Critical thinking for college, career, and citizenship

Subscribe to the center for universal education bulletin, diane f. halpern dfh diane f. halpern diane f. halpern is the dean of social sciences, emerita at the minerva schools at kgi and a past president of the american psychological association and the society for teaching of psychology. diane has published hundreds of articles and many books including, thought and knowledge: an introduction to critical thinking (5th ed., 2014); sex differences in cognitive abilities (4th ed.), and women at the top: powerful leaders tell us how to combine work and family (co-authored with fanny cheung). her other recent books include psychological science (5th ed. with michael gazzaniga and todd heatherton) and the edited book, undergraduate education in psychology: a blueprint for the future of the discipline..

May 26, 2016

Editor’s note: In the “ Becoming Brilliant ” blog series, experts explore the six competencies that reflect how children learn and grow as laid out by Kathy Hirsh-Pasek and Roberta Golinkoff in their new book  “ Becoming Brilliant .”

Education is about the future—students learn in schools and other places based on two underlying assumptions: (a) What they learn today will be recalled sometime in the future when the knowledge is needed, and (b) today’s learning will transfer across time, place, and space. Teachers are preparing students for higher levels of education, careers that may not even exist today, and the increasingly complex world of citizenship—voting intelligently, recognizing, and supporting good options for societal problems. With the amount of information increasing exponentially and new information often replacing what we formerly believed to be true, the twin abilities of learning well and thinking critically are essential skills for students at every level.

But what does it mean to think critically?

Critical thinking is using the skills or strategies that that are most likely to lead to a desired outcome. It is purposeful, reasoned, and goal-directed. It is the sort of thinking we should be engaging in when deciding what and whom to believe, which of two job offers to accept, or whether vaccinations really do cause autism. It is different from, but often relies upon, simple recall (e.g., what does five plus seven equal?), unsupported opinions (e.g., I like vanilla ice cream), and automated actions (e.g., stopping at a red light).

Critical thinking has two main components: understanding information at a deep, meaningful level, and overcoming fallacies and biases. For example, suppose you are learning about a new theory. You could learn to recite the definition of the theory with little meaning (e.g., photosynthesis is a process used by plants to synthesize foods from carbon dioxide and water using sunlight) or you could process it at a deeper level. There are many learning activities that facilitate deep level processing. For example, you could write out the theory in your own words, explain it to someone who is not familiar with it, and provide evidence for (and possibly against) the theory. What is it explaining? What theory is it replacing (if applicable)? What is its history? How could it be applied to an everyday problem?  If you could answer these questions, the theory would become easier to recall, and you could use it to generate new theories or see flaws or strengths in other theories. Argument analysis is another example of deep processing. Critical thinkers learn to identify the conclusion, the evidence, and reasoning used to support the conclusion. They also look for assumptions, counterevidence, and limiting conditions (times when the conclusion may not apply).

Some educators prefer to consider critical thinking as “debiasing” or recognizing and resisting fallacies. Suppose someone asks you if children become brilliant because of their nature or nurture. This is an example of the “either-or” fallacy, and anyone who is trained to recognize it can avoid its pitfalls. Similarly, critical thinkers recognize when correlational data are being used to make causal claims. For example, an article in the Los Angeles Times told readers that if they want their children to get good grades they should make sure that their kids’ friends get good grades. But after reading the article, it was apparent that children with good grades had friends with good grades, and children with poor grades had friends with poor grades. But nowhere did it show that kids with poor grades would improve by friending kids with good grades. The data were correlational, which any critical thinker should recognize.

If you are thinking critically, and I hope you are, you may be wondering: Can we teach students to be better thinkers? The answer is a resounding “yes.” There is a large amount of research literature (reviewed in my book, “Thought and Knowledge: An Introduction to Critical Thinking”). In one project that I conducted with a doctoral student, who is now Dr. Lisa Marin, we went into very low-performing high schools in California. There were several studies, some that involved parents and some in which classes were assigned at random with different critical thinking instruction. We found that when critical thinking skills were deliberately taught (not as an ancillary to other content), students improved in their abilities to think critically. There are many studies showing substantial gains in critical thinking in college students, the military, and other populations as well. Critical thinking can be taught at any grade, as long as it is taught in a way that is developmentally appropriate.

Finally, critical thinking has a self-reflective component. Good thinkers consider the steps of problem solving, how they are mentally approaching a problem, and the quality of their conclusion or solution.  

Those who care about the future for today’s children understand that the jobs of the future will require the ability to think critically. So let’s be sure that our students are ready for college, careers, and citizenship by including deliberate instruction in critical thinking. It is probably the most difficult topic to teach and learn, but it is also the most important.

Global Education Higher Education

Global Economy and Development

Center for Universal Education

August 2, 2024

June 20, 2024

Elyse Painter, Emily Gustafsson-Wright

January 5, 2024

ORIGINAL RESEARCH article

Fostering creativity and critical thinking in college: a cross-cultural investigation.

Ji Hoon Park&#x;

  • 1 Department of Psychology, Pace University, New York, NY, United States
  • 2 Developmental and Educational Research Center for Children's Creativity, Faculty of Education, Beijing Normal University, Beijing, China

Enhancing creativity and critical thinking have garnered the attention of educators and researchers for decades. They have been highlighted as essential skills for the 21st century. A total of 103 United States students (53 female, 24 male, two non-binary, and 24 non-reporting) and 166 Chinese students (128 female, 30 male, one non-binary, and seven non-reporting) completed an online survey. The survey includes the STEAM-related creative problem solving, Sternberg scientific reasoning tasks, psychological critical thinking (PCT) exam, California critical thinking (CCT) skills test, and college experience survey, as well as a demographic questionnaire. A confirmatory factor analysis (CFA) yields a two-factor model for all creativity and critical thinking measurements. Yet, the two latent factors are strongly associated with each other ( r =0.84). Moreover, Chinese students outperform American students in measures of critical thinking, whereas Americans outperform Chinese students in measures of creativity. Lastly, the results also demonstrate that having some college research experience (such as taking research method courses) could positively influence both United States and Chinese students’ creativity and critical thinking skills. Implications are discussed.

Introduction

Creativity and critical thinking have been recognized as essential skills in the 21st century ( National Education Association, 2012 ). Many researchers and educators have focused on these two skills, including acquisition, enhancement, and performance. In addition, numerous studies have been devoted to understanding the conceptual complexities involved in creativity and critical thinking. Although similar to each other, creativity and critical thinking are distinctive by definition, each with a different emphasis.

The concept of creativity has evolved over the years. It was almost exclusively conceptualized as divergent thinking when Guilford (1956 , 1986) proposed divergent thinking as a part of intelligence. Earlier measures of creativity took the approach of divergent thinking, measuring creative potential ( Wallach and Kogan, 1965 ; Torrance, 1966 , 1988 ; Runco and Albert, 1986 ; Kim, 2005 ). In 1990s, many creativity scholars challenged the validity of tests of divergent thinking, and suggested that divergent thinking only captures the trivial sense of creativity, and proposed to use the product-oriented method to measure creativity ( Csikszentmihalyi, 1988 ; Amabile, 1996 ; Sternberg and Lubart, 1999 ). A system model of creativity, which recognizes the important roles individual, field, and domain have played, was used as a framework to conceptualize creativity. A widely accepted definition for creativity is a person’s ability to generate an idea or product that is deemed as both novel and appropriate by experts in a field of human activities ( Scott and Bruce, 1994 ; Amabile, 1996 ; Csikszentmihalyi, 1999 ; Sternberg and Lubart, 1999 ; Hunter et al., 2007 ). Corazza and Lubart (2021) recently proposed a dynamic definition of creativity, in which creativity is defined as a context-embedded phenomenon that is tightly related to the cultural and social environment. Based on this new definition, measures of creativity should be context-specific and culturally relevant, especially when it is examined cross-culturally.

Similarly, the conceptualization of critical thinking has also evolved over the years. Earlier definitions emphasized the broad multidimensional aspects of critical thinking, including at least three aspects: attitude, knowledge, and skills ( Glaser, 1941 ). The definition has been evolved to include specific components for each aspect ( Watson and Glaser, 1980 ). For example, critical thinking is recognized as the ability to use cognitive skills or strategies to increase the probability of a desirable outcome ( Halpern, 1999 ). More specifically, cognitive skills such as evaluation, problem-solving, reflective thinking, logical reasoning, and probability thinking are recognized as parts of critical thinking skills in research and assessments ( Ennis, 1987 , Scriven and Paul, 1987 , Halpern, 1999 ). Moving into the 21st century, metacognition and self-regulatory skills have also become essential components for critical thinking in addition to the cognitive skills recognized by earlier scholars ( Korn, 2014 , Paul and Elder, 2019 ).

Similar to the concept of creativity, critical thinking is also viewed as multidimensional and domain specific ( Bensley and Murtagh, 2012 ). For example, critical thinking in psychology, also referred to as psychological critical thinking (PCT), is defined as one’s ability to evaluate claims in a way that explicitly incorporates basic principles of psychological science ( Lawson, 1999 ). As one of the important hub sciences, psychology is often regarded as a foundational course for scientific training in American higher education ( Boyack et al., 2005 ). In psychological discourse, critical thinking is often defined in tandem with scientific thinking, which places significance on hypothesis-testing and problem-solving in order to reduce bias and erroneous beliefs ( Halpern, 1984 ; American Psychological Association, 2016 ; Lamont, 2020 ; Sternberg and Halpern, 2020 ). Based on this definition, measures of critical thinking should assess cognitive skills (i.e., evaluation, logical reasoning) and ability to utilize scientific methods for problem-solving.

In addition to the evolution of the definitions of critical thinking and creativity, research into these two concepts has led to the development of various measurements. For both concepts, there have been numerous measurements that have been studied, utilized, and improved.

The complexities associated with creativity (i.e., context-relevant and domain-specificity) pose a major issue for its measurement. Many different types of creativity measures have been developed in the past. Measures using a divergent thinking approach, such as the Torrance Tests of Creative Thinking ( Torrance, 1974 ) and Alternate Uses Test ( Guilford et al., 1960 ), a product-oriented approach, a third person nomination approach, as well as a self-report approach measuring personality ( Gough, 1979 ), creative behavior ( Hocevar and Michael, 1979 ; Rodriguez-Boerwinkle et al., 2021 ), and creative achievement ( Carson et al., 2005 ; Diedrich et al., 2018 ).

Both the divergent thinking and the product-oriented approaches have been widely used in the creativity literature to objectively measure creativity. The tasks of both approaches are generally heuristic, meaning that no correct answer is expected and the process does not need to be rational. When scoring divergent thinking, the number of responses (i.e., fluency) and the rareness of the response (i.e., originality) were used to represent creativity. When scoring products using the product-orientated approach, a group of experts provides their subjective ratings on various dimensions such as originality, appropriateness, and aesthetically appealing to these products using their subjective criteria. When there is a consensus among the experts, average ratings of these expert scores are used to represent the creativity of the products. This approach is also named as Consensual Assessment Technique (CAT; Amabile, 1982 , 1996 ). Some scholars viewed the CAT approach as focusing on the convergent aspect of creativity ( Lubart et al., 2013 ). Recognizing the importance of divergent and convergent thinking in conceptualizing creativity, Lubart et al. (2013) have suggested including divergent thinking and product-oriented approach (i.e., CAT) to objective measures of creativity ( Barbot et al., 2011 ).

Similar to measures of creativity, measurements of critical thinking are also multilevel and multi-approach. In an article reviewing the construction of critical thinking in psychological studies, Lamont (2020) argues that critical thinking became a scientific object when psychologists attempted to measure it. Different from measures of creativity, where the tasks are heuristic in nature, measures of critical thinking require participants to engage in logical thinking. Therefore, the nature of critical thinking tasks is more algorithmic.

The interest in the study of critical thinking is evident in the increased efforts in the past decades to measure such a complex, multidimensional skill. Watson-Glaser Tests for Critical Thinking ( Watson and Glaser, 1938 ) is widely recognized as the first official measure of critical thinking. Since then, numerous measurements of critical thinking have been developed to evaluate both overall and domain-specific critical thinking, such as the PCT Exam ( Lawson, 1999 ; See Mueller et al., 2020 for list of assessments). A few of the most commonly used contemporary measures of critical thinking include the Watson-Glaser Test for Critical Thinking Appraisals ( Watson and Glaser, 1980 ), Cornell Critical Thinking Test ( Ennis et al., 1985 ), and California Critical Thinking (CCT) Skills Test ( Facione and Facione, 1994 ). As the best established and widely used standardized critical thinking measures, these tests have been validated in various studies and have been used as a criterion for meta-analyses ( Niu et al., 2013 ; Ross et al., 2013 ).

