• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Definition of Random Assignment According to Psychology

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

random assignment research design

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

random assignment research design

Materio / Getty Images

Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the control group. In clinical research, randomized clinical trials are known as the gold standard for meaningful results.

Simple random assignment techniques might involve tactics such as flipping a coin, drawing names out of a hat, rolling dice, or assigning random numbers to a list of participants. It is important to note that random assignment differs from random selection .

While random selection refers to how participants are randomly chosen from a target population as representatives of that population, random assignment refers to how those chosen participants are then assigned to experimental groups.

Random Assignment In Research

To determine if changes in one variable will cause changes in another variable, psychologists must perform an experiment. Random assignment is a critical part of the experimental design that helps ensure the reliability of the study outcomes.

Researchers often begin by forming a testable hypothesis predicting that one variable of interest will have some predictable impact on another variable.

The variable that the experimenters will manipulate in the experiment is known as the independent variable , while the variable that they will then measure for different outcomes is known as the dependent variable. While there are different ways to look at relationships between variables, an experiment is the best way to get a clear idea if there is a cause-and-effect relationship between two or more variables.

Once researchers have formulated a hypothesis, conducted background research, and chosen an experimental design, it is time to find participants for their experiment. How exactly do researchers decide who will be part of an experiment? As mentioned previously, this is often accomplished through something known as random selection.

Random Selection

In order to generalize the results of an experiment to a larger group, it is important to choose a sample that is representative of the qualities found in that population. For example, if the total population is 60% female and 40% male, then the sample should reflect those same percentages.

Choosing a representative sample is often accomplished by randomly picking people from the population to be participants in a study. Random selection means that everyone in the group stands an equal chance of being chosen to minimize any bias. Once a pool of participants has been selected, it is time to assign them to groups.

By randomly assigning the participants into groups, the experimenters can be fairly sure that each group will have the same characteristics before the independent variable is applied.

Participants might be randomly assigned to the control group , which does not receive the treatment in question. The control group may receive a placebo or receive the standard treatment. Participants may also be randomly assigned to the experimental group , which receives the treatment of interest. In larger studies, there can be multiple treatment groups for comparison.

There are simple methods of random assignment, like rolling the die. However, there are more complex techniques that involve random number generators to remove any human error.

There can also be random assignment to groups with pre-established rules or parameters. For example, if you want to have an equal number of men and women in each of your study groups, you might separate your sample into two groups (by sex) before randomly assigning each of those groups into the treatment group and control group.

Random assignment is essential because it increases the likelihood that the groups are the same at the outset. With all characteristics being equal between groups, other than the application of the independent variable, any differences found between group outcomes can be more confidently attributed to the effect of the intervention.

Example of Random Assignment

Imagine that a researcher is interested in learning whether or not drinking caffeinated beverages prior to an exam will improve test performance. After randomly selecting a pool of participants, each person is randomly assigned to either the control group or the experimental group.

The participants in the control group consume a placebo drink prior to the exam that does not contain any caffeine. Those in the experimental group, on the other hand, consume a caffeinated beverage before taking the test.

Participants in both groups then take the test, and the researcher compares the results to determine if the caffeinated beverage had any impact on test performance.

A Word From Verywell

Random assignment plays an important role in the psychology research process. Not only does this process help eliminate possible sources of bias, but it also makes it easier to generalize the results of a tested sample of participants to a larger population.

Random assignment helps ensure that members of each group in the experiment are the same, which means that the groups are also likely more representative of what is present in the larger population of interest. Through the use of this technique, psychology researchers are able to study complex phenomena and contribute to our understanding of the human mind and behavior.

Lin Y, Zhu M, Su Z. The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials . Contemp Clin Trials. 2015;45(Pt A):21-25. doi:10.1016/j.cct.2015.07.011

Sullivan L. Random assignment versus random selection . In: The SAGE Glossary of the Social and Behavioral Sciences. SAGE Publications, Inc.; 2009. doi:10.4135/9781412972024.n2108

Alferes VR. Methods of Randomization in Experimental Design . SAGE Publications, Inc.; 2012. doi:10.4135/9781452270012

Nestor PG, Schutt RK. Research Methods in Psychology: Investigating Human Behavior. (2nd Ed.). SAGE Publications, Inc.; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Yale Directories

Institution for Social and Policy Studies

Advancing research • shaping policy • developing leaders, why randomize.

About Randomized Field Experiments Randomized field experiments allow researchers to scientifically measure the impact of an intervention on a particular outcome of interest.

What is a randomized field experiment? In a randomized experiment, a study sample is divided into one group that will receive the intervention being studied (the treatment group) and another group that will not receive the intervention (the control group). For instance, a study sample might consist of all registered voters in a particular city. This sample will then be randomly divided into treatment and control groups. Perhaps 40% of the sample will be on a campaign’s Get-Out-the-Vote (GOTV) mailing list and the other 60% of the sample will not receive the GOTV mailings. The outcome measured –voter turnout– can then be compared in the two groups. The difference in turnout will reflect the effectiveness of the intervention.

What does random assignment mean? The key to randomized experimental research design is in the random assignment of study subjects – for example, individual voters, precincts, media markets or some other group – into treatment or control groups. Randomization has a very specific meaning in this context. It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group. Randomization is generally achieved by employing a computer program containing a random number generator. Randomization procedures differ based upon the research design of the experiment. Individuals or groups may be randomly assigned to treatment or control groups. Some research designs stratify subjects by geographic, demographic or other factors prior to random assignment in order to maximize the statistical power of the estimated effect of the treatment (e.g., GOTV intervention). Information about the randomization procedure is included in each experiment summary on the site.

What are the advantages of randomized experimental designs? Randomized experimental design yields the most accurate analysis of the effect of an intervention (e.g., a voter mobilization phone drive or a visit from a GOTV canvasser, on voter behavior). By randomly assigning subjects to be in the group that receives the treatment or to be in the control group, researchers can measure the effect of the mobilization method regardless of other factors that may make some people or groups more likely to participate in the political process. To provide a simple example, say we are testing the effectiveness of a voter education program on high school seniors. If we allow students from the class to volunteer to participate in the program, and we then compare the volunteers’ voting behavior against those who did not participate, our results will reflect something other than the effects of the voter education intervention. This is because there are, no doubt, qualities about those volunteers that make them different from students who do not volunteer. And, most important for our work, those differences may very well correlate with propensity to vote. Instead of letting students self-select, or even letting teachers select students (as teachers may have biases in who they choose), we could randomly assign all students in a given class to be in either a treatment or control group. This would ensure that those in the treatment and control groups differ solely due to chance. The value of randomization may also be seen in the use of walk lists for door-to-door canvassers. If canvassers choose which houses they will go to and which they will skip, they may choose houses that seem more inviting or they may choose houses that are placed closely together rather than those that are more spread out. These differences could conceivably correlate with voter turnout. Or if house numbers are chosen by selecting those on the first half of a ten page list, they may be clustered in neighborhoods that differ in important ways from neighborhoods in the second half of the list. Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings cited in studies that employ this methodology reflect the effects of the interventions being measured and not some other underlying variable or variables.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

6.2 Experimental Design

Learning objectives.

  • Explain the difference between between-subjects and within-subjects experiments, list some of the pros and cons of each approach, and decide which approach to use to answer a particular research question.
  • Define random assignment, distinguish it from random sampling, explain its purpose in experimental research, and use some simple strategies to implement it.
  • Define what a control condition is, explain its purpose in research on treatment effectiveness, and describe some alternative types of control conditions.
  • Define several types of carryover effect, give examples of each, and explain how counterbalancing helps to deal with them.

In this section, we look at some different ways to design an experiment. The primary distinction we will make is between approaches in which each participant experiences one level of the independent variable and approaches in which each participant experiences all levels of the independent variable. The former are called between-subjects experiments and the latter are called within-subjects experiments.

Between-Subjects Experiments

In a between-subjects experiment , each participant is tested in only one condition. For example, a researcher with a sample of 100 college students might assign half of them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that disorder. It is essential in a between-subjects experiment that the researcher assign participants to conditions so that the different groups are, on average, highly similar to each other. Those in a trauma condition and a neutral condition, for example, should include a similar proportion of men and women, and they should have similar average intelligence quotients (IQs), similar average levels of motivation, similar average numbers of health problems, and so on. This is a matter of controlling these extraneous participant variables across conditions so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of control of extraneous variables across conditions is called random assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse random assignment with random sampling. Random sampling is a method for selecting a sample from a population, and it is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested. When the procedure is computerized, the computer program often handles the random assignment.

One problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible. One approach is block randomization . In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. Table 6.2 “Block Randomization Sequence for Assigning Nine Participants to Three Conditions” shows such a sequence for assigning nine participants to three conditions. The Research Randomizer website ( http://www.randomizer.org ) will generate block randomization sequences for any number of participants and conditions. Again, when the procedure is computerized, the computer program often handles the block randomization.

Table 6.2 Block Randomization Sequence for Assigning Nine Participants to Three Conditions

Random assignment is not guaranteed to control all extraneous variables across conditions. It is always possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this is not a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population takes the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

Treatment and Control Conditions

Between-subjects experiments are often used to determine whether a treatment works. In psychological research, a treatment is any intervention meant to change people’s behavior for the better. This includes psychotherapies and medical treatments for psychological disorders but also interventions designed to improve learning, promote conservation, reduce prejudice, and so on. To determine whether a treatment works, participants are randomly assigned to either a treatment condition , in which they receive the treatment, or a control condition , in which they do not receive the treatment. If participants in the treatment condition end up better off than participants in the control condition—for example, they are less depressed, learn faster, conserve more, express less prejudice—then the researcher can conclude that the treatment works. In research on the effectiveness of psychotherapies and medical treatments, this type of experiment is often called a randomized clinical trial .

There are different types of control conditions. In a no-treatment control condition , participants receive no treatment whatsoever. One problem with this approach, however, is the existence of placebo effects. A placebo is a simulated treatment that lacks any active ingredient or element that should make it effective, and a placebo effect is a positive effect of such a treatment. Many folk remedies that seem to work—such as eating chicken soup for a cold or placing soap under the bedsheets to stop nighttime leg cramps—are probably nothing more than placebos. Although placebo effects are not well understood, they are probably driven primarily by people’s expectations that they will improve. Having the expectation to improve can result in reduced stress, anxiety, and depression, which can alter perceptions and even improve immune system functioning (Price, Finniss, & Benedetti, 2008).

Placebo effects are interesting in their own right (see Note 6.28 “The Powerful Placebo” ), but they also pose a serious problem for researchers who want to determine whether a treatment works. Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” shows some hypothetical results in which participants in a treatment condition improved more on average than participants in a no-treatment control condition. If these conditions (the two leftmost bars in Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” ) were the only conditions in this experiment, however, one could not conclude that the treatment worked. It could be instead that participants in the treatment group improved more because they expected to improve, while those in the no-treatment control condition did not.

Figure 6.2 Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Fortunately, there are several solutions to this problem. One is to include a placebo control condition , in which participants receive a placebo that looks much like the treatment but lacks the active ingredient or element thought to be responsible for the treatment’s effectiveness. When participants in a treatment condition take a pill, for example, then those in a placebo control condition would take an identical-looking pill that lacks the active ingredient in the treatment (a “sugar pill”). In research on psychotherapy effectiveness, the placebo might involve going to a psychotherapist and talking in an unstructured way about one’s problems. The idea is that if participants in both the treatment and the placebo control groups expect to improve, then any improvement in the treatment group over and above that in the placebo control group must have been caused by the treatment and not by participants’ expectations. This is what is shown by a comparison of the two outer bars in Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” .

Of course, the principle of informed consent requires that participants be told that they will be assigned to either a treatment or a placebo control condition—even though they cannot be told which until the experiment ends. In many cases the participants who had been in the control condition are then offered an opportunity to have the real treatment. An alternative approach is to use a waitlist control condition , in which participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it. This allows researchers to compare participants who have received the treatment with participants who are not currently receiving it but who still expect to improve (eventually). A final solution to the problem of placebo effects is to leave out the control condition completely and compare any new treatment with the best available alternative treatment. For example, a new treatment for simple phobia could be compared with standard exposure therapy. Because participants in both conditions receive a treatment, their expectations about improvement should be similar. This approach also makes sense because once there is an effective treatment, the interesting question about a new treatment is not simply “Does it work?” but “Does it work better than what is already available?”

The Powerful Placebo

Many people are not surprised that placebos can have a positive effect on disorders that seem fundamentally psychological, including depression, anxiety, and insomnia. However, placebos can also have a positive effect on disorders that most people think of as fundamentally physiological. These include asthma, ulcers, and warts (Shapiro & Shapiro, 1999). There is even evidence that placebo surgery—also called “sham surgery”—can be as effective as actual surgery.

Medical researcher J. Bruce Moseley and his colleagues conducted a study on the effectiveness of two arthroscopic surgery procedures for osteoarthritis of the knee (Moseley et al., 2002). The control participants in this study were prepped for surgery, received a tranquilizer, and even received three small incisions in their knees. But they did not receive the actual arthroscopic surgical procedure. The surprising result was that all participants improved in terms of both knee pain and function, and the sham surgery group improved just as much as the treatment groups. According to the researchers, “This study provides strong evidence that arthroscopic lavage with or without débridement [the surgical procedures used] is not better than and appears to be equivalent to a placebo procedure in improving knee pain and self-reported function” (p. 85).

Doctors treating a patient in Surgery

Research has shown that patients with osteoarthritis of the knee who receive a “sham surgery” experience reductions in pain and improvement in knee function similar to those of patients who receive a real surgery.

Army Medicine – Surgery – CC BY 2.0.

Within-Subjects Experiments

In a within-subjects experiment , each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the guilt of both an attractive and an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very same people. Within-subjects experiments also make it possible to use statistical procedures that remove the effect of these extraneous participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable easier to detect. We will look more closely at this idea later in the book.

Carryover Effects and Counterbalancing

The primary disadvantage of within-subjects designs is that they can result in carryover effects. A carryover effect is an effect of being tested in one condition on participants’ behavior in later conditions. One type of carryover effect is a practice effect , where participants perform a task better in later conditions because they have had a chance to practice it. Another type is a fatigue effect , where participants perform a task worse in later conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions. This is called a context effect . For example, an average-looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This could lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine, for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable. The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects, however, that can be used in many situations. It is counterbalancing , which means testing different participants in different orders. For example, some participants would be tested in the attractive defendant condition followed by the unattractive defendant condition, and others would be tested in the unattractive condition followed by the attractive condition. With three conditions, there would be six different orders (ABC, ACB, BAC, BCA, CAB, and CBA), so some participants would be tested in each of the six orders. With counterbalancing, participants are assigned to orders randomly, using the techniques we have already discussed. Thus random assignment plays an important role in within-subjects designs just as in between-subjects designs. Here, instead of randomly assigning to conditions, they are randomly assigned to different orders of conditions. In fact, it can safely be said that if a study does not involve random assignment in one form or another, it is not an experiment.

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it had an effect.

