Nearly one-third of the Great Barrier Reef, the world’s largest coral reef system that sustains huge Australian tourism industry, has died as a result of global warming (Hughes et al. 2018 ). According to the experts the reef will be unrecognizable in another 50 years if greenhouse gas emissions continue at the current rate.

According to UNESCO, coral reefs in all 29 reef-containing World Heritage sites would cease to exist as functioning ecosystems by the end of this century if greenhouse gas emissions continue to be emitted at the present rate (Elena et al. 2020 ). Recent assessment of the risk of ecosystem collapse to coral reefs of the Western Indian Ocean, covering about 5% of the global total, range from critically endangered to vulnerable (Obura et al. 2021 ). Coral reefs provide suitable habitat for thousands of other species, including sharks, turtles and whales. If corals die, the whole ecosystem will get disrupted.

Melting of ice in Arctic region due to global warming is threatening the survival of native animals such as polar bear, Arctic fox and Arctic wolf. Rising of sea level also leads to the extinction of a large number of endangered and endemic plant and animal species in submerged coastal areas and islands. Over 180,000 islands around the globe contain 20% of the world’s biodiversity. Bellard et al. ( 2013 ) assessed consequences of sea level rise of 1–6 m for 10 insular biodiversity hotspots and their endemic species at the risk of potential extinction. Their study revealed that 6 to19% of the 4447 islands would be entirely submerged depending on the rise of sea level; three of them, the Caribbean islands, the Philippines and Sundaland, displayed the most significant hotspots representing a potential threat for 300 endemic species. According to the Centre for Biological Diversity ( 2013 ) 233 federally protected threatened and endangered species in 23 coastal states are threatened if rising sea is unchecked. Recently more than 100 Aquatic Science Societies representing over 80,000 scientists from seven continents sounded climate alarm (Bonar 2021 ). They have highlighted the effects of climate change on marine and aquatic ecosystems and have called on the world leaders and public to undertake mitigation measures to protect and sustain aquatic systems and theirs services.

Mitigation measures

The principal mitigation measures against climate change are obvious; they include significant reduction in greenhouse gas emission, prevention of deforestation and increase in the forest cover. To reduce greenhouse gas emission, use of coal and fossil fuels needs to be reduced markedly. As climate change is a global challenge, local solutions confined to one or a few countries do not work; we need global efforts. Many attempts are being made to achieve these objectives at the global level since many decades. Mitigation measures are largely at the level of diplomatic negotiations involving states and international organizations, Governments and some nongovernmental organizations. The Intergovernmental Panel on Climate Change (IPCC) was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988. Its mandate was to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, and also to put forward adaptation and mitigation strategies. In 1992 more than 1700 World scientists, including the majority of living Nobel laureates gave the first Warning to Humanity about climate change and associated problems. They expressed concern about potential damage to the Planet Earth by human-induced environmental changes such as climate change, continued human population growth, forest loss, biodiversity loss and ozone depletion. Conference of Parties (COP) of the UN Convention on Climate Change was established in 1992 under the United Nations Framework Convention on Climate Change (UNFCCC) to discuss global response to climate change. Its first meeting (COP 1) was held in Berlin in March 1995 and is being held every year since then. The Fifth Assessment Report of the IPCC, released in November 2014, projected an increase in the mean global temperature of 3.7 to 4.8 °C by 2100, relative to preindustrial levels (1850), in the absence of new policies to mitigate climate change; it highlighted that such an increase would have serious consequences. This prediction compelled the participating countries at the COP 21 held in Paris in December 2015 to negotiate effective ways and means of reducing carbon emissions. In this meeting the goal to limit global warming to well below 2 °C, preferably to 1.5 °C, compared to preindustrial levels was adapted by 196 participating countries as a legally binding treaty on climate change. It also mandated review of progress every 5 years and the development of a fund containing $100 billion by 2020, which would be replenished annually, to help developing countries to adopt non-greenhouse-gas-producing technologies.

In 2017, after 25 years after the first warning, 15,354 world scientists from 184 countries gave ‘second warning to humanity’ (Ripple et al. 2017 ). They emphasized that with the exception of stabilizing the stratospheric ozone layer, humanity has failed to make sufficient progress in solving these environmental challenges, and alarmingly, most of them are getting far worse. Analysis of Warren et al. ( 2018 ) on a global scale on the effects of climate change on the distribution of insects, vertebrates and plants indicated that even with 2 °C temperature increase, approximately 18% of insects, 16% of plants and 8% of vertebrates species are projected to loose > 50% geographic range; this falls to 6% for insects, 8% for plants and 4% for vertebrates when temperature increase is reduced to 1.5 °C.