There have also been concerns regarding the usage of these standardized measures of critical thinking on its own due to its emphasis on measuring general cognitive abilities of participants, while negating the domain-specific aspect of critical thinking ( Lamont, 2020 ). The issues associated with standardized measures are not unique to standardized critical thinking measures, as same types of criticisms have been raised for standardized college admissions measures such as the Graduate Record Exam (GRE). To develop an assessment that encompasses a broader range of student abilities that is more aligned to scientific disciplines, Sternberg and Sternberg (2017) developed a scientific inquiry and reasoning measure. This measure is aimed to assess participants’ ability to utilize scientific methods and to think scientifically in order to investigate a topic or solve a problem ( Sternberg and Sternberg, 2017 ). The strength of this measure is that it assesses students’ abilities (i.e., ability to think critically) that are domain-specific and relevant to the sciences. Considering the multidimensional aspect of critical thinking, a combination of a standardized critical thinking measure, an assessment measuring cognitive abilities involved in critical thinking; and a measure that assesses domain-specific critical thinking, would provide a comprehensive evaluation of critical thinking.

The Relationship Between Creativity and Critical Thinking

Most of the studies thus far referenced have investigated creativity and critical thinking separately; however, the discussion on the relationship between creativity and critical thinking spans decades of research ( Barron and Harrington, 1981 ; Glassner and Schwartz, 2007 ; Wechsler et al., 2018 ; Akpur, 2020 ). Some earlier studies on the relationship between divergent thinking and critical thinking have observed a moderate correlation ( r =0.23, p <0.05) between the two ( Gibson et al., 1968 ). Using measures of creative personality, Gadzella and Penland (1995) also found a moderate correlation ( r =0.36, p <0.05) between creative personality and critical thinking.

Recent studies have further supported the positive correlation between critical thinking and creativity. For example, using the creative thinking disposition scale to measure creativity, Akpur (2020) found a moderate correlation between the two among college students ( r =0.27, p <0.05). Similarly, using the critical thinking disposition scale to measure critical thinking and scientific creativity scale and creative self-efficacy scale to measure creativity, Qiang et al. (2020) studied the relationship between critical thinking and creativity to a large sample of high school students ( n =1,153). They found that the relationship between the two varied depending on the type of measurement of creativity. More specifically, the correlation between critical thinking disposition and creative self-efficacy was r =0.045 ( p <0.001), whereas the correlation between critical thinking disposition and scientific creativity was r =0.15 ( p <0.01).

Recognizing the moderate relationship between the two, researchers have also aimed to study the independence of creativity and critical thinking. Some studies have found evidence that these constructs are relatively autonomous. The results of Wechsler et al. (2018) study, which aimed to investigate whether creativity and critical thinking are independent or complementary processes, found a relative autonomy of creativity and critical thinking and found that the variables were only moderately correlated. The researchers in this study suggest that a model that differentiated the two latent variables associated with creativity and critical thinking dimensions was the most appropriate method of analysis ( Wechsler et al., 2018 ). Evidence to suggest that creativity and critical thinking are fairly independent processes was also found in study of Ling and Loh (2020) . The results of their research, which examined the relationship of creativity and critical thinking to pattern recognition, revealed that creativity is a weak predictor of pattern recognition. In contrast, critical thinking is a good predictor ( Ling and Loh, 2020 ).

It is worth noting that a possible explanation for the inconsistencies in these studies’ results is the variance in the definition and the measures used to evaluate creativity and critical thinking. Based on the current literature on the relationship between creativity and critical thinking, we believe that more investigation was needed to further clarify the relationship between creativity and critical thinking which became a catalyst for the current study.

Cross-Cultural Differences in Creativity and Critical Thinking Performance

Results from various cross-cultural studies suggest that there are differences in creativity and critical thinking skills among cultures. A common belief is that individuals from Western cultures are believed to be more critical and creative compared to non-Westerners, whereas individuals from non-Western cultures are believed to be better at critical thinking related tasks compared to Westerners ( Ng, 2001 ; Wong and Niu, 2013 ; Lee et al., 2015 ). For example, Wong and Niu (2013) found a persistent cultural stereotype regarding creativity and critical thinking skills that exist cross-culturally. In their study, both Chinese and Americans believed that Chinese perform better in deductive reasoning (a skill comparable to critical thinking) and that Americans perform better on creativity. This stereotype belief was found to be incredibly persistent as participants did not change their opinions even when presented with data that contradicted their beliefs.

Interestingly, research does suggest that such a stereotype might be based on scientific evidence ( Niu et al., 2007 ; Wong and Niu, 2013 ). In the same study, it was revealed that Chinese did in fact perform better than Americans in deductive reasoning, and Americans performed better in creativity tests ( Wong and Niu, 2013 ). Similarly, Lee et al. (2015) found that compared to American students, Korean students believed that they are more prone to use receptive learning abilities (remembering and reproducing what is taught) instead of critical and creative learning abilities.

Cultural Influence on Critical Thinking

Other studies investigating the cultural influence on critical thinking have had more nuanced findings. Manalo et al. (2013) study of university students from New Zealand and Japan found that culture-related factors (self-construal, regulatory mode, and self-efficacy) do influence students’ critical thinking use. Still, the differences in those factors do not necessarily equate to differences in critical thinking. Their results found that students from Western and Asian cultural environments did not have significant differences in their reported use of critical thinking. The researchers in this study suggest that perhaps the skills and values nurtured in the educational environment have a more significant influence on students’ use of critical thinking ( Manalo et al., 2013 ).

Another study found that New Zealand European students performed better on objective measures of critical thinking than Chinese students. Still, such differences could be explained by the student’s English proficiency and not dialectical thinking style. It was also revealed in this study that Chinese students tended to rely more on dialectical thinking to solve critical thinking problems compared to the New Zealand European students ( Lun et al., 2010 ). Other research on the cultural differences in thinking styles revealed that Westerners are more likely to use formal logical rules in reasoning. In contrast, Asians are more likely to use intuitive experience-based sense when solving critical thinking problems ( Nisbett et al., 2001 ).

These studies suggest that culture can be used as a broad taxonomy to explain differences in critical thinking use. Still, one must consider the educational environment and thinking styles when studying the nature of the observed discrepancies. For instance, cultural differences in thinking style, in particular, might explain why Westerners perform better on some critical thinking measures, whereas Easterners perform better on others.

Cultural Influence on Creative Performance

Historically, creativity studies have suggested that individuals from non-Western cultures are not as creative as Westerners ( Torrance, 1974 ; Jellen and Urban, 1989 ; Niu and Sternberg, 2001 ; Tang et al., 2015 ). For example, in one study, Americans generated more aesthetically pleasing artworks (as judged by both American and Chinese judges) than Chinese ( Niu and Sternberg, 2001 ). However, recent creativity research has suggested that cross-cultural differences are primarily attributable to the definition of creativity rather than the level of creativity between cultures. As aforementioned, creativity is defined as an idea or product that is both novel and appropriate. Many cross-cultural studies have found that Westerners have a preference and perform better in the novelty aspect, and Easterners have a preference and perform better in the appropriateness aspect. In cross-cultural studies, Rockstuhl and Ng (2008) found that Israelis tend to generate more original ideas than their Singaporean counterparts. In contrast, Singaporeans tend to produce more appropriate ideas. Bechtoldt et al. (2012) found in their study that Koreans generated more useful ideas, whereas Dutch students developed more original ideas. Liou and Lan (2018) found Taiwanese tend to create and select more useful ideas, whereas Americans tend to generate and choose more novel ideas. The differences in creativity preference and performance found in these studies suggest that cultural influence is a prominent factor in creativity.

In summary, cross-cultural studies have supported the notion that culture influences both creativity and critical thinking. This cultural influence seems relatively unambiguous in creativity as it has been found in multiple studies that cultural background can explain differences in performance and preference to the dual features of creativity. Critical thinking has also been influenced by culture, albeit in an opaquer nature in comparison to creativity. Critical thinking is ubiquitous in all cultures, but the conception of critical thinking and the methods used to think critically (i.e., thinking styles) are influenced by cultural factors.

Influence of College Experience on Creativity and Critical Thinking

Given its significance as a core academic ability, the hypothesis of many colleges and universities emphasize that students will gain critical thinking skills as the result of their education. Fortunately, studies have shown that these efforts have had some promising outcomes. Around 92% of students in multi-institution research reported gains in critical thinking. Only 8.9% of students believed that their critical thinking had not changed or had grown weaker ( Tsui, 1998 ). A more recent meta-analysis by Huber and Kuncel (2016) found that students make substantial gains in critical thinking during college. In addition, the efforts to enhance necessary thinking skills have led to the development of various skill-specific courses. Mill et al. (1994) found that among three groups of undergraduate students, a group that received tutorial sessions and took research methodology and statistics performed significantly better on scientific reasoning and critical thinking abilities tests than control groups. Penningroth et al. (2007) found that students who took a class in which they were required to engage in active learning and critical evaluation of claims by applying scientific concepts, had greater improvement in psychological critical thinking than students in the comparison groups. There have also been studies in which students’ scientific inquiry and critical thinking skills have improved by taking a course designed with specific science thinking and reasoning modules ( Stevens and Witkow, 2014 ; Stevens et al., 2016 ).

Using a Survey of Undergraduate Research Experience (SURE), Lopatto (2004 , 2008) found that research experience can help students gain various learning skills such as ability to integrate theory and practice, ability to analyze data, skill in the interpretation of results, and understanding how scientists work on problem. All of these learning skills correspond to at least one of the dimensions mentioned earlier in the definition of critical thinking (i.e., evaluation, analytical thinking, and problem solving through). Thus, results of SURE provide evidence that critical thinking can be enhanced through research experience ( Lopatto, 2004 , 2008 ).

In comparison to critical thinking, only a few studies have examined the interaction between creativity and college experience. Previous research on STEM provides some evidence to suggest that STEM education can promote the learner’s creativity ( Land, 2013 , Guo and Woulfin, 2016 , Kuo et al., 2018 ). Notably, study of Kuo et al. (2018) suggest that project-based learning in STEM has the merits of improving one’s creativity. They found that the STEM Interdisciplinary Project-Based Learning (IPBL) course is a practical approach to improve college student’s creativity ( Kuo et al., 2018 ). College research experience in particular, has been reported as important or very important by faculty and students for learning how to approach problems creatively ( Zydney et al., 2002 ).

Although specific college courses aimed to enhance creativity have been scarce, some training programs have been developed specifically to improve creativity. Scott et al. (2004) conducted a quantitative review of various creativity training and found that divergent thinking, creative problem solving, and creativity performance can be enhanced through skill-specific training programs. Embodied creativity training programs, consisting of creativity fitness exercises and intensive workshops, have also been effective in enhancing participants’ creative production and improving their creative self-efficacy ( Byrge and Tang, 2015 ).

Both critical thinking and creativity were also found to be important in students’ learning. Using a longitudinal design for one semester to 52 graduate students in biology, Siburian et al. (2019) studied how critical thinking and creative thinking contribute to improving cognitive learning skills. They found that both critical and creative thinking significantly contributes to enhancing cognitive learning skills ( R 2 =0.728). They each contribute separately to the development of cognitive learning skills ( b was 0.123 between critical thinking and cognitive learning and 0.765 between creative thinking and cognitive learning). The results from research on creativity and critical thinking indicate that training and experiences of students in college can enhance both of these skills.

Current Study

Previous literature on creativity and critical thinking suggests that there is a positive correlation between these two skills. Moreover, cultural background influences creativity and critical thinking conception and performance. However, our literature review suggests that there are only a few studies that have investigated creativity and critical thinking simultaneously to examine whether cultural background is a significant influence in performance. In addition, most of the past research on creativity and critical thinking have relied on dispositions or self-reports to measure the two skills and the investigation on the actual performance have been scarce. Lastly, past studies suggest that the acquisition and enhancement of these skills are influenced by various factors. Notably, college experience and skill-specific training have been found to improve both creativity and critical thinking. However, it is not yet clear how college experience aids in fostering creativity and critical thinking and which elements of college education are beneficial for enhancing these two skills. The cultural influence on creativity and critical thinking performance also needs further investigation.

The current study aimed to answer two questions related to this line of thought. How does culture influence creativity and critical thinking performance? How does college experience affect creativity and critical thinking? Based on past findings, we developed three hypotheses. First, we hypothesized that there is a positive association between critical thinking and creativity. Second, we suggest that college students from different countries have different levels of creativity and critical thinking. More specifically, we predicted that United States students would perform better than Chinese students on both creativity and critical thinking. Last, we hypothesized that having college research experience (through courses or research labs) will enhance creativity and critical thinking.

Materials and Methods

Participants.

The study was examined by the Internal Review Board by the host university in the United States and obtained an agreement from a partner university in China to meet the ethical standard of both countries.

Participants include 103 university students from the United States and 166 university students from Mainland China. Among all participants, 181 were female (67.3%), 54 were male (20.1%), non-binary or gender fluid ( n =3, 1.1%), and some did not report their gender ( n =31, 11.5%). The majority of participants majored in social sciences ( n =197, 73.2%). Other disciplines include business and management ( n =38, 14.1%), engineering and IT ( n =20, 7.4%), and sciences ( n =14, 5.2%). A Chi-square analysis was performed to see if the background in major was different between the American and Chinese samples. The results showed that the two samples are comparable in college majors, X 2 (3, 265) =5.50, p =0.138.