When 9 Is “Larger” Than 221

Researcher Michael Birnbaum has argued that the lack of context provided by between-subjects designs is often a bigger problem than the context effects created by within-subjects designs. To demonstrate this, he asked one group of participants to rate how large the number 9 was on a 1-to-10 rating scale and another group to rate how large the number 221 was on the same 1-to-10 rating scale (Birnbaum, 1999). Participants in this between-subjects design gave the number 9 a mean rating of 5.13 and the number 221 a mean rating of 3.10. In other words, they rated 9 as larger than 221! According to Birnbaum, this is because participants spontaneously compared 9 with other one-digit numbers (in which case it is relatively large) and compared 221 with other three-digit numbers (in which case it is relatively small).

Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects designs in which participants are tested in one condition at a time. There is another approach, however, that is often used when participants make multiple responses in each condition. Imagine, for example, that participants judge the guilt of 10 attractive defendants and 10 unattractive defendants. Instead of having people make judgments about all 10 defendants of one type followed by all 10 defendants of the other type, the researcher could present all 20 defendants in a sequence that mixed the two types. The researcher could then compute each participant’s mean rating for each type of defendant. Or imagine an experiment designed to see whether people with social anxiety disorder remember negative adjectives (e.g., “stupid,” “incompetent”) better than positive ones (e.g., “happy,” “productive”). The researcher could have participants study a single list that includes both kinds of words and then have them try to recall as many words as possible. The researcher could then count the number of each type of word that was recalled. There are many ways to determine the order in which the stimuli are presented, but one common way is to generate a different random order for each participant.

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a between-subjects design or a within-subjects design. This means that researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects experiments have the advantage of being conceptually simpler and requiring less testing time per participant. They also avoid carryover effects without the need for counterbalancing. Within-subjects experiments have the advantage of controlling extraneous participant variables, which generally reduces noise in the data and makes it easier to detect a relationship between the independent and dependent variables.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the time that is available per participant—and you have no serious concerns about carryover effects—this is probably the best option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in the control condition. This is true for many designs that involve a treatment meant to produce long-term change in participants’ behavior (e.g., studies testing the effectiveness of psychotherapy). Clearly, a between-subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact, professional researchers often do exactly this.

Key Takeaways

  • Experiments can be conducted using either between-subjects or within-subjects designs. Deciding which to use in a particular situation requires careful consideration of the pros and cons of each approach.
  • Random assignment to conditions in between-subjects experiments or to orders of conditions in within-subjects experiments is a fundamental element of experimental research. Its purpose is to control extraneous variables so that they do not become confounding variables.
  • Experimental research on the effectiveness of a treatment requires both a treatment condition and a control condition, which can be a no-treatment control condition, a placebo control condition, or a waitlist control condition. Experimental treatments can also be compared with the best available alternative.

Discussion: For each of the following topics, list the pros and cons of a between-subjects and within-subjects design and decide which would be better.

  • You want to test the relative effectiveness of two training programs for running a marathon.
  • Using photographs of people as stimuli, you want to see if smiling people are perceived as more intelligent than people who are not smiling.
  • In a field experiment, you want to see if the way a panhandler is dressed (neatly vs. sloppily) affects whether or not passersby give him any money.
  • You want to see if concrete nouns (e.g., dog ) are recalled better than abstract nouns (e.g., truth ).
  • Discussion: Imagine that an experiment shows that participants who receive psychodynamic therapy for a dog phobia improve more than participants in a no-treatment control group. Explain a fundamental problem with this research design and at least two ways that it might be corrected.

Birnbaum, M. H. (1999). How to show that 9 > 221: Collect judgments in a between-subjects design. Psychological Methods, 4 , 243–249.

Moseley, J. B., O’Malley, K., Petersen, N. J., Menke, T. J., Brody, B. A., Kuykendall, D. H., … Wray, N. P. (2002). A controlled trial of arthroscopic surgery for osteoarthritis of the knee. The New England Journal of Medicine, 347 , 81–88.

Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annual Review of Psychology, 59 , 565–590.

Shapiro, A. K., & Shapiro, E. (1999). The powerful placebo: From ancient priest to modern physician . Baltimore, MD: Johns Hopkins University Press.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 6: Data Collection Strategies

6.1.1 Random Assignation

As previously mentioned, one of the characteristics of a true experiment is that researchers use a random process to decide which participants are tested under which conditions. Random assignation is a powerful research technique that addresses the assumption of pre-test equivalence – that the experimental and control group are equal in all respects before the administration of the independent variable (Palys & Atchison, 2014).

Random assignation is the primary way that researchers attempt to control extraneous variables across conditions. Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria.  One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus, one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands on the heads side, the participant is assigned to Condition A, and if it lands on the tails side, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and, if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested.

However, one problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible.

One approach is block randomization. In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. When the procedure is computerized, the computer program often handles the random assignment, which is obviously much easier. You can also find programs online to help you randomize your random assignation. For example, the Research Randomizer website will generate block randomization sequences for any number of participants and conditions ( Research Randomizer ).

Random assignation is not guaranteed to control all extraneous variables across conditions. It is always possible that, just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this may not be a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population take the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

Research Methods for the Social Sciences: An Introduction Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

As previously mentioned, one of the characteristics of a true experiment is that researchers use a random process to decide which participants are tested under which conditions. Random assignation is a powerful research technique that addresses the assumption of pre-test equivalence – that the experimental and control group are equal in all respects before the administration of the independent variable (Palys & Atchison, 2014).

Random assignation is the primary way that researchers attempt to control extraneous variables across conditions. Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria.  One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus, one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands on the heads side, the participant is assigned to Condition A, and if it lands on the tails side, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and, if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested.

However, one problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible.

One approach is block randomization. In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. When the procedure is computerized, the computer program often handles the random assignment, which is obviously much easier. You can also find programs online to help you randomize your random assignation. For example, the Research Randomizer website will generate block randomization sequences for any number of participants and conditions ( Research Randomizer ).

Random assignation is not guaranteed to control all extraneous variables across conditions. It is always possible that, just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this may not be a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population take the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

Research Methods, Data Collection and Ethics Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Experimental research

Experimental research—often considered to be the ‘gold standard’ in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different treatment levels (random assignment), and the results of the treatments on outcomes (dependent variables) are observed. The unique strength of experimental research is its internal validity (causality) due to its ability to link cause and effect through treatment manipulation, while controlling for the spurious effect of extraneous variable.

Experimental research is best suited for explanatory research—rather than for descriptive or exploratory research—where the goal of the study is to examine cause-effect relationships. It also works well for research that involves a relatively limited and well-defined set of independent variables that can either be manipulated or controlled. Experimental research can be conducted in laboratory or field settings. Laboratory experiments , conducted in laboratory (artificial) settings, tend to be high in internal validity, but this comes at the cost of low external validity (generalisability), because the artificial (laboratory) setting in which the study is conducted may not reflect the real world. Field experiments are conducted in field settings such as in a real organisation, and are high in both internal and external validity. But such experiments are relatively rare, because of the difficulties associated with manipulating treatments and controlling for extraneous effects in a field setting.

Experimental research can be grouped into two broad categories: true experimental designs and quasi-experimental designs. Both designs require treatment manipulation, but while true experiments also require random assignment, quasi-experiments do not. Sometimes, we also refer to non-experimental research, which is not really a research design, but an all-inclusive term that includes all types of research that do not employ treatment manipulation or random assignment, such as survey research, observational research, and correlational studies.

Basic concepts

Treatment and control groups. In experimental research, some subjects are administered one or more experimental stimulus called a treatment (the treatment group ) while other subjects are not given such a stimulus (the control group ). The treatment may be considered successful if subjects in the treatment group rate more favourably on outcome variables than control group subjects. Multiple levels of experimental stimulus may be administered, in which case, there may be more than one treatment group. For example, in order to test the effects of a new drug intended to treat a certain medical condition like dementia, if a sample of dementia patients is randomly divided into three groups, with the first group receiving a high dosage of the drug, the second group receiving a low dosage, and the third group receiving a placebo such as a sugar pill (control group), then the first two groups are experimental groups and the third group is a control group. After administering the drug for a period of time, if the condition of the experimental group subjects improved significantly more than the control group subjects, we can say that the drug is effective. We can also compare the conditions of the high and low dosage experimental groups to determine if the high dose is more effective than the low dose.

Treatment manipulation. Treatments are the unique feature of experimental research that sets this design apart from all other research methods. Treatment manipulation helps control for the ‘cause’ in cause-effect relationships. Naturally, the validity of experimental research depends on how well the treatment was manipulated. Treatment manipulation must be checked using pretests and pilot tests prior to the experimental study. Any measurements conducted before the treatment is administered are called pretest measures , while those conducted after the treatment are posttest measures .

Random selection and assignment. Random selection is the process of randomly drawing a sample from a population or a sampling frame. This approach is typically employed in survey research, and ensures that each unit in the population has a positive chance of being selected into the sample. Random assignment, however, is a process of randomly assigning subjects to experimental or control groups. This is a standard practice in true experimental research to ensure that treatment groups are similar (equivalent) to each other and to the control group prior to treatment administration. Random selection is related to sampling, and is therefore more closely related to the external validity (generalisability) of findings. However, random assignment is related to design, and is therefore most related to internal validity. It is possible to have both random selection and random assignment in well-designed experimental research, but quasi-experimental research involves neither random selection nor random assignment.

Threats to internal validity. Although experimental designs are considered more rigorous than other research methods in terms of the internal validity of their inferences (by virtue of their ability to control causes through treatment manipulation), they are not immune to internal validity threats. Some of these threats to internal validity are described below, within the context of a study of the impact of a special remedial math tutoring program for improving the math abilities of high school students.

History threat is the possibility that the observed effects (dependent variables) are caused by extraneous or historical events rather than by the experimental treatment. For instance, students’ post-remedial math score improvement may have been caused by their preparation for a math exam at their school, rather than the remedial math program.

Maturation threat refers to the possibility that observed effects are caused by natural maturation of subjects (e.g., a general improvement in their intellectual ability to understand complex concepts) rather than the experimental treatment.

Testing threat is a threat in pre-post designs where subjects’ posttest responses are conditioned by their pretest responses. For instance, if students remember their answers from the pretest evaluation, they may tend to repeat them in the posttest exam.

Not conducting a pretest can help avoid this threat.

Instrumentation threat , which also occurs in pre-post designs, refers to the possibility that the difference between pretest and posttest scores is not due to the remedial math program, but due to changes in the administered test, such as the posttest having a higher or lower degree of difficulty than the pretest.

Mortality threat refers to the possibility that subjects may be dropping out of the study at differential rates between the treatment and control groups due to a systematic reason, such that the dropouts were mostly students who scored low on the pretest. If the low-performing students drop out, the results of the posttest will be artificially inflated by the preponderance of high-performing students.

Regression threat —also called a regression to the mean—refers to the statistical tendency of a group’s overall performance to regress toward the mean during a posttest rather than in the anticipated direction. For instance, if subjects scored high on a pretest, they will have a tendency to score lower on the posttest (closer to the mean) because their high scores (away from the mean) during the pretest were possibly a statistical aberration. This problem tends to be more prevalent in non-random samples and when the two measures are imperfectly correlated.

Two-group experimental designs

R

Pretest-posttest control group design . In this design, subjects are randomly assigned to treatment and control groups, subjected to an initial (pretest) measurement of the dependent variables of interest, the treatment group is administered a treatment (representing the independent variable of interest), and the dependent variables measured again (posttest). The notation of this design is shown in Figure 10.1.

Pretest-posttest control group design

Statistical analysis of this design involves a simple analysis of variance (ANOVA) between the treatment and control groups. The pretest-posttest design handles several threats to internal validity, such as maturation, testing, and regression, since these threats can be expected to influence both treatment and control groups in a similar (random) manner. The selection threat is controlled via random assignment. However, additional threats to internal validity may exist. For instance, mortality can be a problem if there are differential dropout rates between the two groups, and the pretest measurement may bias the posttest measurement—especially if the pretest introduces unusual topics or content.

Posttest -only control group design . This design is a simpler version of the pretest-posttest design where pretest measurements are omitted. The design notation is shown in Figure 10.2.

Posttest-only control group design

The treatment effect is measured simply as the difference in the posttest scores between the two groups:

\[E = (O_{1} - O_{2})\,.\]

The appropriate statistical analysis of this design is also a two-group analysis of variance (ANOVA). The simplicity of this design makes it more attractive than the pretest-posttest design in terms of internal validity. This design controls for maturation, testing, regression, selection, and pretest-posttest interaction, though the mortality threat may continue to exist.

C

Because the pretest measure is not a measurement of the dependent variable, but rather a covariate, the treatment effect is measured as the difference in the posttest scores between the treatment and control groups as:

Due to the presence of covariates, the right statistical analysis of this design is a two-group analysis of covariance (ANCOVA). This design has all the advantages of posttest-only design, but with internal validity due to the controlling of covariates. Covariance designs can also be extended to pretest-posttest control group design.

Factorial designs

Two-group designs are inadequate if your research requires manipulation of two or more independent variables (treatments). In such cases, you would need four or higher-group designs. Such designs, quite popular in experimental research, are commonly called factorial designs. Each independent variable in this design is called a factor , and each subdivision of a factor is called a level . Factorial designs enable the researcher to examine not only the individual effect of each treatment on the dependent variables (called main effects), but also their joint effect (called interaction effects).

2 \times 2

In a factorial design, a main effect is said to exist if the dependent variable shows a significant difference between multiple levels of one factor, at all levels of other factors. No change in the dependent variable across factor levels is the null case (baseline), from which main effects are evaluated. In the above example, you may see a main effect of instructional type, instructional time, or both on learning outcomes. An interaction effect exists when the effect of differences in one factor depends upon the level of a second factor. In our example, if the effect of instructional type on learning outcomes is greater for three hours/week of instructional time than for one and a half hours/week, then we can say that there is an interaction effect between instructional type and instructional time on learning outcomes. Note that the presence of interaction effects dominate and make main effects irrelevant, and it is not meaningful to interpret main effects if interaction effects are significant.

Hybrid experimental designs

Hybrid designs are those that are formed by combining features of more established designs. Three such hybrid designs are randomised bocks design, Solomon four-group design, and switched replications design.

Randomised block design. This is a variation of the posttest-only or pretest-posttest control group design where the subject population can be grouped into relatively homogeneous subgroups (called blocks ) within which the experiment is replicated. For instance, if you want to replicate the same posttest-only design among university students and full-time working professionals (two homogeneous blocks), subjects in both blocks are randomly split between the treatment group (receiving the same treatment) and the control group (see Figure 10.5). The purpose of this design is to reduce the ‘noise’ or variance in data that may be attributable to differences between the blocks so that the actual effect of interest can be detected more accurately.

Randomised blocks design

Solomon four-group design . In this design, the sample is divided into two treatment groups and two control groups. One treatment group and one control group receive the pretest, and the other two groups do not. This design represents a combination of posttest-only and pretest-posttest control group design, and is intended to test for the potential biasing effect of pretest measurement on posttest measures that tends to occur in pretest-posttest designs, but not in posttest-only designs. The design notation is shown in Figure 10.6.

Solomon four-group design

Switched replication design . This is a two-group design implemented in two phases with three waves of measurement. The treatment group in the first phase serves as the control group in the second phase, and the control group in the first phase becomes the treatment group in the second phase, as illustrated in Figure 10.7. In other words, the original design is repeated or replicated temporally with treatment/control roles switched between the two groups. By the end of the study, all participants will have received the treatment either during the first or the second phase. This design is most feasible in organisational contexts where organisational programs (e.g., employee training) are implemented in a phased manner or are repeated at regular intervals.