UN Report on climate change (prepared by > 90 authors from 40 countries after examining 6000 scientific publications) released in October 2018 in South Korea also gave serious warning to the world. Some of the salient features of this report were:

  • Overshooting 1.5 °C will be disastrous. It will have devastating effects on ecosystems, communities and economies. By 2040 there could be global food shortages, the inundation of coastal cities and a refugee crisis unlike the world has ever seen.
  • Even 1.5 °C warming would rise sea levels by 26–77 cm by 2100; 2 °C would add another 10 cm which would affect another 10 million people living in coastal regions.
  • Coral reefs are projected to decline 70–90% even at 1.5 °C. At 2 °C, 99% of the reefs would be ravaged.
  • Storms, floods, droughts and forest fires would increase in intensity and frequency.
  • The world has already warmed by about 1 °C since preindustrial times. We are currently heading for about 3–4 °C of warming by 2100.
  • Unless rapid and deep reductions in CO 2 and other greenhouse gas emissions occur in the coming decades, achieving the goals of the 2015 Paris Agreement will be beyond reach.
  • To keep 1.5 °C target, coal’s share of global electricity generation must be cut from the present 37% to no more than 2% by 2050. Renewable power must be greatly expanded. Net CO 2  emissions must come down by 45% (from 2010 levels) by 2030 and reach net zero (emissions of greenhouse gases no more than the amount removed from the atmosphere) around 2050.

This report awakened the world Governments about the seriousness of the climate change. The COP 26 meeting which was to be held in 2020 had to be postponed due to Covid-19 pandemic. The first part of the sixth report of IPCC was released in August 2021 (AR6 Climate Change 2021 ), just before the postponed COP 26 meeting was to be held; it highlighted that the threshold warming of 1.5 °C (the target of keeping the warming by the end of the century) would reach in the next 20 years itself and if the present trends continue, it would reach 2.7 °C by the end of the century.

Under this predicted climate emergency (see Ripple et al. 2020 ), COP 26 meeting was held in Glasgow, Scotland between October 31 and November 12, 2021. Nearly 200 countries participated in this meeting. The main aim of the COP 26 was finalization of the rules and procedures for implementation of the Paris agreement to keep the temperature increase to 1.5 °C. A number of countries including USA and European Union pledged to reach net zero carbon emission by 2050. China pledged to reach net zero emissions by 2060 and India by 2070. India also committed to reduce the use of fossil fuels by 40% by 2030. More than 100 countries committed to reduce worldwide methane emissions by 30% (of 2020 levels) by 2030 and to end deforestation by 2030. The average atmospheric concentration of methane reached a record 1900 ppb in September 2021; it was 1638 ppb in 1983 (US National Oceanic and Atmospheric Administration), highlighting the importance of acting on pledges made at the COP 26.

One of the limitations of COP meetings has been nonadherence of the commitment made by developed countries at Paris meeting to transfer US $100 billion annually to developing and poor countries to support climate mitigation and loss of damage, through 2025; only Germany, Norway and Sweden are paying their share. Several experts feel that the adoption of the Glasgow Climate Pact was weaker than expected. According to the assessment of Climate Action Tracker, a non-profit independent global analysis platform, emission reduction commitments by countries still lead to 2.4 °C warming by 2100. However, a positive outcome of the meeting was that it has kept alive the hopes of achieving the 1.5 °C goal by opening the options for further discussion in the coming COP meetings. Apart from implementation of mitigation pledges made by countries, it is also important to pay attention to climate adaptation since the negative effects of climate change will continue for decades or longer (AR6 Climate Change 2021 ). Investment in early warning is an important means of climate adaptation, which is lacking in many parts of Africa and Latin America.

Conclusions

Climate change has now become the fastest growing global threat to human welfare. The world has realized the responsibility of the present generation as it is considered to be the last generation capable of taking effective measures to reverse its impact. If it fails, human civilization is likely to be doomed beyond recovery. As emphasized by many organizations, the climate crisis is inherently unfair; poorer countries will suffer its consequences more than others. India is one amongst the nine countries identified to be seriously affected by climate change. According to a WHO analysis ( 2016 ) India could face more than 25% of all global climate-related deaths by 2050 due to decreasing food availability. China is expected to face the highest number of per capita food insecurity deaths. Bhutan, a small Himalayan kingdom with 60% forest cover, is the most net negative carbon emission country; its GHG emission is less than the amount removed from the atmosphere. Other countries should aim to emulate Bhutan as early as possible.