The American participants were recruited through campus recruitment flyers and a commercial website called Prolific (online survey distribution website). Ethnicities of the American participants were White ( n =44, 42.7%), Asian ( n =13, 12.6%), Black or African American ( n =11, 10.7%), Hispanic or Latinos ( n =5, 4.9%), and some did not report their ethnicity ( n =30, 29.1%). The Chinese participants were recruited through online recruitment flyers. All Chinese students were of Han ethnicity.

After reviewing and signing an online consent form, both samples completed a Qualtrics survey containing creativity and critical thinking measures.

Measurements

Steam related creative problem solving.

This is a self-designed measurement, examining participant’s divergent and convergent creative thinking in solving STEAM-related real-life problems. It includes three vignettes, each depicting an issue that needs to be resolved. Participants were given a choice to pick two vignettes to which they would like to provide possible solutions for. Participants were asked to provide their answers in two parts. In the first part, participants were asked to provide as many solutions as they can think of for the problem depicted (divergent). In the second part, participants were asked to choose one of the solutions they gave in the first part that they believe is the most creative and elaborate on how they would carry out the solution (convergent).

The responses for the first part of the problem (i.e., divergent) were scored based on fluency (number of solutions given). Each participant received a score on fluency by averaging the number of solutions given across three tasks. In order to score the originality of the second part of the solution (i.e., convergent), we invited four graduate students who studied creativity for at least 1year as expert judges to independently rate the originality of all solutions. The Cronbach’s Alpha of the expert ratings was acceptable for all three vignette solutions (0.809, 0.906, and 0.703). We then averaged the originality scores provided by the four experts to represent the originality of each solution. We then averaged the top three solutions as rated by the experts to represent the student’s performance on originality. In the end, each student received two scores on this task: fluency and originality.

Psychological Critical Thinking Exam

We adopted an updated PCT Exam developed by Lawson et al. (2015) , which made improvements to the original measure ( Lawson, 1999 ). We used PCT to measure the participants’ domain-specific critical thinking: critical thinking involved in the sciences. The initial assessment aimed to examine the critical thinking of psychology majors; however, the updated measure was developed so that it can be used to examine students’ critical thinking in a variety of majors. The split-half reliability of the revised measurement was 0.88, and test-retest reliability was 0.90 ( Lawson et al., 2015 ). Participants were asked to identify issues with a problematic claim made in two short vignettes. For example, one of the questions states:

Over the past few years, Jody has had several dreams that apparently predicted actual events. For example, in one dream, she saw a car accident and later that week she saw a van run into the side of a pickup truck. In another dream, she saw dark black clouds and lightning and 2days later a loud thunderstorm hit her neighborhood. She believes these events are evidence that she has a psychic ability to predict the future through her dreams. Could the event have occurred by chance? State whether or not there is a problem with the person’s conclusions and explain the problem (if there is one).

Responses were scored based on the rubric provided in the original measurement ( Lawson et al., 2015 ). If no problem was identified the participants would receive zero points. If a problem was recognized but misidentified, the participants would receive one point. If the main problem was identified and other less relevant problems were identified, the participants received two points. If participants identified only the main problem, they received three points. Following the rubric, four graduate students independently rated the students’ critical thinking task. The Cronbach’s Alpha of the expert ratings was acceptable for both vignettes (0.773 and 0.712). The average of the four scores given by the experts was used as the final score for the participants.

California Critical Thinking Skills Test

This objective measure of critical thinking was developed by Facione and Facione (1994) . We used CCT to measure a few of the multidimensions of critical thinking such as evaluation, logical reasoning, and probability thinking. Five sample items provided from Insight Assessment were used instead of the standard 40-min long CCT. Participants were presented with everyday scenarios with 4–6 answer choices. Participants were asked to make an accurate and complete interpretation of the question in order to correctly answer the question by choosing the right answer choice (each correct answer was worth one point). This test is commonly used to measure critical thinking, and previous research has reported its reliability as r =0.86 ( Hariri and Bagherinejad, 2012 ).

Sternberg Scientific Inquiry and Reasoning

This measure was developed by Sternberg and Sternberg (2017) as an assessment of scientific reasoning. We used this assessment as a domain-specific assessment to measure participants’ scientific creativity (generating testable hypotheses) and scientific critical thinking involved in generating experiments. For this two-part measure, participants were asked to read two short vignettes. For one of the vignettes, participants were asked to generate as many hypotheses as possible to explain the events described in the vignette. For the other, create an experiment to test the hypothesis mentioned in the vignette.

After carefully reviewing the measurement, we notice that the nature of the tasks in the first part of this measure (hypothesis generation) relied on heuristics, requiring participants to engage in divergent thinking. The number of valid hypotheses provided (i.e., fluency) was used to represent the performance of this task. We, therefore, deem that this part measures creativity. In contrast, the second part of the measure, experiment generation, asked participants to use valid scientific methods to design an experiment following the procedure of critical thinking such as evaluation, problem-solving, and task evaluation. Its scoring also followed algorithms so that a correct answer could be achieved. For the above reasons, we believe hypotheses generation is a measurement of creativity and experiment generation is a measurement for critical thinking.

Based on the recommended scoring manual, one graduate student calculated the fluency score from the hypothesis generation measurement. Four experts read through all students’ responses to the experiment generation. They discussed a rubric on how to score these responses, using a four-point scale, with a “0” representing no response or wrong response, a “1” representing partially correct, a “2” representing correct response. An additional point (the three points) was added if the participant provided multiple design methods. Based on the above rubric, the four experts independently scored this part of the questionnaire. The Cronbach’s Alpha of the four expert ratings was 0.792. The average score of the four judges was used to represent their critical thinking scores on this task.

College Experience Survey

Participants were asked about their past research experience, either specifically in psychology or in general academia. Participants were asked to choose between three choices: no research experience, intermediate research experience (i.e., research work for class, research work for lab), and advanced research experience (i.e., professional research experience, published works).

Demographic and Background Questionnaire

Series of standard demographic questions were asked, including participants’ age, gender, and ethnicity.

We performed a Pearson correlation to examine the relationship between creativity and critical thinking (the two-c), which include performances on three measures on creativity ( creativity originality , creativity fluency , and hypothesis generation ) and three measures on critical thinking ( experiment generation , CCT , and PCT ).

Most of the dependent variables had a significantly positive correlation. The only insignificant correlation was found between Sternberg hypothesis generation and CCT, r (247) =0.024, p =0.708 (see Table 1 ).

www.frontiersin.org

Table 1 . Correlation coefficients for study variables.

Confirmatory factor analysis (CFA) was conducted by applying SEM through AMOS 21 software program and the maximum likelihood method. One-factor and two-factor models have been analyzed, respectively (see Figure 1 ).

www.frontiersin.org

Figure 1 . The comparison of the two confirmatory factor analysis (CFA) models: one-factor vs. two-factor.

As it is demonstrated in Table 2 , the value ranges of the most addressed fit indices used in the analysis of SEM are presented. Comparing two models, χ 2 /df of the two-factor model is in a good fit, while the index of the one-factor model is in acceptable fit. The comparison of the two models suggest that the two-factor model is a better model than the one-factor model.

www.frontiersin.org

Table 2 . Recommended values for evaluation and the obtained values.

Cross-Cultural Differences in Critical Thinking and Creativity

We conducted a 2 (Country: the United States vs. China)×2 (Two-C: Creativity and Critical Thinking) ANOVA to investigate the cultural differences in critical thinking and creativity. We averaged scores of three critical thinking measurement ( experiment generation , PCT , and CCT ) to represent critical thinking and averaged three creativity scores ( creativity originality , creativity fluency , and hypothesis generation ).

This analysis revealed a significant main effect for the type of thinking (i.e., creative vs. critical thinking), F (1,247) =464.77, p <0.01, η p 2 =0.653. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and type of thinking, F (1,247) =62.00, p <0.01, η p 2 =0.201. More specifically, Chinese students ( M =1.32, SD =0.59) outperformed American students ( M =1.02, SD =0.44) on critical thinking. In contrast, American students ( M =2.59, SD =1.07) outperformed Chinese students ( M =2.05, SD =0.83) on creativity.

Influence of Research Experience on Critical Thinking and Creativity

The last hypothesis states that having college research experience (through courses or research lab) would enhance students’ creativity and critical thinking from both countries. We performed a 2 (Two-C: Creativity and Critical Thinking)×2 (Country: the United States vs. China)×3 (Research Experience: Advanced vs. Some vs. No) ANOVA to test this hypothesis. This analysis revealed a significant main effect for research experience, F (2,239) =4.05, p =0.019, η p 2 =0.033. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and research experience, F (2,239) =5.77, p =0.004, η p 2 =0.046. In addition, there was a three-way interaction among country, two-C, and research experience. More specifically, with an increase of research experience for American students, both critical thinking and creativity improved. In contrast, for Chinese students, the impact of research experience was not significant for creativity. However, some research experience positively impacted Chinese students’ critical thinking (see Figure 2 ).

www.frontiersin.org

Figure 2 . Estimated marginal means of Two-C for the United States and Chinese samples.

The current study aimed to investigate the relationship between creativity and critical thinking, how culture influences creativity and critical thinking, and how college research experience affects creativity and critical thinking. Our results supported the first hypothesis regarding the positive correlation among all of the dependent variables. The mean correlation between the measures of creativity and critical thinking was 0.230. This result was in line with the findings from previous research ( Gibson et al., 1968 ; Gadzella and Penland, 1995 ; Siburian et al., 2019 ; Akpur, 2020 ; Qiang et al., 2020 ). Moreover, our confirmatory factor analysis yielded similar results as analysis of Wechsler et al. (2018) and Akpur (2020) and provides more evidence of the relative independence between creativity and critical thinking. We found that at the latent variable level, the two skills are highly correlated to each other ( r =0.84). In addition, we found that although the one-factor model was an acceptable fit, a two-factor model was a better fit for analysis. This result suggests that despite the correlation between creativity and critical thinking, the two skills should be studied as separate factors for an appropriate and comprehensive analysis.

The results of this study partially confirmed our second hypothesis and replicated the findings from past studies ( Niu et al., 2007 ; Lun et al., 2010 ; Wong and Niu, 2013 ; Tang et al., 2015 ). As predicted, there was a significant main effect for culture in students’ performance for all six measures in the two-C analysis model. United States students performed better than Chinese students in all three creativity measures, and Chinese students performed better than United States students in all critical thinking measures. Given the diversity in the type of measures used in this study, the results suggest that United States and Chinese students’ performance aligns with the stereotype belief found in study of Wong and Niu (2013) . The findings from the current study suggest that the stereotype belief observed in both United States and Chinese students (United States students generally perform better on creativity tasks, while Chinese students perform typically better on critical thinking tasks) is not entirely unfounded. Furthermore, the clear discrepancy in performance between United States and Chinese students provides more evidence to suggest that creativity and critical thinking are relatively autonomous skills. Although, a high correlation between these two skills was found in our study, the fact that students from two different cultures have two different development trajectories in critical thinking and creativity suggests that these two skills are relatively autonomous.

Lastly, the results also confirmed our third hypothesis, that is, college research experience did have a positive influence on students’ creativity and critical thinking. Compared to students with no research experience, students with some research experience performed significantly better in all measures of creativity and critical thinking. This finding is consistent with the previous literature ( Mill et al., 1994 ; Penningroth et al., 2007 ; Stevens and Witkow, 2014 ; Stevens et al., 2016 ; Kuo et al., 2018 ). The result of our study suggests that college research experience is significant to enhance both creativity and critical thinking. As research experience becomes a more essential component of college education, our results suggest that it not only can add credential for applying to graduate school or help students learn skills specific to research, but also help students enhance both creativity and critical thinking. Furthermore, it is worth noting that this nature held true for both Chinese and American students. To our knowledge, this is a first investigation examining the role of research experience in both creativity and critical thinking cross-culturally.

In addition to the report of our findings, we would like to address some limitations of our study. First, we would like to note that this is a correlational and cross-sectional study. A positive correlation between research experience and the two dependent variables does not necessarily mean causation. Our results indeed indicate a positive correlation between research experience and the two-C variables; however, we are not sure of the nature of this relationship. It is plausible that students with higher creativity and critical thinking skills are more engaged in research as much as it is to argue in favor of a reversed directional relationship. Second, we would like to note the sample bias in our study. Majority of our participants were female, majoring in the social sciences and a relatively high number of participants chose not to report their gender. Third, we would like to note that our study did not measure all creativity and critical thinking dimensions, we discussed in the introduction. Instead, we focused on a few key dimensions of creativity and critical thinking. Our primary focus was on divergent thinking, convergent thinking, and scientific creativity as well as few key dimensions of critical thinking (evaluation, logical reasoning, and probability thinking), scientific critical thinking involved in problem solving and hypothesis testing. Moreover, our results do not show what specific components of research training are beneficial for the enhancement of creativity and critical thinking.