Switched replication design

Quasi-experimental designs

Quasi-experimental designs are almost identical to true experimental designs, but lacking one key ingredient: random assignment. For instance, one entire class section or one organisation is used as the treatment group, while another section of the same class or a different organisation in the same industry is used as the control group. This lack of random assignment potentially results in groups that are non-equivalent, such as one group possessing greater mastery of certain content than the other group, say by virtue of having a better teacher in a previous semester, which introduces the possibility of selection bias . Quasi-experimental designs are therefore inferior to true experimental designs in interval validity due to the presence of a variety of selection related threats such as selection-maturation threat (the treatment and control groups maturing at different rates), selection-history threat (the treatment and control groups being differentially impacted by extraneous or historical events), selection-regression threat (the treatment and control groups regressing toward the mean between pretest and posttest at different rates), selection-instrumentation threat (the treatment and control groups responding differently to the measurement), selection-testing (the treatment and control groups responding differently to the pretest), and selection-mortality (the treatment and control groups demonstrating differential dropout rates). Given these selection threats, it is generally preferable to avoid quasi-experimental designs to the greatest extent possible.

N

In addition, there are quite a few unique non-equivalent designs without corresponding true experimental design cousins. Some of the more useful of these designs are discussed next.

Regression discontinuity (RD) design . This is a non-equivalent pretest-posttest design where subjects are assigned to the treatment or control group based on a cut-off score on a preprogram measure. For instance, patients who are severely ill may be assigned to a treatment group to test the efficacy of a new drug or treatment protocol and those who are mildly ill are assigned to the control group. In another example, students who are lagging behind on standardised test scores may be selected for a remedial curriculum program intended to improve their performance, while those who score high on such tests are not selected from the remedial program.

RD design

Because of the use of a cut-off score, it is possible that the observed results may be a function of the cut-off score rather than the treatment, which introduces a new threat to internal validity. However, using the cut-off score also ensures that limited or costly resources are distributed to people who need them the most, rather than randomly across a population, while simultaneously allowing a quasi-experimental treatment. The control group scores in the RD design do not serve as a benchmark for comparing treatment group scores, given the systematic non-equivalence between the two groups. Rather, if there is no discontinuity between pretest and posttest scores in the control group, but such a discontinuity persists in the treatment group, then this discontinuity is viewed as evidence of the treatment effect.

Proxy pretest design . This design, shown in Figure 10.11, looks very similar to the standard NEGD (pretest-posttest) design, with one critical difference: the pretest score is collected after the treatment is administered. A typical application of this design is when a researcher is brought in to test the efficacy of a program (e.g., an educational program) after the program has already started and pretest data is not available. Under such circumstances, the best option for the researcher is often to use a different prerecorded measure, such as students’ grade point average before the start of the program, as a proxy for pretest data. A variation of the proxy pretest design is to use subjects’ posttest recollection of pretest data, which may be subject to recall bias, but nevertheless may provide a measure of perceived gain or change in the dependent variable.

Proxy pretest design

Separate pretest-posttest samples design . This design is useful if it is not possible to collect pretest and posttest data from the same subjects for some reason. As shown in Figure 10.12, there are four groups in this design, but two groups come from a single non-equivalent group, while the other two groups come from a different non-equivalent group. For instance, say you want to test customer satisfaction with a new online service that is implemented in one city but not in another. In this case, customers in the first city serve as the treatment group and those in the second city constitute the control group. If it is not possible to obtain pretest and posttest measures from the same customers, you can measure customer satisfaction at one point in time, implement the new service program, and measure customer satisfaction (with a different set of customers) after the program is implemented. Customer satisfaction is also measured in the control group at the same times as in the treatment group, but without the new program implementation. The design is not particularly strong, because you cannot examine the changes in any specific customer’s satisfaction score before and after the implementation, but you can only examine average customer satisfaction scores. Despite the lower internal validity, this design may still be a useful way of collecting quasi-experimental data when pretest and posttest data is not available from the same subjects.

Separate pretest-posttest samples design

An interesting variation of the NEDV design is a pattern-matching NEDV design , which employs multiple outcome variables and a theory that explains how much each variable will be affected by the treatment. The researcher can then examine if the theoretical prediction is matched in actual observations. This pattern-matching technique—based on the degree of correspondence between theoretical and observed patterns—is a powerful way of alleviating internal validity concerns in the original NEDV design.

NEDV design

Perils of experimental research

Experimental research is one of the most difficult of research designs, and should not be taken lightly. This type of research is often best with a multitude of methodological problems. First, though experimental research requires theories for framing hypotheses for testing, much of current experimental research is atheoretical. Without theories, the hypotheses being tested tend to be ad hoc, possibly illogical, and meaningless. Second, many of the measurement instruments used in experimental research are not tested for reliability and validity, and are incomparable across studies. Consequently, results generated using such instruments are also incomparable. Third, often experimental research uses inappropriate research designs, such as irrelevant dependent variables, no interaction effects, no experimental controls, and non-equivalent stimulus across treatment groups. Findings from such studies tend to lack internal validity and are highly suspect. Fourth, the treatments (tasks) used in experimental research may be diverse, incomparable, and inconsistent across studies, and sometimes inappropriate for the subject population. For instance, undergraduate student subjects are often asked to pretend that they are marketing managers and asked to perform a complex budget allocation task in which they have no experience or expertise. The use of such inappropriate tasks, introduces new threats to internal validity (i.e., subject’s performance may be an artefact of the content or difficulty of the task setting), generates findings that are non-interpretable and meaningless, and makes integration of findings across studies impossible.

The design of proper experimental treatments is a very important task in experimental design, because the treatment is the raison d’etre of the experimental method, and must never be rushed or neglected. To design an adequate and appropriate task, researchers should use prevalidated tasks if available, conduct treatment manipulation checks to check for the adequacy of such tasks (by debriefing subjects after performing the assigned task), conduct pilot tests (repeatedly, if necessary), and if in doubt, use tasks that are simple and familiar for the respondent sample rather than tasks that are complex or unfamiliar.

In summary, this chapter introduced key concepts in the experimental design research method and introduced a variety of true experimental and quasi-experimental designs. Although these designs vary widely in internal validity, designs with less internal validity should not be overlooked and may sometimes be useful under specific circumstances and empirical contingencies.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

5.2 Experimental Design

Learning objectives.

  • Explain the difference between between-subjects and within-subjects experiments, list some of the pros and cons of each approach, and decide which approach to use to answer a particular research question.
  • Define random assignment, distinguish it from random sampling, explain its purpose in experimental research, and use some simple strategies to implement it
  • Define several types of carryover effect, give examples of each, and explain how counterbalancing helps to deal with them.

In this section, we look at some different ways to design an experiment. The primary distinction we will make is between approaches in which each participant experiences one level of the independent variable and approaches in which each participant experiences all levels of the independent variable. The former are called between-subjects experiments and the latter are called within-subjects experiments.

Between-Subjects Experiments

In a  between-subjects experiment , each participant is tested in only one condition. For example, a researcher with a sample of 100 university  students might assign half of them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that disorder. It is essential in a between-subjects experiment that the researcher assigns participants to conditions so that the different groups are, on average, highly similar to each other. Those in a trauma condition and a neutral condition, for example, should include a similar proportion of men and women, and they should have similar average intelligence quotients (IQs), similar average levels of motivation, similar average numbers of health problems, and so on. This matching is a matter of controlling these extraneous participant variables across conditions so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of control of extraneous variables across conditions is called  random assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse random assignment with random sampling. Random sampling is a method for selecting a sample from a population, and it is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested. When the procedure is computerized, the computer program often handles the random assignment.

One problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible. One approach is block randomization . In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence.  Table 5.2  shows such a sequence for assigning nine participants to three conditions. The Research Randomizer website ( http://www.randomizer.org ) will generate block randomization sequences for any number of participants and conditions. Again, when the procedure is computerized, the computer program often handles the block randomization.

Random assignment is not guaranteed to control all extraneous variables across conditions. The process is random, so it is always possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this possibility is not a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population takes the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

Matched Groups

An alternative to simple random assignment of participants to conditions is the use of a matched-groups design . Using this design, participants in the various conditions are matched on the dependent variable or on some extraneous variable(s) prior the manipulation of the independent variable. This guarantees that these variables will not be confounded across the experimental conditions. For instance, if we want to determine whether expressive writing affects people’s health then we could start by measuring various health-related variables in our prospective research participants. We could then use that information to rank-order participants according to how healthy or unhealthy they are. Next, the two healthiest participants would be randomly assigned to complete different conditions (one would be randomly assigned to the traumatic experiences writing condition and the other to the neutral writing condition). The next two healthiest participants would then be randomly assigned to complete different conditions, and so on until the two least healthy participants. This method would ensure that participants in the traumatic experiences writing condition are matched to participants in the neutral writing condition with respect to health at the beginning of the study. If at the end of the experiment, a difference in health was detected across the two conditions, then we would know that it is due to the writing manipulation and not to pre-existing differences in health.

Within-Subjects Experiments

In a  within-subjects experiment , each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the guilt of both an attractive  and  an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very same people. Within-subjects experiments also make it possible to use statistical procedures that remove the effect of these extraneous participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable easier to detect. We will look more closely at this idea later in the book .  However, not all experiments can use a within-subjects design nor would it be desirable to do so.

One disadvantage of within-subjects experiments is that they make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This  knowledge could  lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover Effects and Counterbalancing

The primary disadvantage of within-subjects designs is that they can result in order effects. An order effect  occurs when participants’ responses in the various conditions are affected by the order of conditions to which they were exposed. One type of order effect is a carryover effect. A  carryover effect  is an effect of being tested in one condition on participants’ behavior in later conditions. One type of carryover effect is a  practice effect , where participants perform a task better in later conditions because they have had a chance to practice it. Another type is a fatigue effect , where participants perform a task worse in later conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions. This  type of effect is called a  context effect (or contrast effect) . For example, an average-looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. 

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine, for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable. The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects, however, that can be used in many situations. It is  counterbalancing , which means testing different participants in different orders. The best method of counterbalancing is complete counterbalancing  in which an equal number of participants complete each possible order of conditions. For example, half of the participants would be tested in the attractive defendant condition followed by the unattractive defendant condition, and others half would be tested in the unattractive condition followed by the attractive condition. With three conditions, there would be six different orders (ABC, ACB, BAC, BCA, CAB, and CBA), so some participants would be tested in each of the six orders. With four conditions, there would be 24 different orders; with five conditions there would be 120 possible orders. With counterbalancing, participants are assigned to orders randomly, using the techniques we have already discussed. Thus, random assignment plays an important role in within-subjects designs just as in between-subjects designs. Here, instead of randomly assigning to conditions, they are randomly assigned to different orders of conditions. In fact, it can safely be said that if a study does not involve random assignment in one form or another, it is not an experiment.

A more efficient way of counterbalancing is through a Latin square design which randomizes through having equal rows and columns. For example, if you have four treatments, you must have four versions. Like a Sudoku puzzle, no treatment can repeat in a row or column. For four versions of four treatments, the Latin square design would look like:

You can see in the diagram above that the square has been constructed to ensure that each condition appears at each ordinal position (A appears first once, second once, third once, and fourth once) and each condition preceded and follows each other condition one time. A Latin square for an experiment with 6 conditions would by 6 x 6 in dimension, one for an experiment with 8 conditions would be 8 x 8 in dimension, and so on. So while complete counterbalancing of 6 conditions would require 720 orders, a Latin square would only require 6 orders.

Finally, when the number of conditions is large experiments can use  random counterbalancing  in which the order of the conditions is randomly determined for each participant. Using this technique every possible order of conditions is determined and then one of these orders is randomly selected for each participant. This is not as powerful a technique as complete counterbalancing or partial counterbalancing using a Latin squares design. Use of random counterbalancing will result in more random error, but if order effects are likely to be small and the number of conditions is large, this is an option available to researchers.

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it had an effect.

When 9 Is “Larger” Than 221

Researcher Michael Birnbaum has argued that the  lack  of context provided by between-subjects designs is often a bigger problem than the context effects created by within-subjects designs. To demonstrate this problem, he asked participants to rate two numbers on how large they were on a scale of 1-to-10 where 1 was “very very small” and 10 was “very very large”.  One group of participants were asked to rate the number 9 and another group was asked to rate the number 221 (Birnbaum, 1999) [1] . Participants in this between-subjects design gave the number 9 a mean rating of 5.13 and the number 221 a mean rating of 3.10. In other words, they rated 9 as larger than 221! According to Birnbaum, this  difference  is because participants spontaneously compared 9 with other one-digit numbers (in which case it is  relatively large) and compared 221 with other three-digit numbers (in which case it is relatively  small).

Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects designs in which participants are tested in one condition at a time. There is another approach, however, that is often used when participants make multiple responses in each condition. Imagine, for example, that participants judge the guilt of 10 attractive defendants and 10 unattractive defendants. Instead of having people make judgments about all 10 defendants of one type followed by all 10 defendants of the other type, the researcher could present all 20 defendants in a sequence that mixed the two types. The researcher could then compute each participant’s mean rating for each type of defendant. Or imagine an experiment designed to see whether people with social anxiety disorder remember negative adjectives (e.g., “stupid,” “incompetent”) better than positive ones (e.g., “happy,” “productive”). The researcher could have participants study a single list that includes both kinds of words and then have them try to recall as many words as possible. The researcher could then count the number of each type of word that was recalled. 

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a between-subjects design or a within-subjects design. This possibility means that researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects experiments have the advantage of being conceptually simpler and requiring less testing time per participant. They also avoid carryover effects without the need for counterbalancing. Within-subjects experiments have the advantage of controlling extraneous participant variables, which generally reduces noise in the data and makes it easier to detect a relationship between the independent and dependent variables.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the time that is available per participant—and you have no serious concerns about carryover effects—this design is probably the best option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in the control condition. This difficulty is true for many designs that involve a treatment meant to produce long-term change in participants’ behavior (e.g., studies testing the effectiveness of psychotherapy). Clearly, a between-subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact, professional researchers often take exactly this type of mixed methods approach.

Key Takeaways

  • Experiments can be conducted using either between-subjects or within-subjects designs. Deciding which to use in a particular situation requires careful consideration of the pros and cons of each approach.
  • Random assignment to conditions in between-subjects experiments or counterbalancing of orders of conditions in within-subjects experiments is a fundamental element of experimental research. The purpose of these techniques is to control extraneous variables so that they do not become confounding variables.
  • You want to test the relative effectiveness of two training programs for running a marathon.
  • Using photographs of people as stimuli, you want to see if smiling people are perceived as more intelligent than people who are not smiling.
  • In a field experiment, you want to see if the way a panhandler is dressed (neatly vs. sloppily) affects whether or not passersby give him any money.
  • You want to see if concrete nouns (e.g.,  dog ) are recalled better than abstract nouns (e.g.,  truth).
  • Birnbaum, M.H. (1999). How to show that 9>221: Collect judgments in a between-subjects design. Psychological Methods, 4 (3), 243-249. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

1.3: Threats to Internal Validity and Different Control Techniques

  • Last updated
  • Save as PDF
  • Page ID 32915

  • Yang Lydia Yang
  • Kansas State University

Internal validity is often the focus from a research design perspective. To understand the pros and cons of various designs and to be able to better judge specific designs, we identify specific threats to internal validity . Before we do so, it is important to note that the primary challenge to establishing internal validity in social sciences is the fact that most of the phenomena we care about have multiple causes and are often a result of some complex set of interactions. For example, X may be only a partial cause of Y or X may cause Y, but only when Z is present. Multiple causation and interactive effects make it very difficult to demonstrate causality. Turning now to more specific threats, Figure 1.3.1 below identifies common threats to internal validity.