A number of other options have been suggested to trap atmospheric carbon dioxide (Climate change mitigation—Wikipedia). Carbon storage through sequestration of organic carbon by deep-rooted grasses has been one such approach (Fisher et al. 1994 ). Several studies from Africa have indicated that introduction of Brachiaria grasses in semi-arid tropics can help to increase not only carbon stock in the soil but also yield greater economic returns (Gichangi et al. 2017 ). Recently a new seed bank, ‘Future Seeds’ was dedicated at Palmira, Columbia to store world’s largest collection of beans, cassava, and tropical forage grasses for the use of breeders to create better performing and climate-resistant crops (Stokstad 2022 ). Brachiaria humidicola is one of the tropical forage grass stored in this seed bank for its potential benefit in carbon sequestration. Lavania and Lavania ( 2009 ) have suggested vetiver ( Vetiveria zizanioides ), a C 4 perennial grass, with massive fibrous root system that can grow up to 3 m into the soil in 1 year, as a potential species for this purpose. Vetiver is estimated to produce 20–30 tonnes of root dry matter per hectare annually and holds the potential of adding 1 kg atmospheric CO 2 annually to the soil carbon pool per m 2 surface area. Carbon dioxide capture and storage is another such potential approach. At present it is too expensive and this approach may have to wait until improvement of the technology, reduction in the cost and feasibility of transfer of the technology to developing countries (IPCC Special Report on carbon dioxide capture and storage 2005 ).

There has been some discussion on the role of climate change on speciation (Levin 2019 ; Gao et al. 2020 ). Some evolutionary biologists have observed that the rate of speciation has accelerated in the recent past due to climate change and would continue to increase in the coming decades (Thomas 2015 ; Levin 2019 ; Gao et al. 2020 ). They propose that auto- and allo-polyploidy are going to be the primary modes of speciation in the next 500 years (Levin 2019 , see also Gao 2019 , Villa et al. 2022 ). However, extinction of species imposed by climate change may excel positive impact on plant speciation via polyploidy (Gao et al. 2020 ). The question is will climate change induce higher level of polyploidy and other genetic changes in crop species also that would promote evolution of new genotypes to sustain productivity and quality of food grains? If so, it would ameliorate, to some extent, food and nutritional insecurity of humans especially in the developing world.

Effective implementation of the pledges made by different countries in COP 26 and actions to be taken in the coming COP meetings are going to be crucial and determine humanity’s success or failure in tackling climate change emergency. COP 26 climate pact to cut greenhouse gas emissions, end of deforestation and shift to sustainable transport is certainly more ambitious then earlier COPs. There are also many other positive signals for reducing fossil fuels. Scientists have started using more precise monitoring equipment to collect more reliable environmental data, and more options are being developed by researchers on renewable and alternate energy sources, and to capture carbon from industries or from the air (Chandler D, MIT News 24 Oct 2019, Swain F, BBC Future Planet, 12 March 2021). Scotland has become coal-free and Costa Rica has achieved 99% renewable energy. India has reduced the use of fossil fuel by 40% of it installed capacity, 8 years ahead of its commitment at the COP 26.

Further, people are becoming more conscious to reduce carbon emission by following climate-friendly technologies. Human sufferings associated with an increase in natural disasters throughout the world have focussed public attention on climate change as never before. They also realise the benefits of improved air quality by reducing consumption of coal and fossil fuels on health and ecosystems. The demand for electric vehicles is steadily growing. Reforestation is being carried out in a large scale in many countries. Recent studies across a range of tree plantations and native forests in 53 countries have revealed that carbon storage, soil erosion control, water conservation and biodiversity benefits are delivered better from native forests compared to monoculture tree plantations, although the latter yielded more wood (Hua et al. 2022 ). This has to be kept in mind in reforestation programmes. Hopefully the world will be able to realize the goal of limiting the temperature rise to 1.5 °C by the end of the century and humanity would learn to live in harmony with Nature.

Declarations

The author declares no conflict of interest.

