We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essay Examples >
  • Essays Topics >
  • Essay on Health

Example Of Food Safety Essay

Type of paper: Essay

Topic: Health , Medicine , Security , Human , Study , Genetics , Food , Safety

Words: 2500

Published: 03/20/2020

ORDER PAPER LIKE THIS

Food is a necessity because it is essential to human beings’ survival. For this reason, food production is a crucial function in modern life because processes and initiatives determine the quantity and quality of food produced and distributed to consumers. Food production, however, is not an easy process. In some cases, food consumed by people not only cause illnesses or various diseases but also lead to death. As a result, producers around the world adopted various measures to ascertain the quality of food and the health and safety of consumers. Solving food safety is a variable process primarily because issues that threaten this are diverse. The research focuses on identifying current and relevant issues that threaten food safety particularly improper food handling, preparation, and storage practices, and the strategies and practices that organizations employ in order to address food security that affect the health and wellbeing of people. The discussion focuses on the problems in food safety and their implications on human life. After presenting issues concerning food safety, the discussion also includes recommendations on how people would be able to address the foregoing problems to ensure that they consume high quality food. Solutions to food safety problems include increased awareness about food handling and storage, as well as increased reliance on organic food. Science could also contribute to the foregoing problems by introducing non-harmful ways to produce plant and animal food sources and offset the outcomes of climate change on agriculture and food production.

Consumption and Food Safety

One of the most important issues when it comes to food and consumption is safety. Food is a basic necessity because it perpetuates the survival of human beings. Nonetheless, food could place people’s lives at risk. People die after consumption if food contains deadly organisms such as bacteria or virus, poison, and other harmful substances. Some sources of food in nature are also prohibited for consumption because they are harmful to people’s health. For the foregoing reasons, food safety is important when it comes to curbing incidences of death and illness due to food. Aside from the presence of deadly organisms on food, other reasons or factors that contribute to food safety issues include improper handling and storage of food. Food items formulate bacteria, for instance, when they are kept under conditions that do not favor the preservation of the food’s quality. Some food items must be frozen, while others must be heated or cooled. Food must also be stored properly to prevent bacteria from formulating on the surface of the food. The foregoing problems have plagued the food production industry for many years. Proposed solutions include the inclusion of ingredients in food to improve its quality and prevent it from decomposition or contamination. Other solutions include standards or guidelines and their implementation in food preparation particularly in restaurants and other food establishments. In recent years, however, one of the primary social issues related to food safety include the quality of food. Various health institutions raised this issue because of the increasing number of illnesses caused by low food quality. Some of these illnesses are also serious and the leading causes of death around the world. Illnesses such as cancer, heart diseases, and diabetes, for instance, are outcomes of poor food quality. Proof to the alarming rate of unfortunate circumstances linked to food safety is the growing number of cases involving food poisoning or the onset of diseases due to consumption of unsafe food. The number of articles about food safety published over the years (See Figure 1) have significantly increased over time, thus, signaling the growing number of issues related to safety and intensifying the need to immediately address the problem.

Cultural and Sociological Relevance of Food Safety

Since the objective of the research is to view a specific issue from the cultural and sociological perspective, we are going to explore some of the issues linked to food quality. Aside from the content of food, this issue is also cultural in nature because it is tied to the food consumption practices in other countries. In a discussion about food quality, Kent (2012) pointed out that food choices often affect our health. Hence, in countries where people’s choices are scarce or are limited to specific types of food following cultural practices such as religious traditions, the quality of their food and consumption differs from that of others. Aside from religion and culture, lifestyle and beliefs as well as personal preferences as influenced by news and science are also some of the factors that affect people’s choices when it comes to food consumption. Kent mentioned Jews and Muslims as examples. Due to their religion, Jews and Muslims follow restrictions when it comes to food consumption. Both groups are averse to the consumption of pork, which may be an outcome of their religion rather than health concerns. Nonetheless, because of Jews and Muslims’ aversion to pork, they consume better food choices because pork is excluded from their diet. Due to safety issues concerning pork, such as contaminations with various bacteria (Bottemiller, 2012) as well as drugs and other substances that may harm human beings upon consumption (Consumer Reports, 2013), Jews and Muslims are saved from various hazards that may arise if they consumed pork (Kliebenstein, n..d). Aside from Jews and Muslims or other groups that set restrictions about their diet, other people that choose to live a healthy lifestyle are those that are also at lesser risk of being affected by food safety issues. Often, these people learn about food production so they would be aware about the origin, production, and handling of their food. People living a healthy lifestyle prefer less processed organic food handled delicately to preserve the freshness and the nutritional content of these food items. Furthermore, they learn how to prepare food so they would obtain nutritional benefits of organic food. Overall, people that follow rigid cultural or lifestyle practices when it comes to food consumption consume healthier and therefore, safer food products.

Food Security and Food Safety

Kent (2012) also raised another issue concerning food safety and quality. One of the main problems regarding food is security. Various factors threaten food security especially during the next decades. The increasing population threatens food supply since it would be inadequate in meeting the needs of billions of people around the world. Another factor affecting food security is climate change. Global warming, the continued warming of the earth, contributes to climate change. Climate change consequently affects agriculture. Unpredictable rain patterns bring drought in farm lands particularly in Africa because unlike before, long gaps between downpours dry the land damaging plants in the process. It is for this reason that starvation and malnutrition persist in various African countries as well as other regions experiencing climate change. To offset the outcomes of overpopulation and climate change on food supply, as well as issues concerning food security, scientists introduced the genetic medication of plants and animals as one of the solutions to produce more food and meet consumption demand and ease food security around the world (Schmidhuber & Tubiello, 2007).

Genetic Modification of Food

Genetically modified organisms (GMOs) were injected with specific substances that would allow them to produce food even under difficult conditions or in bigger and greater amounts than organic food sources. Through genetic modifications, for instance, poultry are able to produce more eggs. Moreover, poultry mature faster than free range chickens. In this way, poultry producers would be able to meet the demand for this product. Some animals such as salmon are genetically modified to grow to bigger sizes than the average size of this species. Genetically modified plant sources, on the other hand, also mature faster than organic plants and yield bigger produce. Although the genetic modification of plants and animals is well-intentioned, the outcomes of which challenge food safety because of the possible impact of GMOs on people’s health. While some people embrace genetic modification as one of the viable solutions to food supply and security issues, others question it because of health implications. People who protest against companies or organizations that produce GMOs not only argue against the ethical implications of genetic modification but also raise the issue of health. Although some studies prove that GMOs are healthy and safety for consumption, hence their widespread distribution and production, some research studies link consumption of GMOs to diseases including cancer. For this reason, genetic modification is a food safety issue because it could possible affect people’s health in the long run. In one study, researchers fed laboratory rats with GMOs for a long period of time. After doing so, the researchers then studies the subjects’ anatomy and discovered that the rats’ continuous consumption of GMOs damaged their major organs – the kidney and liver (Walia, 2014). Moreover, the content of GMOs greatly disrupted the subjects’ hormonal levels. Although supporting research studies are scarce as of the moment, the study was published in a reputable journal publication. If we are to base our conclusions about GMOs on the research study, we may then surmise that people’s continuous consumption of genetically modified food could also eventually lead to human kidney and liver damage, as well as hormonal imbalance.

The Use of Drugs in Food Production

In relation to food security, many farmers rely on different substances or drugs to increase their yield. Illness is one of the reasons, for instance, that lower the number of poultry and livestock production. To solve the problem, farmers administer drugs to animals in order to increase their immunity to diseases (Consumer Reports, 2013). Although this practice is not questionable per se because using antibiotics helps increase the life span of animals and ascertain their maturity prior to production and distribution, antibiotic use is a food safety issue because of its implications on food consumption. Prior to distribution, some farmers feed livestock and poultry with substances to flush out antibiotics from their system. Nonetheless, this is not always the case as this process is not full proof. Scientists studied cooked meat to determine if they contain drugs or substances. Research outcomes show that traces of drugs were found in meat even if it was cooked (Consumer Reports, 2013). Furthermore, scientists found antibiotic-resistant bacteria on the same product. The implications of which are far-reaching and alarming because if drugs and antibiotic-resistant bacteria remain and survive in cooked food, human beings would consume it. People would be affected by veterinary drugs injected to livestock and poultry and worse, they would ingest bacteria and get sick but will not be able to treat their illness with antibiotics. If the bacteria ingested by people is deadly, then they would pass on because medicine would not work against antibiotic-resistant organisms.

Solutions to Food Safety Issues

As formerly noted, food safety relates to culture and sociological practices including lifestyle. Jews and Muslims who avoid consuming pork are less at risk for contracting diseases brought about by consumption of meat. Individual preferences also affect food consumption and therefore, safety. Hence, one of the solutions in maintaining food safety is people’s adoption of positive habits or activities, even if borrowed from other cultures or religions, towards the goal of consuming healthy and safe food. Awareness plays an important role in accomplishing this objective. People must be aware of food safety issues so that they would be more welcoming of various options that would help them prepare and consume healthier and safer food options. One of the more relevant outcomes of the research is the urgency of solving food safety issues. In the foregoing discussion, we pointed out the increasing need to resolve food safety issues because of mounting evidence about risks involving food. Figure 1 shows the significant rise of cases and articles about food safety issues, thus, highlighting this as a pressing global issue. People can become more aware about issues, and therefore, adopt better strategies to safeguard their health and wellbeing by reading these cases and articles. Online and physical news and sources carry different stories and information about food safety. Some articles show proper food handling, preparation and storage while research studies illustrate the impact of certain food items on the health and wellbeing of people. By reading articles related to the issue, people would know how to prepare and handle food properly, and what to do to ensure that they consume healthy and safe food products. Awareness in people could also enable them to come up with solutions themselves and contribute to the body of literature and solutions to address food safety. Scientific and technological developments may also be introduced to address the foregoing problems. Since scientists introduced genetic modification, they could also conduct research studies in order to determine solutions to the detrimental impact of GMOs on human beings’ health. Addressing food security through genetic modification is essential but the health and safety of consumers around the world is paramount. Scientists should therefore prioritize human health over the discovery and development of processes and strategies to increase the number or size of food produced over time. Recommendations, therefore, focus on continued research about food safety and the link between studies in this field to food security in order to prevent practices and strategies in food production that are detrimental to the health of human beings. Figure 1. Number of Articles in Google News Archive Related to ‘Food Safety’

Bottemiller, H. (2012). Consumer reports finds most pork contaminated with Yersinia. Retrieved from: http://www.foodsafetynews.com/2012/11/consumer-reports-finds-most-pork-positive-for-yersinia/#.VIScYTGUeSo Consumer Reports. (2013). What’s in that pork? Retrieved from: http://www.consumerreports.org/cro/magazine/2013/01/what-s-in-that-pork/index.htm Kent, G. (2012). Food quality: An issue as important as safety. Retrieved from: http://www.foodsafetynews.com/2012/07/food-safety-not-just-an-issue-of-immediate-threats/#.VIRvhDGUeSo Kliebenstein, J. B. (n.d.). Pork production contracts and food safety issues. Retrieved from: http://www.extension.iastate.edu/Pages/ansci/swinereports/asl-1516.pdf Schmidhuber, J. & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19703-19708. Walia, A. (2014). New study links GMOs to cancer, liver/kidney damage & severe hormonal disruption. Retrieved from: http://www.collective-evolution.com/2014/07/15/new-study-links-gmos-to-cancer-liverkidney-damage-severe-hormonal-disruption/

double-banner

Cite this page

Share with friends using:

Removal Request

Removal Request

Finished papers: 851

This paper is created by writer with

ID 257446638

If you want your paper to be:

Well-researched, fact-checked, and accurate

Original, fresh, based on current data

Eloquently written and immaculately formatted

275 words = 1 page double-spaced

submit your paper

Get your papers done by pros!

Other Pages

Free essay on sampling, characters literature review, transcription landscape essay, free essay on americas industrial revolution, example of health fitness critical thinking, good research paper on brief background, example of research paper on praxis paper, following reasons were there which caused the failure of establishment of any joint essay samples, example of understanding becker using four part framework essay, nonverbal functions essay examples, good example of civil war essay, free self evaluation course work example, example of essay on scientific communication paper, free research paper on project and portfolio management historical current and future practices, example of sungmin cho research paper, example of an analysis of the three characters in poe 039 s stories including an analysis research paper, good world religion essay example, dear sir or madam essay example, violence essay sample, good research paper on united farm workers of america, free political violence essay example, environmental and urban economics research paper example, exubera essays, fern essays, ezrin essays, diclofenac essays, biliary essays, alkaline essays, chromatograph essays, biopsychology essays, consumer behavior argumentative essays, the chosen argumentative essays, the canterbury tales argumentative essays, elephant argumentative essays, search engine argumentative essays, common law argumentative essays, pearl harbor argumentative essays, balance sheet argumentative essays, george washington argumentative essays, precision argumentative essays, legend argumentative essays, regeneration argumentative essays.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

Open Access is an initiative that aims to make scientific research freely available to all. To date our community has made over 100 million downloads. It’s based on principles of collaboration, unobstructed discovery, and, most importantly, scientific progression. As PhD students, we found it difficult to access the research we needed, so we decided to create a new Open Access publisher that levels the playing field for scientists across the world. How? By making research easy to access, and puts the academic needs of the researchers before the business interests of publishers.

We are a community of more than 103,000 authors and editors from 3,291 institutions spanning 160 countries, including Nobel Prize winners and some of the world’s most-cited researchers. Publishing on IntechOpen allows authors to earn citations and find new collaborators, meaning more people see your work not only from your own field of study, but from other related fields too.

Brief introduction to this section that descibes Open Access especially from an IntechOpen perspective

Want to get in touch? Contact our London head office or media team here

Our team is growing all the time, so we’re always on the lookout for smart people who want to help us reshape the world of scientific publishing.

Home > Books > Significance, Prevention and Control of Food Related Diseases

Food Safety – Problems and Solutions

Submitted: 29 April 2015 Reviewed: 17 March 2016 Published: 13 April 2016

DOI: 10.5772/63176

Cite this chapter

There are two ways to cite this chapter:

From the Edited Volume

Significance, Prevention and Control of Food Related Diseases

Edited by Hussaini Anthony Makun

To purchase hard copies of this book, please contact the representative in India: CBS Publishers & Distributors Pvt. Ltd. www.cbspd.com | [email protected]

Chapter metrics overview

9,374 Chapter Downloads

Impact of this chapter

Total Chapter Downloads on intechopen.com

IntechOpen

Total Chapter Views on intechopen.com

Overall attention for this chapters

When certain disease-causing bacteria, viruses or parasite contaminate food, they can cause food-related diseases. Another word for such a bacterium, virus, or parasite is “pathogen”. Since food-related diseases can be serious, or even fatal, it is important to know and practice safe food-handling behaviors to help reduce the risk of getting sick from contaminated food. According to the Codex Alimentarius Commission (CAC), “food safety is the assurance that food will not cause harm to the consumer when it is prepared and/or eaten according to its intended use”. Foodborne diseases are widespread throughout the world. The process by which a foodborne disease spreads begins with the features of the disease, contaminating the food, which in turn threatens both individual and public health by means of the foods. Healthy, or what can be termed as safe food, is food that has not lost its nutritional value, that is clean, in physical, chemical and microbiological terms and that is not stale. The factors causing the contamination of the food may threaten the safe consumption of it and thereby make the foods harmful to human health. For this reason, it is necessary to utilize various resources to prevent the food from being contaminated in all stages of the food chain, from harvest to consumption. The aim of this chapter is to determine the factors affecting food safety and proffer effective intervention strategies against food-related diseases.

  • Food safety
  • food hygiene
  • food handlers hygiene
  • kitchen and equipment hygiene

Author Information

Aslı uçar *.

  • Ankara University Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey

Mustafa Volkan Yilmaz

Funda pınar çakıroğlu.

*Address all correspondence to: [email protected]

1. Introduction

The diseases caused by food, or the foodborne diseases, are described as the illnesses with which people are infected by the foods they eat [ 1 ]. These diseases are a widespread public health issue and are expensive to treat [ 2 ]. Foodborne diseases result from the consumption of contaminated foods and products. Contamination of the food at any stage, from production to consumption, produces bacteria, viruses, parasites, chemical agents and toxins, which eventually cause the foodborne diseases [ 1 ].

These diseases are seen as a pervasive, permanent problem that can lead to morbidity and, occasionally, to mortality. Foodborne diseases are increasing worldwide, particularly in the developing countries, due to neglect of personal hygiene and food hygiene [ 3 ].

Foodborne illnesses pose a threat to international public health safety and economic development. With the increasing amount of trade, travel and immigration, the rate at which dangerous contaminants and pathogens pass through the borders has also risen. Every year, approximately 2.2 million people, a majority of whom are children living in developing countries, die as a result of food and water contamination [ 1 ]. Typhoid fever occurs in 16.6 million people and causes 600,000 deaths every year around the world. In the United States, contaminated foods are seen as being responsible for nearly 76 million infections, 325,000 hospital cases and 5000 deaths every year [ 4 ]. According to 2011 data from the Centers for Disease Control and Prevention (CDC), it was estimated that in the United States, one out of every six persons was infected with foodborne illness (48 million people) and that foodborne illnesses resulted in 128,000 hospital cases and 3000 deaths [ 5 ].

In 2013, FoodNet, a CDC-established program that tracks foodborne illnesses in the United States, found that foodborne illnesses were responsible for 19,056 infections, 4,200 hospital cases and 80 deaths. The incidence of bacteria responsible for causing diseases in every 100.000 people was determined to be 15.19 for Salmonella , 13.82 for Campylobacter , 4.82 for Shigella , 2.48 for Cryptosporidium, 1.15 for STEC non-O157 , 0.51 for Vibrio , 0.36 for Yersinia , 0.26 for Listeria and 0.03 for Cyclospora . Incidences of Cyclospora , Listeria and Vibrio were found to be the highest among the elderly, aged 65 years and older, whereas for all of the other pathogens, the highest incident rates were found among children younger than 5 years of age [ 6 ].

The diseases caused by Salmonella and Campylobacter , the main agents responsible for foodborne infections, are dramatically increasing in some countries, including Denmark, Finland, Iceland, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. In 1999 and 2000, the number of reported foodborne disease cases was 84,340 and 77,515, respectively in Turkey. While Salmonella is the most frequently encountered disease agent, the actual figures on foodborne infections and toxins are not reflected, as it is not mandatory to report these diseases [ 7 ].

The world’s growing population and the consumers' desire to be provided with a wider range of foods have resulted in a longer and more complex food chain. Today, foods reach consumers after being collected from fields, farms and factories and then pass onto many countries, traveling distances of thousands of kilometers. With this global food distribution, an infection that occurs at any point within the food chain has the potential of affecting any given population in the world. It is therefore essential, given the number of interactions taking place between the actors involved in the food chain and the long distances between them, that multi-sectorial and international collaboration take place. As no country can provide food safety on its own, safety measures need to be enhanced in many countries [ 8 ].

While experts on food safety and health have determined that millions of foodborne disease cases are reported every year, the actual numbers are clouded by uncertainty, as most cases go unreported. Furthermore, foodborne diseases are difficult to diagnose, since they have various symptoms, including fatigue, chills, mild fever, vertigo, upset stomach, dehydration caused by diarrhea, severe cramps and, in some cases, even death. In many of the reported cases, foods prepared outside of the home are the primary cause of foodborne diseases, though it is not uncommon for home-made foods to also cause diseases [ 9 ]. Studies conducted on the distribution of foodborne diseases across the world have demonstrated that a majority of these diseases occur during the processing of the food in the preparation stage at home or at food production sites [ 10 ]. In fact, most foodborne diseases can be prevented if the regulations governing food safety were complied with, from production stages to consumption [ 11 ].

Improper heating of the food, such as undercooking, re-heating and waiting in the heat, or improper cooling of the food account for 44% of the foodborne illnesses. Inadequate preparation and improper cooking practices, such as those involving cross-contamination, insufficient processing, poor hygiene and the re-use of leftovers, are responsible for causing 14% of these diseases [ 7 ].

As indicated by these figures, foodborne diseases are widespread throughout the world. The process by which a foodborne disease spreads begins with the features of the disease contaminating the food, which in turn threaten both individual and public health by means of the foods. Healthy, or what can be termed as safe, food is food that has not lost its nutritional value, that is clean, in physical, chemical and microbiological terms and that is not stale. The factors causing the contamination of the food may threaten the safe consumption of it and thereby make the foods harmful to human health. For this reason, it is necessary to utilize various resources to prevent the food from being contaminated at all stages of the food chain, from harvest to consumption [ 12 ].

This study conducts an analysis of the factors responsible for jeopardizing food safety and food safety policies throughout the world.

2. The factors that affect food safety

Foods are the basic building blocks of living things, yet they may pose a threat and become harmful to human health in some situations [ 13 ]. Many people throughout the world become ill because of the food they eat. These diseases associated with food consumption are referred to as foodborne diseases, and they may result from dangerous microorganisms [ 14 ]. Foods can become harmful to human health or even fatal when combined with bacteria, mold, viruses, parasites and chemical toxins [ 13 ]. Therefore, it is absolutely necessary that consumers be provided with a safe food supply. The factors involved in the potential threat caused by foods are inappropriate agricultural practices, poor hygiene at any stage of the food chain, lack of preventive controls during processing and preparation of the food, incorrect use of the chemical materials, contaminated raw materials, food and water and inappropriate storage [ 15 ].

These issues were classified into three categories: food hygiene , personal hygiene of food handlers and kitchen sanita tion.

2.1. Food hygiene

Many factors serve to undermine food hygiene. The hygienic quality of the foods is negatively influenced by purchasing low-quality or stale foods, storing food in inappropriate conditions, cooking large amounts of food, more than is necessary, and letting it sit in inappropriate environments, storing raw and cooked foods together and preparing, cooking and storing food using incorrect methods [ 13 ]. If foods are contaminated at any stage, from production to consumption, the hygiene of the food is compromised, depending on the temperature, humidity and pH values of the environment it is stored in, and the food then becomes potentially harmful to human health. An infection or intoxication caused by the consumption of a contaminated food or drink is called food poisoning [ 16 ]. The causes of food poisoning are classified as microorganisms, parasites, chemicals, naturally created food toxins, naturally created fish toxins, metabolic disorders, allergic reactions and radioactive substances [ 17 ].

Salmonella, Campylobacter and Enterohemorrhagic Escherichia coli (EHEC) are foodborne pathogens that affect millions of people every year. Symptoms of food poisoning caused by these pathogens include fever, headache, upset stomach, vomiting, abdominal pain and diarrhea. Although food poisoning is mostly caused by bacteria, some parasites and viruses can also be factors. Parasites such as Trichinella spiralis and Toxoplasma gondii can remain alive by using the nutritional elements in the carrier. Viruses such as Hepatitis A can behave like parasites and infect people as well as the entire food chain [ 9 , 18 ].

Staphylococcus aureus, Clostridium perfringens, Salmonella, Streptococcus, Shigella, Clostridium botulinum, E. coli 0157:H7, Campylobacter and Bacillus cereus are the microorganisms that most frequently cause food poisoning [ 9 , 13 , 18 , 19 ].

S. aureus is a gram-positive coccal bacterium about 0.5–1.0 μm in diameter. The optimum growth temperature is 37° C. The normal ecological habitat of S. aureus is human body [ 16 ]. S. aureus can be cultured from multiple sites of the skin and mucosal surfaces of carriers; the primary reservoir of staphylococci is thought to be the nostrils of the nose. Spread of S aureus generally is through human-to-human contact. Carriage of S. aureus in the nose appears to play a key role in the epidemiology and pathogenesis of infection. In the general population, a mean carriage rate of 37.2% was found [ 20 ]. S. aureus is conveyed to the food by the person handling it. Persons with skin, nose or throat infections or inflammatory wounds pass this microorganism onto the food. The foods posing a particular risk for containing Staphylococcus include cooked meat, potato salad, desserts with milk, such as custard, and chicken, fish and other meat salads [ 9 , 13 , 21 ]. It causes food poisoning by releasing enterotoxins into food. After 3–6 hours of consuming contaminated food, symptoms begin. The most marked and severe symptoms are nausea and vomiting. The others are stomachache and diarrhea [ 16 ]. This bacterium cannot be eliminated by cooking. Therefore, it is necessary to keep foods refrigerated; the use of aprons and gloves by staff reduces skin-to-skin contact and, therefore, the staff should further follow the rules of hygiene and minimize physical contact with food [ 9 , 13 , 21 ]. For staphylococcal food poisoning, phage typing can be performed to determine whether the staphylococci recovered from the food were the source of infection. Depending on the type of infection present an appropriate specimen is obtained accordingly and sent to the laboratory for definitive identification using biochemical or enzyme-based tests. Furthermore, for differentiation on the species level, catalase, coagulase, DNAse, lipase and phosphatase tests are all done [ 19 ].

