• Daily Crossword
  • Word Puzzle
  • Word Finder
  • Word of the Day
  • Synonym of the Day
  • Word of the Year
  • Language stories
  • All featured
  • Gender and sexuality
  • All pop culture
  • Grammar Coach ™
  • Writing hub
  • Grammar essentials
  • Commonly confused
  • All writing tips
  • Pop culture
  • Writing tips

diligent and systematic inquiry or investigation into a subject in order to discover or revise facts, theories, applications, etc.: recent research in medicine.

a particular instance or piece of research.

to make researches; investigate carefully.

to make an extensive investigation into: to research a matter thoroughly.

Origin of research

Synonym study for research, other words for research, other words from research.

  • re·search·a·ble, adjective
  • re·search·er, re·search·ist, noun
  • pro·re·search, adjective
  • un·der·re·search, verb (used with object)

Words that may be confused with research

  • re-search , research

Words Nearby research

  • rescue grass
  • rescue mission
  • research and development
  • research-intensive
  • research library
  • research park
  • research quantum

Other definitions for re-search (2 of 2)

to search or search for again.

Origin of re-search

Words that may be confused with re-search.

Dictionary.com Unabridged Based on the Random House Unabridged Dictionary, © Random House, Inc. 2024

How to use research in a sentence

The duo spent the first year in research and engaging with farmers.

Dan Finn-Foley, head of energy storage at energy research firm Wood Mackenzie Power & Renewables, compared Google’s plan to ordering eggs for breakfast.

Users will give Deep Longevity the right to conduct anonymized research using their data as part of the app’s terms and conditions, Zhavoronkov said.

There’s also the Wilhelm Reich Museum, located at “Orgonon” in Rangeley, Maine, which was previously Reich’s estate—where he conducted questionable orgone research in the later years of his career.

When we started doing research on these topics, we were too focused on political institutions.

Have you tried to access the research that your tax dollars finance, almost all of which is kept behind a paywall?

Have a look at this telling research from Pew on blasphemy and apostasy laws around the world.

And Epstein continues to steer money toward universities to advance scientific research .

The research literature, too, asks these questions, and not without reason.

We also have a growing body of biological research showing that fathers, like mothers, are hard-wired to care for children.

We find by research that smoking was the most general mode of using tobacco in England when first introduced.

This class is composed frequently of persons of considerable learning, research and intelligence.

Speaking from recollection, it appears to be a work of some research ; but I cannot say how far it is to be relied on.

Thomas Pope Blount died; an eminent English writer and a man of great learning and research .

That was long before invention became a research department full of engineers.

British Dictionary definitions for research

/ ( rɪˈsɜːtʃ , ˈriːsɜːtʃ ) /

systematic investigation to establish facts or principles or to collect information on a subject

to carry out investigations into (a subject, problem, etc)

Derived forms of research

  • researchable , adjective
  • researcher , noun

Collins English Dictionary - Complete & Unabridged 2012 Digital Edition © William Collins Sons & Co. Ltd. 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012

Go to the homepage

Definition of 'research'

IPA Pronunciation Guide

Video: pronunciation of research

Youtube video

research in British English

Research in american english, examples of 'research' in a sentence research, cobuild collocations research, trends of research.

View usage for: All Years Last 10 years Last 50 years Last 100 years Last 300 years

Browse alphabetically research

  • resealable bag
  • research a book
  • research a product
  • research a source
  • All ENGLISH words that begin with 'R'

Related terms of research

  • do research
  • aid research
  • cite research
  • fund research
  • View more related words

Quick word challenge

Quiz Review

Score: 0 / 5

Image

Wordle Helper

Tile

Scrabble Tools

Image

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Definition of research – Learner’s Dictionary

Your browser doesn't support HTML5 audio

  • There is the potential for some really interesting research.
  • She has done research into how children acquire language .
  • The appeal raised over £2 million for AIDS research.
  • This report echoes some of the earlier research I've read .
  • The government has committed thousands of pounds to the research.

(Definition of research from the Cambridge Learner's Dictionary © Cambridge University Press)

Translations of research

Get a quick, free translation!

{{randomImageQuizHook.quizId}}

Word of the Day

hide-and-seek

a children's game in which a group of children hide in secret places and then one child has to go to look for them

Infinitive or -ing verb? Avoiding common mistakes with verb patterns (1)

Infinitive or -ing verb? Avoiding common mistakes with verb patterns (1)

the word research means what

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • Translations
  • All translations

Add research to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

  • Take our quick quizzes to practise your vocabulary.
  • We have thousands of six-question quizzes to try.
  • Choose from collocations, synonyms, phrasal verbs and more.

More results

  • attitude research
  • audience research
  • customer research
  • field research
  • investment research
  • market research
  • motivational research

Image of bottle

Explore topics

  • Christianity
  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of research noun from the Oxford Advanced Learner's Dictionary

  • scientific/medical/academic research
  • They are raising money for cancer research.
  • to do/conduct/undertake research
  • I've done some research to find out the cheapest way of travelling there.
  • research into something He has carried out extensive research into renewable energy sources.
  • research on something/somebody Recent research on deaf children has produced some interesting findings about their speech.
  • Research on animals has led to some important medical advances.
  • according to research According to recent research, more people are going to the movies than ever before.
  • Their latest research project will be funded by the government.
  • Are you hoping to get a research grant ?
  • a research fellow/assistant/scientist
  • a research institute/centre/laboratory
  • The research findings were published in the Journal of Environmental Quality.
  • formulate/​advance a theory/​hypothesis
  • build/​construct/​create/​develop a simple/​theoretical/​mathematical model
  • develop/​establish/​provide/​use a theoretical/​conceptual framework
  • advance/​argue/​develop the thesis that…
  • explore an idea/​a concept/​a hypothesis
  • make a prediction/​an inference
  • base a prediction/​your calculations on something
  • investigate/​evaluate/​accept/​challenge/​reject a theory/​hypothesis/​model
  • design an experiment/​a questionnaire/​a study/​a test
  • do research/​an experiment/​an analysis
  • make observations/​measurements/​calculations
  • carry out/​conduct/​perform an experiment/​a test/​a longitudinal study/​observations/​clinical trials
  • run an experiment/​a simulation/​clinical trials
  • repeat an experiment/​a test/​an analysis
  • replicate a study/​the results/​the findings
  • observe/​study/​examine/​investigate/​assess a pattern/​a process/​a behaviour
  • fund/​support the research/​project/​study
  • seek/​provide/​get/​secure funding for research
  • collect/​gather/​extract data/​information
  • yield data/​evidence/​similar findings/​the same results
  • analyse/​examine the data/​soil samples/​a specimen
  • consider/​compare/​interpret the results/​findings
  • fit the data/​model
  • confirm/​support/​verify a prediction/​a hypothesis/​the results/​the findings
  • prove a conjecture/​hypothesis/​theorem
  • draw/​make/​reach the same conclusions
  • read/​review the records/​literature
  • describe/​report an experiment/​a study
  • present/​publish/​summarize the results/​findings
  • present/​publish/​read/​review/​cite a paper in a scientific journal
  • a debate about the ethics of embryonic stem cell research
  • For his PhD he conducted field research in Indonesia.
  • Further research is needed.
  • Future research will hopefully give us a better understanding of how garlic works in the human body.
  • Dr Babcock has conducted extensive research in the area of agricultural production.
  • the funding of basic research in biology, chemistry and genetics
  • Activists called for a ban on animal research.
  • Work is under way to carry out more research on the gene.
  • She returned to Jamaica to pursue her research on the African diaspora.
  • Bad punctuation can slow down people's reading speeds, according to new research carried out at Bradford University.
  • He focused his research on the economics of the interwar era.
  • Most research in the field has concentrated on the effects on children.
  • One paper based on research conducted at Oxford suggested that the drug may cause brain damage.
  • Research demonstrates that women are more likely than men to provide social support to others.
  • She's doing research on Czech music between the wars.
  • The research does not support these conclusions.
  • They are carrying out research into the natural flow patterns of water.
  • They lack the resources to do their own research.
  • What has their research shown?
  • Funding for medical research has been cut quite dramatically.
  • a startling piece of historical research
  • pioneering research into skin disease
  • They were the first to undertake pioneering research into the human genome.
  • There is a significant amount of research into the effects of stress on junior doctors.
  • He's done a lot of research into the background of this story.
  • research which identifies the causes of depression
  • spending on military research and development
  • the research done in the 1950s that linked smoking with cancer
  • The children are taking part in a research project to investigate technology-enabled learning.
  • The Lancet published a research paper by the scientist at the centre of the controversy.
  • Who is directing the group's research effort?
  • She is chief of the clinical research program at McLean Hospital.
  • James is a 24-year-old research student from Iowa.
  • You will need to describe your research methods.
  • Before a job interview, do your research and find out as much as you can about the company.
  • Most academic research is carried out in universities.
  • This is a piece of research that should be taken very seriously.
  • This is an important area of research.
  • There's a large body of research linking hypertension directly to impaired brain function.
  • In the course of my researches, I came across some of my grandfather's old letters.
  • demonstrate something
  • find something
  • identify something
  • programme/​program
  • research in
  • research into
  • research on
  • an area of research
  • focus your research on something
  • somebody’s own research

Definitions on the go

Look up any word in the dictionary offline, anytime, anywhere with the Oxford Advanced Learner’s Dictionary app.

the word research means what

Research Basics

  • What Is Research?
  • Types of Research
  • Secondary Research | Literature Review
  • Developing Your Topic
  • Primary vs. Secondary Sources
  • Evaluating Sources
  • Responsible Conduct of Research
  • Additional Help

Research is formalized curiosity. It is poking and prying with a purpose. - Zora Neale Hurston

A good working definition of research might be:

Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge.

Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking up reviews of various products online, learning more about celebrities; these are all research.

Formal research includes the type of research most people think of when they hear the term “research”: scientists in white coats working in a fully equipped laboratory. But formal research is a much broader category that just this. Most people will never do laboratory research after graduating from college, but almost everybody will have to do some sort of formal research at some point in their careers.

So What Do We Mean By “Formal Research?”

Casual research is inward facing: it’s done to satisfy our own curiosity or meet our own needs, whether that’s choosing a reliable car or figuring out what to watch on TV. Formal research is outward facing. While it may satisfy our own curiosity, it’s primarily intended to be shared in order to achieve some purpose. That purpose could be anything: finding a cure for cancer, securing funding for a new business, improving some process at your workplace, proving the latest theory in quantum physics, or even just getting a good grade in your Humanities 200 class.

What sets formal research apart from casual research is the documentation of where you gathered your information from. This is done in the form of “citations” and “bibliographies.” Citing sources is covered in the section "Citing Your Sources."

Formal research also follows certain common patterns depending on what the research is trying to show or prove. These are covered in the section “Types of Research.”