Different Control Techniques

All of the common threats mentioned above can introduce extraneous variables into your research design, which will potentially confound your research findings. In other words, we won't be able to tell whether it is the independent variable (i.e., the treatment we give participants), or the extraneous variable, that causes the changes in the dependent variable. Controlling for extraneous variables reduces its threats on the research design and gives us a better chance to claim the independent variable causes the changes in the dependent variable, i.e., internal validity. There are different techniques we can use to control for extraneous variables.

Random assignment

Random assignment is the single most powerful control technique we can use to minimize the potential threats of the confounding variables in research design. As we have seen in Dunn and her colleagues' study earlier, participants are not allowed to self select into either conditions (spend $20 on self or spend on others). Instead, they are randomly assigned into either group by the researcher(s). By doing so, the two groups are likely to be similar on all other factors except the independent variable itself. One confounding variable mentioned earlier is whether individuals had a happy childhood to begin with. Using random assignment, those who had a happy childhood will likely end up in each condition group. Similarly, those who didn't have a happy childhood will likely end up in each condition group too. As a consequence, we can expect the two condition groups to be very similar on this confounding variable. Applying the same logic, we can use random assignment to minimize all potential confounding variables (assuming your sample size is large enough!). With that, the only difference between the two groups is the condition participants are assigned to, which is the independent variable, then we are confident to infer that the independent variable actually causes the differences in the dependent variables.

It is critical to emphasize that random assignment is the only control technique to control for both known and unknown confounding variables. With all other control techniques mentioned below, we must first know what the confounding variable is before controlling it. Random assignment does not. With the simple act of randomly assigning participants into different conditions, we take care both the confounding variables we know of and the ones we don't even know that could threat the internal validity of our studies. As the saying goes, "what you don't know will hurt you." Random assignment take cares of it.

Matching is another technique we can use to control for extraneous variables. We must first identify the extraneous variable that can potentially confound the research design. Then we want to rank order the participants on this extraneous variable or list the participants in a ascending or descending order. Participants who are similar on the extraneous variable will be placed into different treatment groups. In other words, they are "matched" on the extraneous variable. Then we can carry out the intervention/treatment as usual. If different treatment groups do show differences on the dependent variable, we would know it is not the extraneous variables because participants are "matched" or equivalent on the extraneous variable. Rather it is more likely to the independent variable (i.e., the treatments) that causes the changes in the dependent variable. Use the example above (self-spending vs. others-spending on happiness) with the same extraneous variable of whether individuals had a happy childhood to begin with. Once we identify this extraneous variable, we do need to first collect some kind of data from the participants to measure how happy their childhood was. Or sometimes, data on the extraneous variables we plan to use may be already available (for example, you want to examine the effect of different types of tutoring on students' performance in Calculus I course and you plan to match them on this extraneous variable: college entrance test scores, which is already collected by the Admissions Office). In either case, getting the data on the identified extraneous variable is a typical step we need to do before matching. So going back to whether individuals had a happy childhood to begin with. Once we have data, we'd sort it in a certain order, for example, from the highest score (meaning participants reporting the happiest childhood) to the lowest score (meaning participants reporting the least happy childhood). We will then identify/match participants with the highest levels of childhood happiness and place them into different treatment groups. Then we go down the scale and match participants with relative high levels of childhood happiness and place them into different treatment groups. We repeat on the descending order until we match participants with the lowest levels of childhood happiness and place them into different treatment groups. By now, each treatment group will have participants with a full range of levels on childhood happiness (which is a strength...thinking about the variation, the representativeness of the sample). The two treatment groups will be similar or equivalent on this extraneous variable. If the treatments, self-spending vs. other-spending, eventually shows the differences on individual happiness, then we know it's not due to how happy their childhood was. We will be more confident it is due to the independent variable.

You may be thinking, but wait we have only taken care of one extraneous variable. What about other extraneous variables? Good thinking.That's exactly correct. We mentioned a few extraneous variables but have only matched them on one. This is the main limitation of matching. You can match participants on more than one extraneous variables, but it's cumbersome, if not impossible, to match them on 10 or 20 extraneous variables. More importantly, the more variables we try to match participants on, the less likely we will have a similar match. In other words, it may be easy to find/match participants on one particular extraneous variable (similar level of childhood happiness), but it's much harder to find/match participants to be similar on 10 different extraneous variables at once.

Holding Extraneous Variable Constant

Holding extraneous variable constant control technique is self-explanatory. We will use participants at one level of extraneous variable only, in other words, holding the extraneous variable constant. Using the same example above, for example we only want to study participants with the low level of childhood happiness. We do need to go through the same steps as in Matching: identifying the extraneous variable that can potentially confound the research design and getting the data on the identified extraneous variable. Once we have the data on childhood happiness scores, we will only include participants on the lower end of childhood happiness scores, then place them into different treatment groups and carry out the study as before. If the condition groups, self-spending vs. other-spending, eventually shows the differences on individual happiness, then we know it's not due to how happy their childhood was (since we already picked those on the lower end of childhood happiness only). We will be more confident it is due to the independent variable.

Similarly to Matching, we have to do this one extraneous variable at a time. As we increase the number of extraneous variables to be held constant, the more difficult it gets. The other limitation is by holding extraneous variable constant, we are excluding a big chunk of participants, in this case, anyone who are NOT low on childhood happiness. This is a major weakness, as we reduce the variability on the spectrum of childhood happiness levels, we decreases the representativeness of the sample and generalizabiliy suffers.

Building Extraneous Variables into Design

The last control technique building extraneous variables into research design is widely used. Like the name suggests, we would identify the extraneous variable that can potentially confound the research design, and include it into the research design by treating it as an independent variable. This control technique takes care of the limitation the previous control technique, holding extraneous variable constant, has. We don't need to excluding participants based on where they stand on the extraneous variable(s). Instead we can include participants with a wide range of levels on the extraneous variable(s). You can include multiple extraneous variables into the design at once. However, the more variables you include in the design, the large the sample size it requires for statistical analyses, which may be difficult to obtain due to limitations of time, staff, cost, access, etc.

Logo for Mavs Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.1 Experimental design: What is it and when should it be used?

Learning objectives.

  • Define experiment
  • Identify the core features of true experimental designs
  • Describe the difference between an experimental group and a control group
  • Identify and describe the various types of true experimental designs

Experiments are an excellent data collection strategy for social workers wishing to observe the effects of a clinical intervention or social welfare program. Understanding what experiments are and how they are conducted is useful for all social scientists, whether they actually plan to use this methodology or simply aim to understand findings from experimental studies. An experiment is a method of data collection designed to test hypotheses under controlled conditions. In social scientific research, the term experiment has a precise meaning and should not be used to describe all research methodologies.

random assignment research design

Experiments have a long and important history in social science. Behaviorists such as John Watson, B. F. Skinner, Ivan Pavlov, and Albert Bandura used experimental design to demonstrate the various types of conditioning. Using strictly controlled environments, behaviorists were able to isolate a single stimulus as the cause of measurable differences in behavior or physiological responses. The foundations of social learning theory and behavior modification are found in experimental research projects. Moreover, behaviorist experiments brought psychology and social science away from the abstract world of Freudian analysis and towards empirical inquiry, grounded in real-world observations and objectively-defined variables. Experiments are used at all levels of social work inquiry, including agency-based experiments that test therapeutic interventions and policy experiments that test new programs.

Several kinds of experimental designs exist. In general, designs considered to be true experiments contain three basic key features:

  • random assignment of participants into experimental and control groups
  • a “treatment” (or intervention) provided to the experimental group
  • measurement of the effects of the treatment in a post-test administered to both groups

Some true experiments are more complex.  Their designs can also include a pre-test and can have more than two groups, but these are the minimum requirements for a design to be a true experiment.

Experimental and control groups

In a true experiment, the effect of an intervention is tested by comparing two groups: one that is exposed to the intervention (the experimental group , also known as the treatment group) and another that does not receive the intervention (the control group ). Importantly, participants in a true experiment need to be randomly assigned to either the control or experimental groups. Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups are due to random chance. We will address more of the logic behind random assignment in the next section.

Treatment or intervention

In an experiment, the independent variable is receiving the intervention being tested—for example, a therapeutic technique, prevention program, or access to some service or support. It is less common in of social work research, but social science research may also have a stimulus, rather than an intervention as the independent variable. For example, an electric shock or a reading about death might be used as a stimulus to provoke a response.

In some cases, it may be immoral to withhold treatment completely from a control group within an experiment. If you recruited two groups of people with severe addiction and only provided treatment to one group, the other group would likely suffer. For these cases, researchers use a control group that receives “treatment as usual.” Experimenters must clearly define what treatment as usual means. For example, a standard treatment in substance abuse recovery is attending Alcoholics Anonymous or Narcotics Anonymous meetings. A substance abuse researcher conducting an experiment may use twelve-step programs in their control group and use their experimental intervention in the experimental group. The results would show whether the experimental intervention worked better than normal treatment, which is useful information.

The dependent variable is usually the intended effect the researcher wants the intervention to have. If the researcher is testing a new therapy for individuals with binge eating disorder, their dependent variable may be the number of binge eating episodes a participant reports. The researcher likely expects her intervention to decrease the number of binge eating episodes reported by participants. Thus, she must, at a minimum, measure the number of episodes that occur after the intervention, which is the post-test .  In a classic experimental design, participants are also given a pretest to measure the dependent variable before the experimental treatment begins.

Types of experimental design

Let’s put these concepts in chronological order so we can better understand how an experiment runs from start to finish. Once you’ve collected your sample, you’ll need to randomly assign your participants to the experimental group and control group. In a common type of experimental design, you will then give both groups your pretest, which measures your dependent variable, to see what your participants are like before you start your intervention. Next, you will provide your intervention, or independent variable, to your experimental group, but not to your control group. Many interventions last a few weeks or months to complete, particularly therapeutic treatments. Finally, you will administer your post-test to both groups to observe any changes in your dependent variable. What we’ve just described is known as the classical experimental design and is the simplest type of true experimental design. All of the designs we review in this section are variations on this approach. Figure 8.1 visually represents these steps.

Steps in classic experimental design: Sampling to Assignment to Pretest to intervention to Posttest

An interesting example of experimental research can be found in Shannon K. McCoy and Brenda Major’s (2003) study of people’s perceptions of prejudice. In one portion of this multifaceted study, all participants were given a pretest to assess their levels of depression. No significant differences in depression were found between the experimental and control groups during the pretest. Participants in the experimental group were then asked to read an article suggesting that prejudice against their own racial group is severe and pervasive, while participants in the control group were asked to read an article suggesting that prejudice against a racial group other than their own is severe and pervasive. Clearly, these were not meant to be interventions or treatments to help depression, but were stimuli designed to elicit changes in people’s depression levels. Upon measuring depression scores during the post-test period, the researchers discovered that those who had received the experimental stimulus (the article citing prejudice against their same racial group) reported greater depression than those in the control group. This is just one of many examples of social scientific experimental research.

In addition to classic experimental design, there are two other ways of designing experiments that are considered to fall within the purview of “true” experiments (Babbie, 2010; Campbell & Stanley, 1963).  The posttest-only control group design is almost the same as classic experimental design, except it does not use a pretest. Researchers who use posttest-only designs want to eliminate testing effects , in which participants’ scores on a measure change because they have already been exposed to it. If you took multiple SAT or ACT practice exams before you took the real one you sent to colleges, you’ve taken advantage of testing effects to get a better score. Considering the previous example on racism and depression, participants who are given a pretest about depression before being exposed to the stimulus would likely assume that the intervention is designed to address depression. That knowledge could cause them to answer differently on the post-test than they otherwise would. In theory, as long as the control and experimental groups have been determined randomly and are therefore comparable, no pretest is needed. However, most researchers prefer to use pretests in case randomization did not result in equivalent groups and to help assess change over time within both the experimental and control groups.

Researchers wishing to account for testing effects but also gather pretest data can use a Solomon four-group design. In the Solomon four-group design , the researcher uses four groups. Two groups are treated as they would be in a classic experiment—pretest, experimental group intervention, and post-test. The other two groups do not receive the pretest, though one receives the intervention. All groups are given the post-test. Table 8.1 illustrates the features of each of the four groups in the Solomon four-group design. By having one set of experimental and control groups that complete the pretest (Groups 1 and 2) and another set that does not complete the pretest (Groups 3 and 4), researchers using the Solomon four-group design can account for testing effects in their analysis.

Solomon four-group designs are challenging to implement in the real world because they are time- and resource-intensive. Researchers must recruit enough participants to create four groups and implement interventions in two of them.

Overall, true experimental designs are sometimes difficult to implement in a real-world practice environment. It may be impossible to withhold treatment from a control group or randomly assign participants in a study. In these cases, pre-experimental and quasi-experimental designs–which we  will discuss in the next section–can be used.  However, the differences in rigor from true experimental designs leave their conclusions more open to critique.

Experimental design in macro-level research

You can imagine that social work researchers may be limited in their ability to use random assignment when examining the effects of governmental policy on individuals.  For example, it is unlikely that a researcher could randomly assign some states to implement decriminalization of recreational marijuana and some states not to in order to assess the effects of the policy change.  There are, however, important examples of policy experiments that use random assignment, including the Oregon Medicaid experiment. In the Oregon Medicaid experiment, the wait list for Oregon was so long, state officials conducted a lottery to see who from the wait list would receive Medicaid (Baicker et al., 2013).  Researchers used the lottery as a natural experiment that included random assignment. People selected to be a part of Medicaid were the experimental group and those on the wait list were in the control group. There are some practical complications macro-level experiments, just as with other experiments.  For example, the ethical concern with using people on a wait list as a control group exists in macro-level research just as it does in micro-level research.

Key Takeaways

  • True experimental designs require random assignment.
  • Control groups do not receive an intervention, and experimental groups receive an intervention.
  • The basic components of a true experiment include a pretest, posttest, control group, and experimental group.
  • Testing effects may cause researchers to use variations on the classic experimental design.
  • Classic experimental design- uses random assignment, an experimental and control group, as well as pre- and posttesting
  • Control group- the group in an experiment that does not receive the intervention
  • Experiment- a method of data collection designed to test hypotheses under controlled conditions
  • Experimental group- the group in an experiment that receives the intervention
  • Posttest- a measurement taken after the intervention
  • Posttest-only control group design- a type of experimental design that uses random assignment, and an experimental and control group, but does not use a pretest
  • Pretest- a measurement taken prior to the intervention
  • Random assignment-using a random process to assign people into experimental and control groups
  • Solomon four-group design- uses random assignment, two experimental and two control groups, pretests for half of the groups, and posttests for all
  • Testing effects- when a participant’s scores on a measure change because they have already been exposed to it
  • True experiments- a group of experimental designs that contain independent and dependent variables, pretesting and post testing, and experimental and control groups

Image attributions

exam scientific experiment by mohamed_hassan CC-0

Foundations of Social Work Research Copyright © 2020 by Rebecca L. Mauldin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

We're sorry, but some features of Research Randomizer require JavaScript. If you cannot enable JavaScript, we suggest you use an alternative random number generator such as the one available at Random.org .