For future research, a longitudinal design involving a field experiment will help investigate how different research training components affect the development of creativity and critical thinking. In addition, a cross-cultural study can further examine how and why the students from different cultures differ from each other in the development of these two potentials. As such, it might shed some light on the role of culture in creativity and critical thinking.

Conclusion and Implication

The result of our study provides few insights to the study of creativity and critical thinking. First, creativity and critical thinking are a different construct yet highly correlated. Second, whereas Americans perform better on creativity measures, Chinese perform better on critical thinking measures. Third, for both American and Chinese students, college research experience is a significant influence on the enhancement of creativity and critical thinking. As research experience becomes more and more essential to college education, its role can not only add professional and postgraduate credentials, but also help students enhance both creativity and critical thinking.

Based on our results, we recommend that research training be prioritized in higher education. Moreover, each culture has strengths to develop one skill over the other, hence, each culture could invest more in developing skills that were found to be weaker in our study. Eastern cultures can encourage more creativity and Western cultures can encourage more critical thinking.

To conclude, we would like to highlight that, although recognized globally as essential skills, methods to foster creativity and critical thinking skills and understanding creativity and critical thinking as a construct requires further research. Interestingly, our study found that experience of research itself can help enhance creativity and critical thinking. Our study also aimed to expand the knowledge of creativity and critical thinking literature through an investigation of the relationship of the two variables and how cultural background influences the performance of these two skills. We hope that our findings can provide insights for researchers and educators to find constructive methods to foster students’ essential 21st century skills, creativity and critical thinking, to ultimately enhance their global competence and life success.

Data Availability Statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Ethics Statement

The studies involving human participants were reviewed and approved by Institutional Review Board at Pace University. The participants provided their informed consent online prior to participating in the study.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

This work was supported by the International Joint Research Project of Faculty of Education, Beijing Normal University (ICER201904), and a scholarly research funding by Pace University.

Akpur, U. (2020). Critical, reflective, creative thinking and their reflections on academic achievement. Think. Skills Creat. 37:100683. doi: 10.1016/j.tsc.2020.100683

CrossRef Full Text | Google Scholar

Amabile, T. M. (1982). Social psychology of creativity: a consensual assessment technique. J. Pers. Soc. Psychol. 43, 997–1013. doi: 10.1037/0022-3514.43.5.997

Amabile, T. M. (1996). Creativity in Context: Update to “The Social Psychology of Creativity. ” Boulder, CO: Westview Press.

Google Scholar

American Psychological Association (2016). Guidelines for the undergraduate psychology major: version 2.0. Am. Psychol. 71, 102–111. doi: 10.1037/a0037562

PubMed Abstract | CrossRef Full Text | Google Scholar

Barbot, B., Besançon, M., and Lubart, T. (2011). Assessing creativity in the classroom. Open Educ. J. 4, 58–66. doi: 10.2174/1874920801104010058

Barron, F., and Harrington, D. M. (1981). Creativity, intelligence, and personality. Annu. Rev. Psychol. 32, 439–476. doi: 10.1146/annurev.ps.32.020181.002255

Bechtoldt, M., Choi, H., and Nijstad, A. B. (2012). Individuals in mind, mates by heart: individualistic self-construal and collective value orientation as predictors of group creativity. J. Exp. Soc. Psychol. 48, 838–844. doi: 10.1016/j.jesp.2012.02.014

Bensley, D. A., and Murtagh, M. P. (2012). Guidelines for a scientific approach to critical thinking assessment. Teach. Psychol. 39, 5–16. doi: 10.1177/0098628311430642

Boyack, K. W., Klavans, R., and Börner, K. (2005). Mapping the backbone of science. Scientometrics 64, 351–374. doi: 10.1007/s11192-005-0255-6

Byrge, C., and Tang, C. (2015). Embodied creativity training: effects on creative self-efficacy and creative production. Think. Skills Creat. 16, 51–61. doi: 10.1016/j.tsc.2015.01.002

Carson, S. H., Peterson, J. B., and Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creat. Res. J. 17, 37–50. doi: 10.1207/s15326934crj1701_4

Corazza, G. E., and Lubart, T. (2021). Intelligence and creativity: mapping constructs on the space-time continuum. J. Intell. 9:1. doi: 10.3390/jintelligence9010001

Csikszentmihalyi, M. (1988). “Society, culture, and person: A systems view of creativity” in The Nature of Creativity: Contemporary Psychological Perspectives. ed. Sternberg, R. J. (New York: Cambridge University Press), 325–339.

Csikszentmihalyi, M. (1999). “Implications of a systems perspective for the study of creativity” in Handbook of Creativity. ed. Sternberg, R. J. (New York, NY: Cambridge University Press), 313–335.

Diedrich, J., Jauk, E., Silvia, P. J., Gredlein, J. M., Neubauer, A. C., and Benedek, M. (2018). Assessment of real-life creativity: the inventory of creative activities and achievements (ICAA). Psychol. Aesthet. Creat. Arts 12, 304–316. doi: 10.1037/aca0000137

Ennis, R. H. (1987). “A taxonomy of critical thinking dispositions and abilities” in Teaching Thinking Skills: Theory and Practice. eds. Baron, J. B., and Sternberg, R. J. (New York, NY: W H Freeman/Times Books/Henry Holt & Co.), 9–26.

Ennis, R. H., Millman, J., and Tomko, T. N. (1985). Cornell Critical Thinking Test Level x and Level z Manual. 3rd Edn . Pacific Grove, CA: Midwest Publications.

Facione, P. A., and Facione, N. (1994). The California Critical Thinking Skills Test: Test Manual. Millbrae, CA: California Academic Press.

Gadzella, B. M., and Penland, E. (1995). Is creativity related to scores on critical thinking? Psychol. Rep. 77, 817–818. doi: 10.2466/pr0.1995.77.3.817

Gibson, J. W., Kibler, R. J., and Barker, L. L. (1968). Some relationships between selected creativity and critical thinking measures. Psychol. Rep. 23, 707–714. doi: 10.2466/pr0.1968.23.3.707

Glaser, E. M. (1941). An Experiment in the Development of Critical Thinking. New York, NY: Teachers College, Columbia University.

Glassner, A., and Schwartz, B. (2007). What stands and develops between creative and critical thinking? Argumentation? Think. Skills Creat. 2, 10–18. doi: 10.1016/j.tsc.2006.10.001

Gough, H. G. (1979). A creative personality scale for the adjective check list. J. Pers. Soc. Psychol. 37, 1398–1405. doi: 10.1037/0022-3514.37.8.1398

Guilford, J. P. (1956). The structure of intellect. Psychol. Bull. 53, 267–293. doi: 10.1037/h0040755

Guilford, J. P. (1986). Creative Talents: Their Nature, Uses and Development. Buffalo, NY: Bearly Ltd.

Guilford, J. P., Christensen, P. R., Merrifield, P. R., and Wilson, R. C. (1960). Alternate Uses Manual. Menlo Park, CA: Mind Garden, Inc.

Guo, J., and Woulfin, S. (2016). Twenty-first century creativity: an investigation of how the partnership for 21st century instructional framework reflects the principles of creativity. Roeper Rev. 38, 153–161. doi: 10.1080/02783193.2016.1183741

Halpern, D. F. (1984). Thought and Knowledge: An Introduction to Critical Thinking. Hillsdale, NJ: Erlbaum.

Halpern, D. F. (1999). Teaching for critical thinking: helping college students develop the skills and dispositions of a critical thinker. New Dir. Teach. Learn. 1999, 69–74. doi: 10.1002/tl.8005

Hariri, N., and Bagherinejad, Z. (2012). Evaluation of critical thinking skills in students of health faculty, Mazandaran university of medical sciences. J. Mazand. Univ. Med. Sci. 21, 166–173.

Hocevar, D., and Michael, W. B. (1979). The effects of scoring formulas on the discriminant validity of tests of divergent thinking. Educ. Psychol. Meas. 39, 917–921. doi: 10.1177/001316447903900427

Huber, C. R., and Kuncel, N. R. (2016). Does college teach critical thinking? A meta-analysis. Rev. Educ. Res. 86, 431–468. doi: 10.3102/0034654315605917

Hunter, S. T., Bedell, K. E., and Mumford, M. D. (2007). Climate for creativity: a quantitative review. Creat. Res. J. 19, 69–90. doi: 10.1080/10400410709336883

Jellen, H. U., and Urban, K. (1989). Assessing creative potential worldwide: the first cross-cultural application of the test for creative thinking–drawing production (TCT–DP). Gifted Educ. 6, 78–86. doi: 10.1177/026142948900600204

Kim, K. H. (2005). Can only intelligent people be creative? A meta-analysis. J. Sec. Gifted Educ. 16, 57–66. doi: 10.4219/jsge-2005-473

Korn, M. (2014). Bosses Seek ‘Critical Thinking,’ but What Is That? Wall Street Journal. Available at: https://online.wsj.com/articles/bosses-seek-critical-thinking-but-what-is-that-1413923730 (Accessed October 18, 2021).

Kuo, H.-C., Tseng, Y.-C., and Yang, Y.-T. C. (2018). Promoting college student's learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course. Think. Skills Creat. 31, 1–10. doi: 10.1016/j.tsc.2018.09.001

Lamont, P. (2020). The construction of "critical thinking": between how we think and what we believe. Hist. Psychol. 23, 232–251. doi: 10.1037/hop0000145

Land, M. H. (2013). Full STEAM ahead: the benefits of integrating the arts into STEM. Compl. Adapt. Syst. 20, 547–552. doi: 10.1016/j.procs.2013.09.317

Lawson, T. J. (1999). Assessing psychological critical thinking as a learning outcome for psychology majors. Teach. Psychol. 26, 207–209. doi: 10.1207/S15328023TOP260311

Lawson, T. J., Jordan-Fleming, M. K., and Bodle, J. H. (2015). Measuring psychological critical thinking. Teach. Psychol. 42, 248–253. doi: 10.1177/0098628315587624

Lee, H.-J., Lee, J., Makara, K. A., Fishman, B. J., and Hong, Y. I. (2015). Does higher education foster critical and creative learners? An exploration of two universities in South Korea and the USA. High. Educ. Res. Dev. 34, 131–146. doi: 10.1080/07294360.2014.892477

Ling, M. K. D., and Loh, S. C. (2020). Relationship of creativity and critical thinking to pattern recognition among Singapore private school students. J. Educ. Res. 113, 59–76. doi: 10.1080/00220671.2020.1716203

Liou, S., and Lan, X. (2018). Situational salience of norms moderates cultural differences in the originality and usefulness of creative ideas generated or selected by teams. J. Cross-Cult. Psychol. 49, 290–302. doi: 10.1177/0022022116640897

Lopatto, D. (2004). Survey of undergraduate research experiences (SURE): first findings. Cell Biol. Educ. 3, 270–277. doi: 10.1187/cbe.04-07-0045

Lopatto, D. (2008). “Exploring the benefits of undergraduate research experiences: The SURE survey” in Creating Effective Undergraduate Research Programs in Science eds. R. Taraban and R. L. Blanton (New York: Teachers College Press), 112–132.

Lubart, T., Zenasni, F., and Barbot, B. (2013). Creative potential and its measurement. Int. J. Talent Dev. Creat. 1, 41–50.

Lun, V. M.-C., Fischer, R., and Ward, C. (2010). Exploring cultural differences in critical thinking: is it about my thinking style or the language I speak? Learn. Individ. Differ. 20, 604–616. doi: 10.1016/j.lindif.2010.07.001

Manalo, E., Kusumi, T., Koyasu, M., Michita, Y., and Tanaka, Y. (2013). To what extent do culture-related factors influence university students' critical thinking use? Think. Skills Creat. 10, 121–132. doi: 10.1016/j.tsc.2013.08.003

Mill, D., Gray, T., and Mandel, D. R. (1994). Influence of research methods and statistics courses on everyday reasoning, critical abilities, and belief in unsubstantiated phenomena. Can. J. Behav. Sci. 26, 246–258. doi: 10.1037/0008-400X.26.2.246

Mueller, J. F., Taylor, H. K., Brakke, K., Drysdale, M., Kelly, K., Levine, G. M., et al. (2020). Assessment of scientific inquiry and critical thinking: measuring APA goal 2 student learning outcomes. Teach. Psychol. 47, 274–284. doi: 10.1177/0098628320945114

National Education Association (2012). Preparing 21st Century Students for a Global Society: An educator's Guide to the "Four Cs". Alexandria, VA: National Education Association.

Ng, A.K. (2001). Why Asians Are less Creative than Westerners. Singapore: Prentice Hall.