Creative Commons License

  • Next: Types of Research >>
  • Last Updated: Dec 21, 2023 3:49 PM
  • URL: https://guides.library.iit.edu/research_basics
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

the word research means what

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods.

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

Customer Experience Management strategy

Customer Experience Management Strategy: A Complete Guide

Feb 21, 2024

customer experience framework

Customer Experience Framework: Building Exceptional Strategy

Feb 20, 2024

As much as anyone may understand about buyer personas which includes understanding their needs and purchasing authority, it is also vital to understand the path they will take towards the purchase

Want Someone To Listen? First Try to Understand — Tuesday CX Thoughts

5-point vs 7-point Likert scale

5-point vs 7-point Likert scale: Choosing the Best

Feb 19, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Words and phrases

Personal account.

  • Access or purchase personal subscriptions
  • Get our newsletter
  • Save searches
  • Set display preferences

Institutional access

Sign in with library card

Sign in with username / password

Recommend to your librarian

Institutional account management

Sign in as administrator on Oxford Academic

research noun 1

  • Show all quotations

What does the noun research mean?

There are seven meanings listed in OED's entry for the noun research , three of which are labelled obsolete. See ‘Meaning & use’ for definitions, usage, and quotation evidence.

How common is the noun research ?

How is the noun research pronounced, british english, u.s. english, where does the noun research come from.

Earliest known use

The earliest known use of the noun research is in the late 1500s.

OED's earliest evidence for research is from 1577, in ‘F. de L'Isle’'s Legendarie .

research is apparently formed within English, by derivation; modelled on a French lexical item.

Etymons: re- prefix , search n.

Nearby entries

  • rescuing, adj. 1574–
  • resculpt, v. 1926–
  • resculpting, n. 1940–
  • rescussee, n. 1652–1823
  • rescusser, n. 1632–1704
  • rese, n. Old English–1600
  • rese, v.¹ Old English–1450
  • rese, v.² Old English–1582
  • reseal, v. 1624–
  • resealable, adj. 1926–
  • research, n.¹ 1577–
  • re-search, n.² 1605–
  • research, v.¹ 1588–
  • re-search, v.² 1708–
  • researchable, adj. 1927–
  • research and development, n. 1892–
  • researched, adj. 1636–
  • researcher, n. 1615–
  • researchful, adj. a1834–
  • research hospital, n. 1900–
  • researching, n. 1611–

Thank you for visiting Oxford English Dictionary

To continue reading, please sign in below or purchase a subscription

Meaning & use

Pronunciation, compounds & derived words, entry history for research, n.¹.

research, n.1 was revised in March 2010

research, n.1 was last modified in September 2023

oed.com is a living text, updated every three months. Modifications may include:

  • further revisions to definitions, pronunciation, etymology, headwords, variant spellings, quotations, and dates;
  • new senses, phrases, and quotations.

Revisions and additions of this kind were last incorporated into research, n.1 in September 2023.

Earlier versions of research, n.1 were published in:

OED First Edition (1906)

  • Find out more

OED Second Edition (1989)

  • View research, n.1 in Second Edition

Please submit your feedback for research, n.¹

Please include your email address if you are happy to be contacted about your feedback. OUP will not use this email address for any other purpose.

Citation details

Factsheet for research, n.¹, browse entry.

Book cover

Doing Research: A New Researcher’s Guide pp 1–15 Cite as

What Is Research, and Why Do People Do It?

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  
  • Open Access
  • First Online: 03 December 2022

13k Accesses

Part of the Research in Mathematics Education book series (RME)

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Cite this chapter.

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

What is Research?

Research is a process of systematic inquiry that entails collection of data; documentation of critical information; and analysis and interpretation of that data/information, in accordance with suitable methodologies set by specific professional fields and academic disciplines.

Research is conducted to...

  • Evaluate the validity of a hypothesis or an interpretive framework.
  • To assemble a body of substantive knowledge and findings for sharing them in appropriate manners.
  • To help generate questions for further inquiries.

If you would like further examples of specific ways different schools at Hampshire think about research, see: School Definitions of Research » What is "research" that needs to be reviewed and approved by the Institutional Review Board at Hampshire before proceeding?  Research should be reviewed by the IRB only when human subjects are involved, and the term research should be considered under a more narrow definition. Specifically, when the researcher is conducting research as outlined above AND has direct interaction with participants or data linked to personal identifiers , it should always fall under the purview of the IRB. Even if you have not directly collected the data yourself, as the researcher, your research may fall under the purview of the IRB. In reviewing such research, the IRB is concerned with the methodology of data collection in the "field" (e.g. collection, experimentation, interview, participant observation, etc.) and the use of the data.  The broader validity of the hypotheses or research questions, and the quality of inferences that may result (unless, of course, the research methodologies severely compromise the data collection and data usage directly), is not something they will be evaluating.

What if I am using information that is already available?

If you are doing research that is limited to secondary analysis of data, records, or specimens that are either publicly available, de-identified, or otherwise impossible to be linked to personal identities, you may still need IRB approval to do your project. Sometimes a data use agreement between the researcher and the data custodian may still be required to verify that the researcher will not have access to identifying codes.  This "de-linking" of data from personal identifiers  allows the IRB to make this determination. Regardless, you should submit an IRB proposal so the IRB can determine whether your project needs IRB review, and if so, the type of review required. For specifics of what research should be reviewed by the IRB and the category of review required, see the flow chart and examples provided .

Etymology

research (n.)

1570s, "act of searching closely" for a specific person or thing, from French recerche (1530s, Modern French recherche ), back-formation from Old French recercher "seek out, search closely" (see research (v.)).

The meaning "diligent scientific inquiry and investigation directed to the discovery of some fact" is attested by 1630s. The general sense of "investigations into things, the habit of making close investigations" is by 1690s. The phrase research and development for "work on a large scale toward innovation" is recorded from 1923.

research (v.)

1590s, "investigate or study (a matter) closely, search or examine with continued care," from French recercher , from Old French recercher "seek out, search closely," from re- , here perhaps an intensive prefix (see re- ), + cercher "to seek for," from Latin circare "go about, wander, traverse," in Late Latin "to wander hither and thither," from circus "circle" (see circus ).

The intransitive meaning "make researches" is by 1781. Sometimes 17c. also "to seek (a woman) in love or marriage." Related: Researched ; researching .

Entries linking to research

late 14c., in reference to the large, oblong, unroofed enclosures used for races, etc., in ancient Rome, from Latin circus "ring, circular line," which was applied by Romans to circular arenas for performances and contests and oval courses for racing (especially the Circus Maximus ), from or cognate with Greek kirkos "a circle, a ring," perhaps from PIE *kikro- , reduplicated form of root *sker- (2) "to turn, bend." The adjective form is circensian.

In reference to modern large arenas for performances of feats of horsemanship, acrobatics, etc., from 1791, sense then extended to the performing company itself and the entertainment given, hence "traveling show" (originally traveling circus , 1838). Extended in World War I to squadrons of military aircraft. Meaning "lively uproar, chaotic hubbub" is from 1869.

Sense in Picadilly Circus and other place names is from early 18c. sense "buildings arranged in a ring," also "circular road."

"investigator, inquirer, one who makes researches," 1610s, agent noun from research (v.).

  • See all related words ( 4 ) >

Trends of research

More to explore, share research.

updated on July 18, 2021

Trending words

  • 3 . hospital
  • 4 . subject
  • 9 . hysteria

Dictionary entries near research

  • English (English)
  • 简体中文 (Chinese)
  • Deutsch (German)
  • Español (Spanish)
  • Français (French)
  • 日本語 (Japanese)
  • 한국어 (Korean)
  • Português (Portuguese)
  • 繁體中文 (Chinese)

Synonyms of research

  • as in investigation
  • as in to explore
  • More from M-W
  • To save this word, you'll need to log in. Log In

Thesaurus Definition of research

 (Entry 1 of 2)

Synonyms & Similar Words

  • investigation
  • exploration
  • examination
  • inquisition
  • disquisition
  • questionnaire
  • interrogation
  • reinvestigation
  • soul - searching
  • cross - examination
  • questionary
  • self - examination
  • self - reflection
  • self - exploration
  • going - over
  • self - scrutiny
  • self - questioning

Thesaurus Definition of research  (Entry 2 of 2)

  • investigate
  • look (into)
  • inquire (into)
  • delve (into)
  • check up on
  • skim (through)
  • thumb (through)
  • reinvestigate

Thesaurus Entries Near research

Cite this entry.

“Research.” Merriam-Webster.com Thesaurus , Merriam-Webster, https://www.merriam-webster.com/thesaurus/research. Accessed 21 Feb. 2024.

More from Merriam-Webster on research

Nglish: Translation of research for Spanish Speakers

Britannica English: Translation of research for Arabic Speakers

Britannica.com: Encyclopedia article about research

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

8 grammar terms you used to know, but forgot, homophones, homographs, and homonyms, commonly misspelled words, a guide to em dashes, en dashes, and hyphens, absent letters that are heard anyway, popular in wordplay, 10 scrabble words without any vowels, 12 more bird names that sound like insults (and sometimes are), the words of the week - feb. 16, 9 superb owl words, 'gaslighting,' 'woke,' 'democracy,' and other top lookups, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

  • The Research Companion project
  • Facebook Group
  • Honour Roll
  • Chapter Links

13th March 2015

What does “research” mean and are you doing it?

the word research means what

Whenever I ask the question ‘what is research, and are you doing it?’, be it in a workshop, or in teaching, or when someone is describing a planned study to me, there’s a very common reaction.

“EVERYONE knows what research means!”

For some areas of work, knowing what ‘research’ is (or how it differs from and/or is assumed ‘better’ than things not considered research) is very important. In other areas hierarchies are less of an issue. Whatever your position, people generally do not interrogate exactly what ‘research’ really means within their own work or practice.

In the rush to teach research methods or to do our own studies there’s very little time set aside for reflection. Let alone for something so basic as asking whether you are actually doing something called research. You may resist asking the question for fear it might hold up the important business of getting on with stuff.

However, it is a really good idea to ask ourselves – and those we are working with – what we think the word ‘research’ means. Because it can alert us to all kinds of potential trip wires and difficulties we might be encountering later on in our research journey. Also, as I hope to convince you, it’s actually interesting to explore.

What’s in a word? If you look at how research is defined by research organisations, in methods books or teaching guides you will find a variety of definitions and descriptions. There is no one agreed upon term that sums up what research is.