  • Abdurrahman MI, Chaki S, Saini G. Stubble burning: effects on health & environment, regulations and management practices. Environ. Adv. 2020 doi: 10.1016/j.envadv.2020.100011. [ CrossRef ] [ Google Scholar ]
  • Allen JM, Terres MA, Katsuki T, et al. Modelling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology. Global Change Biol. 2013; 20 :1251–1263. doi: 10.1111/gcb.12364. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Anonymous (2018) https://www.euronews.com/2018/02/02/rising-sea-levels-threat-a-shrinking-european-coastline-in-2100
  • Anonymous (2021) Special Issue. Global decline in the Anthropocene. Proc Natl Acad Sci, USA 118: No 2
  • Aquilera R, Curringham TW, Gershunov A, Benmarhnia T. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California. Nat. Commun. 2021 doi: 10.1038/s41467-021-21708-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • AR6 Climate Change: The sixth assessment report on climate change. IPCC, Geneva (2021).  https://www.ipcc.ch/report/ar6/wg1/
  • Beckage B, Osborne B, Gavin DG, et al. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc. Natl. Acad. Sci. USA. 2008; 105 :4197–4202. doi: 10.1073/pnas.0708921105. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beckman NG, Aslan CE, Rogers HS. The role of seed dispersal in plant populations: perspectives and advances in a changing world. AoB Plants. 2020 doi: 10.1093/aobpla/plaa010. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bellard C, Leclerc C, Courchamp F. Impact of sea level rise on the 10 insular biodiversity hotspots. Global Ecol. Biogeogr. 2013 doi: 10.1111/geb.12093. [ CrossRef ] [ Google Scholar ]
  • Bloom AJ, Plant RC. Wheat grain yield decreased over the past 35 years, but protein content did not change. J. Exptl. Bot. 2021; 72 :6811–6821. doi: 10.1093/jxb/erab343. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bonar SA. More than 111 aquatic-science societies sound climate alarm. Nature. 2021; 589 :352. doi: 10.1038/d41586-021-00107-x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bras TA, Seixas J, Nuno C, Jonas J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 2021 doi: 10.1088/1748-9326/abf004. [ CrossRef ] [ Google Scholar ]
  • Ceballos G, Ehrlich PP, Barnosky AD, et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015; 1 :e1400253. doi: 10.1126/sciadv.1400253. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Centre for Biological Diversity: Deadly Waters: How Rising Seas Threaten 233 Endangered Species. (2013) https://www.biologicaldiversity.org/campaigns/sea-level_rise/pdfs/Sea_Level_Rise_Report_2013_web.pdf
  • Cleland EE, Chuine I, Menzel A, et al. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007; 22 :357–365. doi: 10.1016/j.tree.2007.04.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Deutsch CA, Tewksbury JJ, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018; 361 :916–919. doi: 10.1126/science.aat3466. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dirzo R, Raven PH. Global state of biodiversity and loss. Ann. Rev. Environ. Res. 2003; 28 :137–167. doi: 10.1146/annurev.energy.28.050302.105532. [ CrossRef ] [ Google Scholar ]
  • Dunnell KL, Travers SE. Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years. Am. J. Bot. 2011; 98 :935–945. doi: 10.3732/ajb.1000363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Elena O, Matthew E-S, Matea O, et al. A conservation assessment of all natural World Heritage sites. Gland: IUCN; 2020. IUCN World Heritage Outlook 3. [ Google Scholar ]
  • Fisher MJ, Rao IM, Ayarza MA, et al. Carbon storage by introduced deep-rooted grasses in the South American Savannas. Nature. 1994; 371 :236–238. doi: 10.1038/371236a0. [ CrossRef ] [ Google Scholar ]
  • Forrest JRK, Thomson JD. An examination of synchrony between insect emergence and flowering in the Rocky Mountain meadows. Ecol. Monogr. 2011; 81 :469–491. doi: 10.1890/10-1885.1. [ CrossRef ] [ Google Scholar ]
  • Fricke EC, Ordonez A, Rogers HS, et al. The effects of defaunation on plants’ capacity to track climate change. Science. 2022; 375 :210–214. doi: 10.1126/science.abk3510. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gaira KS, Rawal R, Rawat B, Bhatt ID. Impact of climate change on the flowering of Rhododendron arboreum in central Himalaya, India. Curr. Sci. 2014; 106 :1735–1738. [ Google Scholar ]
  • Gao JG. Dominant plant speciation types. A commentary on: plant speciation in the age of climate change. Ann. Bot. 2019; 124 :iv–vi. doi: 10.1093/aob/mcz174. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gao JG, Liu H, Wang N, et al. Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biol. 2020; 20 :430. doi: 10.1186/s12870-020-02646-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Genes L, Dirzo R. Restoration of plant–animal interactions in terrestrial ecosystems. Biol. Conserv. 2021 doi: 10.1016/j.biocon.2021.109393. [ CrossRef ] [ Google Scholar ]
  • Gerard M, Vanderplanck M, Wood T, Michez D. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 2020; 4 :77–86. doi: 10.1042/ETLS20190139. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Getirana A, Libonati R, Cataldi M. Brazil is in water crisis—it needs a drought plan. Nature. 2021; 600 :218–220. doi: 10.1038/d41586-021-03625-w. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gichangi EM, Njarui DMG, Gatheru M. Plant shoots and roots biomass of Brachiaria grasses and their effect on soil carbon in the semi-arid tropics of Kenya. Trop. Subtrop. Agroecosyst. 2017; 20 :65–74. [ Google Scholar ]
  • Gordo O, Sanz JJ. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia. 2005; 146 :484–495. doi: 10.1007/s00442-005-0240-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grabherr G, Gottfried M, Pauli H. Climate effects on mountain plants. Nature. 1994; 369 :448. doi: 10.1038/369448a0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hausfather Z, Drake HF, Abbott T, Schmidt GA. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 2019 doi: 10.1029/2019GL085378. [ CrossRef ] [ Google Scholar ]