C. perfringens is a gram-positive, rod-shaped anaerobic, spore-forming pathogenic bacterium [ 19 ]. C. perfringens is very common in nature. Especially, it is found in the digestive system of humans as well as of animals and in soil [ 13 ]. This bacterium is the third most common cause of foodborne illnesses in the United Kingdom and United States. According to some estimates, this type of bacteria causes nearly a million illnesses each year. Poisoning occurs after contamination of foods. Cooking kills the growing C. perfringens cells that cause food poisoning, but not necessarily the spores that can grow into new cells. If cooked food is not promptly served or refrigerated, the spores can grow and produce new cells [ 22 ]. Because the spores of some strains are resistant to temperatures as high as 100°C for more than l h, their presence in foods may be unavoidable. Furthermore, the oxygen level may be sufficiently reduced during cooking to permit growth of the clostridia. Spores that survive cooking may germinate and grow rapidly in foods that are inadequately refrigerated after cooking [ 23 ]. It easily reproduces in meat that has been sitting at room temperature for a long time after being cooked, in undercooked and repeatedly re-heated meat and in meat served cold [ 13 , 19 ]. C . perfringens cells lose their viability when foods are frozen or held under prolonged refrigeration unless special precautions are taken. Such losses may make it difficult to establish C . perfringens as the specific cause of a food poisoning outbreak. It is recommended that samples that cannot be examined immediately be treated with buffered glycerin salt solution and stored or shipped frozen to the laboratory [ 23 ]. It can be detected in contaminated food [if not heated properly) and feces. Incubation time is between 6 and 24 hours after consuming of contaminated food [ 24 ]. Usual symptoms typically include abdominal cramping, diarrhea; vomiting and fever. Very rare, fatal cases of clostridial necrotizing enteritis (also known as pigbel) have been known to involve "Type C" strains of the organism, which produce a potently ulcerative β-toxin. Many cases of C. perfringens food poisoning likely remain subclinical, as antibodies to the toxin are common among the population. This has led to the conclusion that most of the population has experienced food poisoning due to C. perfringens . Despite its potential dangers, C. perfringens is used as the leavening agent in salt rising bread. The baking process is thought to reduce the bacterial contamination, precluding negative effects [ 25 ]. This microorganism can be prevented from harming the food by cooling the cooked food rapidly, saving leftover food in shallow containers and storing food in appropriate conditions [ 13 , 19 ].

Salmonella is a rod shaped bacteria and can live in a variety of habitats. Some strains of Salmonella live in water, soil, food plants and feces of contaminated humans. Generally the bacterium is able to access those places through cross-contamination of already-infected organisms or feces. When present in water, Salmonella can live for several weeks; in soil the bacteria can live up to several years, while in feces the bacteria may only survive a few days. The bacteria can survive in salt water and cooler environments, but a too hot of an environment may kill the bacteria [ 19 , 26 ]. Salmonellosis in humans is generally contracted through the consumption of contaminated food of animal origin (mainly eggs, meat, poultry and milk), although other foods, including green vegetables contaminated by manure, have been implicated in its transmission. Person-to-person transmission through the fecal–oral route can also occur. Human cases also occur where individuals have contact with infected animals, including pets [ 27 ]. Usually, symptoms start 12–72 hours after ingestion of bacteria. It is usually characterized by acute onset of diarrhea, fever, abdominal cramps, nausea and vomiting. In most cases, the illness lasts for 4–7 days, and most people recover without treatment. But, Salmonella can cause more serious illness in older adults, infants and persons with chronic diseases [ 26 ]. Salmonella food poisoning has long been, and continues to be, an important global public health problem. In much of Europe and North America, Salmonella is mostly found in raw or undercooked chicken, meat, eggs and fish and in unpasteurized milk. It is very easy to control and can be killed by cooking foods at sufficiently high temperatures. To prevent Salmonella contamination, the food should be stored at appropriate temperatures, sanitation and hygiene rules should be followed and rodents and flies should be removed from the work environment [ 9 , 13 , 27 ].

Streptococcus is a gram-positive and nonmotile bacterium and the name refers to the bacterium’s characteristics of grouping in chains that resemble a string of beads. The natural habitat of the bacteria are pharynx, rectum and skin [ 19 ]. Certain Streptococcus species are responsible for many cases of pink eye, meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis [ 18 ]. Streptococcus is found inside the human mouth, on hands and in nose secretions and can be conveyed to foods through contact with these secretions. For this reason, infected persons should not prepare food, and the food should be kept in appropriate conditions after being cooled rapidly [ 19 , 21 ].

Shigella is a nonmotile, gram-negative, facultative anaerobic, non–spore-forming, rod shaped bacterium. It is one of the leading bacterial causes of diarrhea worldwide [ 28 ]. The primary host and natural reservoir known at this point for Shigella is the human gastrointestinal tract. Shigella can survive in fecal-contaminated material but has a low survival rate without the optimal acidic environment in the intestinal tract [ 29 , 30 ]. They can easily multiply between 10 and 48 °C [ 16 ]. The optimum growth temperature for this bacterium is 37 °C [ 30 ]. There are two different mechanisms for pathogenicity. Firstly, bacterial number increases very fast in intestine and then settles into mucosal entry and colon. Because they may cause leakage of blood into the lumen, bloody diarrhea occurs. Secondly, the production of endogenous toxin, which is known as Shiga toxin , results in diarrhea [ 16 ]. Shigella infection typically occurs by ingestion (fecal–oral contamination); depending on age and condition of the host, fewer than 100 bacterial cells can be enough to cause an infection. Food prepared by the contaminated person may easily become contaminated with Shigella bacteria [ 30 ]. Symptoms of shigellosis include mild to severe diarrhea, bloody diarrhea, fever, dehydration, nausea, vomiting and stomach cramps. They usually appear between 1 and 7 days after contracting the bacteria [ 31 ]. The diagnosis of shigellosis is made by isolating the organism from diarrheal fecal sample cultures. It can infect the food in any environment where hygiene rules are not followed. The most important protective factor against Shigella is to follow proper personal hygiene rules [ 13 , 18 , 21 ]. Hand washing before handling food and thoroughly cooking all food before eating decrease the risk of getting shigellosis [ 32 ].

C botulinum is a gram-positive, rod-shaped, anaerobic, spore-forming, motile bacterium with the ability to produce the neurotoxin botulinum [ 33 , 34 ]. The natural habitats of the C. botulinum are soils and marine sediments throughout of the world. Since it is found in the soil, it may contaminate vegetables cultivated in or on the soil. It also colonizes the gastrointestinal tract of fishes, birds and mammals [ 35 ]. C. botulinum is not a very common bacterium, yet it is very dangerous when it does infect a person [ 9 , 18 ]. Foodborne botulism generally occurs 18 to 36 hours after exposure [range 6 hours to 8 days]. Initial symptoms can include nausea, vomiting, abdominal cramps or diarrhea. After the onset of neurological symptoms, constipation is typical. Dry mouth, blurred vision and diplopia are usually the earliest neurological symptoms. They are followed by dysphonia, dysarthria, dysphagia and peripheral muscle weakness. Symmetric descending paralysis is characteristic of botulism [ 35 ]. There are no fever and no loss of consciousness. The symptoms are not caused by the bacterium itself, but by the toxin produced by the bacterium. Incidence of botulism is low, but the mortality rate is high if prompt diagnosis and appropriate, immediate treatment (early administration of antitoxin and intensive respiratory care) are not given. The disease can be fatal in 5 to 10% of cases [ 36 ]. Because it is an anaerobic bacterium, it can only grow in the absence of oxygen. Foodborne botulism occurs when C. botulinum grows and produces toxins in food prior to consumption. The growth of the bacteria and the formation of toxin occur in products with low oxygen content and certain combinations of storage temperature and preservative parameters. Canned foods improperly prepared and heated and particularly low-acid foods, such as green beans, spinach, mushrooms, meat and vegetables, are very risky in regard to C. botulinum contamination [ 9 , 18 ]. Occasionally, commercially prepared foods are involved. Though spores of C. botulinum are heat resistant, the toxin produced by bacteria growing out of the spores under anaerobic conditions is destroyed by boiling (for example, at internal temperature >85°C for 5 minutes or longer). Therefore, ready-to-eat foods in low-oxygen packaging are more frequently involved in botulism [ 36 ]. Food inside cans that are deformed or warped should under no circumstances be consumed [ 9 , 18 ]. Prevention of foodborne botulism is based on good practice in food preparation, particularly preservation and hygiene. Botulism may be prevented by the inactivation of the bacterial spores in heat-sterilized or canned products or by inhibiting bacterial growth in other products. Commercial heat pasteurization may not be sufficient to kill all spores, and therefore the safety of these products must be based on preventing bacterial growth and toxin production. Refrigeration temperatures combined with salt content and/or acidic conditions will prevent the growth of the bacteria and formation of toxin [ 18 , 35 , 36 ].

E. coli is a gram-negative, facultative anaerobic, rod-shaped bacterium [ 18 ]. E. Coli 0157:H7 is a very common bacterium found in the human intestines [ 9 ]. Provided resource availability and key abiotic conditions (availability of energy and nutrient sources, pH, moisture and temperature) are propitious, E. coli populations can survive and even grow in open environments such as soil, manure and water. There are also possibilities for migration between these habitats [ 37 ]. Whether food is prepared at home, in a restaurant or in a grocery store, unsafe handling and preparation can cause contamination. Common causes of food poisoning include failing to wash hands completely before preparing or eating food, using utensils, cutting boards or serving dishes that are not clean, causing cross-contamination, consuming dairy products or food containing mayonnaise that have been left out too long, consuming foods that have not been stored/cooked at the right temperature, especially meats and poultry, consuming raw seafood products, drinking unpasteurized milk and consuming raw produce that has not been properly washed [ 38 ]. Fecal contamination of water or foods is responsible for causing the infection [ 39 ]. It can be conveyed through raw or undercooked minced meat or unpasteurized milk. Infection by this bacterium can cause hemolytic–uremic syndrome, which can cause bloody colitis with severe abdominal pain, bloody diarrhea, nausea and vomiting, and the syndrome can lead to renal failure, brain damage, heart attack, paralysis and even death [ 9 ]. People with weakened immune systems, pregnant women, young children, and older adults are at increased risk for developing these complications [ 38 ]. Person-to-person contact is an important mode of transmission through the oral-fecal route. The duration of excretion of EHEC is about 1 week or less in adults, but can be longer in children. Visiting farms and other venues where the general public might come into direct contact with farm animals has also been identified as an important risk factor for EHEC infection [ 39 ]. To protect against contamination, the meat should be cooked very well and foods that include meat should be prepared in perfectly hygienic conditions [ 9 ]. The prevention of infection requires control measures at all stages of the food chain, from agricultural production on the farm to processing, manufacturing and preparation of foods in both commercial establishments and household kitchens [ 39 ].

Campylobacter is a gram-negative, microaerophilic, non-fermentative bacterium. It grows best in habitats with an oxygen level lower than 5%, and it is typically found in the intestinal tract of animals. They are able to move via flagella. The optimum growth temperature is 42–45 °C and they cannot proliferate in room temperature [ 16 ]. Campylobacter is one of the bacteria most frequently responsible for causing gastroenteritis. While its actual incidence is not known exactly, in high-income countries, its incidence ranges between 4.4 and 9.3 in every 1000 people each year [ 27 ] . The infection can pass through animal-sourced food, particularly those of flying bird species, domestic animals, such as cats and dogs, contaminated surface streams, unpasteurized milk and direct physical contact with infected animals. Infection from this bacterium leads to foodborne diseases usually through uncooked meat and other products and raw or unpasteurized milk. Contaminated water and ice are also sources of infection [ 39 ]. Campylobacter jejuni can be found in both fresh water and sea water and can live for 5 weeks in this environment. Wild birds, farm animals, farm areas and surfaces of still waters create an ideal ecological system for different types of Campylobacter . The presence of this microorganism in nature indicates that fecal contamination has occurred in that area. These microorganisms are unable to survive and reproduce anywhere except for in their hosts, and they die in sunlight. Contamination occurs in the environment and on other animals particularly through the droppings of wild birds, such as ducks, geese and seagulls [ 21 ]. The most frequent symptoms associated with this infection are Guillain-Barre syndrome (GBS), reactive arthritis (ReA) and irritable bowel syndrome (IBS) [ 27 ]. To prevent its infection, it is necessary to take protective measures in all stages of the food chain, from production to consumption, and to apply these protective measures in both industrial and domestic environments [ 39 ].

B. cereus is a gram-positive, rod-shaped, soil-dwelling, facultative anaerobic bacterium. It can grow between 10 and50 °C, but the optimum growth temperature is 28–37 °C. It can be destroyed at the boiling temperature in 5–30 minutes [ 16 ]. B. cereus is present in dust and soil and can cause contamination in cereals, particularly those made of rice, in food that sits out for a long time and in meat products [ 19 , 21 ]. The microbe is able to grow either in the presence or in the absence of oxygen. Its spores are sufficiently heat resistant to survive pasteurization treatment of milk and standard cooking temperatures reached in domestic kitchens. It cannot survive the high-temperature treatment used to process canned foods. The symptoms start after 30 minutes of ingestion. Firstly, nausea and vomiting can be seen and then diarrhetic syndrome generally starts [ 40 ]. In case of foodborne illness, the diagnosis of B. cereus can be confirmed by the isolation of more than 105 B. cereus organisms per gram from epidemiologically implicated food, but such testing is often not done because the illness is relatively harmless and usually self-limiting [ 41 ]. To prevent infection, foods should be washed thoroughly, not left at room temperature for a long time after being cooked and not left in an open container on the kitchen floor [ 19 , 21 ].

Giardia duodenalis, Cryptosporidium parvum, Cyclospora cayetanensis and T. gondii are the parasites that pose the biggest threat to food safety. G. duodenalis , previously called Giardia lamblia , and now commonly known as "intestinalis", is a microscopic parasite, which lives in human and animal intestines. It usually infects people through contaminated water and uncooked meat. The parasite attaches to the epithelium by a ventral adhesive disc and reproduces via binary fission. The most frequent symptoms associated with this parasite are diarrhea, abdominal cramps, gas and nausea. Giardia lamblia is difficult to detect, which often leads to a delay in diagnosis or misdiagnosis; several tests should be conducted over a 1-week period. Giardiasis is a global disease that infects nearly 33% of people in developing countries and 2% of adults and 6–8% of children in developed countries worldwide. It is especially important that proper hand hygiene be practiced for protection against this parasite [ 42 ].

C. parvum is a unicellular microscopic parasite protected by a shell. It is responsible for causing the disease cryptosporidiosis, also known as "Crypto", and it is the main cause of worldwide diseases originating from water and food. Generally, it infects people through soil, foods, water and infected animal parts that had contact with feces. Its most widespread symptoms are diarrhea, abdominal cramps, upset stomach and mild fever. Some cases, however, may not cause any symptoms. In order to protect against this parasite, proper personal hygiene should be performed, only clean water should be used for drinking and vegetables or fruits that have been fertilized with unprocessed fertilizer should not be consumed [ 42 ]. This parasite is transmitted by infected food handlers or processors’ contact to the food or by foods produced with using animal feces as a fertilizer. When the parasite is involved, watery diarrhea is commonly seen as the main symptom. There is no known effective treatment method. [ 17 ].

C. cayetanensis is a unicellular microscopic parasite that causes cyclosporiasis. Although the incidence of cyclosporiasis is reported to be increasing in many countries, this organism is not very well known. In the incubation stage of the parasite, C. cayetanensis oocysts infect people through the consumption of water contaminated with this parasite or by eating anything that has come into contact with the feces of an animal with cyclosporiasis disease. The disease may cause symptoms such as diarrhea, loss of appetite, abdominal ventricosity, nausea and vomiting. To protect against infection from this parasite, it is necessary to perform proper personal hygiene and to wash or peel vegetables and fruits before eating them [ 43 ].

T. gondii is a unicellular microscopic parasite that causes toxoplasmosis disease, and it exists all over the world. It is among the top three causes of death from foodborne diseases worldwide. It can infect people through the consumption of uncooked meat or by drinking from fresh water sources, such as lakes or streams. This parasite can also infect the fetus through the mother. Moreover, as cats are major hosts for T. gondii , domestic cats should receive proper cleaning and hands must be washed after handling them. Symptoms associated with infection from this parasite include diarrhea, upset stomach, vomiting and abdominal pain [ 44 ]. In food-caused toxoplasmosis cases, T. gondii infects people through consumption of uncooked or undercooked meats. Especially, this parasite spreads faster by products that are contaminated with cat feces. With the higher consumption of raw meats, it shows increased prevalence in Europe and South Africa. Toxoplasma infections can be diagnosed by response of antibodies with serologic applications [ 17 ].

Infections caused by microorganisms are largely the result of the poor hygiene of the person responsible for preparing the food. These microorganisms can rapidly reproduce in temperatures outside the safe ranges specified by food safety regulations [ 1 ].

Cooked foods should not be left to sit in room temperature for longer than two hours. These foods should be cooled rapidly and kept refrigerated, preferably at a temperature under 5°C. Microorganisms can reproduce very rapidly at room temperature. Temperatures below 5°C and above 60°C cause the reproduction of microorganisms to slow down or stop. Table 1 presents the measures that should be followed to ensure food safety [ 1 ].

Measures to Be Followed to Ensure the Provision of Food Safety [ 45 ]

2.2. Personal Hygiene of Food Handlers

The food processing stage is one of the most important stages in the food chain, and those responsible for performing the duties involved in this stage assume major responsibilities in the prevention of food poisoning cases [ 46 , 47 ]. The food processing staff should include healthy individuals who do not have any diseases, and they should undergo regular medical check-ups. In addition to being healthy, it is also important that the workers take particular care for their personal hygiene and execute proper food handling behavior. This is especially important because food handlers can cause cross-contamination between raw and cooked foods, and they may jeopardize food hygiene by improper preparation, cooking and storage of foods [ 47 ]. A study confirmed by the Food and Drug Administration (FDA) determined that 81 foodborne diseases were caused by foods contaminated via food processing workers [ 48 ]. It should be noted that food workers have the power to make a remarkable impact on public health. In reducing the foodborne diseases or food poisoning, the personal hygiene practices of workers at food production sites are a key factor [ 49 ]. It is well known that proper personal hygiene is the best way to mitigate the risks associated with contamination by most of the bacteria generally seen as being responsible for foodborne diseases ( Table 2 ) [ 40 ].

Pathogens that threaten food hygiene, the foods they infect and preventive measures

In the Codex Alimentarius [ 50 ], the topics involving workers at food processing sites and food hygiene were classified under the following titles: Health status, Illness and injuries, Personal cleanliness and Personal behavior .

Persons who have any disease that may cause food infection or persons who are suspected to be hosts should not be allowed into the food processing site. Workers at food processing sites who have any symptoms associated with infections should be reported to the administration, and they must be examined by a physician [ 50 ]. Accordingly, the law that entered into force in Turkey in 1996 includes the provision: “The staff to be hired to work in the processing of foods and food additives cannot be employed without first providing a medical report. Those who are determined to be carriers should immediately be treated. Those who do not obtain a clean bill of health after completing their treatment should definitely not be employed. The owner or administrator of the workplace is responsible for ensuring that the workplace is in compliance with all of these practices” [ 51 ]. Similarly, it is reported that in certain regions in the United States, workers at food processing sites are required to show a health card to their employers [ 52 ]]. In the WHO consultation report, routine medical and microbiological examinations of food handlers are not generally recommended, but if food handlers are suffering from an illness that includes symptoms such as jaundice, diarrhea, vomiting, fever, sore throat, skin rash or skin lesions, like boils or cuts, they should report this to their supervisor before starting work [ 53 ]. If workers have a sore throat or fever, open cuts or infected wounds, Norovirus, diarrhea, vomiting or jaundice or if they have had contact with someone who has Salmonella typhi, E. coli 0157:H7, Hepatitis A or Shigella, they should immediately be removed from the food production sites. The employer must take the necessary precautions within 24 hours and report these workers to the relevant institutions. Many studies have recommended that food production sites include health service units and that it was important that workers report their diseases [ 54 – 57 ].

The hygiene practices that should be performed by food processing workers include precise adherence to personal hygiene regulations and the wearing of special, protective attire such as bonnets and gloves to help secure their hygiene. It is important that these clothes be regularly cleaned and cared for [ 50 ]. Reports have shown that the lack of personal hygiene among workers at food processing sites was among one of the practices that contributed to food borne diseases and that proper hand washing was the most commonly neglected practice. The practice of improper hand washing may be an important factor in the spreading of foodborne diseases by cross-contamination. It was reported that of the staff working in food production sites, 60% did not wash their hands correctly, and of the foodborne diseases, 25 to 40% were linked to staff working in food processing and food services industries [ 58 , 59 ]. It was also reported that food processing and food service workers were the asymptomatic carriers of the pathogens which caused food poisoning, due to their failure to wash their hands properly after using the restroom [ 60 ]. Another study determined that the foods became infected due to improper cleaning of contaminated hands after using the restroom [ 61 ]. Aycicek [ 62 ] took samples from bare hands and hands with gloves during the food preparation stage (180 in total) and found that the bacteria load on bare hands was significantly higher than that of the gloved hands (p < 0.05). The most common bacteria found were S. aureus (126/180), Bacillus spp. (19/180) and E. coli (14/180).

In addition, many studies have reported that workers in the food processing industry did not show enough care in washing their hands properly when necessary and in using protective attire (e.g., gloves, bonnet) [ 63 – 66 ].

The situations when workers should wash their hands are summarized below.

Before starting to prepare food

Before touching unpacked foods and clean equipment

Before serving the foods and touching the clean utensils and equipment

Before changing tasks from raw meat to ready-to-consume foods in order to prevent cross-contamination during food preparation practices

After touching any part of the body

After using the restroom

After coughing, sneezing or using a handkerchief

After smoking

After eating or drinking something

After touching unclean equipment and tools

After leaving the kitchen and before entering again

After washing the dishes

After touching the handle of the refrigerator, door or any other place commonly used by people during food preparation practices

After touching working clothes

Before and after entering areas where foods are kept and stored

After handling cash

Before wearing gloves and after taking them off, hands should be properly washed according to hygiene rules [ 67 ]

The steps for proper hygienic hand washing are: wash hands and wrists with soap under clean running water, being sure to rub between the fingers; use a nail brush to clean nails; rub arms and wrists with soap and water; soap and rub hands together for 10 to 15 seconds; dry hands with hot air or paper towel and use a paper towel to turn off the tap [ 63 , 68 ]. It is now known that hand-drying methods are as important as hand-washing methods in the prevention of contamination by microorganisms [ 69 ]. Studies have demonstrated that among all forms of drying methods, hand dryers posed the greatest threat of contamination. It was found that hand drying machines are less than an ideal alternative for drying hands after they have been washed, as these machines allow the bacteria to be able to spread as far as one meter away; therefore, the use of paper towels should be encouraged [ 70 , 71 ].

In general, humans are the primary source of food contamination, posing a risk to food safety as carriers. Along with the many extraneous factors, such as hands, clothes, accessories, hair and mustache, internally derived factors, such as the breath, spit and wounds, can be sources of contamination. It was reported that food processing workers were capable of spreading 10,000 to 100,000 microorganisms every minute [ 72 , 73 ]. Thus, workers should avoid certain behaviors at the production site, such as smoking, coughing, sneezing, chewing and eating. They also should not wear accessories, watches or hairpins [ 50 ].

2.3. Kitchen sanitation

Another important issue in the provision of food safety is kitchen sanitation. A study conducted in child care centers in the states of North Carolina and South Carolina in the United States found that most kitchens were not in compliance with the FDA’s 2009 Food Code [ 74 ]. In order to minimize the risk of foodborne illnesses in the production and processing of foods, it is necessary to minimize the risk of contamination in the placement, arrangement and decking of kitchen utensils, to set up the area so that it is equipped to perform maintenance, repair, cleaning and disinfection and to ensure that surfaces and materials in the kitchen are anti-toxic, that the kitchen has control mechanisms for temperature and humidity, if possible, and that effective measures are taken against pests [ 50 ].

2.3.1. Kitchen hygiene

Issues related to kitchen hygiene should be addressed prior to even completing the construction of the kitchen. The plan and interior design of the kitchen should be arranged in such a way as to facilitate proper hygiene practices (e.g., protection against cross-contamination) [ 50 ].

The kitchen should be constructed with durable materials that are easy to care for and clean. These materials should be free of any substances that can potentially render the food unsuitable for consumption, such as parasites, pathogenic microorganisms and toxins, or raw materials, food components and others substances used in the production of processed products that have been infected by foreign substances [ 75 ].

The surfaces should be designed in such a way as to not accumulate dirt, to prevent foreign substances from infecting foods and to not allow the creation of dense liquids or mold. Pests should also be prevented from entering the workplace. Drainages should be easy to clean and prevent pests such as rodents from entering and waste liquids from re-entering back into the kitchen environment [ 76 ].

There should be warnings written and hung on the walls of the workplace about the rules the staff should obey and the best hygiene practices to be performed. The staff should be provided with changing rooms that include a sufficient number of lockers to hold both work and civilian clothes. The staff should not keep any food in these lockers [ 75 ].

Ventilation systems should be capable of eliminating smoke, odors, soot and evaporation, keeping heat inside and preventing dust, dirt and pests from entering. Filters and other parts of the systems should be easily accessible for cleaning or changing. The kitchen should have natural or artificial lights that are equal to the natural light of the day, and the intensity and color of the lights should not impact the production or the quality of the foods in a negative way. There should be continuous control on humidity and temperature in the food storage sites [ 76 ].

To maintain a hygienic kitchen, the continuity of cleaning and disinfection procedures is as important as the layout plan of the kitchen. Therefore, a cleaning and disinfection plan should be developed for the kitchen, and all cleaning and disinfection practices should be done according to this plan and recorded. The staff should be trained on the sanitation and disinfection of the kitchen [ 75 ].

2.4. Equipment hygiene

Equipment that comes into regular contact with foods should be made of material able to be cleaned and disinfected, resistant to corrosion and non-toxic. The equipment should be arranged in a way as to enable it and the area around it to be cleaned sufficiently. When it is necessary that chemicals be used to clean the equipment, the instructions governing the use of those chemicals should be followed. Calibration checks of the equipment and tools should be made regularly, and these checks should be recorded [ 76 ].

3. Food safety systems

Effective food control systems are needed to improve the applicability and control of food safety [ 77 ]. Currently, the HACCP, ISO 22000 and PAS 220 are the most commonly used internationally approved food safety systems.

3.1. Hazard analysis and critical control points (HACCP)

HACCP was first used in the 1960s by the American Pillsbury company for the purpose of producing "zero defect" products for the US Army and NASA. Later, starting in the 1970s, it began to be used as a reference by the Food and Drug Administration (FDA) in official supervisions. It was adopted by the Codex Alimentarius Commission in 1992 and published as the HACCP international standard for the first time. Since then, the food industry and official authorities have been using it to protect against and control the risks of potential dangers that could threaten food safety [ 78 ].