American folklorist Zora Neale Hurston supposedly stated “research is formalized curiosity. It is poking and prying with a purpose” . You can extend from that definition a whole selection of descriptions commonly used to define or explain ‘research’ including:

Systematic. Organised. Develops or tests ideas or theories. Replicates. Expands on what we already know. Questions. Challenges. Scrutinises. Observes. Collects. Tests. Measures. Analyses. Discusses. Reflects. Solves Problems. Looks at how things work. Asks others what they think/believe/want. Checks if things are effective or fit for purpose. Ethical. Practical. Emancipatory. Intentional. Leads to change. Deliberates. Purposeful. Focused. Critical. Thoughtful. Respectful. Involves activism. Advocates. Randomises. Creates knew knowledge. Standardises. Innovates. Evaluates. Changes. Finds out what you should be doing. Novel. Broadens horizons. Advances knowledge. Collects data/information. Proven. Published.

Exercise One – A personal definition Read through the list above and note what words sum up what research means FOR YOU. If using in a group activity you may want to share with others what terms appealed to them. Individually or collectively you may want to reflect on why particular words signify research for you, which ones definitely do not fit your idea of research, and whether there are terms or phrases that summarise research that are not on this list. You may also want to consider how many terms on the list describe what research ‘is’, while other terms refer to what research ‘does’.

Exercise Two – Like With Like Using the list above, group together particular words or phrases that seem similar. Having done this can you see if they match any particular method or approach within different areas of the social sciences, health or development research? Some words of phrases may seemingly contradict each other, or may suit certain methodological, pedagogical or philosophical approaches more than others. If you see ‘research’ a particular way how might that influence the method(s) you choose to undertake any studies (or vice versa).

Exercise Three – Clarifications and Wider Meanings Thinking about all the people involved in the research you might be undertaking, can you match the different words in the list above to the different characters that will be part of your study? From this do you note any tensions where particular individuals or groups might have one view of research, and how others might define or view it? How is that going to affect any work you might undertake? Some of these issues are explored further in this paper I co-wrote with colleagues Sara Shaw and Trisha Greenalgh (see p.497).

A cautionary tale of why definitions are important Albert Einstein (and not Batgirl as the photo above might suggest) famously quipped “If we knew what it was we were doing, it would not be called research, would it?” This summarises, for me, the idea how often in research we are unsure of what we are looking for or expecting to find out. But it can equally apply to us not always agreeing on what ‘research’ means.

Here’s how a situation where nobody quite knew what they were doing led to big problems.

I was once commissioned to run a piece of ‘qualitative research’. That was the phrase used was in the job advert, job spec, interview, and repeated at every steering group meeting. The steering group and funders wanted me to interview people, which I dutifully did. So far, so good. We were all in agreement ‘qualitative research’ involved interviews and that was what they wanted and I was doing.

I talked to lots of people, taped our conversations, transcribed them, used discourse analysis to identify narratives and counter narratives, and different issues affecting all the players within the project. Towards the end of the study period I presented, with pride, a lengthy report that wove a story of all the experiences and positions and life events affecting everyone within the research, extensively referenced existing research, allowing me to make recommendations for policy change.

The day of this draft presentation to the steering group began badly and soon got worse. Everyone was baffled by what I had done. ‘We asked you to do interviews’ they said, making no effort to hide their disappointment and irritation. Their idea of ‘qualitative research’, it transpired, was for me to talk to some people, and to sum up either in short paragraphs or better still bullet points, what those people’s views were. And from that they, the steering group, would decide what recommendations might be made.

My contribution, of quotes, and stories and intermingling ideas and contradictions, all sewn together with references and recommendations was, in their view, absolutely NOT ‘qualitative research’. Their past experience of commissioning research had always resulted in brief summaries of interviews. They found this very useful in commissioning new services, being aware of key stakeholders and issues, and for changing policies and practices. Yet all I’d been taught about qualitative research suggested this kind of summarizing and stripping out of agency, voice and narrative was poor practice and potentially unethical. I concluded they knew nothing about ‘qualitative research’. The drew exactly the same opinions about me.

If we look back over this story what we can actually see is everyone had ideas about what ‘research’ meant and what ‘qualitative’ meant. They had commissioned research, certainly, and I had signed up to do it. Because none of us stopped to ask ‘what are you expecting from this work?’ and ‘what does research mean to you?’ we ended up at cross-purposes, with hurt feelings. They ended up getting far more than they had paid for, but were not remotely glad of it. And I ended up doing far more than necessary for what I was paid for and produced a piece of work that wasn’t, on this occasion, useful to those who had commissioned it.

Avoiding misunderstandings If you are planning a study, or have started on research or are teaching methods in the social/health sciences or development, one way to avoid a crisis like the one covered above is to ask:

  • What is research?
  • Who does research?
  • Am I a researcher? (and does it matter?)
  • Who (or what) am I researching?

You cannot assume that what you think research is will be a view shared by others you encounter during your work or studies. Including funders, ethics committees, wider communities, media and colleagues. So it is always a good idea to check very early on what people think you’re doing – and to keep coming back to this as your work progresses.

This can be particularly important with participants who may very well not understand what research is, or necessarily fully comprehend any research they have agreed to be part of. They may have their own ideas of what research involves or motivations for being in your study and an awareness of all these can ensure people are not exploited or misled in your work, but are also to check you’ve invited the right people into your study.

Does it matter if we are doing research or not? Noting if what you are doing is research is more than just an exercise in linguistics. While some disciplines have a broad view of what might constitute research, others are specific about what it entails. Quantitative, experimental and medical research tend to fall into more of the latter category, and often the delineation of work here is about identifying what kind of work you will be doing, what sort of method(s) you will use, and whether or not you require ethical approval.

Audit, service development and evaluation are often separated from research (although not always so it is good to check with your funder, local ethics committee or colleagues if you are not sure). The MRC have a tool that helps you work out if what you want to do qualifies as ‘research’. Although as a further teaching/reflection exercise it is worth working through this tool to see what things fall under than banner of research, what don’t, and what kind of activities are legitimized as ‘research’ through this process. You may also want to link this to the exercises above, thinking about what definitions of ‘research’ in the list you studied match the medical/scientific/positivistic view of ‘research’ – and what methods, approaches, people, philosophies and practices this leaves out?

Within health and social care, education and development people may engage in activities, events, programmes, service improvements or performances where they do work as usual and consider documenting this to be research. Or try to change or enhance their work but do not record the process by which they went about this. Sometimes we fail to note what we are doing as research, or do not enhance or strengthen our activities through reflection, using theory, or assessing what we have done.

Another good reason to consider if you are doing research is to avoid limiting your practice, and to ensure if you have tried something out, that you can describe and explore what happened so others might learn from what you have done.

Remember – Research may be defined, interpreted and understood in many different ways – Research can happen in many disciplines and locations – Research is not simply something you do to end up as a publication in a peer reviewed journal – What you think research means may vary widely from others you are working with – Definitions of research can introduce particular perspectives, prejudices and in turn influence what approaches you take in choice of method and approach to participants – Reflecting on what all stakeholders think research means can save problems within a study – Asking your students (or yourself) to consider what the term means may be an important part in becoming more aware of the work that you plan to do, and ensure it proceeds carefully, critically, ethically and effectively.

Future posts will be looking at how we follow on from thinking about research to defining a study question, selecting a method, and considering the needs of those who might be involved within our work.

Before then, this presentation by Dr John Schulz (Southampton) looks at what makes something into research, with a focus on how theory can help us do this

If you have further thoughts on how we define research, how this can impact on the work you do in the social or health sciences or development, or whether you have anxieties about how research has been discussed here defined feel free to add them in the comments.

Further reading Becker HS. 1998. Tricks of the Trade: How to think about your research while you are doing it . University of Chicago Press. Hewitt Taylor J. 2011. Using research in practice. It sounds good, but will it work? Palgrave Macmillan. Remme JHF et al. 2010. Defining Research to Improve Health Systems . PLoS Medicine. 7 (11) e1001000 Rhedding Jones J. 2005. What is research? Methodological practices and new approaches . Smith R. 1992. Audit and Research. British Medical Journal. 305. pp.905-6. Wade DT. 2005. Ethics, audit and research: all shades of grey. British Medical Journal. 330. pp. 468-73.

One response to What does “research” mean and are you doing it?