Nisbett, R. E., Peng, K., Choi, I., and Norenzayan, A. (2001). Culture and systems of thought: holistic versus analytic cognition. Psychol. Rev. 108, 291–310. doi: 10.1037/0033-295X.108.2.291

Niu, L., Behar-Horenstein, L. S., and Garvan, C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis. Educ. Res. Rev. 9, 114–128. doi: 10.1016/j.edurev.2012.12.002

Niu, W., and Sternberg, R. J. (2001). Cultural influences on artistic creativity and its evaluation. Int. J. Psychol. 36, 225–241. doi: 10.1080/00207590143000036

Niu, W., Zhang, J. X., and Yang, Y. (2007). Deductive reasoning and creativity: a cross-cultural study. Psychol. Rep. 100, 509–519. doi: 10.2466/pr0.100.2.509-519

Paul, R., and Elder, L. (2019). The Miniature Guide to Critical Thinking Concepts and Tools. 8th Edn . Lanham, MD: Foundation for Critical Thinking.

Penningroth, S. L., Despain, L. H., and Gray, M. J. (2007). A course designed to improve psychological critical thinking. Teach. Psychol. 34, 153–157. doi: 10.1080/00986280701498509

Qiang, R., Han, Q., Guo, Y., Bai, J., and Karwowski, M. (2020). Critical thinking disposition and scientific creativity: the mediating role of creative self-efficacy. J. Creat. Behav. 54, 90–99. doi: 10.1002/jocb.347

Rockstuhl, T., and Ng, K.-Y. (2008). The effects of cultural intelligence on interpersonal trust in multicultural teams. In Handbook of Cultural Intelligence: Theory, Measurement, and Applications. (eds.) Ang, S., and Dyne, L.Van. Armonk, NY: M.E. Sharpe. 206–220.

Rodriguez-Boerwinkle, R., Silvia, P., Kaufman, J. C., Reiter-Palmon, R., and Puryear, J. S. (2021). Taking inventory of the creative behavior inventory: an item response theory analysis of the CBI. [Preprint]. doi: 10.31234/osf.io/b7cfd

Ross, D., Loeffler, K., Schipper, S., Vandermeer, B., and Allan, G. M. (2013). Do scores on three commonly used measures of critical thinking correlate with academic success of health professions trainees? A systematic review and meta-analysis. Acad. Med. 88, 724–734. doi: 10.1097/ACM.0b013e31828b0823

Runco, M. A., and Albert, R. S. (1986). The threshold theory regarding creativity and intelligence: an empirical test with gifted and nongifted children. Creat. Child Adult Q. 11, 212–218.

Schermelleh-Engel, K., Moosbrugger, H., and Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research 8, 23–74.

Scott, S. G., and Bruce, R. A. (1994). Determinants of innovative behavior: a path model of individual innovation in the workplace. Acad. Manag. J. 37, 580–607.

Scott, G., Leritz, L. E., and Mumford, M. D. (2004). The effectiveness of creativity training: a quantitative review. Creat. Res. J. 16, 361–388. doi: 10.1080/10400410409534549

Scriven, M., and Paul, R. (1987). Defining Critical Thinking. In 8th Annual International Conference on Critical Thinking and Education Reform ; August 2–5, 1987.

Siburian, J., Corebima, A. D., Ibrohim,, and Saptasari, M. (2019). The correlation between critical and creative thinking skills on cognitive learning results. Eurasian J. Educ. Res. 19, 99–114. doi: 10.14689/EJER.2019.81.6

Sternberg, R. J., and Halpern, D. F. (eds.) (2020). Critical Thinking in Psychology. 2nd Edn . Cambridge: Cambridge University Press.

Sternberg, R. J., and Lubart, T. I. (1999). “The concept of creativity: prospects and paradigms” in Handbook of Creativity. ed. Sternberg, R. J. (New York, NY: Cambridge University Press), 3–15.

Sternberg, R. J., and Sternberg, K. (2017). Measuring scientific reasoning for graduate admissions in psychology and related disciplines. J. Intell. 5, 29. doi: 10.3390/jintelligence5030029

Stevens, C., and Witkow, M. R. (2014). Training scientific thinking skills: evidence from an MCAT 2015 aligned classroom module. Teach. Psychol. 41, 115–121. doi: 10.1177/0098628314530341

Stevens, C., Witkow, M. R., and Smelt, B. (2016). Strengthening scientific reasoning skills in introductory psychology: evidence from community college and liberal arts classrooms. Scholarsh. Teach. Learn. Psychol. 2, 245–260. doi: 10.1037/stl0000070

Tang, M., Werner, C., Cao, G., Tumasjan, A., Shen, J., Shi, J., et al. (2015). Creative expression and its evaluation on work-related verbal tasks: a comparison of Chinese and German samples. J. Creat. Behav. 52, 91–103. doi: 10.1002/jocb.134

Torrance, E. P. (1966). The Torrance Tests of Creative Thinking-Norms-Technical Manual Research Edition-Verbal Tests, Forms A and B Figural Tests, Forms A and B. Princeton, NJ: Personnel Press.

Torrance, E. P. (1974). Torrance Tests of Creativity Thinking: Norms–Technical Manual. Lexington, MA: Ginn.

Torrance, E. P. (1988). “The nature of creativity as manifest in its testing” in The Nature of Creativity. ed. Sternberg, R. J. (New York: Cambridge University Press), 43–73.

Tsui, L. (1998). Fostering Critical Thinking in College Students: A Mixed-Methods Study of Influences Inside and Outside of the Classroom (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 9917229)

Wallach, M. A., and Kogan, N. (1965). Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction. New York: Holt, Rinehart & Winston.

Watson, G. B., and Glaser, E. M. (1938). The Watson-Glaser Tests of Critical Thinking. New York, NY: Institute for Propaganda Analysis.

Watson, G. B., and Glaser, E. M. (1980). WGCTA Watson-Glaser Critical Thinking Appraisal Manual: Forms A and B. San Antonio: The Psychological Corporation.

Wechsler, S. M., Saiz, C., Rivas, S. F., Vendramini, C. M. M., Almeida, L. S., Mundim, M. C., et al. (2018). Creative and critical thinking: independent or overlapping components? Think. Skills Creat. 27, 114–122. doi: 10.1016/j.tsc.2017.12.003

Wong, R., and Niu, W. (2013). Cultural difference in stereotype perceptions and performances in nonverbal deductive reasoning and creativity. J. Creat. Behav. 47, 41–59. doi: 10.1002/jocb.22

Zydney, A. L., Bennett, J. S., Shahid, A., and Bauer, K. W. (2002). Faculty perspectives regarding the undergraduate research experience in science and engineering. J. Eng. Educ. 91, 291–297. doi: 10.1002/j.2168-9830.2002.tb00706.x

Keywords: creativity, critical thinking, cross-cultural differences, college, research experience

Citation: Park JH, Niu W, Cheng L and Allen H (2021) Fostering Creativity and Critical Thinking in College: A Cross-Cultural Investigation. Front. Psychol . 12:760351. doi: 10.3389/fpsyg.2021.760351

Received: 18 August 2021; Accepted: 11 October 2021; Published: 11 November 2021.

Reviewed by:

Copyright © 2021 Park, Niu, Cheng and Allen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Li Cheng, [email protected]

† These authors have contributed equally to this work and share first authorship

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Eight Instructional Strategies for Promoting Critical Thinking

critical thinking and college students

  • Share article

(This is the first post in a three-part series.)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

This three-part series will explore what critical thinking is, if it can be specifically taught and, if so, how can teachers do so in their classrooms.

Today’s guests are Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources On Teaching & Learning Critical Thinking In The Classroom .

Current Events

Dara Laws Savage is an English teacher at the Early College High School at Delaware State University, where she serves as a teacher and instructional coach and lead mentor. Dara has been teaching for 25 years (career preparation, English, photography, yearbook, newspaper, and graphic design) and has presented nationally on project-based learning and technology integration:

There is so much going on right now and there is an overload of information for us to process. Did you ever stop to think how our students are processing current events? They see news feeds, hear news reports, and scan photos and posts, but are they truly thinking about what they are hearing and seeing?

I tell my students that my job is not to give them answers but to teach them how to think about what they read and hear. So what is critical thinking and how can we integrate it into the classroom? There are just as many definitions of critical thinking as there are people trying to define it. However, the Critical Think Consortium focuses on the tools to create a thinking-based classroom rather than a definition: “Shape the climate to support thinking, create opportunities for thinking, build capacity to think, provide guidance to inform thinking.” Using these four criteria and pairing them with current events, teachers easily create learning spaces that thrive on thinking and keep students engaged.

One successful technique I use is the FIRE Write. Students are given a quote, a paragraph, an excerpt, or a photo from the headlines. Students are asked to F ocus and respond to the selection for three minutes. Next, students are asked to I dentify a phrase or section of the photo and write for two minutes. Third, students are asked to R eframe their response around a specific word, phrase, or section within their previous selection. Finally, students E xchange their thoughts with a classmate. Within the exchange, students also talk about how the selection connects to what we are covering in class.

There was a controversial Pepsi ad in 2017 involving Kylie Jenner and a protest with a police presence. The imagery in the photo was strikingly similar to a photo that went viral with a young lady standing opposite a police line. Using that image from a current event engaged my students and gave them the opportunity to critically think about events of the time.

Here are the two photos and a student response:

F - Focus on both photos and respond for three minutes

In the first picture, you see a strong and courageous black female, bravely standing in front of two officers in protest. She is risking her life to do so. Iesha Evans is simply proving to the world she does NOT mean less because she is black … and yet officers are there to stop her. She did not step down. In the picture below, you see Kendall Jenner handing a police officer a Pepsi. Maybe this wouldn’t be a big deal, except this was Pepsi’s weak, pathetic, and outrageous excuse of a commercial that belittles the whole movement of people fighting for their lives.

I - Identify a word or phrase, underline it, then write about it for two minutes

A white, privileged female in place of a fighting black woman was asking for trouble. A struggle we are continuously fighting every day, and they make a mockery of it. “I know what will work! Here Mr. Police Officer! Drink some Pepsi!” As if. Pepsi made a fool of themselves, and now their already dwindling fan base continues to ever shrink smaller.

R - Reframe your thoughts by choosing a different word, then write about that for one minute

You don’t know privilege until it’s gone. You don’t know privilege while it’s there—but you can and will be made accountable and aware. Don’t use it for evil. You are not stupid. Use it to do something. Kendall could’ve NOT done the commercial. Kendall could’ve released another commercial standing behind a black woman. Anything!

Exchange - Remember to discuss how this connects to our school song project and our previous discussions?

This connects two ways - 1) We want to convey a strong message. Be powerful. Show who we are. And Pepsi definitely tried. … Which leads to the second connection. 2) Not mess up and offend anyone, as had the one alma mater had been linked to black minstrels. We want to be amazing, but we have to be smart and careful and make sure we include everyone who goes to our school and everyone who may go to our school.

As a final step, students read and annotate the full article and compare it to their initial response.

Using current events and critical-thinking strategies like FIRE writing helps create a learning space where thinking is the goal rather than a score on a multiple-choice assessment. Critical-thinking skills can cross over to any of students’ other courses and into life outside the classroom. After all, we as teachers want to help the whole student be successful, and critical thinking is an important part of navigating life after they leave our classrooms.

usingdaratwo

‘Before-Explore-Explain’

Patrick Brown is the executive director of STEM and CTE for the Fort Zumwalt school district in Missouri and an experienced educator and author :

Planning for critical thinking focuses on teaching the most crucial science concepts, practices, and logical-thinking skills as well as the best use of instructional time. One way to ensure that lessons maintain a focus on critical thinking is to focus on the instructional sequence used to teach.

Explore-before-explain teaching is all about promoting critical thinking for learners to better prepare students for the reality of their world. What having an explore-before-explain mindset means is that in our planning, we prioritize giving students firsthand experiences with data, allow students to construct evidence-based claims that focus on conceptual understanding, and challenge students to discuss and think about the why behind phenomena.

Just think of the critical thinking that has to occur for students to construct a scientific claim. 1) They need the opportunity to collect data, analyze it, and determine how to make sense of what the data may mean. 2) With data in hand, students can begin thinking about the validity and reliability of their experience and information collected. 3) They can consider what differences, if any, they might have if they completed the investigation again. 4) They can scrutinize outlying data points for they may be an artifact of a true difference that merits further exploration of a misstep in the procedure, measuring device, or measurement. All of these intellectual activities help them form more robust understanding and are evidence of their critical thinking.

In explore-before-explain teaching, all of these hard critical-thinking tasks come before teacher explanations of content. Whether we use discovery experiences, problem-based learning, and or inquiry-based activities, strategies that are geared toward helping students construct understanding promote critical thinking because students learn content by doing the practices valued in the field to generate knowledge.

explorebeforeexplain

An Issue of Equity

Meg Riordan, Ph.D., is the chief learning officer at The Possible Project, an out-of-school program that collaborates with youth to build entrepreneurial skills and mindsets and provides pathways to careers and long-term economic prosperity. She has been in the field of education for over 25 years as a middle and high school teacher, school coach, college professor, regional director of N.Y.C. Outward Bound Schools, and director of external research with EL Education:

Although critical thinking often defies straightforward definition, most in the education field agree it consists of several components: reasoning, problem-solving, and decisionmaking, plus analysis and evaluation of information, such that multiple sides of an issue can be explored. It also includes dispositions and “the willingness to apply critical-thinking principles, rather than fall back on existing unexamined beliefs, or simply believe what you’re told by authority figures.”