RESEARCH RANDOMIZER

Random sampling and random assignment made easy.

Research Randomizer is a free resource for researchers and students in need of a quick way to generate random numbers or assign participants to experimental conditions. This site can be used for a variety of purposes, including psychology experiments, medical trials, and survey research.

GENERATE NUMBERS

In some cases, you may wish to generate more than one set of numbers at a time (e.g., when randomly assigning people to experimental conditions in a "blocked" research design). If you wish to generate multiple sets of random numbers, simply enter the number of sets you want, and Research Randomizer will display all sets in the results.

Specify how many numbers you want Research Randomizer to generate in each set. For example, a request for 5 numbers might yield the following set of random numbers: 2, 17, 23, 42, 50.

Specify the lowest and highest value of the numbers you want to generate. For example, a range of 1 up to 50 would only generate random numbers between 1 and 50 (e.g., 2, 17, 23, 42, 50). Enter the lowest number you want in the "From" field and the highest number you want in the "To" field.

Selecting "Yes" means that any particular number will appear only once in a given set (e.g., 2, 17, 23, 42, 50). Selecting "No" means that numbers may repeat within a given set (e.g., 2, 17, 17, 42, 50). Please note: Numbers will remain unique only within a single set, not across multiple sets. If you request multiple sets, any particular number in Set 1 may still show up again in Set 2.

Sorting your numbers can be helpful if you are performing random sampling, but it is not desirable if you are performing random assignment. To learn more about the difference between random sampling and random assignment, please see the Research Randomizer Quick Tutorial.

Place Markers let you know where in the sequence a particular random number falls (by marking it with a small number immediately to the left). Examples: With Place Markers Off, your results will look something like this: Set #1: 2, 17, 23, 42, 50 Set #2: 5, 3, 42, 18, 20 This is the default layout Research Randomizer uses. With Place Markers Within, your results will look something like this: Set #1: p1=2, p2=17, p3=23, p4=42, p5=50 Set #2: p1=5, p2=3, p3=42, p4=18, p5=20 This layout allows you to know instantly that the number 23 is the third number in Set #1, whereas the number 18 is the fourth number in Set #2. Notice that with this option, the Place Markers begin again at p1 in each set. With Place Markers Across, your results will look something like this: Set #1: p1=2, p2=17, p3=23, p4=42, p5=50 Set #2: p6=5, p7=3, p8=42, p9=18, p10=20 This layout allows you to know that 23 is the third number in the sequence, and 18 is the ninth number over both sets. As discussed in the Quick Tutorial, this option is especially helpful for doing random assignment by blocks.

Please note: By using this service, you agree to abide by the SPN User Policy and to hold Research Randomizer and its staff harmless in the event that you experience a problem with the program or its results. Although every effort has been made to develop a useful means of generating random numbers, Research Randomizer and its staff do not guarantee the quality or randomness of numbers generated. Any use to which these numbers are put remains the sole responsibility of the user who generated them.

Note: By using Research Randomizer, you agree to its Terms of Service .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Athl Train
  • v.43(2); Mar-Apr 2008

Issues in Outcomes Research: An Overview of Randomization Techniques for Clinical Trials

Minsoo kang.

1 Middle Tennessee State University, Murfreesboro, TN

Brian G Ragan

2 University of Northern Iowa, Cedar Falls, IA

Jae-Hyeon Park

3 Korea National Sport University, Seoul, Korea

To review and describe randomization techniques used in clinical trials, including simple, block, stratified, and covariate adaptive techniques.

Background:

Clinical trials are required to establish treatment efficacy of many athletic training procedures. In the past, we have relied on evidence of questionable scientific merit to aid the determination of treatment choices. Interest in evidence-based practice is growing rapidly within the athletic training profession, placing greater emphasis on the importance of well-conducted clinical trials. One critical component of clinical trials that strengthens results is random assignment of participants to control and treatment groups. Although randomization appears to be a simple concept, issues of balancing sample sizes and controlling the influence of covariates a priori are important. Various techniques have been developed to account for these issues, including block, stratified randomization, and covariate adaptive techniques.

Advantages:

Athletic training researchers and scholarly clinicians can use the information presented in this article to better conduct and interpret the results of clinical trials. Implementing these techniques will increase the power and validity of findings of athletic medicine clinical trials, which will ultimately improve the quality of care provided.

Outcomes research is critical in the evidence-based health care environment because it addresses scientific questions concerning the efficacy of treatments. Clinical trials are considered the “gold standard” for outcomes in biomedical research. In athletic training, calls for more evidence-based medical research, specifically clinical trials, have been issued. 1 , 2

The strength of clinical trials is their superior ability to measure change over time from a treatment. Treatment differences identified from cross-sectional observational designs rather than experimental clinical trials have methodologic weaknesses, including confounding, cohort effects, and selection bias. 3 For example, using a nonrandomized trial to examine the effectiveness of prophylactic knee bracing to prevent medial collateral ligament injuries may suffer from confounders and jeopardize the results. One possible confounder is a history of knee injuries. Participants with a history of knee injuries may be more likely to wear braces than those with no such history. Participants with a history of injury are more likely to suffer additional knee injuries, unbalancing the groups and influencing the results of the study.

The primary goal of comparative clinical trials is to provide comparisons of treatments with maximum precision and validity. 4 One critical component of clinical trials is random assignment of participants into groups. Randomizing participants helps remove the effect of extraneous variables (eg, age, injury history) and minimizes bias associated with treatment assignment. Randomization is considered by most researchers to be the optimal approach for participant assignment in clinical trials because it strengthens the results and data interpretation. 4 – , 9

One potential problem with small clinical trials (n < 100) 7 is that conventional simple randomization methods, such as flipping a coin, may result in imbalanced sample size and baseline characteristics (ie, covariates) among treatment and control groups. 9 , 10 This imbalance of baseline characteristics can influence the comparison between treatment and control groups and introduce potential confounding factors. Many procedures have been proposed for random group assignment of participants in clinical trials. 11 Simple, block, stratified, and covariate adaptive randomizations are some examples. Each technique has advantages and disadvantages, which must be carefully considered before a method is selected. Our purpose is to introduce the concept and significance of randomization and to review several conventional and relatively new randomization techniques to aid in the design and implementation of valid clinical trials.

What Is Randomization?

Randomization is the process of assigning participants to treatment and control groups, assuming that each participant has an equal chance of being assigned to any group. 12 Randomization has evolved into a fundamental aspect of scientific research methodology. Demands have increased for more randomized clinical trials in many areas of biomedical research, such as athletic training. 2 , 13 In fact, in the last 2 decades, internationally recognized major medical journals, such as the Journal of the American Medical Association and the BMJ , have been increasingly interested in publishing studies reporting results from randomized controlled trials. 5

Since Fisher 14 first introduced the idea of randomization in a 1926 agricultural study, the academic community has deemed randomization an essential tool for unbiased comparisons of treatment groups. Five years after Fisher's introductory paper, the first randomized clinical trial involving tuberculosis was conducted. 15 A total of 24 participants were paired (ie, 12 comparable pairs), and by a flip of a coin, each participant within the pair was assigned to either the control or treatment group. By employing randomization, researchers offer each participant an equal chance of being assigned to groups, which makes the groups comparable on the dependent variable by eliminating potential bias. Indeed, randomization of treatments in clinical trials is the only means of avoiding systematic characteristic bias of participants assigned to different treatments. Although randomization may be accomplished with a simple coin toss, more appropriate and better methods are often needed, especially in small clinical trials. These other methods will be discussed in this review.

Why Randomize?

Researchers demand randomization for several reasons. First, participants in various groups should not differ in any systematic way. In a clinical trial, if treatment groups are systematically different, trial results will be biased. Suppose that participants are assigned to control and treatment groups in a study examining the efficacy of a walking intervention. If a greater proportion of older adults is assigned to the treatment group, then the outcome of the walking intervention may be influenced by this imbalance. The effects of the treatment would be indistinguishable from the influence of the imbalance of covariates, thereby requiring the researcher to control for the covariates in the analysis to obtain an unbiased result. 16

Second, proper randomization ensures no a priori knowledge of group assignment (ie, allocation concealment). That is, researchers, participants, and others should not know to which group the participant will be assigned. Knowledge of group assignment creates a layer of potential selection bias that may taint the data. Schulz and Grimes 17 stated that trials with inadequate or unclear randomization tended to overestimate treatment effects up to 40% compared with those that used proper randomization. The outcome of the trial can be negatively influenced by this inadequate randomization.

Statistical techniques such as analysis of covariance (ANCOVA), multivariate ANCOVA, or both, are often used to adjust for covariate imbalance in the analysis stage of the clinical trial. However, the interpretation of this postadjustment approach is often difficult because imbalance of covariates frequently leads to unanticipated interaction effects, such as unequal slopes among subgroups of covariates. 18 , 19 One of the critical assumptions in ANCOVA is that the slopes of regression lines are the same for each group of covariates (ie, homogeneity of regression slopes). The adjustment needed for each covariate group may vary, which is problematic because ANCOVA uses the average slope across the groups to adjust the outcome variable. Thus, the ideal way of balancing covariates among groups is to apply sound randomization in the design stage of a clinical trial (before the adjustment procedure) instead of after data collection. In such instances, random assignment is necessary and guarantees validity for statistical tests of significance that are used to compare treatments.

How To Randomize?

Many procedures have been proposed for the random assignment of participants to treatment groups in clinical trials. In this article, common randomization techniques, including simple randomization, block randomization, stratified randomization, and covariate adaptive randomization, are reviewed. Each method is described along with its advantages and disadvantages. It is very important to select a method that will produce interpretable, valid results for your study.

Simple Randomization

Randomization based on a single sequence of random assignments is known as simple randomization. 10 This technique maintains complete randomness of the assignment of a person to a particular group. The most common and basic method of simple randomization is flipping a coin. For example, with 2 treatment groups (control versus treatment), the side of the coin (ie, heads  =  control, tails  =  treatment) determines the assignment of each participant. Other methods include using a shuffled deck of cards (eg, even  =  control, odd  =  treatment) or throwing a die (eg, below and equal to 3  =  control, over 3  =  treatment). A random number table found in a statistics book or computer-generated random numbers can also be used for simple randomization of participants.

This randomization approach is simple and easy to implement in a clinical trial. In large trials (n > 200), simple randomization can be trusted to generate similar numbers of participants among groups. However, randomization results could be problematic in relatively small sample size clinical trials (n < 100), resulting in an unequal number of participants among groups. For example, using a coin toss with a small sample size (n  =  10) may result in an imbalance such that 7 participants are assigned to the control group and 3 to the treatment group ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-43-2-215-f01.jpg

Block Randomization

The block randomization method is designed to randomize participants into groups that result in equal sample sizes. This method is used to ensure a balance in sample size across groups over time. Blocks are small and balanced with predetermined group assignments, which keeps the numbers of participants in each group similar at all times. According to Altman and Bland, 10 the block size is determined by the researcher and should be a multiple of the number of groups (ie, with 2 treatment groups, block size of either 4 or 6). Blocks are best used in smaller increments as researchers can more easily control balance. 7 After block size has been determined, all possible balanced combinations of assignment within the block (ie, equal number for all groups within the block) must be calculated. Blocks are then randomly chosen to determine the participants' assignment into the groups.

For a clinical trial with control and treatment groups involving 40 participants, a randomized block procedure would be as follows: (1) a block size of 4 is chosen, (2) possible balanced combinations with 2 C (control) and 2 T (treatment) subjects are calculated as 6 (TTCC, TCTC, TCCT, CTTC, CTCT, CCTT), and (3) blocks are randomly chosen to determine the assignment of all 40 participants (eg, one random sequence would be [TTCC / TCCT / CTTC / CTTC / TCCT / CCTT / TTCC / TCTC / CTCT / TCTC]). This procedure results in 20 participants in both the control and treatment groups ( Figure 2 ).

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-43-2-215-f02.jpg

Although balance in sample size may be achieved with this method, groups may be generated that are rarely comparable in terms of certain covariates. 6 For example, one group may have more participants with secondary diseases (eg, diabetes, multiple sclerosis, cancer) that could confound the data and may negatively influence the results of the clinical trial. Pocock and Simon 11 stressed the importance of controlling for these covariates because of serious consequences to the interpretation of the results. Such an imbalance could introduce bias in the statistical analysis and reduce the power of the study. 4 , 6 , 8 Hence, sample size and covariates must be balanced in small clinical trials.

Stratified Randomization

The stratified randomization method addresses the need to control and balance the influence of covariates. This method can be used to achieve balance among groups in terms of participants' baseline characteristics (covariates). Specific covariates must be identified by the researcher who understands the potential influence each covariate has on the dependent variable. Stratified randomization is achieved by generating a separate block for each combination of covariates, and participants are assigned to the appropriate block of covariates. After all participants have been identified and assigned into blocks, simple randomization occurs within each block to assign participants to one of the groups.

The stratified randomization method controls for the possible influence of covariates that would jeopardize the conclusions of the clinical trial. For example, a clinical trial of different rehabilitation techniques after a surgical procedure will have a number of covariates. It is well known that the age of the patient affects the rate of healing. Thus, age could be a confounding variable and influence the outcome of the clinical trial. Stratified randomization can balance the control and treatment groups for age or other identified covariates.

For example, with 2 groups involving 40 participants, the stratified randomization method might be used to control the covariates of sex (2 levels: male, female) and body mass index (3 levels: underweight, normal, overweight) between study arms. With these 2 covariates, possible block combinations total 6 (eg, male, underweight). A simple randomization procedure, such as flipping a coin, is used to assign the participants within each block to one of the treatment groups ( Figure 3 ).