[…] IntroductionComputer and digital technology has increased at an astounding rate within the last several decades. With the advent of various informational Internet resources such as social media, online articles, books and so forth many people are claiming to do thorough research, but lack the understanding of what research means. The advent of search engines has given everyone the illusion that they have done research and are experts on a particular topic. In reality people simply pull information from unreliable sources, thinking that they have researched a topic thoroughly. What makes a source not reliable? What makes certain information unreliable and untrustworthy? This article will offer information and resources to help people be able to differentiate between what is a valid source of knowledge and what is not. What is research? Research should involve a thorough reading and analysis of an adequate number of sources on a given subject. One does not have to have a college degree to do research. But the proper time should be devoted in order to draw valid conclusions that can be held up as reliable research. As a side note, some information cannot be obtained without proper research methodologies and even research tools. Examples of this is research in the natural sciences such as biology, chemistry or physics or in the social sciences in areas such as history, economics or sociology. With the hard sciences one must conduct countless experiments to arrive at certain conclusions that cannot be obtained by simply reading a lot of Internet articles and watching videos. Furthermore, to do valid historical work one must study many reliable primary sources or conduct countless interviews with people who were present during a certain time period the historian is studying. So in this way, valid natural or social science experiments cannot be replaced by reading a few articles on the Internet. At the very least, one can read the work of experts who have devoted their life to research in a particular subject. Teachers in K-12 schools often have not spent their lives conducting research in their field (Of course there are many exceptions to this). Even though they may not be researchers, they have devoted their lives to studying, reading and mastering their content. In this way, a middle school science teacher (for example) can read thoroughly within a certain discipline and gain a wide enough knowledge base on a topic to become a reliable source of information and somewhat of an expert. The knowledge they have gained was achieved through much time and effort. There is no shortcut for conducting research on a topic thoroughly and adequately. In contemporary times, when many individuals do research, their primary means of gathering information is through the Internet. The Internet can be a great resource for gathering information, the problem lies in individuals not being able to differentiate between reliable and unreliable sources. How to Find Reliable Information on the Internet https://peopledevelopmentmagazine.com/2016/07/10/information-internet/ Here are some key components that one should consider when trying to verify if an online source is credible. 1) Identify the source of the information and determine whether it is reliable and credible. A good starting point for this is to identify the name of the writer and or the organization from which the source was derived. Is the source reputable and reliable? Is the person or organization a respected authority on the subject matter? What makes a person or organization an authority on a particular topic? It has become very easy to publish information on the Internet and as a result there are many people purporting to be an expert in a particular field that are not qualified to write on that topic. A good way to understand the danger of this is to liken it to public school teachers teaching subjects outside of their certification in order to remedy teacher shortages. Often one might find a teacher certified in social studies teaching Algebra. In these cases, students are not getting the proper instruction in math. In the same way, there is a lot information on the Internet written by individuals that have no expertise in the particular content in which they are writing about. For example, many people that dispute climate change and global warming are not scientists and often rely on political rhetoric to support their claims. Scientists who do work in climate change have devoted their entire lives to research in that area, often holding undergraduate and several graduate degrees in subjects like geology and earth science. When a person is thought to be a well-known and respected expert in a certain field, they have a proven track record of careful study and research and are validated by reputable institutions that are known for producing reliable research. Often non-experts will spend just a few days or weeks “researching” climate change, in an effort to “dispute” data that is backed by decades of careful research. One does not have to have a Ph.D. to understand and challenge mainstream scientific knowledge, but time and energy devoted to research cannot be bypassed.    2) Checking sources for validity against other reliable sources. It is important when doing research on the Internet to check the provided information against other reliable sources to verify accuracy. For example, if every reputable source reports that cigarette smoking causes cancer and one source says otherwise, the lone source should be questioned until further notice because it has no credibility or way to verify its information. When checking facts and data for accuracy provided in an Internet source one should look for reliable and trusted sources. These might include academic articles, books, universities, museums, mainline reputable religious organizations, government agencies and academic associations. Libraries, universities and professional organizations usually provide reliable information. There is a growing public mistrust of long established institutions that has added to the level of uncertainty about knowledge. But it is important to know that institutions have credibility for good reason. Their history, information and knowledge base is backed by hard work, and long held traditions.    3) Is the information presented in a biased way? When one is reading an article or any information on the internet it is important to determine if that information has a specific agenda or goal in mind. What is the author’s agenda? Does the author or organization have a particular religious, sociological or political bent? These factors determine the validity of an information source. For example, oftentimes newspapers will feature op-ed pieces in which the author states up front that the article is largely based on their personal views. Therefore, when one reads an op-ed piece, they understand going into the article that it will be slanted to the right or left or toward a certain worldview. The article is not be completely useless, but the reader should realize they have to sort through the bias and decided what information is helpful to them in their research.  The reader should also search for possible bias in the information presented (Could be political, sociological, religious bias, or other ideas drawn from a particular worldview) and or even claims made that seem unrealistic or unreasonable with no evidence to back it up. 4) Search for citations that support the claims made by the author or organization. Most articles or information on the web will provide a link to do further research on the topic or to back claims made. When this information is not adequately provided one can assume that the source is not reputable. In addition, a site can have many citations but the sources may not be credible or reliable sources. Health and fitness writer Robin Reichert states the following about the topic reliable sources. Readers should “follow the links provided” in the article to “verify that the citations in fact support the writer’s claims. Look for at least two other credible citations to support the information.” Furthermore, readers should “always follow-up on citations that the writer provides to ensure that the assertions are supported by other sources.” It is also important to note that the end designation of a website can help determine credibility. When websites end in “.com” they are often are for profit organizations and trying to sell a product or service. When one comes across a site that ends in “.org” they are often non-profit organizations and thus have a particular social cause they are trying to advance or advocate for. Government agency websites always end in “.gov” while educational institutions end in “.edu.” Government agencies, educational institutions or non-profits generally offer reliable and trustworthy information. Teachers in middle and high schools attempt should spend more time having students do research papers as it teaches students the value of citing valid sources. The projects often call for proper citations using one of the various styles of citation with the most popular being APA, MLA and Chicago. How to Verify if a Source is Credible on the Internet https://itstillworks.com/verify-source-credible-internet-8139507.html Below I have provided a number of resources for our average internet researchers, students and teachers. The idea of truth and valid, reliable resources are being challenged because people are unsure as to what information is valid and what is not. The links below offer a number of resources that can further offer tools to help  to understand how to do research properly. References Evaluating Internet Resources https://www.library.georgetown.edu/tutorials/research-guides/evaluating-internet-content Check It Out: Verifying Information and Sources in News Coverage https://learning.blogs.nytimes.com/2012/02/02/check-it-out-verifying-information-and-sources-in-news-coverage/ How to Do Research: A Step-By-Step Guide: Get Started https://libguides.elmira.edu/research Research and Citation Resources https://owl.purdue.edu/owl/research_and_citation/resources.html Finding Relevant and Relevant and Reliable Sources https://www.press.uchicago.edu/books/turabian/tcc/topicsheet10.pdf How can I tell if a website is credible? https://uknowit.uwgb.edu/page.php?id=30276 Detecting Fake News at its Source: Machine learning system aims to determine if an information outlet is accurate or biased. http://news.mit.edu/2018/mit-csail-machine-learning-system-detects-fake-news-from-source-1004 What does “research” mean and are you doing it? https://theresearchcompanion.com/what-does-research-mean/ […]

Leave a reply Cancel reply

Basic HTML is allowed. Your email address will not be published.

IdeaScale Logo

What is Research? Definition, Types, Methods and Process

By Nick Jain

Published on: July 25, 2023

What is Research

Table of Contents

What is Research?

Types of research methods, research process: how to conduct research, top 10 best practices for conducting research in 2023.

Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study. By adhering to established research methodologies, investigators can draw meaningful conclusions, fostering a profound understanding that contributes significantly to the existing knowledge base. This dedication to systematic inquiry serves as the bedrock of progress, steering advancements across sciences, technology, social sciences, and diverse disciplines. Through the dissemination of meticulously gathered insights, scholars not only inspire collaboration and innovation but also catalyze positive societal change.

In the pursuit of knowledge, researchers embark on a journey of discovery, seeking to unravel the complexities of the world around us. By formulating clear research questions, researchers set the course for their investigations, carefully crafting methodologies to gather relevant data. Whether employing quantitative surveys or qualitative interviews, data collection lies at the heart of every research endeavor. Once the data is collected, researchers meticulously analyze it, employing statistical tools or thematic analysis to identify patterns and draw meaningful insights. These insights, often supported by empirical evidence, contribute to the collective pool of knowledge, enriching our understanding of various phenomena and guiding decision-making processes across diverse fields. Through research, we continually refine our understanding of the universe, laying the foundation for innovation and progress that shape the future.

Research embodies the spirit of curiosity and the pursuit of truth. Here are the key characteristics of research:

  • Systematic Approach: Research follows a well-structured and organized approach, with clearly defined steps and methodologies. It is conducted in a systematic manner to ensure that data is collected, analyzed, and interpreted in a logical and coherent way.
  • Objective and Unbiased: Research is objective and strives to be free from bias or personal opinions. Researchers aim to gather data and draw conclusions based on evidence rather than preconceived notions or beliefs.
  • Empirical Evidence: Research relies on empirical evidence obtained through observations, experiments, surveys, or other data collection methods. This evidence serves as the foundation for drawing conclusions and making informed decisions.
  • Clear Research Question or Problem: Every research study begins with a specific research question or problem that the researcher aims to address. This question provides focus and direction to the entire research process.
  • Replicability: Good research should be replicable, meaning that other researchers should be able to conduct a similar study and obtain similar results when following the same methods.
  • Transparency and Ethics: Research should be conducted with transparency, and researchers should adhere to ethical guidelines and principles. This includes obtaining informed consent from participants, ensuring confidentiality, and avoiding any harm to participants or the environment.
  • Generalizability: Researchers often aim for their findings to be generalizable to a broader population or context. This means that the results of the study can be applied beyond the specific sample or situation studied.
  • Logical and Critical Thinking: Research involves critical thinking to analyze and interpret data, identify patterns, and draw meaningful conclusions. Logical reasoning is essential in formulating hypotheses and designing the study.
  • Contribution to Knowledge: The primary purpose of research is to contribute to the existing body of knowledge in a particular field. Researchers aim to expand understanding, challenge existing theories, or propose new ideas.
  • Peer Review and Publication: Research findings are typically subject to peer review by experts in the field before being published in academic journals or presented at conferences. This process ensures the quality and validity of the research.
  • Iterative Process: Research is often an iterative process, with findings from one study leading to new questions and further research. It is a continuous cycle of discovery and refinement.
  • Practical Application: While some research is theoretical in nature, much of it aims to have practical applications and real-world implications. It can inform policy decisions, improve practices, or address societal challenges.

These key characteristics collectively define research as a rigorous and valuable endeavor that drives progress, knowledge, and innovation in various disciplines.

Types of Research Methods

Research methods refer to the specific approaches and techniques used to collect and analyze data in a research study. There are various types of research methods, and researchers often choose the most appropriate method based on their research question, the nature of the data they want to collect, and the resources available to them. Some common types of research methods include:

1. Quantitative Research: Quantitative research methods focus on collecting and analyzing quantifiable data to draw conclusions. The key methods for conducting quantitative research are:

Surveys- Conducting structured questionnaires or interviews with a large number of participants to gather numerical data.

Experiments-Manipulating variables in a controlled environment to establish cause-and-effect relationships.

Observational Studies- Systematically observing and recording behaviors or phenomena without intervention.

Secondary Data Analysis- Analyzing existing datasets and records to draw new insights or conclusions.

2. Qualitative Research: Qualitative research employs a range of information-gathering methods that are non-numerical, and are instead intellectual in order to provide in-depth insights into the research topic. The key methods are:

Interviews- Conducting in-depth, semi-structured, or unstructured interviews to gain a deeper understanding of participants’ perspectives.

Focus Groups- Group discussions with selected participants to explore their attitudes, beliefs, and experiences on a specific topic.

Ethnography- Immersing in a particular culture or community to observe and understand their behaviors, customs, and beliefs.

Case Studies- In-depth examination of a single individual, group, organization, or event to gain comprehensive insights.

3. Mixed-Methods Research: Combining both quantitative and qualitative research methods in a single study to provide a more comprehensive understanding of the research question.

4. Cross-Sectional Studies: Gathering data from a sample of a population at a specific point in time to understand relationships or differences between variables.

5. Longitudinal Studies: Following a group of participants over an extended period to examine changes and developments over time.

6. Action Research: Collaboratively working with stakeholders to identify and implement solutions to practical problems in real-world settings.

7. Case-Control Studies: Comparing individuals with a particular outcome (cases) to those without the outcome (controls) to identify potential causes or risk factors.

8. Descriptive Research: Describing and summarizing characteristics, behaviors, or patterns without manipulating variables.

9. Correlational Research: Examining the relationship between two or more variables without inferring causation.

10. Grounded Theory: An approach to developing theory based on systematically gathering and analyzing data, allowing the theory to emerge from the data.

11. Surveys and Questionnaires: Administering structured sets of questions to a sample population to gather specific information.

12. Meta-Analysis: A statistical technique that combines the results of multiple studies on the same topic to draw more robust conclusions.

Researchers often choose a research method or a combination of methods that best aligns with their research objectives, resources, and the nature of the data they aim to collect. Each research method has its strengths and limitations, and the choice of method can significantly impact the findings and conclusions of a study.

Learn more: What is Research Design?

Conducting research involves a systematic and organized process that follows specific steps to ensure the collection of reliable and meaningful data. The research process typically consists of the following steps:

Step 1. Identify the Research Topic

Choose a research topic that interests you and aligns with your expertise and resources. Develop clear and focused research questions that you want to answer through your study.