Despite variation in definitions, critical thinking is nonetheless promoted as an essential outcome of students’ learning—we want to see students and adults demonstrate it across all fields, professions, and in their personal lives. Yet there is simultaneously a rationing of opportunities in schools for students of color, students from under-resourced communities, and other historically marginalized groups to deeply learn and practice critical thinking.

For example, many of our most underserved students often spend class time filling out worksheets, promoting high compliance but low engagement, inquiry, critical thinking, or creation of new ideas. At a time in our world when college and careers are critical for participation in society and the global, knowledge-based economy, far too many students struggle within classrooms and schools that reinforce low-expectations and inequity.

If educators aim to prepare all students for an ever-evolving marketplace and develop skills that will be valued no matter what tomorrow’s jobs are, then we must move critical thinking to the forefront of classroom experiences. And educators must design learning to cultivate it.

So, what does that really look like?

Unpack and define critical thinking

To understand critical thinking, educators need to first unpack and define its components. What exactly are we looking for when we speak about reasoning or exploring multiple perspectives on an issue? How does problem-solving show up in English, math, science, art, or other disciplines—and how is it assessed? At Two Rivers, an EL Education school, the faculty identified five constructs of critical thinking, defined each, and created rubrics to generate a shared picture of quality for teachers and students. The rubrics were then adapted across grade levels to indicate students’ learning progressions.

At Avenues World School, critical thinking is one of the Avenues World Elements and is an enduring outcome embedded in students’ early experiences through 12th grade. For instance, a kindergarten student may be expected to “identify cause and effect in familiar contexts,” while an 8th grader should demonstrate the ability to “seek out sufficient evidence before accepting a claim as true,” “identify bias in claims and evidence,” and “reconsider strongly held points of view in light of new evidence.”

When faculty and students embrace a common vision of what critical thinking looks and sounds like and how it is assessed, educators can then explicitly design learning experiences that call for students to employ critical-thinking skills. This kind of work must occur across all schools and programs, especially those serving large numbers of students of color. As Linda Darling-Hammond asserts , “Schools that serve large numbers of students of color are least likely to offer the kind of curriculum needed to ... help students attain the [critical-thinking] skills needed in a knowledge work economy. ”

So, what can it look like to create those kinds of learning experiences?

Designing experiences for critical thinking

After defining a shared understanding of “what” critical thinking is and “how” it shows up across multiple disciplines and grade levels, it is essential to create learning experiences that impel students to cultivate, practice, and apply these skills. There are several levers that offer pathways for teachers to promote critical thinking in lessons:

1.Choose Compelling Topics: Keep it relevant

A key Common Core State Standard asks for students to “write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.” That might not sound exciting or culturally relevant. But a learning experience designed for a 12th grade humanities class engaged learners in a compelling topic— policing in America —to analyze and evaluate multiple texts (including primary sources) and share the reasoning for their perspectives through discussion and writing. Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care about and connect with can ignite powerful learning experiences.

2. Make Local Connections: Keep it real

At The Possible Project , an out-of-school-time program designed to promote entrepreneurial skills and mindsets, students in a recent summer online program (modified from in-person due to COVID-19) explored the impact of COVID-19 on their communities and local BIPOC-owned businesses. They learned interviewing skills through a partnership with Everyday Boston , conducted virtual interviews with entrepreneurs, evaluated information from their interviews and local data, and examined their previously held beliefs. They created blog posts and videos to reflect on their learning and consider how their mindsets had changed as a result of the experience. In this way, we can design powerful community-based learning and invite students into productive struggle with multiple perspectives.

3. Create Authentic Projects: Keep it rigorous

At Big Picture Learning schools, students engage in internship-based learning experiences as a central part of their schooling. Their school-based adviser and internship-based mentor support them in developing real-world projects that promote deeper learning and critical-thinking skills. Such authentic experiences teach “young people to be thinkers, to be curious, to get from curiosity to creation … and it helps students design a learning experience that answers their questions, [providing an] opportunity to communicate it to a larger audience—a major indicator of postsecondary success.” Even in a remote environment, we can design projects that ask more of students than rote memorization and that spark critical thinking.

Our call to action is this: As educators, we need to make opportunities for critical thinking available not only to the affluent or those fortunate enough to be placed in advanced courses. The tools are available, let’s use them. Let’s interrogate our current curriculum and design learning experiences that engage all students in real, relevant, and rigorous experiences that require critical thinking and prepare them for promising postsecondary pathways.

letsinterrogate

Critical Thinking & Student Engagement

Dr. PJ Caposey is an award-winning educator, keynote speaker, consultant, and author of seven books who currently serves as the superintendent of schools for the award-winning Meridian CUSD 223 in northwest Illinois. You can find PJ on most social-media platforms as MCUSDSupe:

When I start my keynote on student engagement, I invite two people up on stage and give them each five paper balls to shoot at a garbage can also conveniently placed on stage. Contestant One shoots their shot, and the audience gives approval. Four out of 5 is a heckuva score. Then just before Contestant Two shoots, I blindfold them and start moving the garbage can back and forth. I usually try to ensure that they can at least make one of their shots. Nobody is successful in this unfair environment.

I thank them and send them back to their seats and then explain that this little activity was akin to student engagement. While we all know we want student engagement, we are shooting at different targets. More importantly, for teachers, it is near impossible for them to hit a target that is moving and that they cannot see.

Within the world of education and particularly as educational leaders, we have failed to simplify what student engagement looks like, and it is impossible to define or articulate what student engagement looks like if we cannot clearly articulate what critical thinking is and looks like in a classroom. Because, simply, without critical thought, there is no engagement.

The good news here is that critical thought has been defined and placed into taxonomies for decades already. This is not something new and not something that needs to be redefined. I am a Bloom’s person, but there is nothing wrong with DOK or some of the other taxonomies, either. To be precise, I am a huge fan of Daggett’s Rigor and Relevance Framework. I have used that as a core element of my practice for years, and it has shaped who I am as an instructional leader.

So, in order to explain critical thought, a teacher or a leader must familiarize themselves with these tried and true taxonomies. Easy, right? Yes, sort of. The issue is not understanding what critical thought is; it is the ability to integrate it into the classrooms. In order to do so, there are a four key steps every educator must take.

  • Integrating critical thought/rigor into a lesson does not happen by chance, it happens by design. Planning for critical thought and engagement is much different from planning for a traditional lesson. In order to plan for kids to think critically, you have to provide a base of knowledge and excellent prompts to allow them to explore their own thinking in order to analyze, evaluate, or synthesize information.
  • SIDE NOTE – Bloom’s verbs are a great way to start when writing objectives, but true planning will take you deeper than this.

QUESTIONING

  • If the questions and prompts given in a classroom have correct answers or if the teacher ends up answering their own questions, the lesson will lack critical thought and rigor.
  • Script five questions forcing higher-order thought prior to every lesson. Experienced teachers may not feel they need this, but it helps to create an effective habit.
  • If lessons are rigorous and assessments are not, students will do well on their assessments, and that may not be an accurate representation of the knowledge and skills they have mastered. If lessons are easy and assessments are rigorous, the exact opposite will happen. When deciding to increase critical thought, it must happen in all three phases of the game: planning, instruction, and assessment.

TALK TIME / CONTROL

  • To increase rigor, the teacher must DO LESS. This feels counterintuitive but is accurate. Rigorous lessons involving tons of critical thought must allow for students to work on their own, collaborate with peers, and connect their ideas. This cannot happen in a silent room except for the teacher talking. In order to increase rigor, decrease talk time and become comfortable with less control. Asking questions and giving prompts that lead to no true correct answer also means less control. This is a tough ask for some teachers. Explained differently, if you assign one assignment and get 30 very similar products, you have most likely assigned a low-rigor recipe. If you assign one assignment and get multiple varied products, then the students have had a chance to think deeply, and you have successfully integrated critical thought into your classroom.

integratingcaposey

Thanks to Dara, Patrick, Meg, and PJ for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

A girl wearing a hooded sweatshirt backwards which hilariously obscures her face while donning sunglasses.

Sign Up & Sign In

module image 9

The University of Edinburgh home

  • Schools & departments

critical thinking and college students

Critical thinking

Advice and resources to help you develop your critical voice.

Developing critical thinking skills is essential to your success at University and beyond.  We all need to be critical thinkers to help us navigate our way through an information-rich world. 

Whatever your discipline, you will engage with a wide variety of sources of information and evidence.  You will develop the skills to make judgements about this evidence to form your own views and to present your views clearly.

One of the most common types of feedback received by students is that their work is ‘too descriptive’.  This usually means that they have just stated what others have said and have not reflected critically on the material.  They have not evaluated the evidence and constructed an argument.

What is critical thinking?

Critical thinking is the art of making clear, reasoned judgements based on interpreting, understanding, applying and synthesising evidence gathered from observation, reading and experimentation. Burns, T., & Sinfield, S. (2016)  Essential Study Skills: The Complete Guide to Success at University (4th ed.) London: SAGE, p94.

Being critical does not just mean finding fault.  It means assessing evidence from a variety of sources and making reasoned conclusions.  As a result of your analysis you may decide that a particular piece of evidence is not robust, or that you disagree with the conclusion, but you should be able to state why you have come to this view and incorporate this into a bigger picture of the literature.

Being critical goes beyond describing what you have heard in lectures or what you have read.  It involves synthesising, analysing and evaluating what you have learned to develop your own argument or position.

Critical thinking is important in all subjects and disciplines – in science and engineering, as well as the arts and humanities.  The types of evidence used to develop arguments may be very different but the processes and techniques are similar.  Critical thinking is required for both undergraduate and postgraduate levels of study.

What, where, when, who, why, how?

Purposeful reading can help with critical thinking because it encourages you to read actively rather than passively.  When you read, ask yourself questions about what you are reading and make notes to record your views.  Ask questions like:

  • What is the main point of this paper/ article/ paragraph/ report/ blog?
  • Who wrote it?
  • Why was it written?
  • When was it written?
  • Has the context changed since it was written?
  • Is the evidence presented robust?
  • How did the authors come to their conclusions?
  • Do you agree with the conclusions?
  • What does this add to our knowledge?
  • Why is it useful?

Our web page covering Reading at university includes a handout to help you develop your own critical reading form and a suggested reading notes record sheet.  These resources will help you record your thoughts after you read, which will help you to construct your argument. 

Reading at university

Developing an argument

Being a university student is about learning how to think, not what to think.  Critical thinking shapes your own values and attitudes through a process of deliberating, debating and persuasion.   Through developing your critical thinking you can move on from simply disagreeing to constructively assessing alternatives by building on doubts.

There are several key stages involved in developing your ideas and constructing an argument.  You might like to use a form to help you think about the features of critical thinking and to break down the stages of developing your argument.

Features of critical thinking (pdf)

Features of critical thinking (Word rtf)

Our webpage on Academic writing includes a useful handout ‘Building an argument as you go’.

Academic writing

You should also consider the language you will use to introduce a range of viewpoints and to evaluate the various sources of evidence.  This will help your reader to follow your argument.  To get you started, the University of Manchester's Academic Phrasebank has a useful section on Being Critical. 

Academic Phrasebank

Developing your critical thinking

Set yourself some tasks to help develop your critical thinking skills.  Discuss material presented in lectures or from resource lists with your peers.  Set up a critical reading group or use an online discussion forum.  Think about a point you would like to make during discussions in tutorials and be prepared to back up your argument with evidence.

For more suggestions:

Developing your critical thinking - ideas (pdf)

Developing your critical thinking - ideas (Word rtf)

Published guides

For further advice and more detailed resources please see the Critical Thinking section of our list of published Study skills guides.

Study skills guides  

This article was published on 2024-02-26

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

College and University Students

critical thinking and college students

Why Critical Thinking?

critical thinking and college students

"As grads look to the future, they're all thinking one thing: Hire us...In general, students in fields that require critical thinking skills, problem-solving, and face-to-face contact will fare best in this new economy, no matter where they look for jobs", said Jim Kurre, associate professor of economics at Penn State Behrend and director of the Economic Research Institute of Erie. Erie Times News, PA  - May 20, 2008 "Employers report that such applied skills as critical thinking, teamwork, and effective communication are essential to the preparation for today’s workplace"... Tom Pauken East Texas Review, TX - Jun 11, 2008

Studying the following articles and pages will help you build a stronger understanding of the core concepts in critical thinking

  • Becoming a Critic Of Your Thinking
  • Glossary of Critical Thinking Terms
  • Universal Intellectual Standards
  • Valuable Intellectual Traits
  • Distinguishing Between Inferences and Assumptions
  • Thinking With Concepts

critical thinking and college students

In addition to the basic review of the definition and concept of critical thinking , the following pages and articles are recommended reading for the college, university or pre-collegiate student.