Initially, HAACCP had three principles:

Identification and assessment of hazards associated with food products

Determination of critical control points to control identified hazards

Establishment of a system to monitor the critical control points

The HACCP, as it is applied today, has five starting steps and is governed by seven principles. The starting steps were created by Codex, and they should be completed prior to implementing the seven HACCP principles. The starting steps help to ensure that the HACCP system is implemented and managed in the most effective way possible [ 79 ].

The HAACP system is applicable for any company operating within the food chain, regardless of their size. In the implementation stage, the HACCP system should be supported by certain preliminary condition programs. A company interested in implementing this system should already be following the requirements of this preliminary condition program. Preliminary condition programs include national regulations, codes of practice or other food safety prerequisites. In general, preliminary condition programs involve factories and equipment, staff training, cleaning and sanitation, maintenance chemical control, waste management, storage and transportation [ 78 ].

HACCP Implementation in 12 Steps

HACCP is an internationally accepted system and in most countries, it is required that companies within the food industry implement this system.

3.2. ISO 22000

In 2005, The International Organization for Standardization (ISO) published a standard for the Food Safety Management System known as ISO 22000. The ISO 22000 system is a combination of preliminary condition programs, HACCP principles and implementation steps defined by the Codex Alimentarius Commission and ISO 9001:2000 standard components. After it was defined, it began to be used in more than 50 countries within 2 years [ 80 ].

The basic approach of the ISO 22000 standard is to implement a preventive system that serves to protect consumers from foodborne diseases. This standard controls all the processes in the food chain, including infrastructure, staff and equipment. In business establishments, the Food Safety Management System implementations include production control, product control, equipment control, maintenance, general hygiene practices, staff and visitor hygiene, transportation, storage, product information, training, the selection and evaluation of suppliers, communication and other similar issues [ 81 ].

The main goal of this standard is to have a system in place that determines the unacceptable risks that may result from process errors and to secure product safety and consumer health. Food safety supervision over product, design, production and quality control determines and eliminates the potential dangers. The fundamental role of ISO 22000 is not only to provide food safety but also to improve the sensory and nutritional quality of food, and it also plays a primary role in the quality assurance of service practices in industrial production. Lastly, this standard helps to reduce operational losses by instituting a more effective use of resources to increase productivity, and thereby, directs the establishment to a system of total quality [ 80 ].

3.3. PAS 220 (publicly available specification)

This standard was created by the major global food producers in cooperation with the Confederation of Food and Drink Industries (CIAA) with the purpose of eliminating the weaknesses of the ISO 22000 food safety system standard. Nestle, Unilever, Danone and Kraft, the sector leaders generally known as "G4", collectively published the PAS 220 standard, which refines the preliminary conditions programs. The PAS 220 standard is applicable for all types of companies and was made available in 2008. It was intended that the PAS 220 standard be used together with the internationally accepted ISO 22000 standard [ 82 ].

The content and topics of PAS 220 elaborate on the 10 sub-titles in the ISO 22000 standard and adds 5 of its own, resulting in the following 15 items [ 82 ]:

Structure and placement of buildings

Placement of work site, buildings and their wings

Supporting plants (air, water, energy)

Supporting services, including wastes and sewage

Adequacy of the equipment, cleaning and preventive care

Management of purchased materials

Measures against cross-contamination

Cleaning and sanitation

Pest control

Staff hygiene and workers' lodgings

Re-processing

Product recall procedures

Informing consumers about products

Food defense, biodefense and bioterrorism

4. Good agricultural practices

Today, increasing attention is focused upon the impact farming practices are having on the environment, and there is an increasing emphasis on more sustainable methods of crop production. Systems need to be adopted that are more sensitive to environmental issues, genetic diversity, wildlife and their habitats and in some cases the social structures of rural communities. Furthermore, consumers around the world are more sophisticated and critical than in the past, demanding to know how and what has been used to produce their agriculturally derived products.

Good Agricultural Practices (GAP) are defined "practices that address environmental, economic and social sustainability for on-farm processes, and result in safe and quality food and non-food agricultural products'' by the FAO. The aims of the GAP are as follows:

Ensuring agricultural production harmless to environment, human and animal health

Safety of natural resources,

Ensuring traceability and sustainability in agriculture,

Improving workers health and working conditions,

Ensuring safety and quality of produce in the food chain.

General principles for GAP were first presented to the FAO Committee on Agriculture (COAG) in 2003 in the paper “Development of a Framework for Good Agricultural Practices” the annex of which broadly outlined farm-level GAP recommendations in 10 fields; which are “soil”, “water”, “crop and fodder production”, “crop protection”, “animal protection”, “animal health and welfare”, “harvest and on-farm processing and storage”, “energy and waste management”, “human welfare, health, and safety” and “wildlife and landscape”.

Although there are some GAP used by different organizations to succeed different purposes and goals, GLOBALGAP (EUREPGAP) is the widespread certificate in agricultural produce worldwide. GLOBALGAP documents consists of; ISO 9001:2000 Quality Management System, ISO 14000 Environmental management system, OHSAS 18001 Work Health and Safety Management System and ISO 22000 Food Safety Management System principles [ 83 ].

5. Conclusion

Food safety ultimately deals with the consumption stage, where the existence and level of the dangers caused by foods are of chief concerns. The observance of rigorous control procedures throughout the course of the food chain is a fundamental necessity, given that risks to food safety can surface in any stage of the chain. Therefore, all parties involved in the food chain share the responsibility for ensuring food safety.

The design of a food safety system involves numerous factors. To begin with, minimum hygiene standards should be determined by laws and regulations, food producers must apply food safety measures and procedures and official bodies must supervise and inspect food industry companies to confirm that they are conducting their operations in a manner consistent with the regulations in force. Food poisoning cases that threaten public health globally occur as a result of the contamination of foods in any stage, from production to consumption. Although the factors jeopardizing food safety seem to be easy to control in theory, studies and current practices indicate that there is still a long way to go in practice.

  • 1. WHO, 2008. WHO initiative to estimate the global burden foodborne diseases. Geneva. Also Available at http://www.who.int/foodsafety/publications/foodborne_disease/burden_nov08/en Food safety fact sheet [Internet]. Geneva: World Health Organization; 2014.
  • 2. CDC, 2015. CDC and Food Safety. http://www.cdc.gov/foodsafety (accessed: 22.06.2015).
  • 3. SADAOC, 2002. Food Hygiene and the Problem of Street Food in West Africa. Six Monthly Bulletin on Food Security Policies and Strategies in West Africa. 6(1). Available at: http://www.sadaoc.bf/anglais/sadaocinfo6.htm.
  • 4. WHO, 2007. Food safety and food borne illness. Fact sheet No: 237, http://www.who.int/mediacentre/factsheets/fs237/en/index.html, Accessed: 10.07.2008.
  • 5. CDC, 2011. CDC Estimates of foodborne illness in the United States. http://www.cdc.gov/foodborneburden 01.07.2015.
  • 6. CDC, 2014. Incidence and Trends of Infection with Pathogens Transmitted Commonly Through Food – Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2006–2013. Morbidity and Mortality Weekly Report. 63(15): 328–332.
  • 7. WHO, 2004. Food and Health in Europe: a new basis for action. WHO regional publications European Series, No.96
  • 8. Fukuda, K. 2015. Food safety in a globalized world. Bulletin of the World Health Organization. 93: 212.
  • 9. Duyff, R.L. 2002. American Dietetic Association complete food and nutrition guide (2nd Edition). John Wiley and Sons Inc., New Jersey.
  • 10. WHO, 2000. Food borne disease: A focus for health education, Geneva.
  • 11. Medeiros, L., V. Hillers, P. Kendall, and A. Mason. 2001. Evaluation of food safety education for consumers. Journal of Nutrition Education and Behavior. 33(S1): S27–S34.
  • 12. Bilici, S., F. Uyar, et al. 2006. "Food Safety (in Turkish)" Republic of Turkey, Ministry of Health, Basic Health Services Head Office, Nutrition and Physical Activities Department, Nutrition Education Series, Ankara, Turkey.
  • 13. Yiğit, V. & Duran, T. 1997. Institutional Nutrition Technology I (in Turkish). Ekin Publishing, Istanbul, Turkey.
  • 14. WHO, 2012. Five keys to growing safer fruits and vegetables: promoting health by decreasing microbial contamination, Geneva.
  • 15. WHO, 2003. Assuring food safety and quality: guidelines for strengthening national food control systems. Food and Agriculture Organization of the United Nations.
  • 16. Bas, M. 2004.Food Hygiene Safety and HACCP (in Turkish). 502 p., Sim Publishing., Ankara, Turkey.
  • 17. Tayfur, M. 2009. Food Hygiene, food related infections and poisonings (in Turkish). 337 p. Kuban Publishing, Ankara, Turkey.
  • 18. Jay, J.M. 1998. Modern Food Microbiology. Fifth Edition, Aspen Publishers, Maryland.
  • 19. Adams, M.R., Moss, M.O. 2008. Food Microbiology. Third Edition, pp 463, Royal Society of Chemistry Publishing, UK.
  • 20. Kluytmans J, van Belkum A, Verbrugh H; Van Belkum; Verbrugh (1997). "Nasal carriage of Staphylococcusaureus: epidemiology, underlying mechanisms, and associated risks". Clinical Microbiology Review. 10(3): 505–20.
  • 21. Hayes, P.R. 1995. Food Microbiology and Hygiene. Second Edition, Springer-Science+Business Media, UK.
  • 22. Anon, 2015. Clostridium perfringens . http://www.foodsafety.gov/poisoning/causes/bacteriaviruses/cperfringens/ (accessed:04.11.2015).
  • 23. Rhodehamel, E.J. Harmon and S.M. 1998. Clostridium perfringens , Bacteriological Analytical Manual, 8th Edition, Revision A, Chapter 16. http://www.fda.gov/Fodd/FoddScienceResearch/LaboratoryMethods/ucm070878.htm Accessed: 04.11.2015.
  • 24. Murray; et al. 2009. Medical Microbiology (6th ed.). Mosby Elsevier. ISBN 978-0-323-05470-6.
  • 25. Juckett, Gregory; et al. November 2008. "The Microbiology of Salt Rising Bread" (PDF). West Virginia Medical Journal (22). Retrieved 22 July 2015.
  • 26. Anon, 2015b. Salmonella. http://www.foodsafety.gov/poisoning/causes/bacteriaviruses/cperfringens/ (accessed: 04.11.2015).
  • 27. WHO, 2013. Salmonella (non-typhoidal). Fact sheet No: 139. http://www.who.int/mediacentre/factsheets/fs139/en/ Accessed: 17.06.2015.
  • 28. Mims, Cedric; Dockrell, Hazel; Goering, Richard; Roitt, Ivan; Wakelin, Derek; Zuckerman, Mark, eds. (2004). Medical Microbiology (3rd ed.). Mosby. p. 287. ISBN 978-0-7234-3259-3.
  • 29. Niyogi, SK. 2005. Shigellosis. Journal of Microbiology. 43(2): 133–143.
  • 30. Warren, BR., H. G. Yuk, and K. R. Schneider. (2007) Survival of Shigella sonnei on smooth tomato surfaces, in potato salad and in raw ground beef. International Journal of Food Microbiology. 116, 400–404.
  • 31. Anon, 2011 “Shigellosis.” http://www.health.ny.gov/diseases/communicable/shigellosis/fact_sheet.htm accessed on 04/11/2015.
  • 32. Ram, P. K.; Crump, J. A.; Gupta, S. K.; Miller, M. A.; Mintz, E. D. (2008). "Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005". Epidemiology and Infection 136 (5): 577–603.doi:10.1017/S0950268807009351
  • 33. Lindström, M; Korkeala, H (Apr 2006). "Laboratory diagnostics of botulism.".Clinical Microbiology Reviews19 (2): 298–314.doi:10.1128/cmr.19.2.298-314.2006.
  • 34. Peck, MW. 2009. Biology and genomic analysis of Clostridium botulinum . Advances in microbial physiology. Advances in Microbial Physiology. 55: 183–265, 320. doi:10.1016/s0065-2911(09)05503-9.ISBN 9780123747907.PMID 19573697.
  • 35. Nantel, A.J. 1999. Clostridium botulinum. International Programme on Chemical Safety Poisons information monograph 858 bacteria, WHO, Geneva.
  • 36. Anon, 2013. Botulism. http://www.who.int/mediacentre/factsheets/fs270/en/ accessed: 17.06.2015.
  • 37. Elsas J.D. Semenov, A., R. Costa, J.T. Trevors. 2010. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME Journal, 2011 Feb. 5(2): 173–183.
  • 38. Pietrangelo, A. 2015. E. coli infection. http://www.healthline.com/health/e-coli-infection#Overview1 Accessed: 04.11.2015.
  • 39. WHO, 2011. Enterohaemorrhagic Escherichia coli (EHEC). Fact sheet No: 125. http://www.who.int/mediacentre/factsheets/fs125/en/ Accessed: 17.06.2015.
  • 40. Anon, 2015. Food Safety & Sanitation Program. http://dec.alaska.gov/eh/fss/ (accessed: 30.07.2015).
  • 41. Anon, 1994. Bacillus cereus Food Poisoning Associated with Fried Rice at Two Child Day Care Centersfrom Morbidity and Mortality Weekly Report from Centers for Disease Control and Prevention. 18 March 1994 / Vol. 43 / No. 10 U.S.
  • 42. Centers for Disease Control and Prevention, 2015. http://www.cdc.gov/parasites/crypto/ (accessed 10.06.2015).
  • 43. Strausbaugh, L. J. and B. L. Herwaldt. 2000. Cyclospora cayetanensis : a review, focusing on the outbreaks of cyclosporiasis in the 1990s. Clinical Infectious Diseases. 31(4): 1040–1057.
  • 44. Tenter, A. M., A. R. Heckeroth and L. M. Weiss. 2000. “ Toxoplasma gondii : from animals to humans.” International Journal for Parasitology. 30(12): 1217–1258.
  • 45. Wisner, B. and J. Adams. 2002. Environmental health in emergencies and disasters: a practical guide, World Health Organization.
  • 46. Cruickshank, J. G. 1990. Food handlers and food poisoning: training programmes are best. British Medical Journal. 300: 207–208.
  • 47. Walker E., C. Pritchard and S. Forsythe. 2003. Food handlers_ hygiene knowledge in small food businesses. Food Control. 14: 339–343.
  • 48. Guzewich, J. and M. Ross. 1999. Evaluation of risks related to microbiological contamination of ready-to-eat food by food preparation workers and the effectiveness of interventions to minimize those risks. www.cfsan.fda.gov (accessed 09.01.2008).
  • 49. Green, L., C. Selman, V. Radke, D. Ripley, J. Mack, D. Reimann, T. Stigger, M. Motsinger and L. Bushnell. 2006. Food Worker Hand Washing Practices: An Observation Study. Journal of Food Protection. 69(10): 2417–2423.
  • 50. Codex Alimentarius. 2009. Food Hygiene. Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Rome.
  • 51. Official Journal of the Republic of Turkey 1996. Legislations About Food Production and Marketing.
  • 52. Southern Nevada Health District. 2005. Health Cards, available at: www.cchd.org/health_cards/foodhandler_childcare_requirements.htm (accessed September 9, 2006).
  • 53. Adams M. and Y. Motarjemi 1999. Basic Food Safety for Health Workers WHO/SDE/PHE/FOS/99.1 Distr.: General Original: English World Health Organization Geneva.
  • 54. Hobbs, B. C. and D. Roberts. 1993. Food poisoning and food hygiene (6th ed.). Cornwall: Edward Arnold.58. Cogan, T. A., Slader, J., BloomWeld, S. F., & Humphrey, T. J. 2002. Achieving hygiene in the domestic kitchen: The effectiveness of commonly used cleaning procedures. Journal of Applied Microbiology. 92: 885–892.
  • 55. Trickett, J. 1997. Food hygiene for food handlers. London: Macmillan Press.
  • 56. Ziady, L. E., N. Small and A. M. J. Louis. 1997. Rapid reference: infection control. Pp:151. Pretoria: Kagiso Tertiary.
  • 57. Nel S., J.F.R. Lues, E.M. Buys, P. Venter. 2004. The personal and general hygiene practices in the deboning room of a high throughput red meat abattoir. Food Control. 15: 571–578.
  • 58. Cogan T. A., J. Slader, S.F. BloomWeld and T.J. Humphrey. 2002. Achieving hygiene in domestic kitchen: The effectiveness of commonly used cleaning procedures. Journal of Applied Microbiology. 92: 885–892.
  • 59. Collins, J. E. 2001. Impact of changing consumer lifestyles on the emergence/re-emergence of foodborne pathogens. Emerging Infectious Diseases. 3(4): 1–13.
  • 60. Temelli, S. and C.M.K. Şen. ve Anar, Ş. 2007. Determination of Hygiene Status of Meat Seperation and Cheese Production Workers’ Hands (in Turkish). The Journal of the Faculty of Veterinary Medicine, Kafkas University.24 (1-2-3-4): 75–80.
  • 61. Taylor, J. H., K.L. Brown, J. Toivenen and J.T. Holah. 2000. A microbiological evaluation of warm air hand driers with respect to hand hygiene and the washroom environment. Journal of Applied Microbiology. 89: 910–919.
  • 62. Ayçiçek, H. 2004. Determination of Correct Hand Cleaning and Glove Using Principles in Food Industry (in Turkish). Gülhane Medicine Journal. 44 (3): 344–350.
  • 63. Clayton, D. and C., Griffith. 2004. Observation of food safety practices in catering using notational analysis. British Food Journal. 106(3): 211–227.
  • 64. Green, L., V. Radke, R. Mason, L. Bushnell, D. Reimann, J. Mack, M. Motsinger, T. Stigger and C. Selman2007. Factors Related to Food Worker Hand Hygiene Practices. Journal of Food Protection. 70 (3): 661–666.
  • 65. Pragle, A., A. Harding. and C. Mack. 2007. Food workers perspectives on handwashing behaviors and barriers in the restaurant environment. Journal of Environmental Health. 69: 27–32.
  • 66. Ural, D. 2007. A Research On Knowledge And Applications Of Personnel Working In Accomodation Businesses Related To Personal Hygiene (in Turkish). Gazi University, MsC Thessis: p. 96, Ankara.
  • 67. Anonymous. 2005. The handwashing handbook, www.globalhandwashing.org. (accessed 19.01.2008).
  • 68. Strohbehn, C., S. Beattie, J. Sneed, J. Meyer and P. Paez. 2007. Impact of employee training on mitigating contamination in retail food service operations. www.extension.iastate.edu. (accessed 21.01.2008).
  • 69. Patrick, D.R., G. Findon and T.E. Miller. 1997. Residual moisture determines the level of touch-contact-associated bacterial transfer following hand washing. Epidemiology and Infection. 119(3): 319–325.
  • 70. Gustafson, D.I., M.J. Horak, C.B. Rempel, S.G. Metz, D.R. Gigax and P. Hucl.2005. An empirical model for pollen-mediated gene flow in wheat. Crop Science. 45: 1286–1294.
  • 71. Oğur, R., Ö. Tekbaş, O. Hancı and U. Özcan. 2005. Microbiological Properties of air flow from Hand Drying Machines (in Turkish). Turkish Armed Forces. Jorunal of Preventive Medicine. 4 (1); 1–7.
  • 72. Hansen, S. 2001. Personal hygiene and food safety. www.ianr.unl.edu. (accessed 10.02.2008).
  • 73. Tayar, M. 2004.Hygiene and Sanitation in Food Industry (in Turkish). www.uludag.edu.tr. (accessed 03.02.2008).
  • 74. Wohlgenent, K.C., C.S. Cates, A. Fraser, B. Chapman, L.A. Jaykus and X. Chen. 2014. Sanitation in classroom and food preparation areas in child-care facilities in North Carolina and South Carolina. Journal of Environmental Health. 77(4): 20–27.
  • 75. Kaferstein, F. and M. Abdussalam. 1999. Food Safety in the 21st Century. Bulletin of the World Health Organization. 77(4): 347.
  • 76. Anon, 2011. Food hygiene regulations. Official Journal of the Republic of Turkey http://www.resmigazete.gov.tr/eskiler/2011/12/20111217-5.htm (accessed 03.07.2015).
  • 77. McMeekin, T., J. Baranyi, J. Bowman, P. Dalgaard, M. Kirk, T. Ross, S. Schmid and M. Zwietering. 2006. Information systems in food safety management. International Journal of Food Microbiology. 112(3): 181–194.
  • 78. Pierson, M. D. 2012. HACCP: Principles and Applications, Springer Science & Business Media.
  • 79. Mortimore, S. and C. Wallace. 2013. HACCP: A Practical Approach, Springer Science & Business Media.
  • 80. Surak, J. G. 2007. A recipe for safe food: ISO 22000 and HACCP. Quality Progress. 40(10): 21.
  • 81. Arvanitoyannis, I. S. and T. H. Varzakas. 2009. HACCP and ISO 22000 – A Comparison of the Two Systems. HACCP and ISO 22000: Application to Foods of Animal Origin: 3–45.
  • 82. Boisrobert, C., A. Stjepanovic, S. Oh and H. Leliveld. 2009. Ensuring Global Food Safety: Exploring Global Harmonization, Academic Press.
  • 83. FAO, 2003. Development of a Framework for Good Agricultural Practices. Committee on Agriculture. Seventeenth Session. Rome, 31 March–4 April 2003.

© 2016 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Continue reading from the same book

Edited by Hussaini Makun

Published: 13 April 2016

By Antonio Valero, Magdevis-Yanet Rodríguez, Guiomar ...

4063 downloads

By Ntambwe Malangu

7791 downloads

By Luciana M. Coelho, Diego R. Pessoa, Kênia M. Olive...

2308 downloads

Home — Essay Samples — Science — Food Safety

one px

Essays on Food Safety

Food safety is a critical and expansive field that touches on every aspect of the food we consume, from production and processing to packaging, distribution, and consumption. Essays on food safety provide a platform to explore the various challenges, regulations, and innovations designed to ensure the safety and integrity of our food supply. We aim to guide students in crafting comprehensive essays on food safety, leveraging the rich collection of essay samples available on GradesFixer.

The Importance of Food Safety

Food safety is paramount for public health, economic stability, and consumer confidence. It encompasses a wide range of practices and regulations intended to prevent foodborne illnesses and contamination, ensuring that food is safe, nutritious, and wholesome from farm to fork. Essays on this topic might delve into:

  • Foodborne Illnesses: Discussing the causes, impacts, and prevention strategies for foodborne diseases.
  • Regulatory Frameworks: Analyzing the role of national and international agencies in setting food safety standards and ensuring compliance.
  • Innovations in Food Safety: Exploring technological advancements and methodologies for detecting contaminants, enhancing traceability, and improving food preservation.
  • Global Challenges and Solutions: Considering the implications of global trade on food safety and the collaborative efforts needed to address these challenges.

Leveraging Food Safety Essay Samples

Utilizing essay samples on food safety can offer students numerous benefits:

  • Guidance on Structure and Content: Samples provide a blueprint for organizing essays logically and coherently, with a clear introduction, body, and conclusion.
  • Diverse Perspectives: By reviewing different essays, students can encounter a range of viewpoints and research findings, enriching their own understanding and arguments.
  • Examples of Scholarly Research: Essay samples demonstrate how to effectively integrate academic research and evidence to support arguments, a key skill in essay writing.
  • Inspiration for Original Analysis: Engaging with a variety of topics within food safety can spark new ideas and encourage students to pursue unique angles in their essays.

Writing an Effective Food Safety Essay

Crafting a compelling essay on food safety involves several key strategies:

  • Focus on a Specific Issue: Given the broad scope of food safety, honing in on a particular problem or area of interest can provide depth to your analysis.
  • Use Current and Credible Sources: Incorporating up-to-date research and data from reputable sources strengthens your essay’s credibility and relevance.
  • Consider the Impact on Various Stakeholders: Reflect on how food safety issues affect consumers, businesses, and governments, offering a comprehensive view of the topic.
  • Propose Solutions and Future Directions: Beyond identifying problems, suggest practical solutions and future research directions to advance food safety.

Writing a food safety essay is an opportunity to contribute to a crucial dialogue on ensuring the health and well-being of populations worldwide. Through careful research, critical analysis, and thoughtful discussion, students can shed light on the complexities of food safety, advocate for effective policies and practices, and envision a future where foodborne risks are minimized.

Food safety is not just a regulatory concern but a shared responsibility that affects everyone. By exploring the challenges and innovations in food safety, students can play a part in promoting awareness, advancing knowledge, and supporting efforts to create a safer, more secure food system.

Food Inc: Summary of The Truth Behind The American Food Industry

Global food insecurity: causes and solutions, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

Food Safety Through Haccp

The importance and conduction of food safety training, frozen food science and its development, food security concerns for the future, let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Safety Risks Surrounding Convenience Food

The pros and cons of urbanization in relation to food security, overview of interventions to increase food security, the most common causes of obesity, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

Research of The Future of Food Security in South Africa

Non-destructive method of foreign object detection in food products, how lack of transport systems in south africa impacts food security, research whether genetically modified food is good or bad, proper food labeling should be implemented, learning to be a critical consumer of research, the situation of food security in pakistan, a study on the recommendations for mcdonald's to prevent food safety scandals in the future, features of russian food and culture, analysis of food security situation in ethiopia, differing views of center for food safety and fda on gmos in the u.s., the term of malnutrition & its types, analysis of food security in japan, food coloring: natural vs. synthetic, best milk frother for almond milk , food security should be a high priority in australia, several factors of food security, advantages & disadvantages of buying food locally, food security in peru: issues of chronic hunger and malnutrition, review and analysis of hunting for food significance in the hunting, climate change and the future of food, an article by nick romero, relevant topics.