Step 2. Review Existing Research

Conduct a thorough literature review to identify what research has already been done on your chosen topic. This will help you understand the current state of knowledge, identify gaps in the literature, and refine your research questions.

Step 3. Design the Research Methodology

Determine the appropriate research methodology that suits your research questions. Decide whether your study will be qualitative , quantitative , or a mix of both (mixed methods). Also, choose the data collection methods, such as surveys, interviews, experiments, observations, etc.

Step 4. Select the Sample and Participants

If your study involves human participants, decide on the sample size and selection criteria. Obtain ethical approval, if required, and ensure that participants’ rights and privacy are protected throughout the research process.

Step 5. Information Collection

Collect information and data based on your chosen research methodology. Qualitative research has more intellectual information, while quantitative research results are more data-oriented. Ensure that your data collection process is standardized and consistent to maintain the validity of the results.

Step 6. Data Analysis

Analyze the data you have collected using appropriate statistical or qualitative research methods . The type of analysis will depend on the nature of your data and research questions.

Step 7. Interpretation of Results

Interpret the findings of your data analysis. Relate the results to your research questions and consider how they contribute to the existing knowledge in the field.

Step 8. Draw Conclusions

Based on your interpretation of the results, draw meaningful conclusions that answer your research questions. Discuss the implications of your findings and how they align with the existing literature.

Step 9. Discuss Limitations

Acknowledge and discuss any limitations of your study. Addressing limitations demonstrates the validity and reliability of your research.

Step 10. Make Recommendations

If applicable, provide recommendations based on your research findings. These recommendations can be for future research, policy changes, or practical applications.

Step 11. Write the Research Report

Prepare a comprehensive research report detailing all aspects of your study, including the introduction, methodology, results, discussion, conclusion, and references.

Step 12. Peer Review and Revision

If you intend to publish your research, submit your report to peer-reviewed journals. Revise your research report based on the feedback received from reviewers.

Make sure to share your research findings with the broader community through conferences, seminars, or other appropriate channels, this will help contribute to the collective knowledge in your field of study.

Remember that conducting research is a dynamic process, and you may need to revisit and refine various steps as you progress. Good research requires attention to detail, critical thinking, and adherence to ethical principles to ensure the quality and validity of the study.

Learn more: What is Primary Market Research?

Best Practices for Conducting Research

Best practices for conducting research remain rooted in the principles of rigor, transparency, and ethical considerations. Here are the essential best practices to follow when conducting research in 2023:

1. Research Design and Methodology

  • Carefully select and justify the research design and methodology that aligns with your research questions and objectives.
  • Ensure that the chosen methods are appropriate for the data you intend to collect and the type of analysis you plan to perform.
  • Clearly document the research design and methodology to enhance the reproducibility and transparency of your study.

2. Ethical Considerations

  • Obtain approval from relevant research ethics committees or institutional review boards, especially when involving human participants or sensitive data.
  • Prioritize the protection of participants’ rights, privacy, and confidentiality throughout the research process.
  • Provide informed consent to participants, ensuring they understand the study’s purpose, risks, and benefits.

3. Data Collection

  • Ensure the reliability and validity of data collection instruments, such as surveys or interview protocols.
  • Conduct pilot studies or pretests to identify and address any potential issues with data collection procedures.

4. Data Management and Analysis

  • Implement robust data management practices to maintain the integrity and security of research data.
  • Transparently document data analysis procedures, including software and statistical methods used.
  • Use appropriate statistical techniques to analyze the data and avoid data manipulation or cherry-picking results.

5. Transparency and Open Science

  • Embrace open science practices, such as pre-registration of research protocols and sharing data and code openly whenever possible.
  • Clearly report all aspects of your research, including methods, results, and limitations, to enhance the reproducibility of your study.

6. Bias and Confounders

  • Be aware of potential biases in the research process and take steps to minimize them.
  • Consider and address potential confounding variables that could affect the validity of your results.

7. Peer Review

  • Seek peer review from experts in your field before publishing or presenting your research findings.
  • Be receptive to feedback and address any concerns raised by reviewers to improve the quality of your study.

8. Replicability and Generalizability

  • Strive to make your research findings replicable, allowing other researchers to validate your results independently.
  • Clearly state the limitations of your study and the extent to which the findings can be generalized to other populations or contexts.

9. Acknowledging Funding and Conflicts of Interest

  • Disclose any funding sources and potential conflicts of interest that may influence your research or its outcomes.

10. Dissemination and Communication

  • Effectively communicate your research findings to both academic and non-academic audiences using clear and accessible language.
  • Share your research through reputable and open-access platforms to maximize its impact and reach.

By adhering to these best practices, researchers can ensure the integrity and value of their work, contributing to the advancement of knowledge and promoting trust in the research community.

Learn more: What is Consumer Research?

Enhance Your Research

Collect feedback and conduct research with IdeaScale’s award-winning software

Elevate Research And Feedback With Your IdeaScale Community!

IdeaScale is an innovation management solution that inspires people to take action on their ideas. Your community’s ideas can change lives, your business and the world. Connect to the ideas that matter and start co-creating the future.

Copyright © 2024 IdeaScale

Privacy Overview

The Research Whisperer

Just like the thesis whisperer – but with more money, what is research.

A Scrabble board covered in words

We all know what research is – it’s the thing we do when we want to find something out. It is what we are trained to do in a PhD program. It’s what comes before development.

The wonderful people at Wordnet define research as

Noun: systematic investigation to establish facts; a search for knowledge. Verb: attempt to find out in a systematically and scientific manner; inquire into.

An etymologist might tell us that it comes from the Old French word cerchier , to search , with re- expressing intensive force. I guess it is saying that before 1400 in France, research meant to search really hard.

If I was talking to a staff member at my university, though, I would say that searching hard was scholarship . The difference? Research has to have an element of discovering something new, of creating knowledge. While a literature search is one important part of a research project, it isn’t research in and of itself. It is scholarship.

Don’t take my word for it. In Australian universities, we define research this way:

Research is defined as the creation of new knowledge and/or the use of existing knowledge in a new and creative way so as to generate new concepts, methodologies and understandings. This could include synthesis and analysis of previous research to the extent that it leads to new and creative outcomes. This definition of research is consistent with a broad notion of research and experimental development (R&D) as comprising of creative work undertaken on a systematic basis in order to increase the stock of knowledge, including knowledge of humanity, culture and society, and the use of this stock of knowledge to devise new applications This definition of research encompasses pure and strategic basic research, applied research and experimental development. Applied research is original investigation undertaken to acquire new knowledge but directed towards a specific, practical aim or objective (including a client-driven purpose).

Drawn from the 2012 Higher Education Research Data Collection (HERDC) specifications for the collection of 2011 data .

What research sounds like

Sometimes, however, you don’t want to talk about ‘Research ‘ . If you are applying to a philanthropic foundation, for example, they may not be interested in your new knowledge so much as the impact that your work will have, your capacity to help them to solve a problem. Industry partners may also be wary of the ‘R’ word. “Don’t bank your business on someone’s PhD”, they will say (and I would wholeheartedly agree).

This creates something of a quandary, as the government gives us money based on how much research income we bring in. They audit our claims, so everything we say is research has to actually be research. So, it helps to flag it as research, even if you don’t say it explicitly.

Instead, you might talk about innovation , or about experimentation . You could describe the element of risk associated with discovery . Investigation might lead to analysis . There might be tests that you will undertake to prove your hypothesis . You could just say that this work is original and has never been done before. You could talk about what new knowledge your work will lead to.

You might describe a new method or a new data source that will lead to a breakthrough or an incremental improvement over current practice. You could make it clear that it is the precursor to development , in the sense of ‘research and development’.

It really helps if you are doing something new .

What research looks like

Sometimes, it isn’t what you say, but what you do. If your work will lead to a patent, book or book chapter, refereed journal article or conference publication, or an artwork or exhibition (in the case of creative outputs), then it almost always fulfills the definition no matter what you call it.

What research isn’t

Sometimes, you can see a thing more clearly by describing what it isn’t.

Research isn’t teaching. Don’t get me wrong – you can research teaching, just like you can research anything else. However, teaching itself is generally regarded as the synthesis and transfer of existing knowledge. Generally, the knowledge has to exist before you can teach it. Most of the time, you aren’t creating new knowledge as you teach. Some lecturers may find that their students create strange new ‘knowledge’ in their assignments, but making stuff up doesn’t count as research either.

Research isn’t scholarship. As I said at the start, a literature search is an important aspect of the research process but it isn’t research in and of itself. Scholarship (the process of being a scholar) generally describes surveying existing knowledge. You might be looking for new results that you hadn’t read before, or you might be synthesizing the information for your teaching practice. Either way, you aren’t creating new knowledge, you are reviewing what already exists.

Research isn’t encyclopaedic. Encyclopedias, by and large, seek to present a synthesis of existing knowledge. Collecting and publishing existing knowledge isn’t research, as it doesn’t create new knowledge.

Research isn’t just data-gathering. Data-gathering is a vital part of research, but it doesn’t lead to new knowledge without some analysis, some further work. Just collecting the data doesn’t count, unless you do something else with it.

Research isn’t just about methodology. Just because you are using mice, or interviewing people, or using a High Performance Liquid Chromatograph (HPLC) doesn’t mean you are doing research. You might be, if you are using a new data set or using the method in a new way or testing a new hypothesis. However, if you are using the same method, on the same data, exploring the same question, then you will almost certainly get the same results. And that is repetition, not research.

Research isn’t repetition, except in some special circumstances. If you are doing the same thing that someone else has already done, then generally that isn’t research unless you are specifically trying to prove or disprove their work. What’s the difference? Repeating an experiment from 1400 isn’t research. You know what the result will be before your start – it has already been verified many times before. Repeating an experiment reported last year probably is research because the original result can’t be relied upon until it is verified.

Is development research? Development (as in ‘research and development’) may or may not be classified as research, depending on the type of risk involved. Sometimes, the two are inextricably linked: the research leads to the development and the development refines the research. At other times, you are creating something new, but it is a new product or process, not new knowledge. It is based on new knowledge, rather than creating new knowledge. If the risk involved is a business risk, rather than intellectual risk, then the knowledge is already known.

Help me out here – what are your favourite words that signal research?

Share this:

26 comments.

currently, im doing postgraduate education for both social science and technological science. i can’t help but to feel slightly amused by your assertion ..

“Don’t bank your business on someone’s PhD”, they will say (and I would wholeheartedly agree).

this is quite true when you’re doing phd for social science. however, if your phd is technologically inclined, the business entity who intends to commercialize it, may have to bank on your research for success.

illustrating this would not be a feat.

are you using google? well, did you know that google was actually a phd research? if they hadn’t banked on page’s and brin’s research, there wouldn’t be google today, would it? presently, it is rumoured that google and microsoft are competing for phd graduates from ivy leagues and what not.

personally, i’ve met a couple of ‘technopreneurs’ who have successfully commercialized their phd research. though they may not be as successful as google, financially speaking, their achievement should not be trivialized.