  • University College
  • Careers and Leadership
  • Student Life
  • Arts & Culture
  • Howling Success
  • Inclusion and Well-Being
  • Support and Advocacy
  • Pack Essentials
  • Alumni and Friends
  • Give Now 

Applying Critical and Creative Thinking Skills in College and Everyday Life

Sue Carson, former director of TH!NK and professor of plant and microbial biology, discusses the importance of critical and creative thinking skills in college and everyday life.

Sue Carson in a classroom

By Alison Krowiak, DASA Assessment

This article is part of a series on NC State’s Pack Proficiencies, which include the five skills NC State faculty think all NC State undergraduates should develop before they graduate: written communication, oral communication, quantitative literacy, critical thinking, and creative thinking. 

At NC State, critical and creative thinking are a key part of how we Think and Do the Extraordinary. Critical thinking is the active, persistent and careful consideration of a belief or form of knowledge. Every time students use evidence to form judgements, analyze the ideas or conditions that support conclusions, and evaluate their own thinking, they engage their critical thinking skills.

Creative thinking is just as important and involves the generation of new ideas within or across disciplines. It can draw upon or break the rules in an effort to bring together existing ideas into a new configuration. The ability to think of creative solutions is utilized in every major program at NC State and in every field our students enter upon graduation.

Like all the Pack Proficiencies, these essential skills are taught in General Education classes and reinforced throughout each major program. Sue Carson, professor of plant and microbial biology and former director of the TH!NK program, describes the value for every NC State student in developing their critical and creative thinking competencies. Interview excerpts are edited for brevity and clarity.

How are critical and creative thinking competencies defined?

When I think about critical and creative thinking, I think of them as very intertwined. It often starts with raising a new question or formulating a new problem, gathering and assessing information, coming up with multiple alternative ideas for how to approach the question or how to approach the problem. It involves considering alternatives of the problem, reaching conclusions and effectively communicating about them. Other important aspects of critical and creative thinking include intellectual risk-taking and self-reflection along each stage of the process.

Why should NC States develop proficiencies in critical and creative thinking?

In all of our disciplines, and in all of our careers, to be a leader you need to be a creative thinker. You have to be able to identify problems and questions, and be able to figure out solutions. Even in our everyday lives, critical and creative thinking is so important. Questions like, “Who are you going to vote for in the next election? What daycare are you going to choose for your children? What phone are you going to buy?” all require those skills.

How can students develop their critical and creative thinking skills?

I think that most people understand that critical thinking is a skill that can be developed through practice and feedback. But there’s a misconception that creativity is something that’s innate, and that’s just not true. Creativity is a cognitive process that you can develop through practice and feedback. Creativity is also not confined to the arts. Fields in science, engineering, social sciences, and more need to be creative. We all need to be creative in our lives every day, and it is a skill that we can develop.

How can students develop their critical thinking skills inside and outside the classroom?

When students are selecting their classes, they can choose courses that are more geared toward project-based work. I think that is a good way for students to get feedback on their critical and creative thinking. There are a lot of opportunities outside the class as well. Engaging in undergraduate research is one way. Another way would be service learning projects that allow students to make decisions and have ownership of that project. If the student is able to have ownership and make decisions and identify the questions and problems, it can help develop critical and creative thinking. There is a whole range of opportunities that allow you to do that at NC State.

To learn more about the Pack Proficiencies and how they are assessed, visit go.ncsu.edu/PackProficiencies .

  • Faculty and Staff
  • Student Success
  • college of sciences
  • DASA Assessment

More From Academic and Student Affairs News

The NC State Memorial Bell Tower.

Welcome Back, NC State Faculty 

Interim leaders named for university college, arts nc state .

Julio Terán, an academic adviser and lecturer in the Engineering first-year program, with a Wolf Plaza statue.

UNC System Research Grant Transforms First-Year Engineering Course 

critical thinking and college students

  • Teen & Young Adult
  • Education & Reference

Sorry, there was a problem.

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

Thinking Critically in College: The Essential Handbook for Student Success

  • To view this video download Flash Player

Follow the author

Louis Newman

Thinking Critically in College: The Essential Handbook for Student Success Paperback – March 7, 2023

Louis E. Newman draws on decades of experience as a professor at Carleton College and Dean of Academic Advising and Associate Vice Provost for Undergraduate Education at Stanford, offering the guidance you need to succeed both in college and in life post-graduation. Unique among college prep books, Thinking Critically in College builds on the latest research in learning, spells out the key critical thinking skills you need, shows you how to tackle actual college assignments, and provides exercises throughout to reinforce the lessons.

  • Print length 240 pages
  • Language English
  • Publisher Radius Book Group
  • Publication date March 7, 2023
  • Reading age 17 years and up
  • Dimensions 6 x 1 x 9 inches
  • ISBN-10 1635767954
  • ISBN-13 978-1635767957
  • See all details

Customers who bought this item also bought

The Promise and the Blessing: A Historical Survey of the Old and New Testaments

Editorial Reviews

About the author, excerpt. © reprinted by permission. all rights reserved., product details.

  • Publisher ‏ : ‎ Radius Book Group (March 7, 2023)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 240 pages
  • ISBN-10 ‏ : ‎ 1635767954
  • ISBN-13 ‏ : ‎ 978-1635767957
  • Reading age ‏ : ‎ 17 years and up
  • Item Weight ‏ : ‎ 2.31 pounds
  • Dimensions ‏ : ‎ 6 x 1 x 9 inches
  • #3 in Teen & Young Adult College Guides
  • #19 in College Guides (Books)
  • #30 in College & University Student Life (Books)

About the author

Louis newman.

Louis E. Newman is the former Dean of Academic Advising and Associate Vice Provost for Undergraduate Education at Stanford University. He is also the John M. and Elizabeth W. Musser Professor of Religious Studies, Emeritus, at Carleton College, where he taught for thirty-three years. During his tenure at Carleton, he also served for a time as an Associate Dean of the College, which included expanding the advisor training program and launching new programs to support advisors. He also served for a term as Director of the Perlman Center for Learning and Teaching. In this role he also functioned as the informal mentor to the faculty at Carleton, which is consistently rated by US News & World Report as #1 for undergraduate teaching.

He is also an internationally recognized scholar in the field of Jewish ethics and has written and co-edited several books in that field, as well as dozens of articles. He was the first president of the Society of Jewish Ethics and the co-founder of its journal.

Louis Newman completed his B.A. in Hebrew and Philosophy and his M.A. in Philosophy at the University of Minnesota, and received his Ph.D. in Religious Studies from Brown University.

Throughout his career, hundreds of students and colleagues have attested to the profound impact he had on their learning and their lives--as a gifted teacher and as a trusted advisor and mentor.

For more information, see www.thinkingcritically.us

Customer reviews

  • 5 star 4 star 3 star 2 star 1 star 5 star 84% 8% 0% 0% 8% 84%
  • 5 star 4 star 3 star 2 star 1 star 4 star 84% 8% 0% 0% 8% 8%
  • 5 star 4 star 3 star 2 star 1 star 3 star 84% 8% 0% 0% 8% 0%
  • 5 star 4 star 3 star 2 star 1 star 2 star 84% 8% 0% 0% 8% 0%
  • 5 star 4 star 3 star 2 star 1 star 1 star 84% 8% 0% 0% 8% 8%

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

critical thinking and college students

  • About Amazon
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell products on Amazon
  • Sell on Amazon Business
  • Sell apps on Amazon
  • Become an Affiliate
  • Advertise Your Products
  • Self-Publish with Us
  • Host an Amazon Hub
  • › See More Make Money with Us
  • Amazon Business Card
  • Shop with Points
  • Reload Your Balance
  • Amazon Currency Converter
  • Amazon and COVID-19
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Returns & Replacements
  • Manage Your Content and Devices
 
 
 
   
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

critical thinking and college students

Chapter 8: Thinking, Communicating & Problem-Solving

Critical thinking & problem-solving, assess your critical thinking strategies.

  • Visit the Quia Critical Thinking Quiz page and click on Start Now (you don’t need to enter your name).
  • Select the best answer for each question, and then click on Submit Answers. A score of 70 percent or better on this quiz is considered passing.
  • Based on the content of the questions, do you feel you use good critical thinking strategies in college? In what ways could you improve as a critical thinker?

critical thinking and college students

The essence of the independent mind lies not in what it thinks, but in how it thinks. —Christopher Hitchens, author and journalist

Critical Thinking

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s a discipline-general thinking skill, not a thinking skill that’s reserved for a one subject alone or restricted to a particular content area. Of all your thinking skills, critical thinking may have the greatest value.

What Is Critical Thinking?

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read. Critical thinking skills will help you in any profession or any circumstance of life, from science to art to business to teaching.

Critical thinkers are curious and reflective people. They explore and probe new areas and seek knowledge, clarification, and solutions. They ask pertinent questions, evaluate statements and arguments, and distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. Critical thinkers are open to changing their mind. Perhaps most of all, they actively enjoy learning and view seeking new knowledge as a lifelong pursuit.

Thinking critically will help you develop more balanced arguments, express yourself clearly, read more critically, and glean important information efficiently. With critical thinking, you become a clearer thinker and problem solver.

What Critical Thinking Is What Critical Thinking Is Not
Skepticism Memorizing
Examining assumptions Group thinking
Challenging reasoning Blind acceptance of authority
Uncovering biases Believing stereotypes

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

The Role of Logic in Critical Thinking

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination for the purpose of logically constructing reasoned perspectives.

The word logic comes from the Ancient Greek logike , referring to the science or art of reasoning. Using logic, a person evaluates arguments and reasoning and strives to distinguish between good and bad reasoning or between truth and falsehood. Using logic, you can evaluate ideas or claims people make, make good decisions, and form sound beliefs about the world. [1] . Logical thinkers provide reasonable and appropriate evidence to support their claims, acknowledge the strengths of the opposing side’s position, actively investigate a variety of possible outcomes or new solutions, and use measured and objective language to present their positions.

Clarify Thinking

When you use critical thinking to evaluate information, you need to clarify your thinking to yourself and likely to others. Doing this well is mainly a process of asking and answering logical, probing questions. Design your questions to fit your needs, but be sure to cover adequate ground.

  • What is the purpose?
  • What question are we trying to answer?
  • What point of view is being expressed?
  • What assumptions are we or others making?
  • What are the facts and data we know, and how do we know them?
  • What are the concepts we’re working with?
  • What are the conclusions, and do they make sense?
  • What are the implications?

Avoid Fallacies

You’ll also want to make sure you can avoid and spot logical fallacies. Fallacies are faults in thinking or illogical approaches used to persuade the other side. Statements such as, everyone else is doing it ca n be very persuasive even though they demonstrate faulty logic, in this case, the bandwagon appeal. These fallacies can undermine your authority and weaken your position. Students shouldn’t park in the faculty lot because that lot is for faculty is another example of a logical fallacy, this time circular reasoning.

Consult the two websites below to identify and avoid some of the many kinds of logical fallacies:

  • Fallacies Files—Home
  • Logical Fallacies Jeopardy

Applying critical thinking

The following questions may apply to formulating a logical, reasoned perspective in the scenario below or any other situation:

  • What is happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

A man has a Ph.D. in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community. The man is now running for political office.

Are his credentials and experience sufficient for entering public office? Will he be effective in political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him. In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant.

What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

Problem-Solving with Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively, but with problem-solving, you are specifically identifying, selecting, and defending your solution.

Applying the strategies described in the action checklist below can help you utilize critical thinking skills to solve problems.

STRATEGIES ACTION CHECKLIST
1 Define the problem
2 Identify available solutions
3 Select your solution

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

 Developing Yourself As a Critical Thinker and Problem-Solver

Critical thinking is a fundamental skill for college students, but it should also be a lifelong pursuit that we continually refine. Below are additional strategies to develop yourself as a critical thinker in college and in everyday life:

  • Reflect and practice : Always reflect on what you’ve learned. Is it true all the time? How did you arrive at your conclusions?
  • Use wasted time : It’s certainly important to make time for relaxing, but if you find you are indulging in too much of a good thing, think about using your time more constructively. Determine when you do your best thinking and try to learn something new during that part of the day.
  • Redefine the way you see things : It can be very uninteresting to always think the same way. Challenge yourself to see familiar things in new ways. Put yourself in someone else’s shoes and consider a certain situation from a different angle or perspective. If you’re trying to solve a problem, list all your concerns, such as what you need in order to solve it, who can help, and what some possible barriers might be. It’s often possible to reframe a problem as an opportunity. Try to find a solution where there seems to be none.
  • Analyze the influences on your thinking and in your life : Why do you think or feel the way you do? Analyze your influences. Think about who in your life influences you. Do you feel or react a certain way because of social convention or because you believe it is what is expected of you? Try to break out of any molds that may be constricting you.
  • Express yourself : Critical thinking also involves being able to express yourself clearly. Most important in expressing yourself clearly is stating one point at a time. You might be inclined to argue every thought, but you might have greater impact if you focus only on your main arguments. This will help others to follow your thinking clearly. For more abstract ideas, assume that your audience may not understand. Provide examples, analogies, or metaphors where you can.
  • Enhance your wellness : It’s easier to think critically when you take care of your mental and physical health. Try taking 10-minute activity breaks to reach 30 to 60 minutes of physical activity each day . Try taking a break between classes and walk to the coffee shop that’s farthest away. Scheduling physical activity into your day can help lower stress and increase mental alertness.
  • Do your most difficult work when you have the most energy: Think about the time of day you are most effective and have the most energy. Plan to do your most difficult thinking during these times.