  • Agriculture
  • Rational Choice Theory
  • Pseudoscience
  • Earth Science
  • Space Exploration

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Bibliography

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

food safety issues essay

University of Sourthern California

  • Academic Calendar
  • Student Experience
  • Meet Our Students
  • Biostatistics and Epidemiology
  • MPH in Community Health Promotion
  • Global Health
  • Master of Public Health in Health Policy and Services
  • Generalist Concentration
  • MPH Accelerated Fast-Track Program
  • Faculty-Led Trips
  • Admissions Overview
  • MPH Careers

MASTER OF PUBLIC HEALTH (MPH) ONLINE

The Importance of Food Safety: Top Food-Related Public Health Issues

November 8, 2023

View all blog posts under Articles

A lab technician tests produce for contaminants using a microscope.

Food is key to achieving and maintaining good health — and to promote healthy behaviors, food must be accessible and safe. Anything less can increase the challenges to communities and individuals who seek to be healthy and well-nourished.

Public health professionals play a vital role in maintaining a high level of food safety and security. It’s an important area of focus, as food safety impacts people of every age, race, gender and income level. There are several key elements of food safety for officials to consider, from rapidly advancing technology and growing worries over food security, to lingering post-pandemic impacts and persistent concerns over chemicals. Public health professionals with the right education should fully understand the importance of food safety and its impacts on society.

Why Is Food Safety Important?

Maintaining a consistent level of food safety is critical to a fully functioning society. Consuming unsafe foods or not having access to food can have profound negative ramifications and cause a plethora of public health issues. As of 2022, the Centers for Disease Control and Prevention (CDC) estimates 1 in 6 Americans fall ill each year due to contaminated food, and around 3,000 Americans die annually because of various foodborne illnesses.

The impact of food safety issues can also carry an economic impact, as falling ill from unsafe foods can lead to a loss of work productivity and increases in medical expenses. According to the CDC, the U.S. incurs a cost of around $15.6 billion annually due to foodborne illnesses.

Public health officials are in a position to be stewards of food safety. They can minimize food safety through coordinated efforts with state and local health departments and federal agencies like the U.S. Food and Drug Administration and the United States Department of Agriculture’s (USDA’s) Food Safety and Inspection Service.

4 Food-Related Public Health Issues

The challenges to food safety and security cover a broad scope, and this means they can impact communities and individuals differently. The scope of these challenges can also be fluid, as new threats to food safety may emerge to create new issues. As such, public health officials must be aware of the key food safety issues as they arise and as they evolve, so they can effectively minimize their impact.

Food Insecurity

Food insecurity is a term ascribed to a socioeconomic condition where a household has uncertain or limited access to adequate food. It’s a situation shaped by complex factors, including employment, income, racial inequities and neighborhood conditions. Lack of transportation to grocery stores or the proliferation of “food deserts” — areas with limited access to full-service grocery stores — can also fuel the issue.

The USDA divides food insecurity into two separate classifications. The first, low food security, indicates “reduced quality, variety or desirability of diet” with “little to no indication of reduced food intake.” The second, very low food security, indicates “multiple indications of disrupted eating patterns and reduced food intake.”

Food insecurity is a widespread issue that carries a disproportionate impact. A USDA study found 10.2% of American households experienced food insecurity at one point in 2021, a percentage that translates to 13.5 million individuals. That included 26.5% of low-income households; 19.8% of Black, non-Hispanic households; and 16.2% of Hispanic households.

The New Era of Smarter Food Safety

In 2020, the FDA launched a blueprint called the New Era of Smarter Food Safety. Its goal is to use technology to improve food safety. This strategy advances the objectives put forth by the FDA’s Food Safety Modernization Act by providing public health officials with more ways to address food safety proactively.

The blueprint features the following four core elements.

  • Tech-Enabled Traceability: Creates a system that allows for the rapid tracking of food, enabling public health officials to find foods that may cause outbreaks with greater efficiency
  • Smarter Outbreak Response Tools: Combine root-cause analyses of past outbreaks with predictive analytics to predict future outbreaks, allowing public health officials to take steps to prevent outbreaks before they occur
  • Food Safety Culture: Encourages and promotes a culture that acknowledges the importance of food safety
  • Retail Modernization: Seeks to integrate food safety with online grocery services by educating key points on the supply chain about safety practices

Modern technologies are also having an impact on food safety. Safety in online food shopping is becoming increasingly important, as trends suggest that Gen Zers are having a greater influence on retail shopping as they enter adulthood. According to Food Insight’s 2022 Food and Health Survey, 35% of adults aged 18–24 grocery shopped online at least once a week in 2022. Overall, 25% of American adults shopped for groceries online at least once a week.

Chemical Contaminants in Food

Chemical contaminants such as food additives and food preservatives remain a top concern not only for public health officials but also for consumers. The 2022 Food Insight survey noted 48% of polled consumers listed chemicals as their chief food safety concern, the eighth year in a row that this particular subject topped the list. In this case, “chemicals” represented a host of sub-categories, including cancer-causing chemicals, pesticides, food additives and ingredients and heavy metals.

Another longstanding concern is bisphenol A (BPA), a food and beverage packaging chemical. While many individual countries have restricted its use, its continued use in other countries draws concern. These worries come in the wake of studies suggesting correlations between BPA and asthma in school-age girls.

The Lingering Impact of COVID-19

Public health officials played vital roles during the height of the COVID-19 pandemic. While COVID-19 was not spread through food, the pandemic did encourage the food industry to improve awareness of food hygiene and virus transmission. These practices, such as an increased focus on proper hand-washing, food and utensil washing, cooking temperatures and guarding against food cross-contamination, have remained in place as the pandemic wanes. This promises to help mitigate the spread of other pathogens.

The pandemic also exponentially increased food deliveries, which ballooned to a $150 billion global industry in 2021 — more than three times the total in 2017, according to McKinsey & Company. This growth caused consumers to consider other aspects of food safety, such as possible tampering and delays in grocery storage.

Promote the Importance of Food Safety as a Public Health Professional

Knowledge is power when it comes to keeping people safe from foodborne illnesses. Public health professionals are uniquely positioned to help inform and educate the public about the importance of food safety, as well as any persistent and evolving concerns. They can apply their skills to prepare the population to face foodborne illnesses before they can become major health crises.

USC’s online Master of Public Health program can help you take a bold step toward a career in public health. The program offers personalized guidance from public health thought leaders, giving you access to insights on topics such as environmental science and health and human behavior. Additionally, you can specialize your studies by choosing one of five concentrations: Biostatistics and Epidemiology, Community Health Promotion,  Health Services and Policy, Global Health and Generalist.

Find out how USC can prepare you for a rewarding career in public health.

Recommended Readings

Choosing the Right Diet for Your Health

The Importance of Disease Prevention

Social Justice and Public Health in 2022

Centers for Disease Control and Prevention, CDC’s Role in Food Safety

Centers for Disease Control and Prevention, Food Delivery Safety

CNN, BPA Linked to asthma in School-Age Girls, Study Finds

Environmental Defense Fund, FDA Agrees to Reconsider Safety of BPA in Food Packaging

Food Insight, 2022 Food and Health Survey

FoodSafety.gov, 4 Steps to Food Safety

Healthy People 2030, Food Insecurity

Mayo Clinic, What Is BPA, and What Are the Concerns About BPA?

McKinsey & Company, Ordering In: The Rapid Evolution of Food Delivery

U.S. Department of Agriculture, Food Security Status of U.S. Households in 2021

U.S. Department of Agriculture, Food Supply Chain

U.S. Department of Agriculture, U.S. Food Imports

U.S. Department of Agriculture Food Safety and Inspection Service, Food Safety

U.S. Food and Drug Administration, Food Safety Modernization Act (FSMA)

U.S. Food and Drug Administration, New Era of Smarter Food Safety

Learn More About Our MPH Program

Advertisement

Advertisement

Environment and food safety: a novel integrative review

  • Review Article
  • Published: 25 August 2021
  • Volume 28 , pages 54511–54530, ( 2021 )

Cite this article

  • Shanxue Jiang 1 , 2 , 3 ,
  • Fang Wang 1 , 2 , 3 ,
  • Qirun Li 1 ,
  • Haishu Sun 4 ,
  • Huijiao Wang 5 &
  • Zhiliang Yao   ORCID: orcid.org/0000-0001-5125-8245 1 , 2 , 3  

9556 Accesses

14 Citations

1 Altmetric

Explore all metrics

Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.

Similar content being viewed by others

food safety issues essay

Concepts and forms of greenwashing: a systematic review

Sebastião Vieira de Freitas Netto, Marcos Felipe Falcão Sobral, … Gleibson Robert da Luz Soares

food safety issues essay

Artificial intelligence for waste management in smart cities: a review

Bingbing Fang, Jiacheng Yu, … Pow-Seng Yap

food safety issues essay

Sustainability trends and gaps in the textile, apparel and fashion industries

Stefano Abbate, Piera Centobelli, … Emanuela Riccio

Avoid common mistakes on your manuscript.

Introduction

Environment and food safety have been two important topics in the world (Zhang et al. 2015 ; Bilal and Iqbal 2020 ; Liu et al. 2020b ; Song et al. 2020 ; Ye et al. 2020 ; Qin et al. 2021 ). Human activities have posed great threats on environment and food safety. For example, due to the intensive use of disposable masks which are mainly made of non-biodegradable polymers, massive amount of waste is produced. In fact, environment and food safety are closely intercorrelated (He et al. 2016 ; Sagbara et al. 2020 ). As shown in Figure 1 , on the one hand, food safety is strongly affected by environment (Lu et al. 2015 ). Contaminants from polluted soil, water, and air could migrate into crops, vegetables, fish, animals, and so on (Lu et al. 2015 ; Sun et al. 2017 ; Li et al. 2020a ). On the other hand, in order to ensure food safety and quality, various processing procedures are carried out, which increase the burden on the environment and even cause environmental pollution (Yao et al. 2020 ). For example, food processing industry produces a huge amount of wastewater (Li et al. 2019 ; Ahmad et al. 2020 ; Akansha et al. 2020 ; Boguniewicz-Zablocka et al. 2020 ). If the wastewater is discharged into rivers directly, the rivers will be polluted. As food industry wastewater typically contains high concentrations of organic matters, eutrophication can easily take place (Feng et al. 2021 ; Jiang et al. 2021 ). In addition, food packaging materials are widely used as food containers and to preserve food from decay (Vitale et al. 2018 ; Wohner et al. 2020 ; Zeng et al. 2021 ). When the food is consumed, a mass of packaging waste is produced, which will cause environmental problems if not disposed properly (Poyatos-Racionero et al. 2018 ; Bala et al. 2020 ; Brennan et al. 2020 ; Liu et al. 2020a ). However, plastics, as one of the most commonly used packaging materials, cannot be disposed easily and can exist in the environment for hundreds of years (Barnes 2019 ; Chen et al. 2021b ; Mulakkal et al. 2021 ; Patrício Silva et al. 2021 ).

figure 1

Illustration of the relationship between environment and food safety and their impacts on human health

Environment and food safety have strong impacts on human health (Fung et al. 2018 ; Gallo et al. 2020 ). Many studies are conducted to investigate the migration of contaminants from the environment to food, and finally to human beings. For example, it is reported that heavy metals in the aquatic environment can migrate into fishes via bioaccumulation and bioconcentration (Baki et al. 2018 ; Korkmaz et al. 2019 ; Arisekar et al. 2020 ). When these polluted fishes are consumed, the heavy metals will migrate into human bodies (Saha et al. 2016 ; Gholamhosseini et al. 2021 ). Although the concentrations of heavy metals in the fishes are usually below the maximum allowed level (Velusamy et al. 2014 ; Safiur Rahman et al. 2019 ), the fact that humans are at the top of the food chain cannot be ignored. In other words, as there are various food sources for human beings, the heavy metals in our bodies could accumulate and finally reach a level that causes serious health risks, such as cancer (Badamasi et al. 2019 ; Yu et al. 2020a ). In addition to the common types of contaminants (e.g., heavy metals, pesticides, pathogen, particulate matter), there are also some emerging types of contaminants (e.g., microplastics, personal care products, pharmaceuticals), and more efforts are needed to study their effects on human health (Aghilinasrollahabadi et al. 2020 ; Li et al. 2020b ; Zhang et al. 2020 ).

Given the importance of environment and food safety, it is not surprising that a lot of related studies have been published, including many review studies. For example, Qin et al ( 2021 ) reviewed the effects of heavy metals in soil on food safety in China and discussed the sources (e.g., pesticides, fertilizers, vehicle emissions, coal combustion, sewage irrigation, mining) and remediation strategies (e.g., soil amendments, phytoremediation, foliar sprays). Suhani et al. (Suhani et al. 2021 ) reviewed the effects of cadmium pollution on food safety and human health with a focus on the mechanisms (e.g., cellular or molecular alterations). Deshwal et al. (Deshwal and Panjagari 2020 ) reviewed the effects of metal-based packaging materials on food safety and health issues (e.g., bisphenol A migration, metal migration, dissolution, blackening, and corrosion). Sun et al. (Sun et al. 2017 ) reviewed the relationship between air pollution and food security with a focus on the food system (e.g., the effect of agricultural policy on food security). However, most of these review studies only focus on certain subfields (Ayelign and De Saeger 2020 ; Endersen and Coffey 2020 ; Imathiu 2020 ; Nelis et al. 2020 ; Singh et al. 2020a ). In addition, most of these reviews are based solely on the subjective experiences of the researchers in the related fields. In the age of big data, it is necessary to give a timely update on the research of environment and food safety through objective data analysis. The scientometric-based statistical method provides a powerful tool to disclose research trends and progress on certain research areas through data analysis of published documents. However, although there are already quite a few scientometric studies on other research areas (Jiang et al. 2018 ; Li et al. 2018 ; Kamali et al. 2020 ; Khalaj et al. 2020 ; Zakka et al. 2021 ; Zeb et al. 2021 ; Ni et al. 2021 ), the scientometric studies on environment and food safety are very limited. Therefore, the aim of this study is to provide an integrative review on environment and food safety via objective statistical analysis coupled with subjective review on strategies to protect the environment and ensure food safety, followed by a discussion on emerging research topics.

A scientometric review

As shown in Figure 2 , during the past 20 years, there were nearly 5000 publications on the topic of environment and food safety (detailed method was provided in the Supplementary Information ). From 2001 to 2020, there was a steady increase in publications every year. Meanwhile, it was indicated that the increase in research output slowed down in 2020, possibly due to the terrible coronavirus pandemic which suspended researchers’ lab work. In terms of document types, the 4904 publications were categorized into 10 types, where research article, review, and proceedings paper were the top three, accounting for 73.23%, 16.54%, and 13.09% of the total publications, respectively (Supplementary Table 1 ). In terms of languages, most of the documents were published in English, accounting for 96.76% of the total publications (Supplementary Table 2 ). The following languages were German (0.67%), Chinese (0.57%), Portuguese (0.43%), Spanish (0.41%), French (0.39%), etc. The language analysis revealed that a SCIE journal is not necessarily an English journal. For example, among the journals included in the data, the SCIE journal Berliner und Munchener Tierarztliche Wochenschrift publishes research results in German, and the SCIE journal Progress in Chemistry publishes research results in Chinese. To be available to researchers from all over the world, an English version of the titles, keywords, and abstracts of these publications are also provided. However, as the main text is not written in English, the impact of these publications is usually limited to the local research community, i.e., the papers written in German is normally only read by German researchers while the papers written in Chinese is normally only read by Chinese researchers.

figure 2

Number of publications per year and cumulative number of publications from 2001 to 2020

In terms of journals, about 165 journals published at least 5 papers, and the total papers published in these journals accounted to about half of the total publications (more details are provided in supplementary data ). Furthermore, as shown in Figure 3 , the total papers published in the top 20 most publishing journals accounted to about one-fourth of the total publications. These results revealed that the research on environment and food safety is of broad interest.

figure 3

Number of publications and cumulative percentage of the top 20 most publishing journals

In terms of publishing countries/regions, more than 100 countries/regions contributed to these publications (more details are provided in supplementary data ). Especially, more than 50 countries/regions contributed at least 20 publications to the research on environment and food safety during the past 20 years. These results again revealed that the research on environment and food safety is of global interest. As shown in Figure 4 , in terms of research output, the USA and China were leading the research on environment and food safety. Specifically, among the countries/regions, the USA was undoubtedly the most publishing country, which accounted for nearly one-fourth of the total publications. The runner-up was China, which contributed to around 15% of the total publications. However, it does not mean that the USA and China have contributed to around 40% of the total publications because many papers are published as a result of collaborations among several countries.

figure 4

Number of publications and corresponding percentage of the top 20 most publishing countries/regions

Generally, over 400 research institutes had contributed at least 5 publications to the research on environment and food safety, and nearly 50 research institutes published at least 20 papers during the past 20 years (more details are provided in supplementary data ). The top 20 most publishing research institutes were summarized in Table 1 . Chinese Academy of Sciences (CAS), which ranked the first place based on number of publications, is the largest cluster of research institutes in China. The research conducted by CAS is quite diverse and multidisciplinary. Especially, the research on environment and food safety is loosely conducted by different CAS research institutes, including but are not limited to Research Center for Eco-Environmental Sciences (RCEES), Institute of Urban Environment, and Institute of Soil Science. For example, researchers from RCEES found that water pollution and soil pollution had serious effect on food safety and human health (Lu et al. 2015 ). The next one, USDA ARS, short for United States Department of Agriculture Agricultural Research Service, is a leading research institute in the USA focusing on food safety and human health from the aspect of agriculture. Similarly, US FDA is short for United States Food and Drug Administration and is exclusively focusing on food and drug-related research so as to protect public health. INRA, short for French National Institute of Agronomic Research, is a very famous research institute in Europe focusing on agricultural research. Similarly, Istituto Superiore di Sanità is a leading research institute in Italy focusing on public health. In addition to the above 5 research institutes, the remaining 15 research institutes are all universities, and their research on environment and food safety is mainly conducted by the related departments or research centers of the universities. For examples, the Department of Food Technology, Food Safety and Health at Ghent University (located in Belgium) is renowned for its state-of-the-art research on food technology, food microbiology, food chemistry, food safety, etc. Similarly, Wageningen University (located in Netherlands) has a research institute named Wageningen Food Safety Research. Another two European universities were both from Denmark, namely University of Copenhagen and Technical University of Denmark. The Department of Food Science at University of Copenhagen and the National Food Institute at Technical University of Denmark are mainly responsible for food-related research. Besides, there were also two universities from China (i.e., China Agricultural University and Zhejiang University) and one university from Canada (i.e., University of Guelph). The remaining 8 universities all came from the USA, accounting for over half of the universities in the top 20 most publishing research institutes, which corresponded well with the above countries/regions analysis.

Table 2 summarized the top 20 most-cited articles on environment and food safety. As revealed by Table 2 , the research on environment and food safety is diverse, and there are quite a few research directions which received a lot of attention. Generally, the research topics disclosed by the most cited papers included food inspection/detection technique, heavy metal pollution, food additives, food packaging, food allergy, food pesticide, foodborne pathogen and diseases, microplastics, food processing, and production. Various food inspection/detection techniques have been reported, including electrochemical strategies to detect gallic acid in food (Badea et al. 2019 ), thermal imaging technique coupled with chemometrics (Mohd Ali et al. 2020 ), paper-based analysis device for rapid food safety detection (Qi et al. 2020 ), line-scan spatially offset Raman spectroscopy technique for subsurface inspection of food (Qin et al. 2017 ), surface-enhanced Raman spectroscopy for detection of mycotoxins in food (Wu et al. 2021b ), chromatography, and mass spectrometry (Pauk et al. 2021 ; Suman et al. 2021 ). In addition, heavy metal pollution has posed great threats on food safety, and a lot of studies are conducted, including the soil heavy metal pollution and food safety (Qin et al. 2021 ) and the impacts of various heavy metals (e.g., cadmium, lead, arsenic) on food safety and human health (Corguinha et al. 2015 ; Suhani et al. 2021 ). Furthermore, there are a variety of food additives used in different situations. For example, feed additives such as antibiotics have been used in animal nutrition; however, the use of antibiotics can cause antimicrobial resistance which can further increase the morbidity and mortality of diseases (Silveira et al. 2021 ). Therefore, as will be discussed below, laws and regulations are needed to strictly control the use of food additives. Furthermore, foodborne pathogen also has strong impacts on food safety. As an effective way to kill or inhibit foodborne pathogen, antimicrobial food packaging is gaining growing research interest in recent years (Woraprayote et al. 2018 ; Motelica et al. 2020 ; Alizadeh-Sani et al. 2021 ).

TC , total citations; the TC data was collected based on Web of Science core collection; PY , publishing year

As shown in Supplementary Figure 1 and Supplementary Figure 2 , food, safety, and environment were the top three most common words in titles. The following ones were assessment, health, risk, and environmental. It is well known that environmental pollution can pose risks on food safety and finally threatens human health. A further analysis revealed that a lot of studies were related to risk assessment, such as risk assessment of antimicrobial resistance (Likotrafiti et al. 2018 ; Pires et al. 2018 ), risk assessment of heavy metals (Yasotha et al. 2020 ), risk assessment of pesticide (Frische et al. 2014 ), risk assessment of veterinary drugs (Tsai et al. 2019 ), environmental risk assessment (More et al. 2020 ), and health risk assessment (Akhbarizadeh et al. 2020 ). The next one was efficacy, which was usually combined together with safety, such as safety and efficacy of feed additives (Bampidis et al. 2020 ). Besides, Listeria monocytogenes was intensively studied by researchers (Anast et al. 2020 ; Kawacka et al. 2020 ; Wu et al. 2020b ). Another common word was analysis, such as analysis of herbicide (Pan et al. 2020 ), analysis of bacteria (Kang et al. 2020 ), and analysis of microplastics (Primpke et al. 2020 ). Other common research topics revealed by title analysis included but are not limited to food quality, food production, food processing, food additive, food contamination, detection of food contaminants, food microbiology, environmental impact, as well as water, soil, animal, fish, meat, and dairy.

The top 20 most used keywords were listed in Table 3 (more details are provided in supplementary data ). It could be seen that microbiology was closely related to food safety, and a lot of studies were conducted on Listeria monocytogenes, biofilm, salmonella, and antibiotic resistance. In addition, additives, such as zootechnical additives and nutritional additives, were also intensively investigated by researchers. Other topics included aquaculture, poultry, and agriculture. Another keyword worth mentioning was food security. Food security is different with food safety. Briefly, food security is a more inclusive term and focuses more on the availability of food while food safety is about the quality of food. On the other hand, food security and food safety are closely related to each other (Vipham et al. 2020 ). For instance, if food security becomes a big issue, then usually food safety is not guaranteed, and vice versa. Generally, the results revealed by keywords analysis were in consistent with the above title and keywords analysis.