Thanks, pikir kool.

You are right, of course. I’m a big fan of businesses who provide scholarships for PhD students. It is a great way for the student to get funded, and for the business to get a bit of an edge.

‘Chercher’, the modern French word for chercier means to explore or get. Re-chercher adds the concept of re- or ‘again’ to indicate looking-again, usually on the basis of evidence or experience pointing to the object of the search being in a particular place, hence to ‘search really hard’. French-speaking individuals will ‘rechercher’ a criminal on the run, ‘rechercher’ the more probable destinations of a friend who is out shopping, and so forth. I agree Australian businesses consider PhD graduates are overpriced ‘scholars’ and ‘technicians’ trained to avoid risk, hold similar opinions, and assume as little responsibility for group/enterprise outcomes as possible. What shocks me is your suggestion graduates should misinform potential employers by suggesting they might be able to innovate, discover, and lead the business toward new markets and technologies by simply choosing hot button words. In France, universities are centres of ‘learning’ where individuals experience a rich intellectual environment that the government believes ‘develops’ curiosity, opens up new horizons, tests principles to live by, and rewards leadership. The ‘elitist’ French haut écoles are often criticised by Anglo-saxon countries, but I say the learning environment, which – by the way – focuses less on methodology, reflects human diversity (unique identity). The Australian system is based on an equal opportunity social objective and is funded to produce an intellectual resource pipeline .

Hello Gordon

Thanks for your information on ‘Chercher’.

I was not trying to suggest that anybody misinform anybody else with the use of words, hot button or otherwise, but I can understand how you read it that way.

I wrote that section, in part, as a guide to staff who are trying to satisfy two audiences – the people who are providing funding and the government auditors who are deciding what is counted as research. The easiest way to satisfy the government auditors that something is research is to call it ‘research’. However, in some funding situations, that simply isn’t appropriate. One way forward is to describe the work using words other than ‘research’ that signal to the auditors that the work satisfies the criteria for research.

I’m afraid that I’m not experienced enough with research in France to reply to your comparison of the French and Australian research training environments. I work within the Australian environment, and try to do the best job that I can.

Thank you for this post – very relevant for me right now and thought-provoking. I’m 13 months into my PhD investigating communication designers’ engagement with research and I’m astounded that there is so little consensus in academic literature (not to mention in professional practice) about what legitimate research is.

It seems that any definition or criteria for research that I find, I can also find an example of research that contradicts it. For example, in your post you note “data gathering is a vital part of research” but when I included this in my definition, a highly respected scholar in my field pointed out that research in his own field of Philosophy did not involve data gathering, yet he believed constituted research. So I’m still thinking about it : )

Your philosopher is right, of course. Some researchers are working with ideas and recombining them, reworking them, creating new ideas.

I deal with applied research, mostly, and I guess my definition reflects that.

I would love to see your definition when you are done.

Your article is rad. It shaped the whole concept of research in my mind. And I think that it exactly is a ‘re- search’, where you will be searching the facts again & again, on grass root level, following a sequence of systematic processes to reach a novel & efficient conclusion .

Thanks. Glad I could help, anonymouswailer.

Thank you for the post on ‘What is Research?’ Interesting and useful posts and comments. Since I am considering naming a blog page The Synthesist, I got off on a tangent relating to the words thesis, synthesis, etc. A couple thoughts …

I think you may be undervaluing the function of “synthesis” when it is only referred to in relation to encyclopedic summaries of existing knowledge, I think true synthesis is when 2 or more ideas combine to create a new idea. I also learned, when I served a literacy tutor, that “synthesis” is considered to be a more sophisticated learned literacy skill than “analysis,” which I thought was interesting. We live in analysis culture, creating deep silos of knowledge, with few strong horizontal threads that truly support “learning.”

Interesting comment on French value of learning as the highest human capacity. Not feeling that here in America.

Also, I was hoping to see in your answer of what research IS, a reference to the importance of questions and question formation.

Thanks– Amy

I’m prompted to comment by Amy’s:

After a long time working outside of academia I’m returning to begin a Masters in Disaster Communication and Resilience; I’m still at that early stage of being excited by ideas, and not quite ready to decide on a research topic. What I am sure of is that, in the area of disaster (post-typhoon for example) one of the biggest challenges is that the specialists don’t feel comfortable talking to each other and therefore need the generalist communicators / networkers to listen to what they are on about, develop a general understanding of what they are saying, and link them together with people in other specialist areas whose work might be strikingly different but potentially have enormous potential for synergy/ synthesis.

And I doubt that any research is being done on this.

[…] What is research? by Jonathan O’Donnell […]

This is perhaps a slightly different point of view/perspective from a reasonably long career in applied research, and I am now enrolled in a Doctorate program.

What I find really interesting is pondering where does ‘innovation’ especially in terms of various forms of professional practice or creative endeavour actually come from, if not from ‘research’ as you describe it above? (I often heard and still hear people in industry or the professional practice word using the word ‘research’ to describe an often fairly informal literature search to back up what they have already decided to do in practice – but that is probably another story.)

However, I often wonder where do the ideas for ‘innovation’ actually come from?

When they are drawn from research conclusions (or initially drove the research question) this probably makes that particular research more valuable from a funder point of view.

But it kind of begs the question as to what comes or should come first especially in terms of good applied research.

And then finally, where does creativity come in – especially when deciding what to research, and how to interpret the data and conclusions from the research?

I am off to think of some more concrete examples and to ponder the nexus between research – innovation and creativity.

BTW love this discussion so far!

The nexus between research, innovation and creativity is a great topic! If you are interested in writing it up as a blog post, let me know. We’d be happy to consider it for a guest post on the Research Whisperer.

Jonathan Let me think about it – this has provoked my thinking about the issues but not sure if I am there yet in terms of writing a post about it. I will let you know! Jane

Well, it certainly was interesting to see this comment thread come back to me after three years.

I was about to reply to this person named Amy who said she was going to start a blog called The Synthesist to tell her that I had myself started a blog called Neon Synthesist.

Then I realized it was myself. Strange mirror of time. In 2014, I discovered there was a rock band called Synthesist and named it Neon Synthesist instead, since it tends to be provocative.

There are some fun posts there like “What is an Idea?” and “Why Philosophy Isn’t Dead” and, funding researchers might like, a four-part series called “The Philanthropy Games” … but alas this page will probably go away. No subscribers that I could tell.

http://www.neonsynthesist.blogspot.com

Cheers! Amy

[…] (2012) what is research [online] available from < https://theresearchwhisperer.wordpress.com/2012/09/18/what-is-research/ > [09 march […]

[…] O’Donnell, J. (2012, September 18). What is research? [Blog post]. Retrieved from https://theresearchwhisperer.wordpress.com/2012/09/18/what-is-research/ […]

[…] For more discussion on the question “What is Research”, please see “What is Research?”, Study.com, available from https://study.com/academy/lesson/what-is-research-definition-purpose-typical-researchers.html . See also “What is Research?”, The Research Whisperer, available from https://researchwhisperer.org/2012/09/18/what-is-research/ . […]

I am enriched with the discussions. Thanks.

Thanks, Raton Kumar. I’m glad that you found it useful. Jonathan

[…] For wiser words on research than mine, CLICK HERE. […]

Research is creating new knowledge through systematic investigation and analysis of data. Research leads to development but not in all cases and Repetition of a research already done can be said valid only when we try to prove or disprove it. It sounds great!!!

Research is the effort done by an individual or group of people, to explore something new. It can be an effort to prove the same matter but applying new methods, it also can be done to prove a different findings.

Leave a comment Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

Read our research on: Immigration & Migration | Podcasts | Election 2024

Regions & Countries

8 facts about atheists.

Caucasian man cycling outdoors

Atheists make up 4% of U.S. adults, according to our 2023 National Public Opinion Reference Survey . That compares with 3% who described themselves as atheists in 2014 and 2% who did so in 2007 .

Here are some key facts about atheists in the United States and around the world, based on several Pew Research Center surveys.

This analysis draws on several Pew Research Center studies. Data on the share of atheists in the United States is from the  2023 National Public Opinion Reference Survey , as well as the Center’s  2007  and  2014 Religious Landscape Studies .

Other data on U.S. atheists comes from various waves of the American Trends Panel, collected in  September and December 2017 ,  February 2019 ,  September 2022 , and  July and August 2023 .

For data from countries other than the U.S., this analysis draws on nationally representative surveys conducted in 2019, 2022 and 2023. Read more details about our  international survey methodology and country-specific sample designs .

For the purposes of this analysis, “wealthy nations” are those that were classified as “high income” according to the  World Bank Income Classifications .

In the U.S., atheists are mostly men and are relatively young,  according to a Center survey conducted in summer 2023 . Around six-in-ten U.S. atheists are men (64%). And seven-in-ten are ages 49 or younger, compared with about half of U.S. adults overall (52%).

Atheists also are more likely than the general public to be White (77% vs. 62%) and have a college degree (48% vs. 34%). Roughly eight-in-ten atheists identify with or lean toward the Democratic Party.

Almost all U.S. atheists (98%) say religion is not too or not at all important in their lives, according to the same summer 2023 survey. An identical share say that they seldom or never pray.

At the same time, 79% of American atheists say they feel a deep sense of wonder about the universe at least several times a year. And 36% feel a deep sense of spiritual peace and well-being at least that often.

U.S. atheists and religiously affiliated Americans find meaning in their lives in some of the same ways. In a 2017 survey , we asked an open-ended question about this. Like a majority of Americans, most atheists mentioned family as a source of meaning.

However, atheists (26%) were far more likely than Christians (10%) to describe their hobbies as meaningful or satisfying. Atheists were also more likely than Americans overall to describe finances and money, creative pursuits, travel, and leisure activities as meaningful. Very few atheists (4%) said they found life’s meaning in spirituality.

A map showing that western Europeans are more likely than Americans to identify as atheists.

Atheists make up a larger share of the population in many Western European countries than in the U.S.,  according to a spring 2023 Center survey that included 10 European countries. For example, nearly a quarter of French adults (23%) identify as atheists, as do 18% of adults in Sweden, 17% in the Netherlands and 12% in the United Kingdom.

Most U.S. atheists express concerns about the role religion plays in society. An overwhelming majority of atheists (94%) say that the statement “religion causes division and intolerance” describes their views a great deal or a fair amount, according to our summer 2023 survey. And 91% say the same about the statement “religion encourages superstition and illogical thinking.” Nearly three-quarters (73%) say religion does more harm than good in American society.

At the same time, 41% of atheists say religion helps society by giving people meaning and purpose in their lives, and 33% say it encourages people to treat others well.