  • Heinrich B. Keeping a cool head: honeybee thermoregulation. Science. 1979; 205 :1269–1271. doi: 10.1126/science.205.4412.1269. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Heywood VH. Plant conservation in the Anthropocene: challenges and future prospects. Plant Divers. 2017; 39 :314–330. doi: 10.1016/j.pld.2017.10.004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral Reef Ecosystems under climate change and ocean acidification. Front. Mar. Sci. 2017; 4 :158. doi: 10.3389/fmars.2017.00158. [ CrossRef ] [ Google Scholar ]
  • Hua F, Bruijnzeel LA, Meli P, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science. 2022 doi: 10.1126/science.abl4649. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hughes TP, Kerry TJ, Baird AH, et al. Global warming transforms coral reef assemblages. Nature. 2018; 556 :492–496. doi: 10.1038/s41586-018-0041-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Immerzeel WW, Lutz AF, Andrade M, et al. Importance and vulnerability of the world’s water towers. Nature. 2020; 577 :364–369. doi: 10.1038/s41586-019-1822-y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • IPBES: The intergovernmental science-policy platform on biodiversity and ecosystem services. In: Sustainable development goals. IPBES, Bonn (2019)
  • IPCC: IPCC special report on carbon dioxide capture and storage (2005). https://www.ipcc.ch›2018/03›srccs_wholereport-1
  • Indian State Forest Report: Forest Survey of India (2019). https://www.drishtiias.com
  • Jägermeyr J, Müller C, Ruane AC, et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food. 2021 doi: 10.1038/s43016-021-00400-y. [ CrossRef ] [ Google Scholar ]
  • Kerr JT, Pinder A, Galpern P, et al. Climate impacts on bumblebees coverage across continents. Science. 2015; 349 :177–180. doi: 10.1126/science.aaa7031. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • King O, Bhattacharya A, Ghuffar S, Tait A, et al. Six decades of glacier mass changes around Mt. Everest are revealed by historical and contemporary Images. One Earth. 2021 doi: 10.1016/j.oneear.2020.10.019. [ CrossRef ] [ Google Scholar ]
  • Kudo G. Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. Ecol. Res. 2014; 29 :571–581. doi: 10.1007/s11284-013-1108-z. [ CrossRef ] [ Google Scholar ]
  • Kudo G, Ida TY. Early onset of spring increases the mismatch between plants and pollinators. Ecology. 2013; 94 :2311–2320. doi: 10.1890/12-2003.1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lavania UC, Lavania S. Sequestration of atmospheric carbon into subsoil horizons through deep-rooted grasses-vetiver grass model. Curr. Sci. 2009; 97 :618–619. [ Google Scholar ]
  • Lee E, Carrivick JL, Quincey DJ, et al. Accelerated mass loss of Himalayan glaciers since the little ice age. Sci. Rep. 2021; 11 :24284. doi: 10.1038/s41598-021-03805-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Leech DI, Crick HQP. Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis. 2007; 149 (Suppl. 2):128–145. doi: 10.1111/j.1474-919X.2007.00729.x. [ CrossRef ] [ Google Scholar ]
  • Leeming J. Meet the food pioneer whose meat replacements are rocking the gravy boat. Nature. 2021; 590 :176. doi: 10.1038/d41586-021-00264-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lenzen M, Moran D, Kanemoto K, et al. International trade drives biodiversity threats in developing nations. Nature. 2012; 486 :109–112. doi: 10.1038/nature11145. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Levin DA. Plant speciation in the age of climate change. Ann. Bot. 2019; 124 :769–775. doi: 10.1093/aob/mcz108. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011; 333 :616–620. doi: 10.1126/science.1204531. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lovejoy TE, Hannah L, editors. Biodiversity and climate change: transforming the biosphere. New Haven, London: Yale University Press; 2005. [ Google Scholar ]
  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front. Public Health. 2020 doi: 10.3389/fpubh.2020.00014. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Maxwell SL, Butt N, Maron M, et al. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 2019; 25 :613–625. doi: 10.1111/ddi.12878. [ CrossRef ] [ Google Scholar ]
  • McCrystall MR, Stroeve J, Serreze M, et al. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 2021 doi: 10.1038/s41467-021-27031-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Memmott J, Craze PE, Waser NM, Price MV. Global warming and disruption of plant-pollinator interactions. Ecol. Lett. 2007; 10 :710–717. doi: 10.1111/j.1461-0248.2007.01061.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miller-Rushing A, Hoye TH, Inouye D, Post E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. B. 2010; 365 :3177–3186. doi: 10.1098/rstb.2010.0148. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Negrutiu I, Frohlich MW, Hamant O. Flowering plants in the Anthropocene: a political agenda. Trends Plant. Sci. 2020; 25 :349–368. doi: 10.1016/j.tplants.2019.12.008. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Obura D, Gudka M, Samoilys M, et al. Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean. Nat. Sustain. 2021; 5 :104–113. doi: 10.1038/s41893-021-00817-0. [ CrossRef ] [ Google Scholar ]
  • OXFAM International: 5 natural disasters that beg for climate action. (2021) https://www.oxfam.org/en/5-natural-disasters-beg-climate-action
  • Pacheco P, Mo K, Dudley N, et al. Deforestation fronts: drivers and responses in a changing world. Gland: WWF; 2021. [ Google Scholar ]
  • Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003; 421 :37–42. doi: 10.1038/nature01286. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M. Observed impacts of climate change on terrestrial birds in Europe: an overview. Ital. J. Zool. 2012; 79 :296–314. doi: 10.1080/11250003.2011.627381. [ CrossRef ] [ Google Scholar ]
  • Pennisi E. Lyme-carrying ticks live longer—and could spread farther—thanks to warmer winters. Science. 2022 doi: 10.1126/science.acz9985. [ CrossRef ] [ Google Scholar ]
  • Pimentel D, Pimentel M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003; 78 :660S–663S. doi: 10.1093/ajcn/78.3.660S. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pimm SL. Climate disruption and biodiversity. Curr. Biol. 2009; 19 :R595–R601. doi: 10.1016/j.cub.2009.05.055. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Potapov P, Turubanova S, Hansen MC, et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food. 2021 doi: 10.1038/s43016-021-00429-z. [ CrossRef ] [ Google Scholar ]