The keywords network graph revealed some interesting results. As shown in Figure 5 , the network had three centers, namely the “ food safety ”-centered network, the “ safety ”-centered network and the “ efficacy ”-centered network. Interestingly, the “ safety ”-centered network and the “ efficacy ”-centered network were closely related, while they were relatively unrelated with the “ food safety ”-centered network. Furthermore, the results again uncovered that food safety involved many aspects, many of which were already discussed above.

figure 5

Keywords network graph. Keywords whose cooccurrence exceeded 10 times were connected with lines

The publications in this study were divided into over 200 Web of Science categories (more details are provided in supplementary data ). The top 20 Web of Science categories were shown in Figure 6 . Undoubtedly, the Food Science & Technology category ranked the first place, followed by the Environment Sciences category. As revealed by Figure 6 , food safety was closely related to microbiology, chemistry, and agriculture. Microorganisms such as foodborne pathogens pose great threats on food safety and a lot of studies are focusing on it. For instance, Lin et al (Lin et al. 2021 ) studied the role of Salmonella Hessarek, an emerging foodborne pathogen, in egg safety. Anyogu et al. (Anyogu et al. 2021 ) reviewed the microorganisms and indigenous fermented foods with a focus on microbial food safety hazards. Van Boxstael et al. ( 2013 ) studied the impacts of bacterial pathogens and viruses on food safety in the fresh produce chain. Also, a lot of studies are focusing on food safety and chemistry, such as untargeted food chemical safety assessment (Delaporte et al. 2019 ), chemical safety of recycled food packaging (Geueke et al. 2018 ), and chemical food safety hazards of sausages (Halagarda et al. 2018 ). Furthermore, studies on food safety and agriculture include but are not limited to chemical and biological risks in urban agriculture (Buscaroli et al. 2021 ), biosensors for sustainable agriculture and food safety (Griesche and Baeumner 2020 ), agricultural soil contamination, and the impact on food safety (Wang et al. 2019b ). In addition, the Materials Science category was also on the top list, which indicated that materials are also important research directions in environment and food safety. A further analysis revealed the common materials studied by researchers, including biomaterials, food packaging materials, biodegradable materials, coating materials, sensors and biosensors for food detection, and nanoparticles. The research area analysis showed similar results with Web of Science categories (Supplementary Table 3 ).

figure 6

Number of publications and corresponding percentage of the top 20 Web of Science categories

Strategies to protect environment and ensure food safety

The above scientometric analysis revealed that the studies on environment and food safety were diversified and multidisciplinary. Further analysis of the above results disclosed the challenges and strategies to protect environment and ensure food safety. As discussed earlier, environment and food safety are closely related to each other. It should be noted that the environment here is not limited to the broad environment (e.g., air, water, soil) which the public are familiar with. In other words, in addition to the broad environment, there are also food-related environments which exist in various processes, including but are not limited to food processing, food packaging, food transportation, food storage, and food consumption. In order to ensure food safety, contaminants/pollutants from the environmental side should be prevented from reaching the food side. An example of food chain pollution control is presented in Figure 7 . It can be seen that from growing wheat to making bread, there are a variety of processes which could cause pollution and control strategies are needed, which are summarized as follows. Firstly, from wheat growing to wheat harvesting: the pollutants/contaminants could be taken in or migrate into the wheat via contaminated soil, water, and air, and therefore strategies are needed to prevent soil, water, and air from being contaminated, such as reducing the use of pesticides and fertilizers. Secondly, initial processing of wheat: after the wheat is harvested, traditionally it needs to be dried by the farmers before it is sold. During this process, contamination can easily occur if the wheat is dried directly on the road which is common in rural China. In addition, the containers of the harvested wheat are also sources of pollution which should be carefully controlled. Alternatively, the pollution can be avoided if the wheat is directly sold and transported to the flour mill from the farm without being dried by the farmers. Thirdly, during the transportation processes (e.g., from farm to flour mill, from flour mill to bread bakery, from bread bakery to supermarkets), contamination can also take place and control strategies are needed. Fourthly, during the wheat processing at the mill and bread baking at the bakery, contamination can take place due to environment exposure, insufficient frequency and quality of facility washing and cleaning, use of additives, etc. Fifthly, during the bread packaging process, the workers can be an important source of bread contamination if the bread is packed manually. Finally, when the consumers buy the bread and do not consume the bread timely, the bread can decay. Based on the above discussion, the food chain pollution control can be generally categorized into the following sections: source pollution (i.e., soil, water, air) control, pollution control during food processing, pollution control during food packaging, pollution control during transportation, pollution control during storage, and pollution control during consumption.

figure 7

Demonstration of the whole food chain pollution control from wheat growing to bread consuming

Especially, based on the type of chemicals, the contaminants/pollutants can be categorized into pesticides and herbicides, heavy metals, food additives, pathogens, microplastics, antibiotics, and so on (Van Boxstael et al. 2013 ; Tóth et al. 2016 ; He et al. 2019b ; Rajmohan et al. 2019 ; Bonerba et al. 2021 ). Therefore, the corresponding strategies are to control the use of chemicals and materials which can produce these contaminates. For example, as will be discussed in the following section, microplastics come from the wide use of plastics and are receiving growing concern. In order to reduce the amount of microplastics, the use of plastics should be controlled or restricted. Based on the media of migration, these contaminants can reach at the food side via air, water, and soil. Therefore, the corresponding strategies are to remove contaminants from air, water and soil. Alternatively, strategies can be deployed to prevent these contaminants from contacting the food. For example, as will be discussed later, food packaging is a common strategy to protect food from being contaminated by the environment (Risyon et al. 2020 ). To sum up, by controlling the sources and migration routes of food contaminants, food safety can be improved. Furthermore, in order to ensure food safety, whole process monitoring techniques and platforms are necessary. A lot of studied have been conducted on food safety monitoring. For example, De Oliveira et al. ( 2021 ) proposed that environmental monitoring programs (EMPs) are necessary to ensure food safety and quality. The EMPs are used to prevent environmental contamination of the finished product, via checking the cleaning-sanitation procedures, and other environmental pathogen control programs with a range of sampling analysis. Medina et al. (Medina et al. 2019 ) proposed food fingerprints as an effective tool to monitor food safety. Weng et al. (Weng and Neethirajan 2017 ) reviewed microfluidics as an effective method to realize rapid, cost-effective, and sensitive detection of food contaminants such as foodborne pathogens, heavy metals, additives, and pesticide residues. Other monitoring methods/techniques/devices include but are not limited to pH-sensitive smart packaging films (Alizadeh-Sani et al. 2020 ), point-of-care detection devices (Wu et al. 2017 ), and real-time pathogen monitoring via a nanotechnology-based method (Weidemaier et al. 2015 ). Food safety monitoring can be done by either government officials or the relative bodies (e.g., self-monitoring), or both. Furthermore, from the time the food raw materials are being cultivated in the farmland, pasture, fishing ground or other places, to the time the food is being consumed by customers, inspecting and detecting should be deployed. This can be done by the government officials and/or the stakeholders. Although the term “inspection” and “detection” are often used as the same, here, food safety inspection is regarded as an administrative strategy, which is carried out by governmental officials to check whether the relative workers/factories/bodies have followed the food safety requirements/regulations, while food safety detection is regarded as a technique-based strategy, which is used to detect food contaminants and check whether the quality of the food meets the relative standards. Meanwhile, food safety laws need to be enacted to discourage or prevent the relative workers/factories/bodies from affecting the food safety, whether purposely or not.

On the other hand, during the process of food production, the environment can be polluted as well. For example, in order to increase crop yield, a lot of fertilizers are used, which will migrate into the soil and water bodies, and cause soil and water pollution. Therefore, the use of fertilizers should be restricted, which can be realized through agricultural innovations (Liu et al. 2021 ), government policies (van Wesenbeeck et al. 2021 ), etc. Furthermore, during food processing, a large amount of solid waste or/and wastewater are produced which can cause environmental pollution. Therefore, techniques are needed to dispose the food waste properly. Especially, food waste usually contains high amount of organic compounds and therefore falls into the category of biomass, which can be used to produce useful biochemicals like biofuels (Wainaina et al. 2018 ; Chun et al. 2019 ). For example, agro-food waste is an important source of lignocellulosic biomass; the valorization of lignocellulosic biomass is regarded as a sustainable source of energy and has the potential to replace conventional fossil fuels (Ong and Wu 2020 ; Lee and Wu 2021 ; Lee et al. 2021 ; Mankar et al. 2021 ; Zhenquan et al. 2021 ). Furthermore, the concepts of recycling and sustainable development can be deployed. For example, food packaging materials can be recycled and used again. Another example is to use cloth bags to replace plastic bags when shopping. These strategies can reduce the burden on the environment as the amount of food-related waste can be reduced. In addition, novel environment-friendly materials (e.g., biodegradable polymers) can be developed and used in food industries (Stoica et al. 2020 ; Cheng et al. 2021 ). To summarize, the above strategies to protect environment and ensure food safety are presented in Figure 8 .

figure 8

Emerging studies on environment and food safety

Scientometric analysis is powerful in disclosing the research trend and is relatively subjective compared to conventional type of review. However, as it is essentially a statistical study which relies on a huge amount of data, it is less effective to reveal the emerging research directions which could be ignored in the scientometric study. Therefore, it is necessary and important to carry out a subjective discussion on emerging studies on environment and food safety as an indispensable supplement (Figure 9 ).

figure 9

Emerging contaminants

There are various contaminants affecting environment and food safety. Among the various types of contaminants, emerging contaminants, such as microplastics, are receiving growing concern due to their potential effects on human health (Sarker et al. 2020 ). Because of the wide application of plastics, microplastics are found almost everywhere in the environment, including soil, water, and air (Álvarez-Lopeztello et al. 2020 ; Chen et al. 2020 ; Wang et al. 2021c ). For example, microplastics are reported to exist in bottled water (Zhou et al. 2021 ) and take-out food plastic containers (Du et al. 2020 ). Furthermore, researchers have found that microplastics could serve as the carrier for many other contaminants such as heavy metals and antibiotics (Zhou et al. 2019 ; Purwiyanto et al. 2020 ; Yu et al. 2020b ). Studies reveal that the ability to absorb heavy metals increase as the microplastics age (Lang et al. 2020 ). As a result, the risks of microplastics on environment, food safety, and human health could be significantly increased. However, the research on microplastics is still at an early stage, and more efforts are needed to uncover the world of microplastics. For example, there is no standard procedures to extract, identify, and quantify microplastics so results by different methods could be different and uncomparable (Kumar et al. 2020 ; Zhou et al. 2020 ). Meanwhile, due to the various sizes, shapes, forms, sources, and types of microplastics, it is difficult and time-consuming to characterize microplastics (Wu et al. 2020a ). Therefore, it is important to develop new methods for rapid and effective detection of microplastics (Li et al. 2020c ).

In addition to microplastics, there are other emerging contaminants which can have negative effects on the environment, food safety, and human health. These emerging contaminants include but are not limited to persistent organic pollutants (Titchou et al. 2021 ), antibiotics (Koch et al. 2021 ), personal care products (Scaria et al. 2021 ), pharmaceuticals (Chaturvedi et al. 2021 ), endocrine-disrupting compounds (Kasonga et al. 2021 ), and non-nutritive artificial sweeteners (Praveena et al. 2019 ). More research efforts are needed to gain a better understanding of the migration, degradation, accumulation characteristics, as well as the potential risks of these contaminants.

Rapid detection of contaminants

Not limited to the detection of microplastics, it is also necessary to develop rapid detection methods for common contaminants. For example, due to the widespread application of pesticides in agriculture, pesticide residue is becoming a serious environment and food safety issue (Farahy et al. 2021 ). Traditionally, food contaminants are detected by instrumental analysis, such as chromatography and mass spectrometry (Ye et al. 2019 ). However, the instrumental analysis process is expensive, complicated, and time-consuming (Zhang et al. 2019 ). Furthermore, the contaminants are usually in low concentration, but can accumulate gradually in human bodies via bioconcentration. Therefore, it is important to develop rapid method to detect trace-level concentration of food contaminants. Biosensor is an emerging and promising technology in detecting food contaminants such as pesticides, and a variety of biosensors have been developed in recent years (Majdinasab et al. 2018 , 2019 ). For example, Ouyang et al. (Ouyang et al. 2021 ) developed a sensitive biosensor to detect carbendazim pesticide residues based on luminescent resonance energy transfer from aptamer-labelled upconversion nanoparticles to manganese dioxide nanosheets. Capobianco et al. (Capobianco et al. 2021 ) developed an enzyme-linked immunoelectrochemical biosensor to detect pathogenic bacteria in large volume food samples without subsampling. Wang et al. (Wang et al. 2019a ) developed a magnetic quantum dot-based lateral flow biosensor to detect protein toxins in food samples. Kaushal et al. (Kaushal et al. 2019 ) developed a novel biosensor using gold nanorods capped by glycoconjugates which demonstrated potential in optical detection and ablation of foodborne bacteria. Generally, a biosensor is mainly composed of a biological sensing element (also known as bioreceptor), a transducer, and an electrical output system (Santana Oliveira et al. 2019 ; Majdinasab et al. 2021 ). The bioreceptor will interact with the analyte, and the transducer will convert the interaction into a detectable signal, which is then processed and displayed on the output system. Common materials used in the biological element include antibodies, enzymes, nucleic acids, antigens, aptamers, whole cells, and bacteriophage (Arora et al. 2011 ; Rotariu et al. 2016 ; Griesche and Baeumner 2020 ; Singh et al. 2020b . Biosensor technology has obvious advantages compared to traditional detection technologies. It is rapid, highly sensitive and selective, accurate, relatively compact, and easy to operate (Dominguez et al. 2017 ). However, there are still some challenges to widely commercialize biosensors, such as limited lifetime of the biological sensing elements and limited range of analytes that can be detected (Di Nardo and Anfossi 2020 ). Furthermore, as a specific type of biosensor is only effective in detecting a specific type of contaminant, more efforts are needed to develop integrated biosensors which can detect different types of containments simultaneously (Majdinasab et al. 2020 ). In addition to biosensors, there are also a variety of other reported methods for rapid detection of food contaminants, such as surface-enhanced Raman scattering (SERS) (Yao et al. 2021 ), optical sensors based on nanomaterials (Chen et al. 2021a ), hyperspectral imaging technology (He and Sun 2015 ), and perfluorinated compounds (PFCs) (Cai et al. 2021 ).

Environment friendly food packaging materials

As revealed above, food packaging is closely related to food safety. Although there are different kinds of food packaging materials, the non-biodegradable plastic materials (e.g., polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyethylene terephthalate) are the most common ones and are widely used in our daily life (Cazón and Vázquez 2021 ). However, the non-biodegradable plastic materials have caused serious environmental problems, commonly known as white pollution. Especially, because of the coronavirus pandemic, take-out food becomes more popular. As plastic materials are the most common packaging materials for take-out food, the demand for plastic materials increases dramatically. Meanwhile, plastic materials also have food safety issues. It is found that the monomer residues used to make plastic polymers could migrate into food, which could cause health problems (Pilevar et al. 2019 ). Especially, the migration rate is not only affected by the quality of these materials, but also affected by the food properties. In addition to monomer residues, additives in these plastic materials could also migrate into food, causing health risks (Hahladakis et al. 2018 ). For example, bisphenol A, a common additive used in plastics, can adversely affect human endocrine system, block normal cell function, affect thyroid hormone, affect testosterone levels, and could also possibly induce cancer (Huang et al. 2019 ; Vilarinho et al. 2019 ). Another very common additive in plastics is phthalates, which is used as plasticizer to soften the plastics. It is reported that phthalates in plastic bottles could migrate into water, and the amount of migration increases as the storage time increases (Luo et al. 2018 ). Similar to bisphenol A, phthalates can also disrupt human endocrine system and cause bad effects on human health (Wang et al. 2018 ). Not limited to bisphenol A and phthalates, there are many types of plastic additives which could migrate into food and cause food safety issues.

As the conventional non-biodegradable plastics can cause both environmental problems and food safety issues, a lot of studies are carried out to find alternatives to non-biodegradable plastics for food packaging. Biodegradable polymers are regarded as the one of the most promising alternatives for food packaging (Othman 2014 ). As its name indicates, biodegradable polymers can be decomposed by microorganisms. Common biodegradable polymers studied as food packaging materials include but are not limited to polylactic acid (PLA) (Swaroop and Shukla 2018 , 2019 ; Mohamad et al. 2020 ), polybutylene adipate terephthalate (PBAT) (Pattanayaiying et al. 2019 ), polysaccharides (such as starch (Osorio et al. 2019 ; Menzel 2020 ; Saraiva Rodrigues et al. 2020 ), cellulose (Balasubramaniam et al. 2020 ; Riaz et al. 2020 ), pectin (Nešić et al. 2018 ), chitosan (Haghighi et al. 2020 ; Priyadarshi and Rhim 2020 )), polyhydroxyalkanoates (PHAs) such as polyhydroxybutyrate (PHB) (Adeleye et al. 2020 ; Fernandes et al. 2020 ; Shahid et al. 2020 ), polycaprolactone (PCL) (Khalid et al. 2018 ; Mugwagwa and Chimphango 2020 ), and cellulose acetate (Xie and Hung 2018 ; Rajeswari et al. 2020 ).

However, in addition to high production cost, there are some critical technical challenges which must be solved so as to widely commercialize biodegradable polymers and replace conventional plastics (Pérez-Arauz et al. 2019 ). Generally, biodegradable polymers have low thermal stability, low mechanical stability, and poor barrier properties (Risyon et al. 2020 ). One way to improve its performance is to add additives during production. For example, Risyona et al. (Risyon et al. 2020 ) prepared PLA-based film using different concentrations of halloysite nanotubes as additives. They found that the PLA film with 3.0 wt.% of halloysite nanotubes demonstrated optimal properties. Dash et al. (Dash et al. 2019 ) prepared starch and pectin-based film using different concentrations of titanium dioxide nanoparticles. They found that addition of the nanoparticles could effectively improve the mechanical properties and moisture barrier properties of the films. However, similarly to conventional plastics, these additives might also migrate into food (He et al. 2019a ). Another strategy being intensively studied is polymer blending, which integrates the merits of different polymers (de Oliveira et al. 2020 ). For example, Rajeswari et al. (Rajeswari et al. 2020 ) blended polysaccharides and cellulose acetate together, and the resulting film showed improved thermal stability and tensile strength. The prepared films also demonstrated antimicrobial properties towards certain types of microorganisms. Sangroniz et al. (Sangroniz et al. 2018 ) blended poly(butylene adipate-co-terephthalate) with poly(hydroxi amino ether), and the resulting film showed great improvement of barrier properties. However, polymer blending could also have its drawback. For example, if the blending polymers are immiscible with each other, the mechanical strength and barrier properties of the resulting materials will be affected (Corres et al. 2020 ).

Conclusions, challenges, and future research directions

In this review, a scientometric-based statistical study was firstly conducted on the research of environment and food safety, which revealed that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, statistical analysis of the most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety is diverse and multidisciplinary. Furthermore, strategies to protect the environment and ensure food safety are discussed, such as controlling the use of chemicals and materials which can produce environment and food contaminates, preventing these contaminants from contacting the food, developing whole process monitoring techniques and platforms, and utilizing the food waste properly. In addition, emerging research topics are discussed, such as emerging contaminants, rapid detection of contaminants, and environment friendly food packaging materials.

Although environment and food safety are receiving growing concern, there are still some very challenging issues. These challenges can be categorized into four parts. Firstly, it is challenging to eliminate environmental pollutions (Hao et al. 2018 ; Christy et al. 2021 ). Air pollution, water pollution, and soil pollution are still serious environmental problems in many parts of the world (Wu et al. 2016 , 2021a ; Rajeswari et al. 2019 ; Shen et al. 2021b ). Although a lot of studies have been carried out, the mechanisms of some pollutions (e.g., haze weather) are still unclear (Shen et al. 2020 ; Wang et al. 2021a ). Secondly, it is challenging to dispose food waste effectively and efficiently. It is reported that a substantial amount of food waste is produced along the food supply chain (Aschemann-Witzel 2016 ; Li et al. 2019 ). Especially, food wastewater typically contains very complex components, and the treatment process is very energy intensive and costly. Thirdly, it is challenging to realize whole-process monitoring of contaminants, due to the diverse contaminants during food cultivation, processing, packaging, transportation, and retailing. Fourthly, the accurate effects of environmental pollution on human health are still unclear, and it is challenging to establish procedures to accurately assess the risks of environmental pollution on human health. For example, it is well reported that ozone pollution and PM2.5 pollution can cause negative effects on human health (Guan et al. 2021 ; Shen et al. 2021a ; Wang et al. 2021b ). However, the underlying mechanisms, accurate assessment procedures, and quantitative studies are still lacking. In order to address these challenges, more research efforts are needed to (1) uncover the underlying mechanisms of contaminant formation, migration and fate; (2) develop more cost-effective and sustainable food waste treatment and utilization technologies, targeting net zero emissions; (3) develop rapid detection methods and in situ monitoring technologies for environment and food safety; and (4) establish health risk assessment models and procedures.

Data availability

All data generated or analyzed during this study are included in this published article.

Adeleye AT, Odoh CK, Enudi OC et al (2020) Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 96:174–193

Article   CAS   Google Scholar  

Aghilinasrollahabadi K, Salehi M, Fujiwara T (2020) Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater. J Hazard Mater 408:124439. https://doi.org/10.1016/j.jhazmat.2020.124439

Ahmad T, Belwal T, Li L et al (2020) Utilization of wastewater from edible oil industry, turning waste into valuable products: a review. Trends Food Sci Technol 99:21–33. https://doi.org/10.1016/j.tifs.2020.02.017

Akansha J, Nidheesh PV, Gopinath A et al (2020) Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere 253:126652. https://doi.org/10.1016/j.chemosphere.2020.126652

Akhbarizadeh R, Moore F, Monteiro C et al (2020) Occurrence, trophic transfer, and health risk assessment of bisphenol analogues in seafood from the Persian Gulf. Mar Pollut Bull 154:111036. https://doi.org/10.1016/j.marpolbul.2020.111036

Alizadeh-Sani M, Moghaddas Kia E, Ghasempour Z, Ehsani A (2021) Preparation of active nanocomposite film consisting of sodium caseinate, ZnO nanoparticles and Rosemary essential oil for food packaging a0pplications. J Polym Environ 29:588–598. https://doi.org/10.1007/s10924-020-01906-5

Alizadeh-Sani M, Mohammadian E, Rhim J-W, Jafari SM (2020) pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 105:93–144. https://doi.org/10.1016/j.tifs.2020.08.014

Álvarez-Lopeztello J, Robles C, del Castillo RF (2020) Microplastic pollution in neotropical rainforest, savanna, pine plantations, and pasture soils in lowland areas of Oaxaca, Mexico: Preliminary results. Ecol Indic 121:107084. https://doi.org/10.1016/j.ecolind.2020.107084

Anast JM, Bobik TA, Schmitz-Esser S (2020) The cobalamin-sependent gene cluster of Listeria monocytogenes: implications for virulence, stress response, and food safety. Front Microbiol 11:60181

Article   Google Scholar  

Anyogu A, Olukorede A, Anumudu C et al (2021) Microorganisms and food safety risks associated with indigenous fermented foods from Africa. Food Control 129:108227. https://doi.org/10.1016/j.foodcont.2021.108227

Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G (2020) Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Mar Pollut Bull 159:111496. https://doi.org/10.1016/j.marpolbul.2020.111496

Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12. https://doi.org/10.1016/j.bios.2011.06.002

Aschemann-Witzel J (2016) Waste not, want not, emit less: reducing food waste in the supply chain and at home can help to reduce carbon emissions. Science (80-) 352:408–409. https://doi.org/10.1126/science.aaf2978

Ayelign A, De Saeger S (2020) Mycotoxins in Ethiopia: current status, implications to food safety and mitigation strategies. Food Control 113:107163. https://doi.org/10.1016/j.foodcont.2020.107163

Badamasi I, Odong R, Masembe C (2019) Implications of increasing pollution levels on commercially important fishes in Lake Victoria. J Great Lakes Res 45:1274–1289. https://doi.org/10.1016/j.jglr.2019.09.024

Badea M, di Modugno F, Floroian L et al (2019) Electrochemical strategies for gallic acid detection: potential for application in clinical, food or environmental analyses. Sci Total Environ 672:129–140. https://doi.org/10.1016/j.scitotenv.2019.03.404

Baki MA, Hossain MM, Akter J et al (2018) Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol Environ Saf 159:153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035

Bala A, Laso J, Abejón R et al (2020) Environmental assessment of the food packaging waste management system in Spain: understanding the present to improve the future. Sci Total Environ 702:134603. https://doi.org/10.1016/j.scitotenv.2019.134603

Balasubramaniam SPL, Patel AS, Nayak B (2020) Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packag Shelf Life 26:100587. https://doi.org/10.1016/j.fpsl.2020.100587

Bampidis V, Azimonti G, de Lourdes Bastos M et al (2020) Safety and efficacy of methyl cellulose for all animal species. EFSA J 18:e06212. https://doi.org/10.2903/j.efsa.2020.6212

Barnes SJ (2019) Understanding plastics pollution: the role of economic development and technological research. Environ Pollut 249:812–821. https://doi.org/10.1016/j.envpol.2019.03.108

Bilal M, Iqbal HMN (2020) Transportation fate and removal of microplastic pollution – a perspective on environmental pollution. Case Stud Chem Environ Eng 2:100015. https://doi.org/10.1016/j.cscee.2020.100015

Boguniewicz-Zablocka J, Klosok-Bazan I, Callegari A, Capodaglio AG (2020) Snack-food industry effluent pre-treatment for annatto dye and yeast removal: process improvement for effectiveness and sustainability. J Clean Prod 277:124117. https://doi.org/10.1016/j.jclepro.2020.124117

Bonerba E, Panseri S, Arioli F et al (2021) Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. Food Chem 334. https://doi.org/10.1016/j.foodchem.2020.127575

Brennan L, Langley S, Verghese K et al (2020) The role of packaging in fighting food waste: a systematised review of consumer perceptions of packaging. J Clean Prod 281:125276. https://doi.org/10.1016/j.jclepro.2020.125276

Buscaroli E, Braschi I, Cirillo C et al (2021) Reviewing chemical and biological risks in urban agriculture: a comprehensive framework for a food safety assessment of city region food systems. Food Control 126:108085. https://doi.org/10.1016/j.foodcont.2021.108085

Cai Y, Wang Q, Zhou B et al (2021) A review of responses of terrestrial organisms to perfluorinated compounds. Sci Total Environ 793:148565. https://doi.org/10.1016/j.scitotenv.2021.148565

Capobianco JA, Armstrong CM, Lee J, Gehring AG (2021) Detection of pathogenic bacteria in large volume food samples using an enzyme-linked immunoelectrochemical biosensor. Food Control 119:107456. https://doi.org/10.1016/j.foodcont.2020.107456

Cazón P, Vázquez M (2021) Bacterial cellulose as a biodegradable food packaging material: a review. Food Hydrocoll 113:106530. https://doi.org/10.1016/j.foodhyd.2020.106530

Chaturvedi P, Shukla P, Giri BS et al (2021) Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants. Environ Res 194:110664. https://doi.org/10.1016/j.envres.2020.110664

Chen D, Wang T, Ma Y et al (2020) Rapid characterization of heavy metals in single microplastics by laser induced breakdown spectroscopy. Sci Total Environ 743:140850. https://doi.org/10.1016/j.scitotenv.2020.140850

Chen H, Zhang L, Hu Y et al (2021a) Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sensors Actuators B Chem 329:129135. https://doi.org/10.1016/j.snb.2020.129135

Chen Y, Awasthi AK, Wei F et al (2021b) Single-use plastics: production, usage, disposal, and adverse impacts. Sci Total Environ 752:141772. https://doi.org/10.1016/j.scitotenv.2020.141772

Cheng H, Chen L, McClements DJ et al (2021) Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 114:70–82. https://doi.org/10.1016/j.tifs.2021.05.017

Christy EJS, Amalraj A, Rajeswari A, Pius A (2021) Enhanced photocatalytic performance of Zr(IV) doped ZnO nanocomposite for the degradation efficiency of different azo dyes. Environ Chem Ecotoxicol 3:31–41. https://doi.org/10.1016/j.enceco.2020.10.005

Chun M, Zhenquan V, Yeong T (2019) Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – a review. Renew Sust Energ Rev 112:75–86. https://doi.org/10.1016/j.rser.2019.04.082

Corguinha APB, de Souza GA, Gonçalves VC et al (2015) Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compos Anal 37:143–150. https://doi.org/10.1016/j.jfca.2014.08.004

Corres MÁ, Mayor Á, Sangroniz A et al (2020) Blends based on biodegradable poly(caprolactone) with outstanding barrier properties for packaging applications: the role of free volume and interactions. Eur Polym J 135:109869. https://doi.org/10.1016/j.eurpolymj.2020.109869

Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8:1402–1419

CAS   Google Scholar  

Dash KK, Ali NA, Das D, Mohanta D (2019) Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 139:449–458. https://doi.org/10.1016/j.ijbiomac.2019.07.193

De Oliveira MJ, Boué G, Prévost H et al (2021) Environmental monitoring program to support food microbiological safety and quality in food industries: a scoping review of the research and guidelines. Food Control 130:108283. https://doi.org/10.1016/j.foodcont.2021.108283

de Oliveira TV, de Freitas PAV, Pola CC et al (2020) Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packag Shelf Life 24:100459. https://doi.org/10.1016/j.fpsl.2019.100459

Delaporte G, Cladière M, Camel V (2019) Untargeted food chemical safety assessment: a proof-of-concept on two analytical platforms and contamination scenarios of tea. Food Control 98:510–519. https://doi.org/10.1016/j.foodcont.2018.12.004

Deshwal GK, Panjagari NR (2020) Review on metal packaging: materials, forms, food applications, safety and recyclability. J Food Sci Technol 57:2377–2392. https://doi.org/10.1007/s13197-019-04172-z

Di Nardo F, Anfossi L (2020) Commercial biosensors for detection of food additives, contaminants, and pathogens. Elsevier Inc.