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-43-2-215-f03.jpg

Although stratified randomization is a relatively simple and useful technique, especially for smaller clinical trials, it becomes complicated to implement if many covariates must be controlled. 20 For example, too many block combinations may lead to imbalances in overall treatment allocations because a large number of blocks can generate small participant numbers within the block. Therneau 21 purported that a balance in covariates begins to fail when the number of blocks approaches half the sample size. If another 4-level covariate was added to the example, the number of block combinations would increase from 6 to 24 (2 × 3 × 4), for an average of fewer than 2 (40 / 24  =  1.7) participants per block, reducing the usefulness of the procedure to balance the covariates and jeopardizing the validity of the clinical trial. In small studies, it may not be feasible to stratify more than 1 or 2 covariates because the number of blocks can quickly approach the number of participants. 10

Stratified randomization has another limitation: it works only when all participants have been identified before group assignment. This method is rarely applicable, however, because clinical trial participants are often enrolled one at a time on a continuous basis. When baseline characteristics of all participants are not available before assignment, using stratified randomization is difficult. 7

Covariate Adaptive Randomization

Covariate adaptive randomization has been recommended by many researchers as a valid alternative randomization method for clinical trials. 9 , 22 In covariate adaptive randomization, a new participant is sequentially assigned to a particular treatment group by taking into account the specific covariates and previous assignments of participants. 9 , 12 , 18 , 23 , 24 Covariate adaptive randomization uses the method of minimization by assessing the imbalance of sample size among several covariates. This covariate adaptive approach was first described by Taves. 23

The Taves covariate adaptive randomization method allows for the examination of previous participant group assignments to make a case-by-case decision on group assignment for each individual who enrolls in the study. Consider again the example of 2 groups involving 40 participants, with sex (2 levels: male, female) and body mass index (3 levels: underweight, normal, overweight) as covariates. Assume the first 9 participants have already been randomly assigned to groups by flipping a coin. The 9 participants' group assignments are broken down by covariate level in Figure 4 . Now the 10th participant, who is male and underweight, needs to be assigned to a group (ie, control versus treatment). Based on the characteristics of the 10th participant, the Taves method adds marginal totals of the corresponding covariate categories for each group and compares the totals. The participant is assigned to the group with the lower covariate total to minimize imbalance. In this example, the appropriate categories are male and underweight, which results in the total of 3 (2 for male category + 1 for underweight category) for the control group and a total of 5 (3 for male category + 2 for underweight category) for the treatment group. Because the sum of marginal totals is lower for the control group (3 < 5), the 10th participant is assigned to the control group ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-43-2-215-f04.jpg

The Pocock and Simon method 11 of covariate adaptive randomization is similar to the method Taves 23 described. The difference in this approach is the temporary assignment of participants to both groups. This method uses the absolute difference between groups to determine group assignment. To minimize imbalance, the participant is assigned to the group determined by the lowest sum of the absolute differences among the covariates between the groups. For example, using the previous situation in assigning the 10th participant to a group, the Pocock and Simon method would (1) assign the 10th participant temporarily to the control group, resulting in marginal totals of 3 for male category and 2 for underweight category; (2) calculate the absolute difference between control and treatment group (males: 3 control – 3 treatment  =  0; underweight: 2 control – 2 treatment  =  0) and sum (0 + 0  =  0); (3) temporarily assign the 10th participant to the treatment group, resulting in marginal totals of 4 for male category and 3 for underweight category; (4) calculate the absolute difference between control and treatment group (males: 2 control – 4 treatment  =  2; underweight: 1 control – 3 treatment  =  2) and sum (2 + 2  =  4); and (5) assign the 10th participant to the control group because of the lowest sum of absolute differences (0 < 4).

Pocock and Simon 11 also suggested using a variance approach. Instead of calculating absolute difference among groups, this approach calculates the variance among treatment groups. Although the variance method performs similarly to the absolute difference method, both approaches suffer from the limitation of handling only categorical covariates. 25

Frane 18 introduced a covariate adaptive randomization for both continuous and categorical types. Frane used P values to identify imbalance among treatment groups: a smaller P value represents more imbalance among treatment groups.

The Frane method for assigning participants to either the control or treatment group would include (1) temporarily assigning the participant to both the control and treatment groups; (2) calculating P values for each of the covariates using a t test and analysis of variance (ANOVA) for continuous variables and goodness-of-fit χ 2 test for categorical variables; (3) determining the minimum P value for each control or treatment group, which indicates more imbalance among treatment groups; and (4) assigning the participant to the group with the larger minimum P value (ie, try to avoid more imbalance in groups).

Going back to the previous example of assigning the 10th participant (male and underweight) to a group, the Frane method would result in the assignment to the control group. The steps used to make this decision were calculating P values for each of the covariates using the χ 2 goodness-of-fit test represented in the Table . The t tests and ANOVAs were not used because the covariates in this example were categorical. Based on the Table , the lowest minimum P values were 1.0 for the control group and 0.317 for the treatment group. The 10th participant was assigned to the control group because of the higher minimum P value, which indicates better balance in the control group (1.0 > 0.317).

Probabilities From χ 2 Goodness-of-Fit Tests for the Example Shown in Figure 5 (Frane 18 Method)

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-43-2-215-t01.jpg

Covariate adaptive randomization produces less imbalance than other conventional randomization methods and can be used successfully to balance important covariates among control and treatment groups. 6 Although the balance of covariates among groups using the stratified randomization method begins to fail when the number of blocks approaches half the sample size, covariate adaptive randomization can better handle the problem of increasing numbers of covariates (ie, increased block combinations). 9

One concern of these covariate adaptive randomization methods is that treatment assignments sometimes become highly predictable. Investigators using covariate adaptive randomization sometimes come to believe that group assignment for the next participant can be readily predicted, going against the basic concept of randomization. 12 , 26 , 27 This predictability stems from the ongoing assignment of participants to groups wherein the current allocation of participants may suggest future participant group assignment. In their review, Scott et al 9 argued that this predictability is also true of other methods, including stratified randomization, and it should not be overly penalized. Zielhuis et al 28 and Frane 18 suggested a practical approach to prevent predictability: a small number of participants should be randomly assigned into the groups before the covariate adaptive randomization technique being applied.

The complicated computation process of covariate adaptive randomization increases the administrative burden, thereby limiting its use in practice. A user-friendly computer program for covariate adaptive randomization is available (free of charge) upon request from the authors (M.K., B.G.R., or J.H.P.). 29

Conclusions

Our purpose was to introduce randomization, including its concept and significance, and to review several randomization techniques to guide athletic training researchers and practitioners to better design their randomized clinical trials. Many factors can affect the results of clinical research, but randomization is considered the gold standard in most clinical trials. It eliminates selection bias, ensures balance of sample size and baseline characteristics, and is an important step in guaranteeing the validity of statistical tests of significance used to compare treatment groups.

Before choosing a randomization method, several factors need to be considered, including the size of the clinical trial; the need for balance in sample size, covariates, or both; and participant enrollment. 16 Figure 6 depicts a flowchart designed to help select an appropriate randomization technique. For example, a power analysis for a clinical trial of different rehabilitation techniques after a surgical procedure indicated a sample size of 80. A well-known covariate for this study is age, which must be balanced among groups. Because of the nature of the study with postsurgical patients, participant recruitment and enrollment will be continuous. Using the flowchart, the appropriate randomization technique is covariate adaptive randomization technique.

An external file that holds a picture, illustration, etc.
Object name is i1062-6050-43-2-215-f06.jpg

Simple randomization works well for a large trial (eg, n > 200) but not for a small trial (n < 100). 7 To achieve balance in sample size, block randomization is desirable. To achieve balance in baseline characteristics, stratified randomization is widely used. Covariate adaptive randomization, however, can achieve better balance than other randomization methods and can be successfully used for clinical trials in an effective manner.

Acknowledgments

This study was partially supported by a Faculty Grant (FRCAC) from the College of Graduate Studies, at Middle Tennessee State University, Murfreesboro, TN.

Minsoo Kang, PhD; Brian G. Ragan, PhD, ATC; and Jae-Hyeon Park, PhD, contributed to conception and design; acquisition and analysis and interpretation of the data; and drafting, critical revision, and final approval of the article.

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 6: Experimental Research

Experimental Design

Learning Objectives

  • Explain the difference between between-subjects and within-subjects experiments, list some of the pros and cons of each approach, and decide which approach to use to answer a particular research question.
  • Define random assignment, distinguish it from random sampling, explain its purpose in experimental research, and use some simple strategies to implement it.
  • Define what a control condition is, explain its purpose in research on treatment effectiveness, and describe some alternative types of control conditions.
  • Define several types of carryover effect, give examples of each, and explain how counterbalancing helps to deal with them.

In this section, we look at some different ways to design an experiment. The primary distinction we will make is between approaches in which each participant experiences one level of the independent variable and approaches in which each participant experiences all levels of the independent variable. The former are called between-subjects experiments and the latter are called within-subjects experiments.

Between-Subjects Experiments

In a  between-subjects experiment , each participant is tested in only one condition. For example, a researcher with a sample of 100 university  students might assign half of them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that disorder. It is essential in a between-subjects experiment that the researcher assign participants to conditions so that the different groups are, on average, highly similar to each other. Those in a trauma condition and a neutral condition, for example, should include a similar proportion of men and women, and they should have similar average intelligence quotients (IQs), similar average levels of motivation, similar average numbers of health problems, and so on. This matching is a matter of controlling these extraneous participant variables across conditions so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of control of extraneous variables across conditions is called  random assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse random assignment with random sampling. Random sampling is a method for selecting a sample from a population, and it is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested. When the procedure is computerized, the computer program often handles the random assignment.

One problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible. One approach is block randomization . In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence.  Table 6.2  shows such a sequence for assigning nine participants to three conditions. The Research Randomizer website will generate block randomization sequences for any number of participants and conditions. Again, when the procedure is computerized, the computer program often handles the block randomization.

Random assignment is not guaranteed to control all extraneous variables across conditions. It is always possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this possibility is not a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population takes the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

Treatment and Control Conditions

Between-subjects experiments are often used to determine whether a treatment works. In psychological research, a  treatment  is any intervention meant to change people’s behaviour for the better. This  intervention  includes psychotherapies and medical treatments for psychological disorders but also interventions designed to improve learning, promote conservation, reduce prejudice, and so on. To determine whether a treatment works, participants are randomly assigned to either a  treatment condition , in which they receive the treatment, or a control condition , in which they do not receive the treatment. If participants in the treatment condition end up better off than participants in the control condition—for example, they are less depressed, learn faster, conserve more, express less prejudice—then the researcher can conclude that the treatment works. In research on the effectiveness of psychotherapies and medical treatments, this type of experiment is often called a randomized clinical trial .

There are different types of control conditions. In a  no-treatment control condition , participants receive no treatment whatsoever. One problem with this approach, however, is the existence of placebo effects. A  placebo  is a simulated treatment that lacks any active ingredient or element that should make it effective, and a  placebo effect  is a positive effect of such a treatment. Many folk remedies that seem to work—such as eating chicken soup for a cold or placing soap under the bedsheets to stop nighttime leg cramps—are probably nothing more than placebos. Although placebo effects are not well understood, they are probably driven primarily by people’s expectations that they will improve. Having the expectation to improve can result in reduced stress, anxiety, and depression, which can alter perceptions and even improve immune system functioning (Price, Finniss, & Benedetti, 2008) [1] .

Placebo effects are interesting in their own right (see  Note “The Powerful Placebo” ), but they also pose a serious problem for researchers who want to determine whether a treatment works.  Figure 6.2  shows some hypothetical results in which participants in a treatment condition improved more on average than participants in a no-treatment control condition. If these conditions (the two leftmost bars in  Figure 6.2 ) were the only conditions in this experiment, however, one could not conclude that the treatment worked. It could be instead that participants in the treatment group improved more because they expected to improve, while those in the no-treatment control condition did not.

""

Fortunately, there are several solutions to this problem. One is to include a placebo control condition , in which participants receive a placebo that looks much like the treatment but lacks the active ingredient or element thought to be responsible for the treatment’s effectiveness. When participants in a treatment condition take a pill, for example, then those in a placebo control condition would take an identical-looking pill that lacks the active ingredient in the treatment (a “sugar pill”). In research on psychotherapy effectiveness, the placebo might involve going to a psychotherapist and talking in an unstructured way about one’s problems. The idea is that if participants in both the treatment and the placebo control groups expect to improve, then any improvement in the treatment group over and above that in the placebo control group must have been caused by the treatment and not by participants’ expectations. This  difference  is what is shown by a comparison of the two outer bars in  Figure 6.2 .

Of course, the principle of informed consent requires that participants be told that they will be assigned to either a treatment or a placebo control condition—even though they cannot be told which until the experiment ends. In many cases the participants who had been in the control condition are then offered an opportunity to have the real treatment. An alternative approach is to use a waitlist control condition , in which participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it. This disclosure allows researchers to compare participants who have received the treatment with participants who are not currently receiving it but who still expect to improve (eventually). A final solution to the problem of placebo effects is to leave out the control condition completely and compare any new treatment with the best available alternative treatment. For example, a new treatment for simple phobia could be compared with standard exposure therapy. Because participants in both conditions receive a treatment, their expectations about improvement should be similar. This approach also makes sense because once there is an effective treatment, the interesting question about a new treatment is not simply “Does it work?” but “Does it work better than what is already available?

The Powerful Placebo

Many people are not surprised that placebos can have a positive effect on disorders that seem fundamentally psychological, including depression, anxiety, and insomnia. However, placebos can also have a positive effect on disorders that most people think of as fundamentally physiological. These include asthma, ulcers, and warts (Shapiro & Shapiro, 1999) [2] . There is even evidence that placebo surgery—also called “sham surgery”—can be as effective as actual surgery.

Medical researcher J. Bruce Moseley and his colleagues conducted a study on the effectiveness of two arthroscopic surgery procedures for osteoarthritis of the knee (Moseley et al., 2002) [3] . The control participants in this study were prepped for surgery, received a tranquilizer, and even received three small incisions in their knees. But they did not receive the actual arthroscopic surgical procedure. The surprising result was that all participants improved in terms of both knee pain and function, and the sham surgery group improved just as much as the treatment groups. According to the researchers, “This study provides strong evidence that arthroscopic lavage with or without débridement [the surgical procedures used] is not better than and appears to be equivalent to a placebo procedure in improving knee pain and self-reported function” (p. 85).

Within-Subjects Experiments

In a within-subjects experiment , each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the guilt of both an attractive and an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very same people. Within-subjects experiments also make it possible to use statistical procedures that remove the effect of these extraneous participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable easier to detect. We will look more closely at this idea later in the book.  However, not all experiments can use a within-subjects design nor would it be desirable to.

Carryover Effects and Counterbalancing

The primary disad vantage of within-subjects designs is that they can result in carryover effects. A  carryover effect  is an effect of being tested in one condition on participants’ behaviour in later conditions. One type of carryover effect is a  practice effect , where participants perform a task better in later conditions because they have had a chance to practice it. Another type is a fatigue effect , where participants perform a task worse in later conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions. This  type of effect  is called a  context effect . For example, an average-looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This  knowledge  could lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine, for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable. The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects, however, that can be used in many situations. It is  counterbalancing , which means testing different participants in different orders. For example, some participants would be tested in the attractive defendant condition followed by the unattractive defendant condition, and others would be tested in the unattractive condition followed by the attractive condition. With three conditions, there would be six different orders (ABC, ACB, BAC, BCA, CAB, and CBA), so some participants would be tested in each of the six orders. With counterbalancing, participants are assigned to orders randomly, using the techniques we have already discussed. Thus random assignment plays an important role in within-subjects designs just as in between-subjects designs. Here, instead of randomly assigning to conditions, they are randomly assigned to different orders of conditions. In fact, it can safely be said that if a study does not involve random assignment in one form or another, it is not an experiment.

An efficient way of counterbalancing is through a Latin square design which randomizes through having equal rows and columns. For example, if you have four treatments, you must have four versions. Like a Sudoku puzzle, no treatment can repeat in a row or column. For four versions of four treatments, the Latin square design would look like:

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it had an effect.