  • Primack RB, Higuchi H, Miller-Rushing AJ. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 2009; 142 :1943–1949. doi: 10.1016/j.biocon.2009.03.016. [ CrossRef ] [ Google Scholar ]
  • Pruniki M, Cauwenberghs N, Lee J, et al. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Sci. Rep. 2021; 11 :4067. doi: 10.1038/s41598-021-83577-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rader R, Reilly J, Bartomeus I, Winfree R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Global Change Biol. 2013; 19 :3103–3110. doi: 10.1111/gcb.12264. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Raven PH. Biological extinction and climate change. In: Al-Delaimy WK, Ramanathan V, SánchezSorondo M, editors. Health of people, health of planet and our responsibility. Cham: Springer; 2020. pp. 11–20. [ Google Scholar ]
  • Razzaq A, Wani SH, Saleem F, et al. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J Exptl Bot. 2021; 72 :6123–6139. doi: 10.1093/jxb/erab276. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ripple WJ, Wolf C, Newsome TM, et al. World scientists’ warning to humanity: a second notice. Bioscience. 2017; 67 :1026–1028. doi: 10.1093/biosci/bix125. [ CrossRef ] [ Google Scholar ]
  • Ripple WJ, Wolf C, Newsome TM, et al. World Scientists’ warning of a climate emergency. Bioscience. 2020; 70 :8–12. doi: 10.1093/biosci/biz152. [ CrossRef ] [ Google Scholar ]
  • Salvatteci R, Schneider RR, Field EGD, et al. Smaller fish species in a warm and oxygen-poor Humboldt Current system. Science. 2022; 375 :101–104. doi: 10.1126/science.abj0270. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sejiyan V, Bhatta R, Malik PK, et al. Livestock as sources of greenhouse gases and its significance to climate change. In: Moya BL, Pous J, et al., editors. Greenhouse gases. London: IntechOpen; 2016. [ Google Scholar ]
  • Shivanna KR. The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance. 2020; 25 :93–109. doi: 10.1007/s12045-019-0924-z. [ CrossRef ] [ Google Scholar ]
  • Shivanna KR, Sanjappa M. Conservation of endemic and threatened flowering plants: challenges and priorities for India. J. Indian Bot. Soc. 2021; 101 :269–290. [ Google Scholar ]
  • Shivanna KR, Tandon R, Koul M. ‘Global pollinator crisis’ and its impact on crop productivity and sustenance of biodiversity. In: Tandon R, Shivanna KR, Koul M, editors. Reproductive ecology of flowering plants: patterns and processes. Singapore: Springer; 2020. pp. 395–413. [ Google Scholar ]
  • Sodhi NS, Ehrlich PR, editors. Conservation biology for all. Oxford: Oxford University Press; 2010. [ Google Scholar ]
  • Soroye P, Newworld T, Kerr J. Climate change contributes to widespread declines among bumble bees across continents. Science. 2020; 367 :685–688. doi: 10.1126/science.aax8591. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stokstad E. World’s largest bean and cassava collection gets a striking new home: “Future Seeds” gene bank will help plant breeders create new varieties of crops and carbon-storing grasses. ScienceInsider. 2022 doi: 10.1126/science.abq1510. [ CrossRef ] [ Google Scholar ]
  • Thomas CD. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 2015; 30 :448–455. doi: 10.1016/j.tree.2015.05.009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Velasquez-Tibata J, Salaman P, Catherine H, Graham CH. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change. 2013; 13 :235–248. doi: 10.1007/s10113-012-032. [ CrossRef ] [ Google Scholar ]
  • Villa S, Montagna M, Pierce S. Endemism in recently diverged angiosperms is associated with polyploidy. Plant Ecol. 2022 doi: 10.1007/s11258-022-01223-y9-y. [ CrossRef ] [ Google Scholar ]
  • Voosen P. Key Antarctic ice shelf is within years of failure. Science. 2021; 374 :1420–1421. doi: 10.1126/science.acz9833. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wagner DL. Insect decline in the Anthropocese. Ann. Rev. Entomol. 2020; 65 :457–480. doi: 10.1146/annurev-ento-011019-025151. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wagner, D.L., Grames, E.M., Forister, M.L. et al.: Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118 , e2023989118 (2021). 10.1073/pnas.2023989118 [ PMC free article ] [ PubMed ]
  • Warren R, Price J, Graham E, et al. The projected effect on insects, vertebrates and plants of limiting global warming to 1.5°C rather than 2°C. Science. 2018; 360 :791–795. doi: 10.1126/science.aar3646. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WCRP Global Sea Level Budget Group Global sea-level budget 1993–present. Earth Syst. Sci. Data. 2018; 10 :1551–1590. doi: 10.5194/essd-10-1551-2018. [ CrossRef ] [ Google Scholar ]
  • WHO analysis . Monitoring health for the sustainable development goals. Geneva: WHO; 2016. World Health Statistics 2016. [ Google Scholar ]
  • Wilson EO. Half-earth: our planet’s fight for life. New York: Liveright/Norton; 2016. [ Google Scholar ]
  • Wilson EO, Peter FM, editors. Biodiversity. Washington DC: National Academy Press; 1988. [ PubMed ] [ Google Scholar ]
  • Zattara EE, Aizen MA. Worldwide occurrence of records suggest a global decline in bee species richness. One Earth. 2021; 4 :114–123. doi: 10.1016/j.oneear.2020.12.005. [ CrossRef ] [ Google Scholar ]
  • Zhao Z, Wang Y, Zang Z, et al. Climate warming has changed phenology and compressed the climatically suitable habitat of Metasequoia Glyptostroboides over the last half century. Global Ecol. Conserv. 2020; 23 :e01140. doi: 10.1016/j.gecco.2020.e01140. [ CrossRef ] [ Google Scholar ]
  • Zhu C, Kobayashi K, Loladze I, et al. Carbon dioxide (CO 2 ) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018; 4 :eaaq012. doi: 10.1126/sciadv.aaq1012. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhu T, Flavio C, De Lima F, De Smet I. The heat is on: how crop growth, development, and yield respond to high temperature. J. Exptl. Bot. 2021; 72 :7359–7373. doi: 10.1093/jxb/erab308. [ PubMed ] [ CrossRef ] [ Google Scholar ]