Atheists may not believe religious teachings, but they are  quite informed about religion . In our 2019 religious knowledge survey , atheists were among the best-performing groups. On average, they answered about 18 out of 32 fact-based questions correctly, while U.S. adults overall got roughly 14 questions right. In particular, atheists were twice as likely as Americans overall to know that the U.S. Constitution says no religious test is necessary to hold public office.

Atheists were also at least as knowledgeable as Christians on Christianity-related questions. For example, roughly eight-in-ten in both groups knew that Easter commemorates the resurrection of Jesus.

Most Americans don’t think believing in God is necessary to be a good person, according to the summer 2023 survey. When we asked people which statement came closer to their views, 73% selected “it is possible to be moral and have good values without believing in God,” while 25% picked “it is necessary to believe in God in order to be moral and have good values.”

Adults in some other wealthy countries tend to agree with this sentiment, based on responses to a similar question we asked in 2019 and 2022 . For example, nine-in-ten Swedish adults say belief in God is not necessary to be moral and have good values, while 85% in Australia, 80% in the Czech Republic and 77% in France say this.

However, fewer than one-in-ten adults in some other countries surveyed say that a person can be moral without believing in God. That includes 5% of adults in Kenya, 4% in the Philippines and 2% in Indonesia. In all three nations, more than nine-in-ten say instead that a person must believe in God to be a moral person.

About three-quarters of U.S. atheists (77%) do not believe in God or a higher power  or in a spiritual force of any kind, according to our summer 2023 survey. At the same time, 23% say they do believe in a higher power of some kind, though fewer than 1% of U.S. atheists say they believe in “God as described in the Bible.”

This shows that not all self-described atheists fit the literal definition of “atheist,” which is “a person who does not believe in the existence of a god or any gods,”  according to Merriam-Webster .

Note: This is an update of a post originally published on Nov. 5, 2015. It was last updated Dec. 6, 2019.

the word research means what

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

Among religious ‘nones,’ atheists and agnostics know the most about religion

Why america’s ‘nones’ don’t identify with a religion, key findings about americans’ belief in god, unlike their central and eastern european neighbors, most czechs don’t believe in god, why people with no religion are projected to decline as a share of the world’s population, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

EU AI Act: first regulation on artificial intelligence

The use of artificial intelligence in the EU will be regulated by the AI Act, the world’s first comprehensive AI law. Find out how it will protect you.

A man faces a computer generated figure with programming language in the background

As part of its digital strategy , the EU wants to regulate artificial intelligence (AI) to ensure better conditions for the development and use of this innovative technology. AI can create many benefits , such as better healthcare; safer and cleaner transport; more efficient manufacturing; and cheaper and more sustainable energy.

In April 2021, the European Commission proposed the first EU regulatory framework for AI. It says that AI systems that can be used in different applications are analysed and classified according to the risk they pose to users. The different risk levels will mean more or less regulation. Once approved, these will be the world’s first rules on AI.

Learn more about what artificial intelligence is and how it is used

What Parliament wants in AI legislation

Parliament’s priority is to make sure that AI systems used in the EU are safe, transparent, traceable, non-discriminatory and environmentally friendly. AI systems should be overseen by people, rather than by automation, to prevent harmful outcomes.

Parliament also wants to establish a technology-neutral, uniform definition for AI that could be applied to future AI systems.

Learn more about Parliament’s work on AI and its vision for AI’s future

AI Act: different rules for different risk levels

The new rules establish obligations for providers and users depending on the level of risk from artificial intelligence. While many AI systems pose minimal risk, they need to be assessed.

Unacceptable risk

Unacceptable risk AI systems are systems considered a threat to people and will be banned. They include:

  • Cognitive behavioural manipulation of people or specific vulnerable groups: for example voice-activated toys that encourage dangerous behaviour in children
  • Social scoring: classifying people based on behaviour, socio-economic status or personal characteristics
  • Biometric identification and categorisation of people
  • Real-time and remote biometric identification systems, such as facial recognition

Some exceptions may be allowed for law enforcement purposes. “Real-time” remote biometric identification systems will be allowed in a limited number of serious cases, while “post” remote biometric identification systems, where identification occurs after a significant delay, will be allowed to prosecute serious crimes and only after court approval.

AI systems that negatively affect safety or fundamental rights will be considered high risk and will be divided into two categories:

1) AI systems that are used in products falling under the EU’s product safety legislation . This includes toys, aviation, cars, medical devices and lifts.

2) AI systems falling into specific areas that will have to be registered in an EU database:

  • Management and operation of critical infrastructure
  • Education and vocational training
  • Employment, worker management and access to self-employment
  • Access to and enjoyment of essential private services and public services and benefits
  • Law enforcement
  • Migration, asylum and border control management
  • Assistance in legal interpretation and application of the law.

All high-risk AI systems will be assessed before being put on the market and also throughout their lifecycle.

General purpose and generative AI

Generative AI, like ChatGPT, would have to comply with transparency requirements:

  • Disclosing that the content was generated by AI
  • Designing the model to prevent it from generating illegal content
  • Publishing summaries of copyrighted data used for training

High-impact general-purpose AI models that might pose systemic risk, such as the more advanced AI model GPT-4, would have to undergo thorough evaluations and any serious incidents would have to be reported to the European Commission.

Limited risk

Limited risk AI systems should comply with minimal transparency requirements that would allow users to make informed decisions. After interacting with the applications, the user can then decide whether they want to continue using it. Users should be made aware when they are interacting with AI. This includes AI systems that generate or manipulate image, audio or video content, for example deepfakes.

On December 9 2023, Parliament reached a provisional agreement with the Council on the AI act . The agreed text will now have to be formally adopted by both Parliament and Council to become EU law. Before all MEPs have their say on the agreement, Parliament’s internal market and civil liberties committees will vote on it.

More on the EU’s digital measures

  • Cryptocurrency dangers and the benefits of EU legislation
  • Fighting cybercrime: new EU cybersecurity laws explained
  • Boosting data sharing in the EU: what are the benefits?
  • EU Digital Markets Act and Digital Services Act
  • Five ways the European Parliament wants to protect online gamers
  • Artificial Intelligence Act

Related articles

Benefitting people, the economy and the environment, share this article on:.

  • Sign up for mail updates
  • PDF version

Our next-generation model: Gemini 1.5

Feb 15, 2024

The model delivers dramatically enhanced performance, with a breakthrough in long-context understanding across modalities.

SundarPichai_2x.jpg

A note from Google and Alphabet CEO Sundar Pichai:

Last week, we rolled out our most capable model, Gemini 1.0 Ultra, and took a significant step forward in making Google products more helpful, starting with Gemini Advanced . Today, developers and Cloud customers can begin building with 1.0 Ultra too — with our Gemini API in AI Studio and in Vertex AI .

Our teams continue pushing the frontiers of our latest models with safety at the core. They are making rapid progress. In fact, we’re ready to introduce the next generation: Gemini 1.5. It shows dramatic improvements across a number of dimensions and 1.5 Pro achieves comparable quality to 1.0 Ultra, while using less compute.

This new generation also delivers a breakthrough in long-context understanding. We’ve been able to significantly increase the amount of information our models can process — running up to 1 million tokens consistently, achieving the longest context window of any large-scale foundation model yet.

Longer context windows show us the promise of what is possible. They will enable entirely new capabilities and help developers build much more useful models and applications. We’re excited to offer a limited preview of this experimental feature to developers and enterprise customers. Demis shares more on capabilities, safety and availability below.

Introducing Gemini 1.5

By Demis Hassabis, CEO of Google DeepMind, on behalf of the Gemini team

This is an exciting time for AI. New advances in the field have the potential to make AI more helpful for billions of people over the coming years. Since introducing Gemini 1.0 , we’ve been testing, refining and enhancing its capabilities.

Today, we’re announcing our next-generation model: Gemini 1.5.

Gemini 1.5 delivers dramatically enhanced performance. It represents a step change in our approach, building upon research and engineering innovations across nearly every part of our foundation model development and infrastructure. This includes making Gemini 1.5 more efficient to train and serve, with a new Mixture-of-Experts (MoE) architecture.

The first Gemini 1.5 model we’re releasing for early testing is Gemini 1.5 Pro. It’s a mid-size multimodal model, optimized for scaling across a wide-range of tasks, and performs at a similar level to 1.0 Ultra , our largest model to date. It also introduces a breakthrough experimental feature in long-context understanding.

Gemini 1.5 Pro comes with a standard 128,000 token context window. But starting today, a limited group of developers and enterprise customers can try it with a context window of up to 1 million tokens via AI Studio and Vertex AI in private preview.

As we roll out the full 1 million token context window, we’re actively working on optimizations to improve latency, reduce computational requirements and enhance the user experience. We’re excited for people to try this breakthrough capability, and we share more details on future availability below.

These continued advances in our next-generation models will open up new possibilities for people, developers and enterprises to create, discover and build using AI.

Context lengths of leading foundation models

Highly efficient architecture

Gemini 1.5 is built upon our leading research on Transformer and MoE architecture. While a traditional Transformer functions as one large neural network, MoE models are divided into smaller "expert” neural networks.

Depending on the type of input given, MoE models learn to selectively activate only the most relevant expert pathways in its neural network. This specialization massively enhances the model’s efficiency. Google has been an early adopter and pioneer of the MoE technique for deep learning through research such as Sparsely-Gated MoE , GShard-Transformer , Switch-Transformer, M4 and more.

Our latest innovations in model architecture allow Gemini 1.5 to learn complex tasks more quickly and maintain quality, while being more efficient to train and serve. These efficiencies are helping our teams iterate, train and deliver more advanced versions of Gemini faster than ever before, and we’re working on further optimizations.

Greater context, more helpful capabilities

An AI model’s “context window” is made up of tokens, which are the building blocks used for processing information. Tokens can be entire parts or subsections of words, images, videos, audio or code. The bigger a model’s context window, the more information it can take in and process in a given prompt — making its output more consistent, relevant and useful.

Through a series of machine learning innovations, we’ve increased 1.5 Pro’s context window capacity far beyond the original 32,000 tokens for Gemini 1.0. We can now run up to 1 million tokens in production.

This means 1.5 Pro can process vast amounts of information in one go — including 1 hour of video, 11 hours of audio, codebases with over 30,000 lines of code or over 700,000 words. In our research, we’ve also successfully tested up to 10 million tokens.

Complex reasoning about vast amounts of information

1.5 Pro can seamlessly analyze, classify and summarize large amounts of content within a given prompt. For example, when given the 402-page transcripts from Apollo 11’s mission to the moon, it can reason about conversations, events and details found across the document.

Reasoning across a 402-page transcript: Gemini 1.5 Pro Demo

Gemini 1.5 Pro can understand, reason about and identify curious details in the 402-page transcripts from Apollo 11’s mission to the moon.