When 9 is “larger” than 221

Researcher Michael Birnbaum has argued that the lack of context provided by between-subjects designs is often a bigger problem than the context effects created by within-subjects designs. To demonstrate this problem, he asked participants to rate two numbers on how large they were on a scale of 1-to-10 where 1 was “very very small” and 10 was “very very large”.  One group of participants were asked to rate the number 9 and another group was asked to rate the number 221 (Birnbaum, 1999) [4] . Participants in this between-subjects design gave the number 9 a mean rating of 5.13 and the number 221 a mean rating of 3.10. In other words, they rated 9 as larger than 221! According to Birnbaum, this difference is because participants spontaneously compared 9 with other one-digit numbers (in which case it is relatively large) and compared 221 with other three-digit numbers (in which case it is relatively small) .

Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects designs in which participants are tested in one condition at a time. There is another approach, however, that is often used when participants make multiple responses in each condition. Imagine, for example, that participants judge the guilt of 10 attractive defendants and 10 unattractive defendants. Instead of having people make judgments about all 10 defendants of one type followed by all 10 defendants of the other type, the researcher could present all 20 defendants in a sequence that mixed the two types. The researcher could then compute each participant’s mean rating for each type of defendant. Or imagine an experiment designed to see whether people with social anxiety disorder remember negative adjectives (e.g., “stupid,” “incompetent”) better than positive ones (e.g., “happy,” “productive”). The researcher could have participants study a single list that includes both kinds of words and then have them try to recall as many words as possible. The researcher could then count the number of each type of word that was recalled. There are many ways to determine the order in which the stimuli are presented, but one common way is to generate a different random order for each participant.

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a between-subjects design or a within-subjects design. This possibility means that researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects experiments have the advantage of being conceptually simpler and requiring less testing time per participant. They also avoid carryover effects without the need for counterbalancing. Within-subjects experiments have the advantage of controlling extraneous participant variables, which generally reduces noise in the data and makes it easier to detect a relationship between the independent and dependent variables.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the time that is available per participant—and you have no serious concerns about carryover effects—this design is probably the best option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in the control condition. This difficulty is true for many designs that involve a treatment meant to produce long-term change in participants’ behaviour (e.g., studies testing the effectiveness of psychotherapy). Clearly, a between-subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact, professional researchers often take exactly this type of mixed methods approach.

Key Takeaways

  • Experiments can be conducted using either between-subjects or within-subjects designs. Deciding which to use in a particular situation requires careful consideration of the pros and cons of each approach.
  • Random assignment to conditions in between-subjects experiments or to orders of conditions in within-subjects experiments is a fundamental element of experimental research. Its purpose is to control extraneous variables so that they do not become confounding variables.
  • Experimental research on the effectiveness of a treatment requires both a treatment condition and a control condition, which can be a no-treatment control condition, a placebo control condition, or a waitlist control condition. Experimental treatments can also be compared with the best available alternative.
  • You want to test the relative effectiveness of two training programs for running a marathon.
  • Using photographs of people as stimuli, you want to see if smiling people are perceived as more intelligent than people who are not smiling.
  • In a field experiment, you want to see if the way a panhandler is dressed (neatly vs. sloppily) affects whether or not passersby give him any money.
  • You want to see if concrete nouns (e.g.,  dog ) are recalled better than abstract nouns (e.g.,  truth ).
  • Discussion: Imagine that an experiment shows that participants who receive psychodynamic therapy for a dog phobia improve more than participants in a no-treatment control group. Explain a fundamental problem with this research design and at least two ways that it might be corrected.
  • Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annual Review of Psychology, 59 , 565–590. ↵
  • Shapiro, A. K., & Shapiro, E. (1999). The powerful placebo: From ancient priest to modern physician . Baltimore, MD: Johns Hopkins University Press. ↵
  • Moseley, J. B., O’Malley, K., Petersen, N. J., Menke, T. J., Brody, B. A., Kuykendall, D. H., … Wray, N. P. (2002). A controlled trial of arthroscopic surgery for osteoarthritis of the knee. The New England Journal of Medicine, 347 , 81–88. ↵
  • Birnbaum, M.H. (1999). How to show that 9>221: Collect judgments in a between-subjects design. Psychological Methods, 4(3), 243-249. ↵

An experiment in which each participant is only tested in one condition.

A method of controlling extraneous variables across conditions by using a random process to decide which participants will be tested in the different conditions.

All the conditions of an experiment occur once in the sequence before any of them is repeated.

Any intervention meant to change people’s behaviour for the better.

A condition in a study where participants receive treatment.

A condition in a study that the other condition is compared to. This group does not receive the treatment or intervention that the other conditions do.

A type of experiment to research the effectiveness of psychotherapies and medical treatments.

A type of control condition in which participants receive no treatment.

A simulated treatment that lacks any active ingredient or element that should make it effective.

A positive effect of a treatment that lacks any active ingredient or element to make it effective.

Participants receive a placebo that looks like the treatment but lacks the active ingredient or element thought to be responsible for the treatment’s effectiveness.

Participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it.

Each participant is tested under all conditions.

An effect of being tested in one condition on participants’ behaviour in later conditions.

Participants perform a task better in later conditions because they have had a chance to practice it.

Participants perform a task worse in later conditions because they become tired or bored.

Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions.

Testing different participants in different orders.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

random assignment research design

Child Care and Early Education Research Connections

Causal study design.

Researchers conduct experiments to study cause and effect relationships and to estimate the impact of child care and early childhood programs on children and their families. There are two basic types of experiments:

Randomized experiments

Quasi-experiments.

An experiment is a study in which the researcher manipulates the treatment, or intervention, and then measures the outcome. It addresses the question “if we change X (the treatment or intervention), what happens to Y (the outcome)?” Conducted both in the laboratory and in real life situations, experiments are powerful techniques for evaluating cause-and-effect relationships. The researcher may manipulate whether research subjects receive a treatment (e.g., attendance in a Head Start program: yes or no) or the level of treatment (e.g., hours per day in the program).

Suppose, for example, a group of researchers was interested in the effect of government-funded child care subsidies on maternal employment. They might hypothesize that the provision of government-subsidized child care would promote such employment. They could then design an experiment in which some mothers would be provided the option of government-funded child care subsidies and others would not. The researchers might also manipulate the value of the child care subsidies in order to determine if higher subsidy values might result in different levels of maternal employment.

The group of participants that receives the intervention or treatment is known as the "treatment group," and the group that does not is known as the “control group” in randomized experiments and “comparison group” in quasi-experiments.

The key distinction between randomized experiments and quasi-experiments lies in the fact that in a randomized experiment, participants are randomly assigned to either the treatment or the control group whereas participants are not in a quasi-experiment.

Randomized Experiments

Random assignment ensures that all participants have the same chance of being in a given experimental condition. Randomized experiments (also known as RCT or randomized control trials) are considered to be the most rigorous approach, or the “gold standard,” to identifying causal effects because they theoretically eliminate all preexisting differences between the treatment and control groups. However, some differences might occur due to chance. In practice, therefore, researchers often control for observed characteristics that might differ between individuals in the treatment and control groups when estimating treatment effects. The use of control variables improves the precision of treatment effect estimates.

Cluster-randomized experiments

Despite being the “gold standard” in causal study design, randomized experiments are not common in social science research because it is often impossible or unethical to randomize individuals to experimental conditions. Cluster-randomized experiments, in which groups (e.g., schools or classes) instead of individuals are randomized, often encounter less objections out of ethical concerns and therefore are more feasible in real life. They also prevent treatment spill over to the control group. For example, if students in the same class are randomly assigned to either the treatment or control group with the treatment being a new curriculum, teachers may introduce features of the treatment (i.e., new curriculum) when working with students in the control group in ways that might affect the outcomes.

One drawback of cluster-randomized experiments is a reduction in statistical power. That is, the likelihood that a true effect is detected is reduced with this design.

Quasi-Experiments

Quasi-experiments are characterized by the lack of randomized assignment. They may or may not have comparison groups. When there are both comparison and treatment groups in a quasi-experiment, the groups differ not only in terms of the experimental treatment they receive, but also in other, often unknown or unknowable, ways. As a result, there may be several "rival hypotheses" competing with the experimental manipulation as explanations for observed results.

There are a variety of quasi-experiments. Below are some of the most common types in social and policy research, arranged in the order of weak to strong in terms of their capabilities of addressing threats to a statement that the relationship between the treatment and the outcome of interest is causal.

One group only

One-group pretest-posttest A single group that receives the treatment is observed at two time points, one before the treatment and one after the treatment. Changes in the outcome of interest are presumed to be the effect of the treatment. For example, a new fourth grade math curriculum is introduced and students' math achievement is assessed in the fall and spring of the school year. Improved scores on the assessment are attributed to the curriculum. The biggest weakness of this design is that a number of events can happen around the time of the treatment and influence the outcome. There can be multiple plausible alternative explanations for the observed results.

Interrupted time series A single group that receives the treatment is observed at multiple time points both before and after the treatment. A change in the trend around the time of the treatment is presumed to be the treatment effect. For example, individuals participating in an exercise program might be weighed each week before and after a new exercise routine is introduced. A downward trend in their weight around the time the new routine was introduced would be seen as evidence of the effectiveness of the treatment. This design is stronger than one-group pretest-posttest because it shows the trend in the outcome variable both before and after the treatment instead of a simple two-point-in-time comparison. However, it still suffers the same weakness that other events can happen at the time of the treatment and be the alternative causes of the observed outcome.

Static-group comparison A group that has experienced some treatment is compared with one that has not. Observed differences between the two groups are assumed to be the result of the treatment. For example, fourth graders in some classrooms in a school district are introduced to a new math curriculum while fourth graders in other classrooms in the district are not. Differences in the math scores of the two groups assessed in the spring of the school year only are assumed to be the result of the new curriculum. The weakness of this design is that the treatment and comparison groups may not be truly comparable because participants are not randomly assigned to the groups and there may be important differences in the characteristics and experiences of the groups, only some of which may be known. If the two groups differ in ways that affect the outcome of interest, the causal claim cannot be presumed.

Difference-in-differences Both treatment and comparison groups are measured before and after the treatment. The difference between the two before-after differences is presumed to be the treatment effect. This design is an improvement of the static-group comparison because it compares outcomes that are measured both before and after the treatment is introduced instead of two post-treatment outcomes. For example, the fourth graders in the prior example are assessed in both the fall (pre-treatment) and spring (post-treatment). Differences in the fall-spring scores between the two fourth grade groups are seen as evidence of the effect of the curriculum. For this reason, the treatment and comparison groups in difference-in-differences do not have to be perfectly comparable. The biggest challenge for the researcher is to defend the parallel trend assumption, namely the change in the treatment group would be the same as the change in the comparison group in the absence of the treatment.

Regression discontinuity Participants are assigned to experimental conditions based on whether their scores are above or below a cut point for a quantitative variable. For example, students who score below 75 on a math test are assigned to the treatment group with the treatment being an intensive tutoring program. Those who score at or above 75 are assigned to the comparison group. The students who score just above or below the cut point are considered to be on average identical because their score differences are most likely due to chance. These students therefore act as if they were randomly assigned. The difference in the outcome of interest (e.g., math ability as measured by a different test after the treatment) between the students right around the cut point is presumed to be the treatment effect.

Regression discontinuity is an alternative to randomized experiments when the latter design is not possible. It is the only recognized quasi-experimental design that meets the Institute of Education Sciences standards for establishing causal effects. Although considered to be a strong quasi-experimental design, it needs to meet certain conditions.

See the following for additional information on randomized and quasi-experimental designs.

  • The Core Analytics of Randomized Experiments for Social Research  (PDF)
  • Experimental and Quasi-Experimental Designs for Research  (PDF)
  • Experimental and Quasi-Experimental Designs for Generalized Causal Inference  (PDF)

Instrumental Variables (IV) Approach

An instrumental variable is a variable that is correlated with the independent variable of interest and only affects the dependent variable through that independent variable. The IV approach can be used in both randomized experiments and quasi-experiments.

In randomized experiments, the IV approach is used to estimate the effect of treatment receipt, which is different from treatment offer. Many social programs can only offer participants the treatment, or intervention, but not mandate them to use it. For example, parents are randomly assigned by way of lottery to a school voucher program. Those in the treatment group are offered vouchers to help pay for private school, but ultimately it is up to the parents to decide whether or not they will use the vouchers. If the researcher is interested in estimating the impact of voucher usage, namely the effect of treatment receipt, the IV approach is one way to do so. In this case, the IV is the treatment assignment status (e.g., a dummy variable with 1 being in the treatment group and 0 being in the control group), which is used to predict the probability of a parent using the voucher, which is in turn used as the independent variable of interest to estimate the effect of voucher usage.

In quasi-experiments, the IV approach is used to address the issue of endogeneity, namely that the treatment status is determined by participants themselves (self-selection) or by criteria established by the program designer (treatment selection). Endogeneity is an issue that plagues quasi-experiments and often a source of threats to the causal claim. The IV approach can be used to tease out the causal impact of an endogenous variable on the outcome. For example, researchers used  cigarette taxes as an instrumental variable to estimate the effect of maternal smoking on birth outcomes  (Evans and Ringel, 1999). Cigarette taxes affect how much pregnant mothers smoke but not birth outcomes. They therefore meet the condition of being an IV, which correlates with the independent variable/treatment (i.e., maternal smoking habit) and only affects the dependent variable (i.e., birth outcomes) through that independent variable. The estimated effect is, strictly speaking, a local average treatment effect, namely the effect of treatment (maternal smoking) among those mothers affected by the IV (cigarette taxes). It does not include mothers whose smoking habit is not affected by the price of cigarettes (e.g., chain smokers who may be addicted to nicotine).

An instrumental variable needs to meet certain conditions to provide a consistent estimate of a causal effect.

See the following for additional information on instrumental variables.

  • An introduction to instrumental variable assumptions, validation and estimation
  • An Introduction to Instrumental Variables  (PDF)

Validity of Results from Causal Designs

The two types of validity are internal and external. It is often difficult to achieve both in social science research experiments.

  • Internal validity refers to the strength of evidence of a causal relationship between the treatment (e.g., child care subsidies) and the outcome (e.g., maternal employment).
  • When subjects are randomly assigned to treatment or control groups, we can assume that the treatment caused the observed outcomes because the two groups should not have differed from one another at the start of the experiment.
  • For example, take the child care subsidy example above. Since research subjects were randomly assigned to the treatment (child care subsidies available) and control (no child care subsidies available) groups, the two groups should not have differed at the outset of the study. If, after the intervention, mothers in the treatment group were more likely to be working, we can assume that the availability of child care subsidies promoted maternal employment.

One potential threat to internal validity in experiments occurs when participants either drop out of the study or refuse to participate in the study. If individuals with particular characteristics drop out or refuse to participate more often than individuals with other characteristics, this is called differential attrition. For example, suppose an experiment was conducted to assess the effects of a new reading curriculum on the reading achievement of 10th graders. Schools were randomly assigned to use the new curriculum in all classrooms (treatment schools) or to continue using their current curriculum (control schools). If many of the slowest readers in treatment schools left the study before it was completed (e.g., dropped out of school or transferred to a school in another state), schools with the new curriculum would experience an increase in the average reading scores. The reason they experienced an increase in reading scores, however, is because weaker readers left the school, not because the new curriculum improved students' reading skills. The effects of the curriculum on the achievement of 10th graders might be overestimated, if schools in the control schools did not experience the same type of attrition.