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

IMAGES

  1. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    climate change and its impact on environment essay

  2. ≫ Climate Change Free Essay Sample on Samploon.com

    climate change and its impact on environment essay

  3. ≫ Global Climate Change Free Essay Sample on Samploon.com

    climate change and its impact on environment essay

  4. Impacts of climate change on Urban areas

    climate change and its impact on environment essay

  5. ≫ Causes And Effects Of Climate Change Free Essay Sample on Samploon.com

    climate change and its impact on environment essay

  6. climate change essay assessment KS3

    climate change and its impact on environment essay

COMMENTS

  1. Climate Change Essay for Students and Children

    Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. In this climate change essay, we have discussed its causes. so click the link and read the whole essay.

  2. Effects of Climate Change

    Effects of climate change on weather As global temperatures climb, widespread shifts in weather systems occur, making events like droughts, hurricanes, and floods more intense and unpredictable.

  3. Effects of Climate Change

    Explore the impacts of climate change with our effects of climate change essay. Learn more about climate change causes, effects, and solutions with the help of our sample. Keep reading to gain inspiration for your essay on climate change and its impact.

  4. What Is Climate Change?

    What Is Climate Change? Climate change is a long-term change in the average weather patterns that have come to define Earth's local, regional and global climates. These changes have a broad range of observed effects that are synonymous with the term.

  5. Climate Change Assay: A Spark Of Change

    This climate change essay competition saw many students submitting well thought out pieces of writing. These essays were marked on their format, creativity, organisation, clarity, unity/development of thought, and grammar/mechanics.