Dominguez RB, Hayat A, Alonso GA, et al (2017) Nanomaterial-based biosensors for food contaminant assessment. Elsevier Inc.

Du F, Cai H, Zhang Q et al (2020) Microplastics in take-out food containers. J Hazard Mater 399:122969. https://doi.org/10.1016/j.jhazmat.2020.122969

Endersen L, Coffey A (2020) The use of bacteriophages for food safety. Curr Opin Food Sci 36:1–8. https://doi.org/10.1016/j.cofs.2020.10.006

Farahy O, Laghfiri M, Bourioug M, Aleya L (2021) Overview of pesticide use in Moroccan apple orchards and its effects on the environment. Curr Opin Environ Sci Heal 19:100223. https://doi.org/10.1016/j.coesh.2020.10.011

Feng XC, Bao X, Che L, Wu QL (2021) Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source. Biochem Eng J 165:107811. https://doi.org/10.1016/j.bej.2020.107811

Fernandes M, Salvador A, Alves MM, Vicente AA (2020) Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym Degrad Stab 182:109408

Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE (2009) Human internal and external exposure to PBDEs - a review of levels and sources. Int J Hyg Environ Health 212:109–134

Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 51:4504–4526

Frische T, Matezki S, Wogram J (2014) Environmental risk assessment of pesticide mixtures under regulation 1107/2009/EC: a regulatory review by the German Federal Environment Agency (UBA). J fur Verbraucherschutz und Leb 9:377–389. https://doi.org/10.1007/s00003-014-0916-6

Fung F, Wang HS, Menon S (2018) Food safety in the 21st century. Biom J 41:88–95. https://doi.org/10.1016/j.bj.2018.03.003

Gallo M, Ferrara L, Calogero A et al (2020) Relationships between food and diseases: what to know to ensure food safety. Food Res Int 137:109414. https://doi.org/10.1016/j.foodres.2020.109414

Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

Geueke B, Groh K, Muncke J (2018) Food packaging in the circular economy: overview of chemical safety aspects for commonly used materials. J Clean Prod 193:491–505. https://doi.org/10.1016/j.jclepro.2018.05.005

Gholamhosseini A, Shiry N, Soltanian S, Banaee M (2021) Bioaccumulation of metals in marine fish species captured from the northern shores of the Gulf of Oman, Iran. Reg Stud Mar Sci 41:101599. https://doi.org/10.1016/j.rsma.2020.101599

Griesche C, Baeumner AJ (2020) Biosensors to support sustainable agriculture and food safety. TrAC - Trends Anal Chem 128:115906. https://doi.org/10.1016/j.trac.2020.115906

Guan Y, Xiao Y, Wang F et al (2021) Health impacts attributable to ambient PM2.5 and ozone pollution in major Chinese cities at seasonal-level. J Clean. Prod 311:127510. https://doi.org/10.1016/j.jclepro.2021.127510

Haghighi H, Licciardello F, Fava P et al (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 26:100551

Hahladakis JN, Velis CA, Weber R et al (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

Halagarda M, Kędzior W, Pyrzyńska E (2018) Nutritional value and potential chemical food safety hazards of selected Polish sausages as influenced by their traditionality. Meat Sci 139:25–34. https://doi.org/10.1016/j.meatsci.2018.01.006

Hao X, Zhang X, Cao X et al (2018) Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. Sci Total Environ 645:347–355. https://doi.org/10.1016/j.scitotenv.2018.07.113

He H-J, Sun D-W (2015) Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products. Trends Food Sci Technol 46:99–109. https://doi.org/10.1016/j.tifs.2015.08.001

He JF, Lv XG, Lin QB et al (2019a) Migration of metal elements from polylactic acid dinner plate into acidic food simulant and its safety evaluation. Food Packag Shelf Life 22:100381. https://doi.org/10.1016/j.fpsl.2019.100381

He LY, Ying GG, Liu YS et al (2016) Discharge of swine wastes risks water quality and food safety: antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environ Int 92–93:210–219. https://doi.org/10.1016/j.envint.2016.03.023

He M, Shen H, Li Z et al (2019b) Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environ Pollut 244:431–439. https://doi.org/10.1016/j.envpol.2018.10.070

Hong HA, Le HD, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

Huang W, Zhao C, Zhong H et al (2019) Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7. Environ Pollut 246:697–703. https://doi.org/10.1016/j.envpol.2018.12.084

Humphrey T, O’Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257

Imathiu S (2020) Benefits and food safety concerns associated with consumption of edible insects. NFS J 18:1–11. https://doi.org/10.1016/j.nfs.2019.11.002

Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

Jiang S, Hagesteijn KFL, Ni J, Ladewig BP (2018) A scientometric study of the research on ion exchange membranes. RSC Adv 8:24036–24048. https://doi.org/10.1039/c8ra04686g

Jiang S, Sun H, Wang H et al (2021) A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere 282:130817. https://doi.org/10.1016/j.chemosphere.2021.130817

Kamali M, Jahaninafard D, Mostafaie A et al (2020) Scientometric analysis and scientific trends on biochar application as soil amendment. Chem Eng J 395:125128. https://doi.org/10.1016/j.cej.2020.125128

Kang S, Ravensdale JT, Coorey R et al (2020) Bacterial community analysis using 16S rRNA amplicon sequencing in the boning room of Australian beef export abattoirs. Int J Food Microbiol 332:108779. https://doi.org/10.1016/j.ijfoodmicro.2020.108779

Kasonga TK, Coetzee MAA, Kamika I et al (2021) Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: a review. J Environ Manag 277:111485. https://doi.org/10.1016/j.jenvman.2020.111485

Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829

Kaushal S, Priyadarshi N, Pinnaka AK et al (2019) Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sensors Actuators B Chem 289:207–215. https://doi.org/10.1016/j.snb.2019.03.096

Kawacka I, Olejnik-Schmidt A, Schmidt M, Sip A (2020) Effectiveness of phage-based inhibition of listeria monocytogenes in food products and food processing environments. Microorganisms 8:1–20

Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

Khalaj M, Kamali M, Costa MEV, Capela I (2020) Green synthesis of nanomaterials - a scientometric assessment. J Clean Prod 267:122036. https://doi.org/10.1016/j.jclepro.2020.122036

Khalid S, Yu L, Feng M et al (2018) Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag Shelf Life 18:71–79. https://doi.org/10.1016/j.fpsl.2018.08.008

Koch N, Islam NF, Sonowal S et al (2021) Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Curr Res Microb Sci 2:100027. https://doi.org/10.1016/j.crmicr.2021.100027

Koopmans M, Duizer E (2004) Foodborne viruses: an emerging problem. Int J Food Microbiol 90:23–41. https://doi.org/10.1016/S0168-1605(03)00169-7

Korkmaz C, Ay Ö, Ersoysal Y et al (2019) Heavy metal levels in muscle tissues of some fish species caught from north-east Mediterranean: evaluation of their effects on human health. J Food Compos Anal 81:1–9. https://doi.org/10.1016/j.jfca.2019.04.005

Kumar M, Xiong X, He M et al (2020) Microplastics as pollutants in agricultural soils. Environ Pollut 265:114980. https://doi.org/10.1016/j.envpol.2020.114980

Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248. https://doi.org/10.1006/bcon.2001.0938

Lang M, Yu X, Liu J et al (2020) Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Sci Total Environ 722:137762. https://doi.org/10.1016/j.scitotenv.2020.137762

Lee CBTL, Wu TY (2021) A review on solvent systems for furfural production from lignocellulosic biomass. Renew Sust Energ Rev 137:110172. https://doi.org/10.1016/j.rser.2020.110172

Lee CBTL, Wu TY, Cheng CK et al (2021) Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Ind Crop Prod 166:113397. https://doi.org/10.1016/j.indcrop.2021.113397

Li J, Song Y, Cai Y (2020a) Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environ Pollut 257:113570. https://doi.org/10.1016/j.envpol.2019.113570

Li JF, Huang YF, Ding Y et al (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395. https://doi.org/10.1038/nature08907

Li S, Zhao S, Yan S et al (2019) Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production —a review. Chin J Chem Eng 27:2845–2856. https://doi.org/10.1016/j.cjche.2019.03.028

Li W, Wufuer R, Duo J et al (2020b) Microplastics in agricultural soils: extraction and characterization after different periods of polythene film mulching in an arid region. Sci Total Environ 749:141420. https://doi.org/10.1016/j.scitotenv.2020.141420

Li Y, Jiang S, Wang T et al (2018) Research on biochar via a comprehensive scientometric approach. RSC Adv 8:28700–28709. https://doi.org/10.1039/c8ra05689g

Li Y, Yao J, Nie P et al (2020c) An effective method for the rapid detection of microplastics in soil. Chemosphere 276:128696. https://doi.org/10.1016/j.chemosphere.2020.128696

Likotrafiti E, Oniciuc E, Prieto M et al (2018) Risk assessment of antimicrobial resistance along the food chain through culture-independent methodologies. EFSA J 16:e160811. https://doi.org/10.2903/j.efsa.2018.e160811

Lin Q, Chousalkar KK, McWhorter AR, Khan S (2021) Salmonella Hessarek: an emerging food borne pathogen and its role in egg safety. Food Control 125:107996. https://doi.org/10.1016/j.foodcont.2021.107996

Liu G, Agostinho F, Duan H et al (2020a) Environmental impacts characterization of packaging waste generated by urban food delivery services. A big-data analysis in Jing-Jin-Ji region (China). Waste Manag 117:157–169. https://doi.org/10.1016/j.wasman.2020.07.028

Liu P, Qi S, Li D, Ravenscroft N (2021) Promoting agricultural innovation as a means of improving China’s rural environment. J Environ Manag 280:111675. https://doi.org/10.1016/j.jenvman.2020.111675

Liu X, Sun T, Feng Q, Zhang D (2020b) Dynamic environmental regulation threshold effect of technical progress on China’s environmental pollution. J Clean Prod 272:122780. https://doi.org/10.1016/j.jclepro.2020.122780

Lu Y, Song S, Wang R et al (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15. https://doi.org/10.1016/j.envint.2014.12.010

Luo Q, Hua LZ, Yin H et al (2018) Migration and potential risk of trace phthalates in bottled water: a global situation. Water Res 147:362–372

Majdinasab M, Daneshi M, Louis Marty J (2021) Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: focusing on antibody, aptamer and molecularly imprinted polymer. Talanta 232:122397. https://doi.org/10.1016/j.talanta.2021.122397

Majdinasab M, Hayat A, Marty JL (2018) Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends Anal Chem 107:60–77. https://doi.org/10.1016/j.trac.2018.07.016

Majdinasab M, Mishra RK, Tang X, Marty JL (2020) Detection of antibiotics in food: new achievements in the development of biosensors. TrAC - Trends Anal Chem 127:115883. https://doi.org/10.1016/j.trac.2020.115883

Majdinasab M, Mitsubayashi K, Marty JL (2019) Optical and electrochemical sensors and biosensors for the detection of quinolones. Trends Biotechnol 37:898–915. https://doi.org/10.1016/j.tibtech.2019.01.004

Mankar AR, Pandey A, Modak A, Pant KK (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol 334:125235. https://doi.org/10.1016/j.biortech.2021.125235

Medina S, Pereira JA, Silva P et al (2019) Food fingerprints – a valuable tool to monitor food authenticity and safety. Food Chem 278:144–162. https://doi.org/10.1016/j.foodchem.2018.11.046

Menzel C (2020) Improvement of starch films for food packaging through a three-principle approach: antioxidants, cross-linking and reinforcement. Carbohydr Polym 250. https://doi.org/10.1016/j.carbpol.2020.116828

Mohamad N, Mazlan MM, Tawakkal ISMA et al (2020) Development of active agents filled polylactic acid films for food packaging application. Int J Biol Macromol 163:1451–1457. https://doi.org/10.1016/j.ijbiomac.2020.07.209

Mohd Ali M, Hashim N, Aziz SA, Lasekan O (2020) Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends Food Sci Technol 105:176–185. https://doi.org/10.1016/j.tifs.2020.09.003

More S, Bampidis V, Benford D et al (2020) Evaluation of existing guidelines for their adequacy for the microbial characterisation and environmental risk assessment of microorganisms obtained through synthetic biology. EFSA J 18:e06263. https://doi.org/10.2903/j.efsa.2020.6263

Motelica L, Ficai D, Ficai A et al (2020) Innovative antimicrobial chitosan/ZnO/Ag NPs/citronella essential oil nanocomposite—potential coating for grapes. Foods 9:1801. https://doi.org/10.3390/foods9121801

Mugwagwa LR, Chimphango AFA (2020) Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating. Food Packag Shelf Life 24:100481. https://doi.org/10.1016/j.fpsl.2020.100481

Mulakkal MC, Castillo Castillo A, Taylor AC et al (2021) Advancing mechanical recycling of multilayer plastics through finite element modelling and environmental policy. Resour Conserv Recycl 166:105371. https://doi.org/10.1016/j.resconrec.2020.105371

Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

Nelis JLD, Tsagkaris AS, Dillon MJ et al (2020) Smartphone-based optical assays in the food safety field. TrAC - Trends Anal Chem 129:115934. https://doi.org/10.1016/j.trac.2020.115934

Nešić A, Gordić M, Davidović S et al (2018) Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr Polym 195:128–135. https://doi.org/10.1016/j.carbpol.2018.04.076

Newell DG, Koopmans M, Verhoef L et al (2010) Food-borne diseases - the challenges of 20years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021

Ni J, Steinberger-Wilckens R, Jiang S et al (2021) Novel study on microbial fuel cells via a comprehensive bibliometric and dynamic approach. Rev Environ Health. https://doi.org/10.1515/reveh-2020-0123

Ong VZ, Wu TY (2020) An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products. Renew Sust Energ Rev 132:109924. https://doi.org/10.1016/j.rser.2020.109924

Osorio J, Aznar M, Nerín C (2019) Identification of key odorant compounds in starch-based polymers intended for food contact materials. Food Chem 285:39–45. https://doi.org/10.1016/j.foodchem.2019.01.157

Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303. https://doi.org/10.1016/j.aaspro.2014.11.042

Ouyang Q, Wang L, Ahmad W et al (2021) A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem 349:129157. https://doi.org/10.1016/j.foodchem.2021.129157

Pan C, Chen H, Lin Q et al (2020) Evaluation of the SERS-based strategy in fast and on-site food safety inspection: qualitative and quantitative analysis of trace unexpected herbicide in complicated herbicide matrix. J Raman Spectrosc. https://doi.org/10.1002/jrs.6026

Patrício Silva AL, Prata JC, Walker TR et al (2021) Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem Eng J 405:126683. https://doi.org/10.1016/j.cej.2020.126683

Pattanayaiying R, Sane A, Photjanataree P, Cutter CN (2019) Thermoplastic starch/polybutylene adipate terephthalate film coated with gelatin containing nisin Z and lauric arginate for control of foodborne pathogens associated with chilled and frozen seafood. Int J Food Microbiol 290:59–67. https://doi.org/10.1016/j.ijfoodmicro.2018.09.015

Pauk V, Krejčí M, Lemr K (2021) Unified chromatography – mass spectrometry as a versatile tool for determination of food dyes. Anal Chim Acta 1157:338401. https://doi.org/10.1016/j.aca.2021.338401

Pérez-Arauz AO, Aguilar-Rabiela AE, Vargas-Torres A et al (2019) Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil. Food Packag Shelf Life 20:100297. https://doi.org/10.1016/j.fpsl.2019.01.001

Pilevar Z, Bahrami A, Beikzadeh S et al (2019) Migration of styrene monomer from polystyrene packaging materials into foods: characterization and safety evaluation. Trends Food Sci Technol 91:248–261

Pires SM, Duarte AS, Hald T (2018) Source attribution and risk assessment of antimicrobial resistance. Microbiol Spectr 6. https://doi.org/10.1128/microbiolspec.arba-0027-2017

Poyatos-Racionero E, Ros-Lis JV, Vivancos JL, Martínez-Máñez R (2018) Recent advances on intelligent packaging as tools to reduce food waste. J Clean Prod 172:3398–3409. https://doi.org/10.1016/j.jclepro.2017.11.075

Praveena SM, Cheema MS, Guo H-R (2019) Non-nutritive artificial sweeteners as an emerging contaminant in environment: a global review and risks perspectives. Ecotoxicol Environ Saf 170:699–707. https://doi.org/10.1016/j.ecoenv.2018.12.048

Primpke S, Christiansen SH, Cowger W et al (2020) Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics. Appl Spectrosc 74:1012–1047. https://doi.org/10.1177/0003702820921465

Priyadarshi R, Rhim JW (2020) Chitosan-based biodegradable functional films for food packaging applications. Innov Food Sci Emerg Technol 62:102346

Purwiyanto AIS, Suteja Y, Trisno et al (2020) Concentration and adsorption of Pb and Cu in microplastics: case study in aquatic environment. Mar Pollut Bull 158:111380. https://doi.org/10.1016/j.marpolbul.2020.111380

Qi J, Fan X-X, Deng D-M et al (2020) Progress in rapid detection techniques using paper-based platforms for food safety. Chin J Anal Chem 48:1616–1624. https://doi.org/10.1016/S1872-2040(20)60064-0

Qin G, Niu Z, Yu J et al (2021) Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267:129205. https://doi.org/10.1016/j.chemosphere.2020.129205

Qin J, Kim MS, Chao K et al (2017) Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique. Food Control 75:246–254. https://doi.org/10.1016/j.foodcont.2016.12.012

Rajeswari A, Christy EJS, Swathi E, Pius A (2020) Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environ Chem Ecotoxicol 2:107–114. https://doi.org/10.1016/j.enceco.2020.07.003

Rajeswari A, Jackcina Stobel Christy E, Ida Celine Mary G et al (2019) Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-a comparative study. J Environ Chem Eng 7:103278. https://doi.org/10.1016/j.jece.2019.103278

Rajmohan KVS, Ramya C, Raja Viswanathan M, Varjani S (2019) Plastic pollutants: effective waste management for pollution control and abatement. Curr Opin Environ Sci Heal 12:72–84. https://doi.org/10.1016/j.coesh.2019.08.006

Riaz A, Lagnika C, Luo H et al (2020) Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydr Polym 235:115944. https://doi.org/10.1016/j.carbpol.2020.115944

Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450. https://doi.org/10.1016/j.fpsl.2019.100450

Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C (2016) Electrochemical biosensors for fast detection of food contaminants - trends and perspective. TrAC - Trends Anal Chem 79:80–87. https://doi.org/10.1016/j.trac.2015.12.017

Safiur Rahman M, Solaiman Hossain M, Ahmed MK et al (2019) Assessment of heavy metals contamination in selected tropical marine fish species in Bangladesh and their impact on human health. Environ Nanotechnol Monit Manag 11:100210. https://doi.org/10.1016/j.enmm.2019.100210

Sagbara G, Zabbey N, Sam K, Nwipie GN (2020) Heavy metal concentration in soil and maize (Zea mays L.) in partially reclaimed refuse dumpsite ‘borrow-pit’ in Port Harcourt, Nigeria. Environ Technol Innov 18:100745. https://doi.org/10.1016/j.eti.2020.100745

Saha N, Mollah MZI, Alam MF, Safiur Rahman M (2016) Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70:110–118. https://doi.org/10.1016/j.foodcont.2016.05.040

Sangroniz A, Sangroniz L, Aranburu N et al (2018) Blends of biodegradable poly(butylene adipate-co-terephthalate) with poly(hydroxi amino ether) for packaging applications: miscibility, rheology and transport properties. Eur Polym J 105:348–358. https://doi.org/10.1016/j.eurpolymj.2018.06.016

Santana Oliveira I, da Silva Junior AG, de Andrade CAS, Lima Oliveira MD (2019) Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Curr Opin Food Sci 29:64–79. https://doi.org/10.1016/j.cofs.2019.08.004

Saraiva Rodrigues SC, da Silva AS, de Carvalho LH et al (2020) Morphological, structural, thermal properties of a native starch obtained from babassu mesocarp for food packaging application. J Mater Res Technol 9:15670–15678. https://doi.org/10.1016/j.jmrt.2020.11.030

Sarker A, Deepo DM, Nandi R et al (2020) A review of microplastics pollution in the soil and terrestrial ecosystems: a global and Bangladesh perspective. Sci Total Environ 733:139296. https://doi.org/10.1016/j.scitotenv.2020.139296

Scaria J, Gopinath A, Nidheesh PV (2021) A versatile strategy to eliminate emerging contaminants from the aqueous environment: heterogeneous Fenton process. J Clean Prod 278:124014. https://doi.org/10.1016/j.jclepro.2020.124014

Shahid S, Razzaq S, Farooq R, Nazli ZIH (2020) Polyhydroxyalkanoates: next generation natural biomolecules and a solution for the world’s future economy. Int J Biol Macromol 166:297–321

Shen J, Zhao Q, Cheng Z et al (2020) Insights into source origins and formation mechanisms of nitrate during winter haze episodes in the Yangtze River Delta. Sci Total Environ 741:140187. https://doi.org/10.1016/j.scitotenv.2020.140187

Shen X, Hao J, Kong L et al (2021a) Variation characteristics of fine particulate matter and its components in diesel vehicle emission plumes. J Environ Sci 107:138–149. https://doi.org/10.1016/j.jes.2021.01.034

Shen X, Shi Y, Kong L et al (2021b) Particle number emissions from light-duty gasoline vehicles in Beijing, China. Sci Total Environ 773:145663. https://doi.org/10.1016/j.scitotenv.2021.145663

Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133:291–307

Silveira RF, Roque-Borda CA, Vicente EF (2021) Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: an overview. Anim Nutr. https://doi.org/10.1016/j.aninu.2021.01.004

Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

Singh H, Bhardwaj SK, Khatri M et al (2020a) UVC radiation for food safety: an emerging technology for the microbial disinfection of food products. Chem Eng J 417:128084. https://doi.org/10.1016/j.cej.2020.128084

Singh S, Dhanjal DS, Sonali et al (2020b) An insight in bacteriophage based biosensors with focus on their detection methods and recent advancements. Environ Technol Innov 20:101081. https://doi.org/10.1016/j.eti.2020.101081

Song Y, Yang T, Li Z et al (2020) Research on the direct and indirect effects of environmental regulation on environmental pollution: empirical evidence from 253 prefecture-level cities in China. J Clean Prod 269:122425. https://doi.org/10.1016/j.jclepro.2020.122425

Stoica M, Marian Antohi V, Laura Zlati M, Stoica D (2020) The financial impact of replacing plastic packaging by biodegradable biopolymers - a smart solution for the food industry. J Clean Prod 277:124013. https://doi.org/10.1016/j.jclepro.2020.124013

Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558

Suhani I, Sahab S, Srivastava V, Singh RP (2021) Impact of cadmium pollution on food safety and human health. Curr Opin Toxicol 27:1–7. https://doi.org/10.1016/j.cotox.2021.04.004

Suman M, Cavanna D, Sammarco G et al (2021) Fighting food frauds exploiting chromatography-mass spectrometry technologies: scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. TrAC Trends Anal Chem 142:116305. https://doi.org/10.1016/j.trac.2021.116305

Sun F, DAI Y, Yu X (2017) Air pollution, food production and food security: a review from the perspective of food system. J Integr Agric 16:2945–2962

Swaroop C, Shukla M (2019) Development of blown polylactic acid-MgO nanocomposite films for food packaging. Compos Part A Appl Sci Manuf 124:105482. https://doi.org/10.1016/j.compositesa.2019.105482

Swaroop C, Shukla M (2018) Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 113:729–736. https://doi.org/10.1016/j.ijbiomac.2018.02.156

Titchou FE, Zazou H, Afanga H et al (2021) Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundw Sustain Dev 13:100575. https://doi.org/10.1016/j.gsd.2021.100575

Tompkin RB (2002) Control of Listeria monocytogenes in the food-processing environment. J Food Prot 65:709–725

Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309. https://doi.org/10.1016/j.envint.2015.12.017

Tsai MY, Lin CF, Yang WC et al (2019) Health risk assessment of banned veterinary drugs and quinolone residues in shrimp through liquid chromatography-tandem mass spectrometry. Appl Sci 9:2463. https://doi.org/10.3390/app9122463

Van Boxstael S, Habib I, Jacxsens L et al (2013) Food safety issues in fresh produce: bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control 32:190–197. https://doi.org/10.1016/j.foodcont.2012.11.038

Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010

van Wesenbeeck CFA, Keyzer MA, van Veen WCM, Qiu H (2021) Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agric Syst 190:103093. https://doi.org/10.1016/j.agsy.2021.103093

Velusamy A, Satheesh Kumar P, Ram A, Chinnadurai S (2014) Bioaccumulation of heavy metals in commercially important marine fishes from Mumbai Harbor, India. Mar Pollut Bull 81:218–224. https://doi.org/10.1016/j.marpolbul.2014.01.049