  • External validity, or generalizability, is also of particular concern in social science experiments.
  • It can be very difficult to generalize experimental results to groups that were not included in the study.
  • Studies that randomly select participants from the most diverse and representative populations are more likely to have external validity.

For example, a study shows that a new curriculum improved reading comprehension of third-grade children in Iowa. To assess the study's external validity, the researcher would consider whether this new curriculum would also be effective with third graders in New York or with children in other elementary grades.

Advantages and Disadvantages of Experimental and Quasi-Experimental Designs

  • Yield the most accurate assessment of cause and effect.
  • Typically have strong internal validity.
  • Ensure that the treatment and control groups are truly comparable and that treatment status is not determined by participant characteristics that might influence the outcome.
  • In social policy research, it can be impractical or unethical to conduct randomized experiments.
  • They typically have limited external validity due to the fact that they often rely on volunteers and are implemented in a somewhat artificial experimental setting with a small number of participants.
  • Despite being the “gold standard” for identifying causal impacts, they can also be faced with threats to internal validity such as attrition, contamination, cross-overs, and Hawthorne effects.
  • Often have stronger external validity than randomized experiments because they are typically implemented in real-world settings and on larger scale.
  • May be more feasible than randomized experiments because they have fewer time and logistical constraints often associated with randomized experiments.
  • Avoid the ethical concerns associated with random assignment.
  • Are often less expensive than randomized experiments.
  • They often have weaker internal validity than randomized experiments.
  • The lack of randomized assignment means that the treatment and control groups may not be comparable and that treatment status may be driven by participant characteristics or other experiences that might influence the outcome.
  • Conclusions about causality are less definitive than randomized experiments due to the lack of randomization and reduced internal validity.
  • Despite having weaker internal validity, they are often the best option available when it is impractical or unethical to conduct randomized experiments.

helpful professor logo

15 Random Assignment Examples

random assignment examples and definition, explained below

In research, random assignment refers to the process of randomly assigning research participants into groups (conditions) in order to minimize the influence of confounding variables or extraneous factors .

Ideally, through randomization, each research participant has an equal chance of ending up in either the control or treatment condition group.

For example, consider the following two groups under analysis. Under a model such as self-selection or snowball sampling, there may be a chance that the reds cluster themselves into one group (The reason for this would likely be that there is a confounding variable that the researchers have not controlled for):

a representation of a treatment condition showing 12 red people in the cohort

To maximize the chances that the reds will be evenly split between groups, we could employ a random assignment method, which might produce the following more balanced outcome:

a representation of a treatment condition showing 4 red people in the cohort

This process is considered a gold standard for experimental research and is generally expected of major studies that explore the effects of independent variables on dependent variables .

However, random assignment is not without its flaws – chief among them being the importance of a sufficiently sized sample which will allow for randomization to tend toward a mean (take, for example, the odds of 50/50 heads and tail after 100 coin flips being higher than 1/1 heads and tail after 2 coin flips). In fact, even in the above example where I randomized the colors, you can see that there are twice as many yellows in the treatment condition than the control condition, likely because of the low number of research participants.

Methods for Random Assignment of Participants

Randomly assigning research participants into controls is relatively easy. However, there is a range of ways to go about it, and each method has its own pros and cons.

For example, there are some strategies – like the matched-pair method – that can help you to control for confounds in interesting ways.

Here are some of the most common methods of random assignment, with explanations of when you might want to use each one:

1. Simple Random Assignment This is the most basic form of random assignment. All participants are pooled together and then divided randomly into groups using an equivalent chance process such as flipping a coin, drawing names from a hat, or using a random number generator. This method is straightforward and ensures each participant has an equal chance of being assigned to any group (Jamison, 2019; Nestor & Schutt, 2018).

2. Block Randomization In this method, the researcher divides the participants into “blocks” or batches of a pre-determined size, which is then randomized (Alferes, 2012). This technique ensures that the researcher will have evenly sized groups by the end of the randomization process. It’s especially useful in clinical trials where balanced and similar-sized groups are vital.

3. Stratified Random Assignment In stratified random assignment, the researcher categorizes the participants based on key characteristics (such as gender, age, ethnicity) before the random allocation process begins. Each stratum is then subjected to simple random assignment. This method is beneficial when the researcher aims to ensure that the groups are balanced with regard to certain characteristics or variables (Rosenberger & Lachin, 2015).

4. Cluster Random Assignment Here, pre-existing groups or clusters, such as schools, households, or communities, are randomly assigned to different conditions of a research study. It’s ideal when individual random assignment is not feasible, or when the treatment is naturally delivered at the group or community level (Blair, Coppock & Humphreys, 2023).

5. Matched-Pair Random Assignment In this method, participants are first paired based on a particular characteristic or set of characteristics that are relevant to the research study, such as age, gender, or a specific health condition. Each pair is then split randomly into different research conditions or groups. This can help control for the influence of specific variables and increase the likelihood that the groups will be comparable, thereby increasing the validity of the results (Nestor & Schutt, 2018).

Random Assignment Examples

1. Pharmaceutical Efficacy Study In this type of research, consider a scenario where a pharmaceutical company wishes to test the potency of two different versions of a medication, Medication A and Medication B. The researcher recruits a group of volunteers and randomly assigns them to receive either Medication A or Medication B. This method ensures that each participant has an equal chance of being given either option, mitigating potential bias from the investigator’s side. It’s an expectation, for example, for FDA approval pre-trials (Rosenberger & Lachin, 2015).

2. Educational Techniques Study In this approach, an educator looking to evaluate a new teaching technique may randomly assign their students into two distinct classrooms. In one classroom, the new teaching technique will be implemented, while in the other, traditional methods will be utilized. The students’ performance will then be analyzed to determine if the new teaching strategy yields better results. To ensure the class cohorts are randomly assigned, we need to make sure there is no interference from parents, administrators, or others.

3. Website Usability Test In this digital-oriented example, a web designer could be researching the most effective layout for a website. Participants would be randomly assigned to use websites with a different layout and their navigation and satisfaction would be subsequently measured. This technique helps identify which design is user-friendlier based on the measured outcomes.

4. Physical Fitness Research For an investigator looking to evaluate the effectiveness of different exercise routines for weight loss, they could randomly assign participants to either a High-Intensity Interval Training (HIIT) or an endurance-based running program. By studying the participants’ weight changes across a specified time, a conclusion can be drawn on which exercise regime produces better weight loss results.

5. Environmental Psychology Study In this illustration, imagine a psychologist wanting to understand how office settings influence employees’ productivity. He could randomly assign employees to work in one of two offices: one with windows and natural light, the other windowless. The psychologist would then measure their work output to gauge if the environmental conditions impact productivity.

6. Dietary Research Test In this case, a dietician, striving to determine the efficacy of two diets on heart health, might randomly assign participants to adhere to either a Mediterranean diet or a low-fat diet. The dietician would then track cholesterol levels, blood pressure, and other heart health indicators over a determined period to discern which diet benefits heart health the most.

7. Mental Health Study In examining the IMPACT (Improving Mood-Promoting Access to Collaborative Treatment) model, a mental health researcher could randomly assign patients to receive either standard depression treatment or the IMPACT model treatment. Here, the purpose is to cross-compare recovery rates to gauge the effectiveness of the IMPACT model against the standard treatment.

8. Marketing Research A company intending to validate the effectiveness of different marketing strategies could randomly assign customers to receive either email marketing materials or social media marketing materials. Customer response and engagement rates would then be measured to evaluate which strategy is more beneficial and drives better engagement.

9. Sleep Study Research Suppose a researcher wants to investigate the effects of different levels of screen time on sleep quality. The researcher may randomly assign participants to varying amounts of nightly screen time, then compare sleep quality metrics (such as total sleep time, sleep latency, and awakenings during the night).

10. Workplace Productivity Experiment Let’s consider an HR professional who aims to evaluate the efficacy of open office and closed office layouts on employee productivity. She could randomly assign a group of employees to work in either environment and measure metrics such as work completed, attention to detail, and number of errors made to determine which office layout promotes higher productivity.

11. Child Development Study Suppose a developmental psychologist wants to investigate the effect of different learning tools on children’s development. The psychologist could randomly assign children to use either digital learning tools or traditional physical learning tools, such as books, for a fixed period. Subsequently, their development and learning progression would be tracked to determine which tool fosters more effective learning.

12. Traffic Management Research In an urban planning study, researchers could randomly assign streets to implement either traditional stop signs or roundabouts. The researchers, over a predetermined period, could then measure accident rates, traffic flow, and average travel times to identify which traffic management method is safer and more efficient.

13. Energy Consumption Study In a research project comparing the effectiveness of various energy-saving strategies, residents could be randomly assigned to implement either energy-saving light bulbs or regular bulbs in their homes. After a specific duration, their energy consumption would be compared to evaluate which measure yields better energy conservation.

14. Product Testing Research In a consumer goods case, a company looking to launch a new dishwashing detergent could randomly assign the new product or the existing best seller to a group of consumers. By analyzing their feedback on cleaning capabilities, scent, and product usage, the company can find out if the new detergent is an improvement over the existing one Nestor & Schutt, 2018.

15. Physical Therapy Research A physical therapist might be interested in comparing the effectiveness of different treatment regimens for patients with lower back pain. They could randomly assign patients to undergo either manual therapy or exercise therapy for a set duration and later evaluate pain levels and mobility.

Random assignment is effective, but not infallible. Nevertheless, it does help us to achieve greater control over our experiments and minimize the chances that confounding variables are undermining the direct correlation between independent and dependent variables within a study. Over time, when a sufficient number of high-quality and well-designed studies are conducted, with sufficient sample sizes and sufficient generalizability, we can gain greater confidence in the causation between a treatment and its effects.

Read Next: Types of Research Design

Alferes, V. R. (2012). Methods of randomization in experimental design . Sage Publications.

Blair, G., Coppock, A., & Humphreys, M. (2023). Research Design in the Social Sciences: Declaration, Diagnosis, and Redesign. New Jersey: Princeton University Press.

Jamison, J. C. (2019). The entry of randomized assignment into the social sciences. Journal of Causal Inference , 7 (1), 20170025.

Nestor, P. G., & Schutt, R. K. (2018). Research Methods in Psychology: Investigating Human Behavior. New York: SAGE Publications.

Rosenberger, W. F., & Lachin, J. M. (2015). Randomization in Clinical Trials: Theory and Practice. London: Wiley.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

IMAGES

  1. Introduction to Random Assignment -Voxco

    random assignment research design

  2. Random Assignment in Experiments

    random assignment research design

  3. Randomized Controlled Trials

    random assignment research design

  4. Random Assignment ~ A Simple Introduction with Examples

    random assignment research design

  5. Random Assignment in Experiments

    random assignment research design

  6. PPT

    random assignment research design

VIDEO

  1. Random Assignment

  2. random sampling & assignment

  3. PCD206 Week4 Assignment: Research

  4. Random Assignment- 2023/24 UD Series 2 #2 & #4 Full Case Random With A Twist! (3/6/24)

  5. project or assignment front page design esay idea 💡😀#shortsfeed #viralshort #youtubeshorts #tamil

  6. BTMT 3123 BUSINESS RESEARCH METHODOLOGY (INDIVIDUAL ASSIGNMENT- RESEARCH PROPOSAL PRESENTATION)

COMMENTS

  1. Random Assignment in Experiments

    In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomization. With simple random assignment, ... In this research design, there's usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

  2. Random Assignment in Psychology: Definition & Examples

    Random assignment is used in experiments with a between-groups or independent measures design. In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

  3. Random Assignment in Experiments

    Random sampling is a process for obtaining a sample that accurately represents a population. Random assignment uses a chance process to assign subjects to experimental groups. Using random assignment requires that the experimenters can control the group assignment for all study subjects. For our study, we must be able to assign our participants ...

  4. The Definition of Random Assignment In Psychology

    Random Assignment In Research . To determine if changes in one variable will cause changes in another variable, psychologists must perform an experiment. Random assignment is a critical part of the experimental design that helps ensure the reliability of the study outcomes.

  5. Why randomize?

    The key to randomized experimental research design is in the random assignment of study subjects - for example, individual voters, precincts, media markets or some other group - into treatment or control groups. Randomization has a very specific meaning in this context. It does not refer to haphazard or casual choosing of some and not others.

  6. 6.2 Experimental Design

    Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition ...

  7. 6.1.1 Random Assignation

    The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

  8. 6.1.1 Random Assignation

    The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

  9. Elements of Research : Random Assignment

    Ignoring random assignment procedures in this study limits the ability to determine whether or not the weight loss program is effective because the groups will not be randomized. Research staff must follow random assignment protocol, if that is part of the study design, to maintain the integrity of the research.

  10. Experimental research

    Experimental research—often considered to be the 'gold standard' in research designs—is one of the most rigorous of all research designs. In this design, one or more independent variables are manipulated by the researcher (as treatments), subjects are randomly assigned to different treatment levels (random assignment), and the results ...

  11. 5.2 Experimental Design

    Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition ...

  12. 1.3: Threats to Internal Validity and Different Control Techniques

    Random assignment. Random assignment is the single most powerful control technique we can use to minimize the potential threats of the confounding variables in research design. As we have seen in Dunn and her colleagues' study earlier, participants are not allowed to self select into either conditions (spend $20 on self or spend on others).

  13. 8.1 Experimental design: What is it and when should it be used?

    Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups ...

  14. Research Randomizer

    RANDOM SAMPLING AND. RANDOM ASSIGNMENT MADE EASY! Research Randomizer is a free resource for researchers and students in need of a quick way to generate random numbers or assign participants to experimental conditions. This site can be used for a variety of purposes, including psychology experiments, medical trials, and survey research.

  15. Issues in Outcomes Research: An Overview of Randomization Techniques

    What Is Randomization? Randomization is the process of assigning participants to treatment and control groups, assuming that each participant has an equal chance of being assigned to any group. 12 Randomization has evolved into a fundamental aspect of scientific research methodology. Demands have increased for more randomized clinical trials in many areas of biomedical research, such as ...

  16. Random Assignment in Experiments

    In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomisation. With simple random assignment, ... In this research design, there's usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

  17. Random assignment

    Random assignment, blinding, and controlling are key aspects of the design of experiments because they help ensure that the results are not spurious or deceptive via confounding. This is why randomized controlled trials are vital in clinical research, especially ones that can be double-blinded and placebo-controlled .

  18. Experimental Design: Variables, Groups, and Random Assignment

    In this video, Dr. Kushner outlines how to conduct a psychology experiment. The experimental method is a powerful tool for psychologists because it is the on...

  19. Experimental Design

    Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition ...

  20. Causal Study Design

    Random assignment ensures that all participants have the same chance of being in a given experimental condition. Randomized experiments (also known as RCT or randomized control trials) are considered to be the most rigorous approach, or the "gold standard," to identifying causal effects because they theoretically eliminate all preexisting ...

  21. 15 Random Assignment Examples (2024)

    Random Assignment Examples. 1. Pharmaceutical Efficacy Study. In this type of research, consider a scenario where a pharmaceutical company wishes to test the potency of two different versions of a medication, Medication A and Medication B. The researcher recruits a group of volunteers and randomly assigns them to receive either Medication A or ...