  6. Causes and Effects of Climate Change

    Causes and Effects of Climate Change Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas ...

  7. Climate Change

    Climate change is a long-term shift in global or regional climate patterns. Often climate change refers specifically to the rise in global temperatures from the mid-20th century to present.

  8. Climate change widespread, rapid, and intensifying

    For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

  9. Unbalanced: How Climate Change Is Shifting Earth's Ecosystems

    We can already see how climate change is impacting humans and wildlife. But what about the abiotic, or nonliving, parts of the environment?

  10. Climate change: a threat to human wellbeing and health of the ...

    For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

  11. Climate change and ecosystems: threats, opportunities and solutions

    Climate change is impacting ecosystems through changes in mean conditions and in climate variability, coupled with other associated changes such as increased ocean acidification and atmospheric carbon dioxide concentrations. It also interacts with other pressures on ecosystems, including degradation, defaunation and fragmentation.

  12. Essay on Climate Change: Check Samples in 100, 250 Words

    This blog gives information about what to write in an essay on climate change, including 100, 250 words sample essays!

  13. The Science of Climate Change Explained: Facts, Evidence and Proof

    The science of climate change is more solid and widely agreed upon than you might think. But the scope of the topic, as well as rampant disinformation, can make it hard to separate fact from fiction.

  14. Climate Change Essay for Students in English

    Climate Change Essay: Go through the 500+ Words Essay on Climate Change and get ideas on how to write an effective essay on issues related to the environment. Boost your essay writing skills to score high marks in the English exam and also participate in various essay writing competitions.

  15. A review of the global climate change impacts, adaptation, and

    To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs.

  16. Climate Explained: Introductory Essays About Climate Change Topics

    Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it's cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

  17. Climate Change Essay

    200 Words Essay on Climate Change. The climate of the Earth has changed significantly over time. While some of these changes were brought on by natural events like volcanic eruptions, floods, forest fires, etc., many of the changes were brought on by human activity. The burning of fossil fuels, domesticating livestock, and other human ...

  18. A review of the global climate change impacts, adaptation, and

    The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects.

  19. Climate change effects on biodiversity, ecosystems, ecosystem services

    Abstract Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management.

  20. Our Future Is Now

    Francesca Minicozzi (class of 2021) is a Writing/Biology major who plans to study medicine after graduation. She wrote this essay on climate change for WR 355/Travel Writing, which she took while studying abroad in Newcastle in spring 2020.

  21. What Is Climate Change?

    Climate change can affect our health, ability to grow food, housing, safety and work. Some of us are already more vulnerable to climate impacts, such as people living in small island nations and ...

  22. Climate change and its impact on biodiversity and human welfare

    Increase in atmospheric temperature has serious consequences on biodiversity and ecosystems, and human wellbeing. The most important evidences of climate change is the long term data available on the CO levels, global temperature and weather patterns. The impacts of climate change in the coming decades are based on published models on the basis ...

  23. Climate Impacts

    Climate change is caused by the increase in greenhouse gases, such as carbon dioxide, in the atmosphere. This is driven by human activities - primarily the burning of fossil fuels (coal, oil, and gas) and land-use change, such as deforestation. Our climate system is in crisis, and it's because of our actions (or rather, inaction) on climate ...

  24. Climate change debates

    From a scientific standpoint, the causes of current ongoing climate change are well established. But in the context of rapid change, and real-world consequences, there is still room — and need ...

  25. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to ...

  26. Rising temps, rising anxiety: Climate change creates emerging mental

    Elissa Teles Muñoz, 24, of the Climate Mental Health Network, is helping others cope with climate change anxiety by conducting research on its implications and impact on young Miami-Dade ...

  27. Understanding the economic impacts of climate change

    The first example is our understanding of the macroeconomic impacts of climate change, in which I am currently working. The problem in this literature is that economic models have failed to predict significant impacts from even severe warming, which is in stark contrast to how scientists characterise the implications of severe climate change.

  28. IUCN

    IUCN monitors the impacts of climate change on nature, and guides the conservation and restoration of ecosystems to help mitigate and adapt to it. ... age, (dis)ability, ethnicity, race or sexuality, and to ensure environmental law is effective and just. Governance - law and rights Nature-based Solutions Nature-based Solutions. Agriculture and ...

  29. Assessment of the economic viability, environmental, and social impacts

    The impacts of climate change are real and in many parts of the world testify to its harsh reality, including rampant extreme weather events, droughts, heat,...

  30. Quantifying Carbon Use Efficiency: Unraveling the Impact of Climate

    Nevertheless, the quantitative assessment of the impact of climate change and anthropogenic activities on vegetation CUE is fraught with difficulties [9,10,11]. Ecological engineering represents a pivotal methodology for the restoration of regional ecological functions through human intervention.