Vilarinho F, Sendón R, van der Kellen A et al (2019) Bisphenol A in food as a result of its migration from food packaging. Trends Food Sci Technol 91:33–65

Vipham JL, Amenu K, Alonso S et al (2020) No food security without food safety: lessons from livestock related research. Glob Food Sec 26:100382. https://doi.org/10.1016/j.gfs.2020.100382

Vitale G, Mosna D, Bottani E et al (2018) Environmental impact of a new industrial process for the recovery and valorisation of packaging materials derived from packaged food waste. Sustain Prod Consum 14:105–121. https://doi.org/10.1016/j.spc.2018.02.001

Wainaina S, Horváth IS, Taherzadeh MJ (2018) Biochemicals from food waste and recalcitrant biomass via syngas fermentation: a review. Bioresour Technol 248:113–121. https://doi.org/10.1016/j.biortech.2017.06.075

Wang C, Xiao R, Wang S et al (2019a) Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens Bioelectron 146:111754. https://doi.org/10.1016/j.bios.2019.111754

Wang L, Luo D, Liu X et al (2021a) Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere 264:128436. https://doi.org/10.1016/j.chemosphere.2020.128436

Wang P, Chen H, Kopittke PM, Zhao F-J (2019b) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048. https://doi.org/10.1016/j.envpol.2019.03.063

Wang R, Han X, Pang H et al (2021b) Illuminating a time-response mechanism in mice liver after PM2.5 exposure using metabolomics analysis. Sci Total Environ 767:144485. https://doi.org/10.1016/j.scitotenv.2020.144485

Wang W, Leung AOW, Chu LH, Wong MH (2018) Phthalates contamination in China: status, trends and human exposure-with an emphasis on oral intake. Environ Pollut 238:771–782

Wang Y, Wang X, Li Y et al (2021c) Effects of exposure of polyethylene microplastics to air, water and soil on their adsorption behaviors for copper and tetracycline. Chem Eng J 404:126412. https://doi.org/10.1016/j.cej.2020.126412

Weidemaier K, Carruthers E, Curry A et al (2015) Real-time pathogen monitoring during enrichment: a novel nanotechnology-based approach to food safety testing. Int J Food Microbiol 198:19–27. https://doi.org/10.1016/j.ijfoodmicro.2014.12.018

Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. https://doi.org/10.1021/es204168d

Weng X, Neethirajan S (2017) Ensuring food safety: quality monitoring using microfluidics. Trends Food Sci Technol 65:10–22. https://doi.org/10.1016/j.tifs.2017.04.015

Wohner B, Gabriel VH, Krenn B et al (2020) Environmental and economic assessment of food-packaging systems with a focus on food waste. Case study on tomato ketchup. Sci Total Environ 738:139846. https://doi.org/10.1016/j.scitotenv.2020.139846

Woraprayote W, Pumpuang L, Tosukhowong A et al (2018) Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT Food Sci Technol 89:427–433. https://doi.org/10.1016/j.lwt.2017.10.026

Wu B, Shen X, Cao X et al (2016) Characterization of the chemical composition of PM2.5 emitted from on-road China III and China IV diesel trucks in Beijing, China. Sci Total Environ 551–552:579–589. https://doi.org/10.1016/j.scitotenv.2016.02.048

Wu B, Xuan K, Zhang X et al (2021a) Mass absorption cross-section of black carbon from residential biofuel stoves and diesel trucks based on real-world measurements. Sci Total Environ 784:147225. https://doi.org/10.1016/j.scitotenv.2021.147225

Wu M, Yang C, Du C, Liu H (2020a) Microplastics in waters and soils: occurrence, analytical methods and ecotoxicological effects. Ecotoxicol Environ Saf 202:110910. https://doi.org/10.1016/j.ecoenv.2020.110910

Wu MY-C, Hsu M-Y, Chen S-J et al (2017) Point-of-care detection devices for food safety monitoring: proactive disease prevention. Trends Biotechnol 35:288–300. https://doi.org/10.1016/j.tibtech.2016.12.005

Wu ST, Hammons SR, Silver R et al (2020b) Retail deli managers and associates have better food safety culture in stores with lower Listeria monocytogenes contamination. Food Control 110:106983. https://doi.org/10.1016/j.foodcont.2019.106983

Wu Z, Pu H, Sun D-W (2021b) Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: principles and recent applications. Trends Food Sci Technol 110:393–404. https://doi.org/10.1016/j.tifs.2021.02.013

Xie J, Hung YC (2018) UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. Lwt 96:307–314. https://doi.org/10.1016/j.lwt.2018.05.050

Yao L, Ouyang L, Lv J et al (2021) Rapid and sensitive SERS detection of food contaminants by using nano-Ag aggregates with controllable hydrophobicity. Microchem J 166:106221. https://doi.org/10.1016/j.microc.2021.106221

Yao X, Wang K, Zhang S et al (2020) Degradation of the mixture of ethyl formate, propionic aldehyde, and acetone by Aeromonas salmonicida: a novel microorganism screened from biomass generated in the citric acid fermentation industry. Chemosphere 258:127320. https://doi.org/10.1016/j.chemosphere.2020.127320

Yasotha A, Dabadé DS, Singh VP, Sivakumar T (2020) Risk assessment of heavy metals in milk from cows reared around industrial areas in India. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00758-1

Ye FF, Yang LH, Wang YM, Chen L (2020) An environmental pollution management method based on extended belief rule base and data envelopment analysis under interval uncertainty. Comput Ind Eng 144:106454. https://doi.org/10.1016/j.cie.2020.106454

Ye Y, Guo H, Sun X (2019) Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 126:389–404. https://doi.org/10.1016/j.bios.2018.10.039

Yu B, Wang X, Dong KF et al (2020a) Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Mar Pollut Bull 159:111505. https://doi.org/10.1016/j.marpolbul.2020.111505

Yu F, Li Y, Huang G et al (2020b) Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution. Chemosphere 260:127650. https://doi.org/10.1016/j.chemosphere.2020.127650

Zakka WP, Abdul Shukor Lim NH, Chau Khun M (2021) A scientometric review of geopolymer concrete. J Clean Prod 280:124353. https://doi.org/10.1016/j.jclepro.2020.124353

Zeb A, Liu W, Wu J et al (2021) Knowledge domain and emerging trends in nanoparticles and plants interaction research: a scientometric analysis. NanoImpact 21:100278. https://doi.org/10.1016/j.impact.2020.100278

Zeng T, Durif F, Robinot E (2021) Can eco-design packaging reduce consumer food waste? an experimental study. Technol Forecast Soc Change 162:120342. https://doi.org/10.1016/j.techfore.2020.120342

Zhang S, Wang J, Yan P et al (2020) Non-biodegradable microplastics in soils: a brief review and challenge. J Hazard Mater 409:124525. https://doi.org/10.1016/j.jhazmat.2020.124525

Zhang X-N, Guo Q-P, Shen X-X et al (2015) Water quality, agriculture and food safety in China: Current situation, trends, interdependencies, and management. J Integr Agric 14:2365–2379. https://doi.org/10.1016/S2095-3119(15)61128-5

Zhang X, Wu D, Zhou X et al (2019) Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC - Trends Anal Chem 121:115668. https://doi.org/10.1016/j.trac.2019.115668

Zhenquan V, Yeong T, Kai K et al (2021) Industrial crops & products A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Ind Crop Prod 160:112974. https://doi.org/10.1016/j.indcrop.2020.112974

Zhou X, Wang J, Li H et al (2021) Microplastic pollution of bottled water in China. J Water Process Eng 40:101884. https://doi.org/10.1016/j.jwpe.2020.101884

Zhou Y, Liu X, Wang J (2019) Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Sci Total Environ 694:133798. https://doi.org/10.1016/j.scitotenv.2019.133798

Zhou Y, Wang J, Zou M et al (2020) Microplastics in soils: a review of methods, occurrence, fate, transport, ecological and environmental risks. Sci Total Environ 748:141368. https://doi.org/10.1016/j.scitotenv.2020.141368

Download references

This work was supported by the Beijing Municipal Commission of Education (grant no. PXM2019_014213_000007) and School Level Cultivation Fund of Beijing Technology and Business University for Distinguished and Excellent Young Scholars (grant no. BTBUYP2020).

Author information

Authors and affiliations.

School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China

Shanxue Jiang, Fang Wang, Qirun Li & Zhiliang Yao

State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China

Shanxue Jiang, Fang Wang & Zhiliang Yao

Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China

Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China

School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China

Huijiao Wang

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualisation: SJ and ZY; methodology: SJ; writing—original draft preparation: SJ; writing—review and editing: FW, QL, HS, HW, and ZY; supervision: ZY; funding acquisition: ZY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhiliang Yao .

Ethics declarations

Ethics approval and consent to participate.

Not applicable

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Method of the scientometric study, percentage distribution of document types, number of publications in different languages, the top 20 research areas, word cloud generated from abstracts and titles were provided in the Supplementary Information file . The raw data and processed results were provided in the Supplementary Data file (in .xlsx format).

(DOCX 569 kb)

(XLSX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Jiang, ., Wang, F., Li, Q. et al. Environment and food safety: a novel integrative review. Environ Sci Pollut Res 28 , 54511–54530 (2021). https://doi.org/10.1007/s11356-021-16069-6

Download citation

Received : 03 June 2021

Accepted : 16 August 2021

Published : 25 August 2021

Issue Date : October 2021

DOI : https://doi.org/10.1007/s11356-021-16069-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Food safety
  • Environmental pollution
  • Food packaging
  • Biodegradable polymers
  • Microplastics
  • Soil pollution
  • Find a journal
  • Publish with us
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.41(2); 2018 Apr

Food safety in the 21st century

a Division of Occupational & Environmental Medicine, University of California Irvine School of Medicine, Irvine, CA, USA

b Department of Occupational Medicine, Sharp HealthCare/Sharp Rees-Stealy Medical Group, San Diego, CA, USA

Huei-Shyong Wang

c Division of Pediatric Neurology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan

d College of Medicine, Chang Gung University, Taoyuan, Taiwan

Suresh Menon

e Department of Research and Development, Menon Biosensors Inc., Escondido, CA, USA

Food is essential to life, hence food safety is a basic human right. Billons of people in the world are at risk of unsafe food. Many millions become sick while hundreds of thousand die yearly. The food chain starts from farm to fork/plate while challenges include microbial, chemical, personal and environmental hygiene. Historically, documented human tragedies and economic disasters due to consuming contaminated food occurred as a result of intentional or unintentional personal conduct and governmental failure to safeguard food quality and safety. While earlier incidents were mainly chemical contaminants, more recent outbreaks have been due to microbial agents. The Disability Adjusted Life Years (DALYs) attributed to these agents are most devastating to children younger than 5 years of age, the elderly and the sick. To ensure food safety and to prevent unnecessary foodborne illnesses, rapid and accurate detection of pathogenic agents is essential. Culture-based tests are being substituted by faster and sensitive culture independent diagnostics including antigen-based assays and polymerase chain reaction (PCR) panels. Innovative technology such as Nuclear Magnetic Resonance (NMR) coupled with nanoparticles can detect multiple target microbial pathogens' DNA or proteins using nucleic acids, antibodies and other biomarkers assays analysis. The food producers, distributors, handlers and vendors bear primary responsibility while consumers must remain vigilant and literate. Government agencies must enforce food safety laws to safeguard public and individual health. Medical providers must remain passionate to prevent foodborne illnesses and may consider treating diseases with safe diet therapy under proper medical supervision. The intimate collaboration between all the stakeholders will ultimately ensure food safety in the 21st century.

Introduction and historical perspective

Food safety is a basic human right.

Billions of people in the world are at risk of unsafe food. Many millions become sick while hundreds of thousands die every year because they consume unsafe food. Therefore, safe food saves lives. Safe food enhances individual and population health. Safe food improves economic growth of the region where food safety is practiced and enhanced. Safe food supply depends on both sound science and equitable law enforcement. With technological advances, new regulations must be enacted to protect a continuing supply of food products that are safe and wholesome for the health and wellness of people.

As the standard of living improves, concerns over food safety and potential contaminants will continue to be an important health issue. Consumers demand quality and safety of products they consume because food as energy and nutrient is necessary to sustain life. In general, consumers rely on government to ensure all food products not only are safe but are sold as what they claim to contain. For example, a jar of olive oil labeled as 100% virgin olive oil must contain exactly what the label says except the naturally occurring trace elements that are part of olive oil and which cannot be extracted or eliminated completely without destroying the olive oil.

Challenges and tragedies in food safety include chemical, biological, personal hygiene and environmentally related incidents. Historically, incidents of food products contaminated with industrial pollutants have been well documented. Japan, Iraq, United States and other nations experienced incidents where hundreds and thousands of people fell ill or died.

Most notorious is the Minamata disease (methylmercury poisoning) first discovered in 1956 around Minamata Bay in Kumamoto Prefecture, Japan. A second epidemic occurred in 1965 along the Agano River, in Niigata Prefecture, Japan. Symptoms of this disease included cerebellar ataxia, sensory disturbance, narrowing of the visual field, and hearing and speech disturbances. The discharged methyl mercury accumulated in fishes and shellfishes and caused poisoning on consumption [1] , [2] .

Before 1960, the local population in the Jinzu river basin of Japan suffered an endemic illness called “Itai–Itai” due to the residents in that area consumed rice contaminated with high level of cadmium. An investigation in 1961 determined that the Mitsui Mining and Smelting's Kamioka Mining Station caused the cadmium pollution and that the worst-affected areas were 30 km downstream of the mine. Not until 1968 the Ministry of Health and Welfare of Japan issued a formal statement about the symptoms of “itai–itai” disease is in fact caused by the cadmium poisoning [3] .

In 1968, a mass poisoning by polychlorinated biphenyls (PCBs) occurred in northern Kyushu, Japan where rice oil that had become contaminated by heat-degraded PCBs during processing. These patients suffered a unique skin disease called chloracne. In addition, hepatic, reproductive, endocrine, neurobehavioral and carcinogenic effects have been described. The Illness was coined “Yusho” disease (literally oil syndrome). It should be noted that Yusho was not a deliberate contamination of cooking oil [4] , [5] .

In 1971–72, a large outbreak of mercury poisoning caused by the consumption of seed dressed with organomercury compounds occurred in Iraq. The source of organomercury came from seeds are treated with fungicides before planting, mainly to control infection by seed- or soil-borne fungi. Patients who consumed these seeds suffered tremor, confusion, hallucination, delusion and seizure [6] .

Similar food contamination incidents have appeared in Taiwan around 1979. It was discovered that cooking oil contaminated with PCBs and dibenzofurans (PCDFs) was sold to the public. The volume of contaminated oil and the nature of oil processing, packaging, labeling, distribution, sales, and usage were extensive that about 2000 people consumed contaminated eating oil. A recent study concludes that exposure to PCBs and PCDFs may increase mortality pattern even 3 decades later [7] . The short and long term health consequences of people consumed contaminated oil during recent (2014–5) oil incidents in Taiwan are yet to be studied.

In 1989, the United States Food & Drug Administration (US FDA) issued a “fats and oils” injunction against brokers buying and selling non-feed oils, such as waste industrial oil, and labeled them for animal feed use. One case evolved from findings PCB residue in turkeys marketed for human food. FDA field investigators traced the PCBs to waste oils from a chemical plant's scum pond, labeled “industrial waste not for animal feed use.” Further investigation showed that merchants “buy and sell” railcars and tankers of oils and invoice the products to feed manufacturers as feed grade regardless of source. The manufacturer might have blended it with other fats and oils so its original identity and any contaminants were greatly diluted. This US incident was not widespread because of the alert FDA field investigators program and state of the art food toxicology laboratory that stopped a major crisis [8] .

In the 21st century, food safety issues have not waned. Local outbreaks can turn into international emergencies due to the speed and range of product distribution. Serious foodborne disease outbreaks have occurred on every continent. In China alone, the 2008 contamination of infant formula with melamine affected 300,000 infants and young children, 51, 900 were hospitalized and 6 of whom died. In addition to renal damages, complications such as tumorigenesis or growth retardation in the future have been raised [9] , [10] .

In 2011, the Enteropathogenic Escherichia coli ( EHE coli ) outbreak in Germany linked to contaminated fenugreek sprouts, where cases were reported in 8 countries in Europe and North America, leading to 53 deaths. The 2011 E . coli outbreak in Germany caused US$ 1.3 billion in losses for farmers and industries and US$ 236 million in emergency aid payments to 22 European Union Member States [11] .

Unsafe food poses global health threats. The young, the elderly and the sick are particularly vulnerable. If food supplies are unsecured, population shifts to less healthy diets and consume more “unsafe foods” – in which chemical, microbiological and other hazards pose health risks, that in turn costs higher healthcare expenditure and drains national wealth [12] . In light of recurrent food contamination incidents, food safety in the 21st century should expand beyond improving nutritional profile, transparency of ingredients and regulations of unhealthy foods to include regular monitoring, surveillance and enforcement of food products in furtherance of the general public well-being and prevention of foodborne illnesses [13] . For up to date information, the Center for Science in the Public Interest provides comprehensive tracking and documentation of foodborne illness outbreaks since 1997  [14] .

Major challenges of food safety

Challenges of food safety include four major areas.

  • • Microbiological Safety. Food by nature is biological. It is capable of supporting the growth of microbials that are potential sources of foodborne diseases. Viruses are more responsible for the majority of foodborne illnesses but hospitalizations and deaths associated with foodborne infections are due to bacterial agents. The illnesses range from mild gastroenteritis to neurologic, hepatic, and renal syndromes caused by either toxin from the disease-causing microbe. Foodborne bacterial agents are the leading cause of severe and fatal foodborne illnesses. Over 90% of food-poisoning illnesses are caused by species of Staphylococcus , Salmonella , Clostridium , Campylobacter , Listeria , Vibrio , Bacillus , and E . coli. For instance, in the US and France, in the last decade of the 20th century, Salmonella was the most frequent cause of bacterial foodborne illness accounting for 5700 to 10,200 cases, followed by Campylobacter for 2600 to 3500 cases and Listeria for 304 cases [15] .
  • • Chemical Safety. Nonfood grade chemical additives, such as colorants and preservatives, and contaminants, such as pesticide residues, have been found in foods. Some food samples had higher levels of heavy metals such as lead, cadmium, arsenic, mercury, and copper than average food samples, suggesting possible leaching from the utensils and inadequate food hygiene.
  • • Personal Hygiene. Poor personal hygiene practices of food handler and preparers pose considerable risks to personal and public health. Simple activities such as thorough hand washing and adequate washing facilities can prevent many foodforne illnesses.
  • • Environmental Hygiene. Inadequate recycling and waste disposal equipment and facilities lead to the accumulation of spoiled and contaminated food. This leads to an increased pest and insect population that can result in risk of food contamination and spoilage. Poor sanitary conditions in the area where foods are processed and prepared contribute to poor food storage and transport as well as selling of unhygienic food.

Why is safe food supply important?

A safe food supply is important because of significant disease burden as well as economic burden to the society and nation. In US alone, foodborne illnesses each year result in 325,000 hospitalizations and 5000 deaths [16] . Worldwide, it has been estimated that more than one billion (1,000,000,000) episodes of food poisoning-related diarrhea occur annually [16] ; these poisonings are responsible for the deaths of about 3 million children a year, mostly in underdeveloped regions.

Foodborne illnesses associated with microbial pathogens or other food contaminants pose serious health threat in developing and developed countries. WHO estimates less than 10% of foodborne illness cases are reported whereas less than 1% of cases are reported in developing nations [17] . In a recent report, WHO estimates 600 million foodborne illnesses and 420,000 deaths in 2010. The most frequent causes of foodborne illness were diarrheal disease agents, particularly norovirus and Campylobacter spp. Other major causes of foodborne deaths were Salmonella typhi , Taenia solium , hepatitis A virus, and mycotoxins especially aflatoxins [18] , [19] .

Children are disproportionately bearing this burden - accounting for an estimated half of foodborne illness cases annually. Children are also among those most at risk of associated death and serious lifelong health complications from foodborne diseases. They are at high risk for foodborne illness for a number of reasons. Children have developing immune systems that are not always well equipped to fight infection; they are often smaller in size than adults, reducing the amount of pathogen needed to make them sick; and children have limited control over their diets and lack the developmental maturity necessary to carefully judge food safety risks.

From economic perspective, access to sufficient amounts of safe and nutritious food is crucial to sustaining life, promoting good health and economic growth. According to one study, the average cost per case of foodborne illness (in US dollars) was $1626 for the enhanced cost-of-illness model and $1068 for the basic model. The resulting aggregated annual cost of illness was $77.7 billion and $51.0 billion for the enhanced and basic models, respectively. The study defines basic cost-of-illness model to include economic estimates for medical costs, productivity losses, and illness-related mortality. The enhanced cost-of-illness model replaces the productivity loss estimates with a more inclusive pain, suffering, and functional disability measure based on monetized quality-adjusted life year estimates [20] .

Major foodborne illnesses and burden

According to US Centers for Disease Control, foodborne diseases cause an estimated 48 million illnesses each year in the United States, including 9.4 million caused by known pathogens. The pathogen-commodity pairs most commonly responsible for outbreaks were scombroid toxin/histamine and fish (317 outbreaks), ciguatoxin and fish (172 outbreaks), Salmonella and poultry (145 outbreaks), and norovirus and leafy vegetables (141 outbreaks). The pathogen-commodity pairs most commonly responsible for outbreak-related illnesses were norovirus and leafy vegetables (4011 illnesses), Clostridium perfringens and poultry (3452 illnesses), Salmonella and vine-stalk vegetables (3216 illnesses), and C . perfringens and beef (2963 illnesses) [21] , [22] . Examples of unsafe food that commonly contain these hazards include uncooked foods of animal origin, fruits and vegetables contaminated with feces, raw shellfish and industrial pollution.

In a comprehensive estimation, the 2015 WHO report not only provides numbers of foodborne illnesses in terms of incidence but also number of deaths and Disability Adjusted Life Years (DALYs) as a measure of burden due to foodborne related morbidity and mortality. The DALYs data are based on the metrics established by WHO and are consistent with the Global Burden of Disease project [18] . Together, these foodborne hazards caused an enormous human burden of 33 millions DALYs with 40% among children younger than 5 year-old. With substantial global burden of foodborne diseases and deaths, the impact is most significant among young children living in low income regions where food hygiene and water sanitation are below optimal standards. Therefore, improving microbial, personal, chemical and environmental health will improve overall health of children and adults alike. It should be noted that antimicrobial overuse and misuse in veterinary and human medicine has been linked to the emergence and spread of resistant bacteria, rendering the treatment of infectious diseases ineffective in animals and humans [24] .

From a global perspective, most foodborne pathogens and toxins, along with morbidity, mortality and health burden are summarized in Table 1 . Commonly encountered microbial pathogens and toxins include the following categories. A brief description of their illnesses is provided below for a quick reference.

  • • Bacteria: Salmonella , Campylobacter , and Enterohemorrhagic Escherichia coli ( EHE coli ) are among the most common foodborne pathogens. Symptoms include fever, headache, nausea, vomiting, abdominal pain and diarrhea. Sources of salmonellosis include eggs, poultry and other products of animal origin. Foodborne Campylobacter is caused by raw milk, raw or undercooked poultry and drinking water . EHE coli are associated with unpasteurized milk, undercooked meat and fresh fruits and vegetables. Listeria infection increases the risk of spontaneous abortions and stillbirths. Listeria is found in unpasteurized dairy products and various ready-to-eat foods and can grow at refrigeration temperatures. Vibrio cholerae infects people through contaminated water or food. Symptoms include abdominal pain, vomiting and profuse watery diarrhea, which may lead to severe dehydration and possibly death. Rice, vegetables, millet gruel and various types of seafood have been implicated in cholera outbreaks.
  • • Viruses: Norovirus infections are characterized by nausea, explosive vomiting, watery diarrhea and abdominal pain. Food handlers infected with Hepatitis A virus are common source of contamination and spreads typically through raw or undercooked seafood or contaminated raw produce.
  • • Parasites: Some parasites, such as fish-borne trematodes, are only transmitted through food. Others, for example Echinococcus spp, may infect people through food or direct contact with animals. Other parasites, such as Ascaris , Cryptosporidium , Entamoeba histolytica or Giardia , enter the food chain via water or soil and can contaminate fresh produce.
  • • Worms: Cestodes, nematodes, trematodes and helminths are worms most prevalent in regions where food preparation and storage, personal hygiene, water sanitation and environmental health are not routinely practiced Even though worm related foodborne illness are not as fatal as virus and bacteria, they account for a substantial burned to foodborne disability.
  • • Chemicals: Naturally occurring toxins and environmental pollutants have caused many outbreaks. In addition, chemical residues used to eradicate or control pests and worms can be an independent risk of foodborne hazard. Mycotoxins, marine biotoxins, cyanogenic glycosides and poisonous mushrooms are all natural toxins. Staple foods like corn or cereals can contain high levels of mycotoxins, such as aflatoxin and ochratoxin. A long-term exposure can affect the immune system and normal development, or cause cancer. Environmental pollutants are becoming major concerns for pediatricians and public health practitioners. Persistent organic pollutants (POPs) are compounds that accumulate in the environment and human body. Dioxins and polychlorinated biphenyls (PCBs) are byproducts of industrial processes and waste incineration. They are found in the environment and accumulate in animal food chains. Dioxins are highly toxic and can cause reproductive and developmental problems, damage the immune system, interfere with hormones and cause cancer. Finally, heavy metals such as lead, cadmium and mercury can cause neurological and kidney damage. Contamination by heavy metals in food occurs mainly through environmental pollution of air, water and soil.

Common foodborne pathogens and their medical and economic impacts.

The Uncertainty Intervals (UI) are not shown

Diagnostic advances to ensure food safety

Due to the globalization of the world's food trade, food has become a major pathway for human exposure to pathogenic microbials responsible for foodborne illness entering at many points along the value chain [23] . Thus, tracking and detecting microbials especially pathogenic bacteria in foods back to their sources pose challenges to producer, processor, distributor, and consumer of food alike. In addition, clinicians and epidemiologists are frequently confronted with diagnostic and treatment uncertainty of patients with potential foodborne infectious diseases at the point of care.