Better understanding and reasoning across modalities

1.5 Pro can perform highly-sophisticated understanding and reasoning tasks for different modalities, including video. For instance, when given a 44-minute silent Buster Keaton movie , the model can accurately analyze various plot points and events, and even reason about small details in the movie that could easily be missed.

Multimodal prompting with a 44-minute movie: Gemini 1.5 Pro Demo

Gemini 1.5 Pro can identify a scene in a 44-minute silent Buster Keaton movie when given a simple line drawing as reference material for a real-life object.

Relevant problem-solving with longer blocks of code

1.5 Pro can perform more relevant problem-solving tasks across longer blocks of code. When given a prompt with more than 100,000 lines of code, it can better reason across examples, suggest helpful modifications and give explanations about how different parts of the code works.

Problem solving across 100,633 lines of code | Gemini 1.5 Pro Demo

Gemini 1.5 Pro can reason across 100,000 lines of code giving helpful solutions, modifications and explanations.

Enhanced performance

When tested on a comprehensive panel of text, code, image, audio and video evaluations, 1.5 Pro outperforms 1.0 Pro on 87% of the benchmarks used for developing our large language models (LLMs). And when compared to 1.0 Ultra on the same benchmarks, it performs at a broadly similar level.

Gemini 1.5 Pro maintains high levels of performance even as its context window increases. In the Needle In A Haystack (NIAH) evaluation, where a small piece of text containing a particular fact or statement is purposely placed within a long block of text, 1.5 Pro found the embedded text 99% of the time, in blocks of data as long as 1 million tokens.

Gemini 1.5 Pro also shows impressive “in-context learning” skills, meaning that it can learn a new skill from information given in a long prompt, without needing additional fine-tuning. We tested this skill on the Machine Translation from One Book (MTOB) benchmark, which shows how well the model learns from information it’s never seen before. When given a grammar manual for Kalamang , a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person learning from the same content.

As 1.5 Pro’s long context window is the first of its kind among large-scale models, we’re continuously developing new evaluations and benchmarks for testing its novel capabilities.

For more details, see our Gemini 1.5 Pro technical report .

Extensive ethics and safety testing

In line with our AI Principles and robust safety policies, we’re ensuring our models undergo extensive ethics and safety tests. We then integrate these research learnings into our governance processes and model development and evaluations to continuously improve our AI systems.

Since introducing 1.0 Ultra in December, our teams have continued refining the model, making it safer for a wider release. We’ve also conducted novel research on safety risks and developed red-teaming techniques to test for a range of potential harms.

In advance of releasing 1.5 Pro, we've taken the same approach to responsible deployment as we did for our Gemini 1.0 models, conducting extensive evaluations across areas including content safety and representational harms, and will continue to expand this testing. Beyond this, we’re developing further tests that account for the novel long-context capabilities of 1.5 Pro.

Build and experiment with Gemini models

We’re committed to bringing each new generation of Gemini models to billions of people, developers and enterprises around the world responsibly.

Starting today, we’re offering a limited preview of 1.5 Pro to developers and enterprise customers via AI Studio and Vertex AI . Read more about this on our Google for Developers blog and Google Cloud blog .

We’ll introduce 1.5 Pro with a standard 128,000 token context window when the model is ready for a wider release. Coming soon, we plan to introduce pricing tiers that start at the standard 128,000 context window and scale up to 1 million tokens, as we improve the model.

Early testers can try the 1 million token context window at no cost during the testing period, though they should expect longer latency times with this experimental feature. Significant improvements in speed are also on the horizon.

Developers interested in testing 1.5 Pro can sign up now in AI Studio, while enterprise customers can reach out to their Vertex AI account team.

Learn more about Gemini’s capabilities and see how it works .

Get more stories from Google in your inbox.

Your information will be used in accordance with Google's privacy policy.

Done. Just one step more.

Check your inbox to confirm your subscription.

You are already subscribed to our newsletter.

You can also subscribe with a different email address .

Related stories

gemma-header

Gemma: Introducing new state-of-the-art open models

What is a long context window.

MSC_Keyword_Cover (3)

How AI can strengthen digital security

Shield

Working together to address AI risks and opportunities at MSC

AI Evergreen 1 (1)

How we’re partnering with the industry, governments and civil society to advance AI

NWSL_Pixel_Hero

Pixel is now the Official Mobile Phone of the National Women’s Soccer League

Let’s stay in touch. Get the latest news from Google in your inbox.

IMAGES

  1. PPT

    the word research means what

  2. What is Research

    the word research means what

  3. 1.1 What is Research? Definition of Research

    the word research means what

  4. RESEARCH

    the word research means what

  5. What Is Research? Definition, Features, Types, & Methods

    the word research means what

  6. Definition of research stock image. Image of focus, page

    the word research means what

VIDEO

  1. What that word really means... #mindset #business #motivation

COMMENTS

  1. Research Definition & Meaning

    re· search ri-ˈsərch ˈrē-ˌsərch Synonyms of research 1 : studious inquiry or examination especially : investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws 2

  2. RESEARCH

    a detailed study of a subject, especially in order to discover (new) information or reach a (new) understanding: scientific / medical research a research student / assistant / laboratory They are carrying out/ conducting /doing some fascinating research into/on the language of dolphins.

  3. RESEARCH

    to study a subject in detail, especially in order to discover new information or reach a new understanding: She's researching into possible cures for AIDS. Journalists were frantically researching the new governor's background, family, and interests. SMART Vocabulary: related words and phrases

  4. Research

    Another definition of research is given by John W. Creswell, who states that "research is a process of steps used to collect and analyze information to increase our understanding of a topic or issue". It consists of three steps: pose a question, collect data to answer the question, and present an answer to the question. ...

  5. RESEARCH Definition & Usage Examples

    noun diligent and systematic inquiry or investigation into a subject in order to discover or revise facts, theories, applications, etc.: recent research in medicine. a particular instance or piece of research. verb (used without object) to make researches; investigate carefully. verb (used with object)

  6. Research

    Research comes from the Old French word recercher, meaning "seek out," or "search closely." When you do research, you are searching for knowledge and facts.

  7. RESEARCH definition and meaning

    Definition of 'research' Word Frequency research (rɪsɜːʳtʃ ) Word forms: plural, 3rd person singular present tense researches , present participle researching , past tense, past participle researched 1. uncountable noun Research is work that involves studying something and trying to discover facts about it.

  8. Research Definition & Meaning

    Britannica Dictionary definition of RESEARCH 1 : careful study that is done to find and report new knowledge about something [noncount] cancer/AIDS/drug research medical/scientific/scholarly research She conducts research into/on the causes of Alzheimer's disease. [+] more examples — often used before another noun research data/findings

  9. research

    to study a subject in detail in order to discover new information about it: He spent several years researching a rare African dialect. researcher noun [ C ] (Definition of research from the Cambridge Learner's Dictionary © Cambridge University Press) Translations of research in Chinese (Traditional) 研究, 調查, 探索… See more in Chinese (Simplified)

  10. research

    THESAURUS research noun [ uncountable] careful detailed work that is done in order to find out more about a subject, especially as a part of a scientific or academic project Billions of dollars have been spent on research into the causes and treatment of cancer. The University has for a long time been a leading centre for research in this field ...

  11. research_1 noun

    [uncountable] a careful study of a subject, especially in order to discover new facts or information about it scientific/medical/academic research They are raising money for cancer research. to do/conduct/undertake research I've done some research to find out the cheapest way of travelling there.

  12. research

    research - WordReference English dictionary, questions, discussion and forums. All Free.

  13. What Is Research?

    Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge. Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking ...

  14. What is Research

    The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity.

  15. research, n.¹ meanings, etymology and more

    What does the noun research mean? There are seven meanings listed in OED's entry for the noun research, three of which are labelled obsolete. See 'Meaning & use' for definitions, usage, and quotation evidence. See meaning & use How common is the noun research? About 200 occurrences per million words in modern written English See frequency

  16. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  17. What is Research?

    Research should be reviewed by the IRB only when human subjects are involved, and the term research should be considered under a more narrow definition. Specifically, when the researcher is conducting research as outlined above AND has direct interaction with participants or data linked to personal identifiers, it should always fall under the ...

  18. research

    resect resection "act of searching closely" for a specific person or thing, from French recerche (1530s,…

  19. RESEARCH Synonyms: 62 Similar Words

    noun Definition of research as in investigation a systematic search for the truth or facts about something I'll have to do some research for this project Synonyms & Similar Words Relevance investigation inquiry study exploration examination probing probe inspection inquisition delving survey probation disquisition inquest questionnaire audit quest

  20. What does "research" mean and are you doing it?

    What does "research" mean and are you doing it? Whenever I ask the question 'what is research, and are you doing it?', be it in a workshop, or in teaching, or when someone is describing a planned study to me, there's a very common reaction. "EVERYONE knows what research means!"

  21. (PDF) What is research? A conceptual understanding

    Naidoo (2011), stated that research is a systematic investigation of nature and the society to validate and refine existing information and generate new knowledge. Research refers to the ...

  22. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  23. What is research?

    Verb: attempt to find out in a systematically and scientific manner; inquire into. An etymologist might tell us that it comes from the Old French word cerchier, to search, with re- expressing intensive force. I guess it is saying that before 1400 in France, research meant to search really hard.

  24. PDF Strategies for Essay Writing

    trace, or research can help you understand what you're being asked to do with an assignment. Unless the instructor has specified otherwise, most of your paper assignments at ... arguable, which means a thoughtful reader could disagree with it and therefore needs your careful analysis of the evidence to understand how you arrived at this claim ...

  25. 8 facts about atheists

    This analysis draws on several Pew Research Center studies. Data on the share of atheists in the United States is from the 2023 National Public Opinion Reference Survey, as well as the Center's 2007 and 2014 Religious Landscape Studies.. Other data on U.S. atheists comes from various waves of the American Trends Panel, collected in September and December 2017, February 2019, September 2022 ...

  26. EU AI Act: first regulation on artificial intelligence

    In April 2021, the European Commission proposed the first EU regulatory framework for AI. It says that AI systems that can be used in different applications are analysed and classified according to the risk they pose to users. The different risk levels will mean more or less regulation. Once approved, these will be the world's first rules on ...

  27. Introducing Gemini 1.5, Google's next-generation AI model

    This means 1.5 Pro can process vast amounts of information in one go — including 1 hour of video, 11 hours of audio, codebases with over 30,000 lines of code or over 700,000 words. In our research, we've also successfully tested up to 10 million tokens. Complex reasoning about vast amounts of information

  28. Alabama embryo ruling: state Supreme Court rules frozen embryos are

    In a first-of-its-kind ruling, Alabama's Supreme Court said frozen embryos are children and those who destroy them can be held liable for wrongful death - a decision that puts back into ...