Rapid and accurate detection of foodborne pathogens is essential for public health bio-surveillance to prevent foodborne infections and ensure the safety of foods. Detection methods of microbials have improved over time [25] , [26] , [27] . Generally speaking, culture-based tests are being substituted by faster and more sensitive culture-independent diagnostic tests such as antigen-based assays and PCR panels [28] . However, these tests are used mainly in the public health laboratories not readily available for practitioners in the industry and clinical fields.

Non-culture based applications are gaining importance mainly because of their relatively quick results when compared with culture based methodologies. There are several diagnostic technologies to detecting pathogenic microbes such as Salmonella and Vibrio spp in animals and food. Ideally, microbial pathogens and contaminants can be detected at relatively low cost in the field because of assay and instrument simplicity. This will ensure higher sampling efficiency of analyte of interest as a result of higher sample measurement volume, detects with near 100% specificity and accuracy as a result of orthogonal measurement [29] of biomarkers with flexibility in sample type such as soil, feces, animal tissue, fruits, water and blood. The goals are savings in time due to higher speed of detection and savings to overhead expenses. However, Point of Need Test (PONT) devices for field diagnostics do not exist for many of the pathogens of interest in agriculture, animal farming, aquaculture, wild caught animals, and food safety in general.

  • • NMR-nanotechnology

Nuclear Magnetic Resonance (NMR) nanotechnology platform detects multiple target microbials hybridizing to pathogen's DNA or protein in same the device chamber that runs assays using nucleic acid, antibodies, and other biomarkers [30] . Orthogonal confirmatory tests can be achieved via multiple biomarkers of single microbial in same detection device. This raises specificity and accuracy thus serving as both screening and confirming tool at the same time. It has a dynamic range of 8 log before saturation, more sensitive than other systems due to standard amplification process plus signal amplification through the nanoparticles. Hence, this technology increases the sensitivity and specificity of detecting target microbial. End point PCR can be applied on DNA amplification while antibody ligands method can be used for protein structure amplification. Multiplexing with large sample volume enables multiple biomarker measurements to be analyzed thus further increases specificity of the detection method.

  • • PCR-based

Polymerase chain reaction (PCR) based assay enzyme linked immuno-sorbent assay (ELISA) and instruments rely on extensive enrichment (up to 24 h) to produce enough cells for detection. Following enrichment, the assay requires DNA amplification and detection. The entire process from enrichment through detection may take several hours to days. Because of sample preparation processes and ancillary lab equipment (shakers, incubators, microplate readers) such detection system may not be practical as PONT devices. Another commonly utilized technology is based on either standard or real-time PCR (qPCR) depending on the instrument and takes up to 3.5 h for detection. The system is limited to using PCR method thus unable to perform multiple biomarkers detection. Table 2 provides an example of comparing two non-culture based detection systems for Salmonella [31] , [32] . The commercial testing brand names are not mentioned in this analysis.

Provides an example of comparing two non-culture based detection systems for Salmonella .

Medical provider's role in food therapy

Most medical professionals have focused on the treatment of diseases without seeking which are caused by long-term exposure to problematic food and food products. Some dietitians tend to keep counting the calories of macronutrients without considering chemicals adding in the food and food product that have no nutrient values. The food industry for business reasons may look mainly for continuous profit over the health of general population. Many diseases could be prevented or treated with appropriate and safe food under proper medical supervision. Ketogenic diet therapy for epilepsy is a good example. This medical food therapy began at least 100 years ago, but was abandoned gradually over the next five decades because of the appearance of antiepileptic drugs [33] , [34] . This approach has been revived about 20 years ago because 40% of epileptic patients are resistant to antiepileptic medications. As a result of medically promising indications of the ketogenic diet, it is expanding its therapeutic efficacy from epilepsy to diabetes mellitus, malignancies, and many selective neurodegenerative disorders [35] , [36] , [37] . Therefore, the important role of medical providers in food therapy cannot be over emphasized. The late Professor Ja-Liang Lin, aka Lin Chieh-liang [38] , renowned toxicologist–nephrologist left behind an important legacy that serves as a role model [39] for medical professionals to exercise the duty to improve and safeguard food quality and safety of Taiwan and international community for many years to come.

Government's role to regulate and enforce food safety

Safe food supply depends on both sound science and equitable law enforcement. Periodically, new laws and regulations must be enacted to further protect a continuing supply of food products that are safe and wholesome for the health and wellness of people.

In most countries, the overarching goal of having Food and Drug Administration (FDA) or similar agency is to take responsibility for compliance of food safety law to ensure a three-fold aim in protecting public health and safety: (1) inform citizens of nutrition and components of important food products; (2) enforce existing laws and regulations on food industry to ensure supply of safe food products; and (3) investigate and eliminate potential toxic contaminants and prosecute economic fraud via regular monitoring and surveillance on chain of food supply.

Once the laws are enacted, they must be enforced to ensure compliance by the entire food industry including industries that are directly or indirectly connected with the food source, labeling, packaging, transportation, distribution down to retail sales. The FDA is given resources and authority to write rules and regulations, assemble experts both as agency employees or consultants so to fulfill the three-prong aim of informing, enforcing and eliminating any food related safety and risk.

All governmental agencies involved in potential food chain supply must be given resources and authorities to discharge the 3-fold duty of (1) inform, (2) enforce, and (3) eliminate as described above. In addition to FDA, other governmental agencies collaborations are required. For example, US Environmental Protection Agency (EPA) is in charge of safe drinking water, clean air, and nontoxic natural resources such as soil and land; the US Department of Agriculture (USDA) is in charge of ensuring animal and plant health, as well as food and nutrition services; and Immigration and Customs Enforcement of US Department of Justice are all involved in stopping illegal and contaminated toxic substances. Therefore, to enforce food safety, inter-agency sharing of information and database is necessary [40] . Some have proposed to expand FDA's discretionary authority as part of the anti-terrorism in the post-9/11 period, particularly with respect to FDA's authority to monitor and publicize potential health risks linked to food, dietary supplements, nonprescription drugs, and other consumer health products [41] .

To equitably enforce food safety laws, sound science must be the basis of setting the regulations and protocols to inform, enforce and eliminate unsafe foods. Risk assessment is a scientific process that puts the concern about food contaminations in proper perspective. As the purpose of scientific risk calculation is to get the best estimate of the true risk using available and current information.

Generally, to assure the public safety, regulatory agencies go beyond scientific risk. To calculate regulatory risk, agencies first start with the scientific risk level. Then, the maximum consumption is estimated as if that item is consumed daily for a person's entire lifetime. This risk is multiplied by a factor of 100 or 1000 [42] , [46] as additional safety factor for the vulnerable individuals. Animal toxicology studies and any available human reports and studies are extensively reviewed and analyzed for relevancy and validity. The sponsor (usually the food manufacturer) must establish scientifically that the substance is safe and free from contamination. The sponsor must also demonstrate that any residues remaining in a food product pose no threat to human health, both acutely and chronically. If toxicological studies raise the suspicion that a contaminant may cause cancer, the agency may require the sponsor to conduct chronic feeding studies in animals. If the results show that the chemical causes cancer, the FDA uses a conservative risk assessment procedure to determine how much contaminant presents the consumer with no significant risk of cancer. Under this procedure the FDA allows the upper limit of lifetime risk of cancer to be one in one million (that is, if one million consumers ingested the contaminant for their entire lifetime of 70 years, one of them might get cancer from the drug/chemical residue). Such a risk is approximately 10 times less than the risk of being struck by lightning [42] , [43] , [44] , [45] , [46] , [47] .

Programs and tools to ensure the safety of food supply

In general, periodic food monitoring provides a 95% assurance that microbial or chemical contaminant of any targeted food is detected if it occurs in more than 1% of product lots. Food surveillance is used to investigate and control the movement of potentially contaminated products. The field inspectors are granted the power of the agency vested by the executive branch of the government. Anonymous tips may trigger some food products for surveillance testing if they appear reasonably suspicious of foul play such as unclear labeling, or coming from questionable sources. Contaminants above legal limits are to be re-tested in split samples given to two separate laboratories to ensure fairness. Food safety inspector has responsibility to inspect foods during packaging, labeling, processing and distribution and storage. Similarly, inspector of different training may assume responsibility when the food products are in the grocery store or in retails.

The voluntary report of “accidental” exposure program has worked well in many countries. Food products may accidentally be exposed to contaminants without any deliberate or knowingly use contaminated products such as microbial, pesticides, industrial chemicals or natural toxicants. In such event, the merchant or manufacturer may voluntarily report such contamination to FDA. FDA may then send specially trained consultant to provide regulatory and scientific assistance to the food industry. Depending on the nature and extent of consultation, consultant or laboratory fees may be assessed to be paid by the company owner or corporation [48] .

In the US, programs such as the Food Safety and Inspection Service (FSIS) ensure safety of current and future food supply must be implemented. Regular monitoring, surveillance and voluntary report or recall are all part of risk management that will minimize mishaps and ensure safe food supply [50] . The Pathogen Reduction/Hazard Analysis & Critical Control Points System has been implemented by US FDA so that food safety risks are addressed more adequately and the allocation of inspection resources is improved further [48] , [49] , [50] .

The future food safety

Safe food provides basic human necessity. It supports national economy, trade and tourism, contributes to nutrition security, and underpins sustainable development. Globalization has triggered growing consumer demand for a wider variety of foods, resulting in an increasingly complex and longer global food chain. As the world's population grows, the intensification and industrialization of agriculture and animal production to meet increasing demand for food creates both opportunities and challenges for food safety. The food producers, distributors, handlers and vendors must bear the primary responsibility to ensure food safety. Consumers should remain vigilant and literate on food safety issues. Government agencies such as FDA and EPA are the legal enforcers to protect public health and safety. They must enforce the law equitably and with fairness.

The legal professionals appear to be more active in advocating food safety in the global market. The medical and healthcare professionals should be equally passionate to take the lead in addressing food safety. After all, safe and nutritious food implies healthier population. Regardless of who is taking the lead in food safety, in the end, a close collaboration between all the stakeholders should be the goal in achieving a meaningful food safety for every person in a global perspective [51] , [52] , [53] , [54] , [55] .

In summary, food safety and nutrition are closely connected. Unsafe food creates a vicious cycle of disease and malnutrition affecting infants, young children, elderly and the sick. Because food supply chains cross multiple national and regional borders, collaboration between governments, producers, suppliers, distributors and consumers will ultimately ensure food safety in the 21st century.

Conflicts of interest

The authors declare no conflict of interest.

Peer review under responsibility of Chang Gung University.

Challenges in Food Safety

Sometimes the foods we love and count on for good health are contaminated with germs that cause sickness and can even be deadly. More progress is needed to protect people and reduce foodborne illness in America.

New challenges to food safety will continue to emerge, largely because of:

  • Changes in our food production and supply, including more imported foods.
  • Changes in the environment leading to food contamination.
  • New and emerging bacteria, toxins, and antimicrobial resistance.
  • Changes in consumer preferences and habits.
  • Changes in the tests that diagnose foodborne illness.

Shopping basket

Antimicrobial resistance in foodborne germs is a growing challenge that is made worse by overuse of antibiotics in humans and food animals. CDC estimates that every year, over 660,900 infections in the United States are caused by resistant Salmonella or Campylobacter .

Culture-independent diagnostic tests (CIDTs) are changing the way that clinical laboratories diagnose patients with foodborne illness. These tests can identify the general type of bacteria causing illness within hours, without having to culture, or grow the bacteria in a laboratory.

These tests allow doctors to rapidly determine the cause of a patient’s illness. However, these tests do not provide the information needed to find and prevent foodborne illness outbreaks and monitor disease trends. 

Infographic of food production chain

Food contamination can occur at any point—during production, processing, distribution, or preparation.

Eggs in basket

Some foods are more likely than others to contain harmful germs, such as bacteria and viruses. If you eat food containing harmful germs, you can get very sick.

To receive regular CDC updates on food safety, enter your email address:

  • FoodSafety.gov external
  • Estimates of Foodborne Illness in the U.S.
  • Foodborne Illness Surveillance Systems
  • Environmental Health Services

Exit Notification / Disclaimer Policy

  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
  • Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
  • You will be subject to the destination website's privacy policy when you follow the link.
  • CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

  • Skip to main content
  • Skip to FDA Search
  • Skip to in this section menu
  • Skip to footer links

U.S. flag

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

U.S. Food and Drug Administration

  •   Search
  •   Menu
  • Recalls, Market Withdrawals, & Safety Alerts

Amneal Pharmaceuticals, LLC. Issues a Nationwide Voluntary Recall of Vancomycin Hydrochloride for Oral Solution USP, 250mg/5mL, Due to the Potential for Some Bottles to be Super Potent Which May be Harmful

COMPANY ANNOUNCEMENT

When a company announces a recall, market withdrawal, or safety alert, the FDA posts the company's announcement as a public service. FDA does not endorse either the product or the company.

Company Announcement

FOR IMMEDIATE RELEASE – March 27, 2024 - Amneal Pharmaceuticals, LLC. Bridgewater, New Jersey (Amneal), is voluntarily recalling 4 lots (see table below) of Vancomycin Hydrochloride for Oral Solution, USP, 250 mg/5mL packaged in 80 mL, 150 mL, or 300 mL pack sizes, to the Consumer Level. Some bottles may have been overfilled which can result in an over potent dosing regimen. The recommended maximum daily dose allowance for this product is up to 2gm/day and patients prescribed a dosing regimen of 500 mg/10mL would exceed this daily allowance, which may be harmful to patients with renal insufficiency. The error occurred during the manual bottle filling stage of manufacturing.

Risk Statement: Adult patients who are prescribed the maximum daily dose of up to 2 grams per day of Vancomycin Hydrochloride for oral solution, USP 250 mg/5mL, may receive up to 4 grams of oral vancomycin per day because of the overfilled bottle. Some patients with inflammatory disorders of the intestinal mucosa also may have significant systemic absorption of vancomycin. These patients may be at risk for the development of adverse reactions associated with higher doses of vancomycin oral solution. Worsening renal function could be associated with electrolyte abnormalities such as high potassium leading to cardiac arrest. To date, Amneal has not received any reports of adverse events that have been confirmed to be directly related to this recall.

Vancomycin Hydrochloride for Oral Solution, USP, 250mg/5mL, is administered orally for treatment of enterocolitis caused by Staphylococcus aureus (including methicillin-resistant strains) and antibiotic- associated pseudomembranous colitis caused by C. difficile.

The Vancomycin HCl for Oral Solution, USP, 250 mg/5mL subject to the recall, are identified by the NDC numbers stated on the product label. The following lot numbers of Vancomycin Hydrochloride for Oral Solution, USP, 250 mg/5mL are included in this recall.

Vancomycin Hydrochloride for Oral Solution, USP, 250mg/5mL

The affected Vancomycin Hydrochloride for Oral Solution, USP, 250 mg/5mL lots were distributed Nationwide in the USA directly to Wholesalers and Distributors. The Lots were distributed between 11/09/2023 and 2/20/2024.

Amneal is notifying its direct customers via mail (UPS Standard Overnight) by mailing a recall notification letter and is arranging for the return of the recalled products. Anyone with an existing inventory of the product being recalled should examine the product and quarantine any of the recalled lots immediately.

Customers who purchased the impacted product directly from Amneal may call Amneal at 1-833-582-0812 Monday – Friday, 8:00 am – 5:00 pm, EST, or email to [email protected] for further information.

Retailers who have Vancomycin Hydrochloride for Oral Solution, USP, 250 mg/5mL, which are being recalled, should examine their inventory and cease dispensing any of the impacted lots and contact Amneal directly via email at [email protected] or by telephone 1-833-582-0812 Monday – Friday, 8:00 am – 5:00 pm, EST, for information and instructions for the product return.

Consumers who have Vancomycin Hydrochloride for Oral Solution, USP, 250 mg/mL should examine the bottle, cease using the product if the lot number is listed on the recall and contact Amneal via telephone or email for recall information and for product return instructions. Consumers may call Amneal at 1-833-582-0812 Monday – Friday, 8:00 am – 5:00 pm, EST, or email [email protected] for further information and instructions for the product return. Consumers should contact their physician or healthcare provider if they have experienced any problems that may be related to taking or using this drug product.

If you would like to report any adverse reactions or quality problems experienced with the use of this product you may contact Amneal Drug Safety by phone at 1-877-835-5472, Monday - Friday, 8:00 am – 6:00 pm, EST, or via e-mail at [email protected] .

Any adverse reactions or quality problems experienced with the use of this product may be reported to the FDA's MedWatch Adverse Event Reporting program either online, by regular mail or by fax.

  • Complete and submit the report Online
  • Regular Mail or Fax: Download form or call 1- 800-332-1088 to request a reporting form, then complete and return to the address on the pre-addressed form, or submit by fax to 1-800-FDA-0178

Safe Harbor Statement

Certain statements contained herein, regarding matters that are not historical facts, may be forward-looking statements (as defined in the Private Securities Litigation Reform Act of 1995). Such forward-looking statements include statements regarding management’s intentions, plans, beliefs, expectations or forecasts for the future, including, among other things, future operating results and financial performance, product development and launches, integration strategies and resulting cost reduction, market position and business strategy. Words such as “may,” “will,” “could,” “expect,” “plan,” “anticipate,” “intend,” “believe,” “estimate,” “assume,” “continue,” and similar words are intended to identify estimates and forward-looking statements.

The reader is cautioned not to rely on these forward-looking statements. These forward-looking statements are based on current expectations of future events. If the underlying assumptions prove inaccurate or known or unknown risks or uncertainties materialize, actual results could vary materially from the expectations and projections of Amneal Pharmaceuticals, Inc. (the “Company”). Such risks and uncertainties include, but are not limited to, risks related to the products and recall thereof described in this press release. A further list and descriptions of these risks, uncertainties and other factors can be found in the Company’s most recently filed Annual Report on Form 10-K for the fiscal year ended December 31, 2018, as supplemented by any subsequently filed Quarterly Reports on Form 10-Q. Copies of these filings are available online at www.sec.gov , www.amneal.com or on request from the Company.

Company Contact Information

Product photos.

Vancomycin Hydrochloride for Oral Solution, USP, 250 mg/5mL, NDC 69238-2261-3

IMAGES

  1. Essay On World Food Safety Day 2021 || Essential Essay Writing || Food

    food safety issues essay

  2. Discussion of Food Safety Issues

    food safety issues essay

  3. Food Safety Essay : Food Safety

    food safety issues essay

  4. Food Safety Issues and Standards

    food safety issues essay

  5. Food safety essay question

    food safety issues essay

  6. Food Safety Education

    food safety issues essay

VIDEO

  1. Foresight: looking into emerging issues in food and feed safety

  2. An Essay on Healthy Food

  3. Food Safety Officer Study Material

  4. Awareness program conducted by the food safety Department on world consumers day! #viral #telugu

  5. Food safety officer class day 1.. principles and methods of food preservation

COMMENTS

  1. 81 Food Safety Essay Topic Ideas & Examples

    This can cause a quick growth and spread of bacteria. Food Safety at Introducing of New Meal. The former is the most significant threat from the medium risk category due to its high presence, and the latter is the biggest issue out of all the factors listed above. Food Safety: Washing Contact Surfaces and Cooking.

  2. Free Essay On Food Safety

    Solutions to food safety problems include increased awareness about food handling and storage, as well as increased reliance on organic food. Science could also contribute to the foregoing problems by introducing non-harmful ways to produce plant and animal food sources and offset the outcomes of climate change on agriculture and food production.

  3. 70 Food Safety Essay Topics & Research Titles at StudyCorgi

    The paper states that a scientific approach to handling, preparing, and storing food that explains how to prevent sickness is known as food safety. The principal functions of packaging are protecting products from the deterioration and external influences and providing important nutritional and marketing information.

  4. Public health risks related to food safety issues in the food market: a

    Results. The analysis of 81 full-text articles resulted in seven common public health risks related with food safety in the food market. Microbial contamination of foods, chemical contamination of foods, food adulteration, misuse of food additives, mislabeling, genetically modified foods (GM foods), and outdated foods or foods past their use-by dates were the identified food safety-related ...

  5. Food Safety

    When certain disease-causing bacteria, viruses or parasite contaminate food, they can cause food-related diseases. Another word for such a bacterium, virus, or parasite is "pathogen". Since food-related diseases can be serious, or even fatal, it is important to know and practice safe food-handling behaviors to help reduce the risk of getting sick from contaminated food.

  6. Essays on Food Safety

    5 pages / 2149 words. Introduction The task of this essay is to develop a report to construct a food system that can provide global food security. This analysis will cover three sections. The first section of this essay focuses on the meaning of food security and how population growth... Food Safety World Food Crisis.

  7. Food Safety Essays: Examples, Topics, & Outlines

    Food Safety According to the Centers for Disease Control and Prevention (CDC, n.d.), "food-related diseases affect tens of millions of people and kill thousands." Many of these incidents can be prevented with proper food safety awareness. The most common food safety issues are related to consumer awareness at the point of purchase (such as knowing what to look for in terms of food freshness ...

  8. Essay on Food Safety

    Students are often asked to write an essay on Food Safety in their schools and colleges. And if you're also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic. ... In conclusion, food safety is a complex, multifaceted issue that requires the involvement of various stakeholders, including government ...

  9. Food Safety Essay Topics

    Food Safety Essay Topics. Heather has a bachelor's degree in elementary education and a master's degree in special education. She was a public school teacher and administrator for 11 years ...

  10. Food Safety Issues and Standards

    Powered by CiteChimp - the best easy citation maker. This paper, "Food Safety Issues and Standards", was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

  11. Food Safety Essay

    Food safety is a term for all measures and concepts that are intended to ensure that food is safe to eat and cannot cause a health problem or poisoning. The issue of food safety is a universal concern, this is because everyone must to consume food. Bacteria are everywhere, in the air, in the water, in the ground, on our food, on our skin and ...

  12. The Importance of Food Safety: Top Food-Related Public Health Issues

    The impact of food safety issues can also carry an economic impact, as falling ill from unsafe foods can lead to a loss of work productivity and increases in medical expenses. According to the CDC, the U.S. incurs a cost of around $15.6 billion annually due to foodborne illnesses.

  13. Addressing food safety challenges in rapidly developing food systems

    1 INTRODUCTION. During the past decade, there has been growing awareness of the importance of food safety in developing countries. WHO estimates for 2010 show that the burden of illness from unsafe food worldwide is comparable to that of malaria and tuberculosis (Havelaar et al., 2015).Furthermore, the dietary transition and associated market transformation will alter and possibly increase ...

  14. Environment and food safety: a novel integrative review

    Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It ...

  15. Food safety

    Food safety, nutrition and food security are inextricably linked. An estimated 600 million - almost 1 in 10 people in the world - fall ill after eating contaminated food and 420 000 die every year, resulting in the loss of 33 million healthy life years (DALYs). US$ 110 billion is lost each year in productivity and medical expenses resulting ...

  16. The Importance Of Food Safety: Essay Example, 1224 words

    Food Safety. Food safety is one of the global concerns of people on their everyday life. Food can become contaminated at any point, during production, processing, purchasing or preparation. Food safety is a leading responsibility of food business operators. Poor food handling might cause diseases and contamination by bacteria, pathogen and ...

  17. Food safety in the 21st century

    Food is essential to life, hence food safety is a basic human right. Billons of people in the world are at risk of unsafe food. Many millions become sick while hundreds of thousand die yearly. The food chain starts from farm to fork/plate while challenges include microbial, chemical, personal and environmental hygiene.

  18. Journal of Food Safety

    Journal of Food Safety welcomes Vivian Wu as Editor-in-Chief! Dr. Wu is the Research Leader of the Produce Safety and Microbiology Research Unit at the USDA-ARS Western Regional Research Center. She is recognized nationally and internationally as an authority of food safety, pathogen detection, interventions, and functional foods.

  19. Challenges in Food Safety

    More progress is needed to protect people and reduce foodborne illness in America. New challenges to food safety will continue to emerge, largely because of: Changes in our food production and supply, including more imported foods. Changes in the environment leading to food contamination. New and emerging bacteria, toxins, and antimicrobial ...

  20. Risk Perception, Communication and Behavior on Food Safety Issues

    Food safety risk, defined as the presence of physical, chemical or biological contaminants that are unexpected or undetected on the product label, is a key issue for global food chains. Food safety is a vital issue for public health and a daily concern for all people. Increasing public concern about the risks associated with food and ever more ...

  21. Three essays on food safety and foodborne illness

    Abstract. This dissertation explores economic impacts of food related illness on agricultural industries and models the performance of food safety programs on supply chain participants. Three stand-alone studies are dedicated to economic analysis on food safety issues from different approaches analytically, empirically, and in simulation.

  22. Wesco, Inc. Issues Voluntary Recall and Allergy Alert on Undeclared

    Wesco, Inc. of Muskegon, MI is recalling 750 units of Wesco Mint No Bake Cookie Bites, because it may contain undeclared peanut. People who have an allergy or severe sensitivity to peanuts run the ...

  23. Housing Crisis, Packed Hospitals and Food Lines: Even in Canada?

    "Looking back 50 years ago, Canada had a relatively robust social safety net," reads a 2023 report from Food Banks Canada on rising food insecurity. But spending cuts in the 1980s and 1990s ...

  24. New warnings about heart pumps linked to 49 deaths

    There are new and revised warnings about the instructions for use of a certain type of heart pump that could lead to a risk of heart perforation, according to an alert issued by the pump's ...

  25. Amneal Pharmaceuticals, LLC. Issues a Nationwide Voluntary Recall of

    If you would like to report any adverse reactions or quality problems experienced with the use of this product you may contact Amneal Drug Safety by phone at 1-877-835-5472, Monday - Friday, 8:00 ...