Reflect on Critical Thinking

  • Think about someone whom you consider to be a critical thinker (friend, professor, historical figure, etc). What qualities does he/she have?
  • Review some of the critical thinking strategies discussed on this page. Choose one strategy that makes sense to you. How can you apply this critical thinking technique to your academic work?
  • Habits of mind are attitudes and beliefs that influence how you approach the world (inquiring attitude, open mind, respect for truth, etc.). What is one habit of mind you would like to actively develop over the next year? How will you develop a daily practice to cultivate this habit?

Cultivate Critical Habits of Mind

Earlier in this text we discussed, “habits of mind,” the personal commitments, values, and standards people have about the principle of good thinking. Consider your intellectual commitments, values, and standards. Do you approach problems with an open mind, a respect for truth, and an inquiring attitude? Some good habits to have when thinking critically are being receptive to having your opinions changed, having respect for others, being independent and not accepting something is true until you’ve had the time to examine the available evidence. Other important habits of mind include being fair-minded, having respect for a reason, having an inquiring mind, not making assumptions, and always, especially, questioning your own conclusions. In their quest towards developing an intellectual work ethic, critical thinkers constantly try to work these qualities into their daily lives.

 problem-solving with critical thinking

Below are some examples of using critical thinking to problem-solve. Can you think of additional action steps to apply to the following situations? You may want to look back to Chapter 2 “Defining Goals” to utilize the five step problem solving strategy described there.

  • Your roommate was upset and said some unkind words to you, which has put a crimp in the relationship. You try to see through the angry behaviors to determine how you might best support your roommate and help bring the relationship back to a comfortable spot.
  • Your campus club has been languishing on account of lack of participation and funds. The new club president, though, is a marketing major and has identified some strategies to interest students in joining and supporting the club. Implementation is forthcoming.
  • Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • Your math teacher sees that the class is not quite grasping a concept. She uses clever questioning to dispel anxiety and guide you to new understanding of the concept.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and you are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.
  • "logike." Wordnik. n.d. Web. 16 Feb 2016. ↵
  • "Student Success-Thinking Critically In Class and Online."  Critical Thinking Gateway . St Petersburg College, n.d. Web. 16 Feb 2016. ↵
  • Critical Thinking Skills. Authored by : Linda Bruce. Provided by : Lumen Learning. License : CC BY: Attribution
  • Critical Thinking. Provided by : Critical and Creative Thinking Program. Located at : http://cct.wikispaces.umb.edu/Critical+Thinking . License : CC BY: Attribution
  • Thinking Critically. Authored by : UBC Learning Commons. Provided by : The University of British Columbia, Vancouver Campus. Located at : http://www.oercommons.org/courses/learning-toolkit-critical-thinking/view . License : CC BY: Attribution
  • Critical Thinking 101: Spectrum of Authority. Authored by : UBC Leap. Located at : https://youtu.be/9G5xooMN2_c . License : CC BY: Attribution
  • Image of students putting post-its on wall. Authored by : Hector Alejandro. Located at : https://flic.kr/p/7b2Ax2 . License : CC BY: Attribution
  • Foundations of Academic Success. Authored by : Thomas C. Priester, editor. Provided by : Open SUNY Textbooks. Located at : http://textbooks.opensuny.org/foundations-of-academic-success/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Image of three students. Authored by : PopTech. Located at : https://flic.kr/p/8tXtQp . License : CC BY-SA: Attribution-ShareAlike
  • Critical Thinking.wmv. Authored by : Lawrence Bland. Located at : https://youtu.be/WiSklIGUblo . License : All Rights Reserved . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

Want a daily email of lesson plans that span all subjects and age groups?

Subjects all subjects all subjects the arts all the arts visual arts performing arts value of the arts back business & economics all business & economics global economics macroeconomics microeconomics personal finance business back design, engineering & technology all design, engineering & technology design engineering technology back health all health growth & development medical conditions consumer health public health nutrition physical fitness emotional health sex education back literature & language all literature & language literature linguistics writing/composition speaking back mathematics all mathematics algebra data analysis & probability geometry measurement numbers & operations back philosophy & religion all philosophy & religion philosophy religion back psychology all psychology history, approaches and methods biological bases of behavior consciousness, sensation and perception cognition and learning motivation and emotion developmental psychology personality psychological disorders and treatment social psychology back science & technology all science & technology earth and space science life sciences physical science environmental science nature of science back social studies all social studies anthropology area studies civics geography history media and journalism sociology back teaching & education all teaching & education education leadership education policy structure and function of schools teaching strategies back thinking & learning all thinking & learning attention and engagement memory critical thinking problem solving creativity collaboration information literacy organization and time management back, filter by none.

  • Elementary/Primary
  • Middle School/Lower Secondary
  • High School/Upper Secondary
  • College/University
  • TED-Ed Animations
  • TED Talk Lessons
  • TED-Ed Best of Web
  • Under 3 minutes
  • Under 6 minutes
  • Under 9 minutes
  • Under 12 minutes
  • Under 18 minutes
  • Over 18 minutes
  • Algerian Arabic
  • Azerbaijani
  • Cantonese (Hong Kong)
  • Chinese (Hong Kong)
  • Chinese (Singapore)
  • Chinese (Taiwan)
  • Chinese Simplified
  • Chinese Traditional
  • Chinese Traditional (Taiwan)
  • Dutch (Belgium)
  • Dutch (Netherlands)
  • French (Canada)
  • French (France)
  • French (Switzerland)
  • Kurdish (Central)
  • Luxembourgish
  • Persian (Afghanistan)
  • Persian (Iran)
  • Portuguese (Brazil)
  • Portuguese (Portugal)
  • Spanish (Argentina)
  • Spanish (Latin America)
  • Spanish (Mexico)
  • Spanish (Spain)
  • Spanish (United States)
  • Western Frisian

sort by none

  • Longest video
  • Shortest video
  • Most video views
  • Least video views
  • Most questions answered
  • Least questions answered

critical thinking and college students

How could so many people support Hitler?

Lesson duration 05:10

668,579 Views

critical thinking and college students

Can you solve the magical maze riddle?

Lesson duration 04:51

468,430 Views

critical thinking and college students

How to make smart decisions more easily

Lesson duration 05:16

1,329,834 Views

critical thinking and college students

Can you solve a mystery before Sherlock Holmes?

Lesson duration 05:17

525,074 Views

critical thinking and college students

Can you solve the secret assassin society riddle?

Lesson duration 05:01

891,895 Views

critical thinking and college students

How to overcome your mistakes

Lesson duration 04:52

1,017,282 Views

critical thinking and college students

Can you solve the cursed dice riddle?

Lesson duration 04:31

794,967 Views

critical thinking and college students

Why some people don't have an inner monologue

Lesson duration 12:03

2,903,985 Views

critical thinking and college students

Science vs. Pseudoscience

Lesson duration 05:48

364,574 Views

critical thinking and college students

Can you solve the time traveling car riddle?

Lesson duration 05:18

694,110 Views

critical thinking and college students

This one weird trick will get you infinite gold

Lesson duration 05:08

1,156,784 Views

critical thinking and college students

How to quit your job — without ruining your career - Gala Jackson

Lesson duration 06:13

115,624 Views

critical thinking and college students

What if you experienced every human life in history?

Lesson duration 05:21

2,997,811 Views

critical thinking and college students

How to design climate-resilient buildings - Alyssa-Amor Gibbons

Lesson duration 14:12

46,228 Views

critical thinking and college students

The case for free, universal basic services - Aaron Bastani

Lesson duration 19:09

81,941 Views

critical thinking and college students

Can you steal the most powerful wand in the wizarding world?

Lesson duration 05:20

826,881 Views

critical thinking and college students

History vs. Thomas Jefferson

491,091 Views

critical thinking and college students

The best way to apologize (according to science)

Lesson duration 05:06

1,556,253 Views

critical thinking and college students

How do we determine the value of a life?

Lesson duration 06:06

799,583 Views

critical thinking and college students

What’s the smartest age?

Lesson duration 04:53

1,693,787 Views

critical thinking and college students

The Boltzmann brain paradox

Lesson duration 05:40

1,216,842 Views

critical thinking and college students

The 4 greatest threats to the survival of humanity

Lesson duration 05:24

495,496 Views

critical thinking and college students

Can you outsmart the college admissions fallacy?

Lesson duration 06:17

836,799 Views

critical thinking and college students

Can you solve the fortress riddle?

Lesson duration 05:23

1,302,047 Views

Influences affecting the development of students' critical thinking skills

  • Published: February 1995
  • Volume 36 , pages 23–39, ( 1995 )

Cite this article

critical thinking and college students

  • Patrick T. Terenzini 1 ,
  • Leonard Springer 1 ,
  • Ernest T. Pascarella 2 &
  • Amaury Nora 2  

4166 Accesses

134 Citations

2 Altmetric

Explore all metrics

This study estimates the relative and unique effects on changes in critical thinking of three dimensions of students' college experience: curricular exposure, formal classroom and instructional experiences, and out-of-class experiences. Students' classroom/instructional and out-of-class experiences both make positive, statistically significant, and unique contributions to gains in critical thinking above and beyond students' precollege characteristics and level of critical thinking. Theoreticians have long speculated that students' academic and nonacademic experiences jointly influence change, and this study supports that belief. The design and instruments in this study may be of interest to persons involved in assessment or the study of college impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

critical thinking and college students

Student perceptions of effective instruction and the development of critical thinking: a replication and extension

Critical thinking across the curriculum: a vision, a structural model of the relationship between student–faculty interaction and cognitive skills development among college students.

American College Testing Program (1989). Report on the Technical Characteristics of CAAP: Pilot Year 1, 1988–89 . Iowa City, IA: Author.

Google Scholar  

Anaya, G. (1989). Students' perceived cognitive change. Paper presented at the meeting of the American Educational Research Association, San Francisco.

Astin, A. (1984). Student involvement: A developmental theory for higher education. Journal of College Student Personnel 25: 297–308.

Baxter Magolda, M. (1987). The affective dimension of learning: Faculty-student relationships that enhance intellectual development. College Student Journal 21: 46–58.

Bennett, M. (1975–1976). A study of the relationship between curricula taken and the critical thinking abilities of high school seniors and University of Illinois freshmen, sophomores, and seniors majoring in elementary education. Dissertation Abstracts 36: 5799A.

Blunt, M., and P. Blizard (1975). Recall and retrieval of anatomical knowledge. British Journal of Medical Education 9: 255–263.

Brethower, D. (1977). Research in learning behavior: Some implications for college teaching. In S. Scholl and S. Inglis (eds.), Teaching in Higher Education . Columbus: Ohio Board of Regents.

Burns, R. (1974). The testing of a model of critical thinking ontogeny among Central State College undergraduates. Dissertation Abstracts International 54: 5467A.

Chickering, A. (1969). Education and Identity . San Francisco: Jossey-Bass.

Dressel, P., and L. Mayhew (1954). General Education: Explorations in Evaluation . Westport, CT: Greenwood.

Endo, J., and R. Harpel (1982). The effect of student-faculty interaction on students' educational outcomes. Research in Higher Education 16: 115–138.

Endo, J., and R. Harpel (1983). Student-faculty interaction and its effect on freshman year outcomes at a major state university. Paper presented at the meeting of the Association for Institutional Research, Toronto.

Forrest, A. (1982). Increasing Student Competence and Persistence: The Best Case for General Education . Iowa City, IA: American College Testing Program.

Gaff, J. (1973). Making a difference: The impacts of faculty. Journal of Higher Education 44: 605–622.

Gustav, A. (1969). Retention of course material over varying intervals of time. Psychological Reports 25: 727–730.

Heath, D. (1968). Growing up in College . San Francisco: Jossey-Bass.

Heath, D. (1978). A model of becoming a liberally educated and mature student. In C. Parker (ed.), Encouraging Development in College Students (pp. 189–212). Minneapolis: University of Minnesota Press.

Jones, E. (1992). Is a core curriculum best for everybody? In J. Ratcliff (ed.), Assessment and Curriculum Reform (pp. 37–46). New Directions for Higher Education, No. 80. San Francisco: Jossey-Bass.

King, P., P. Wood., and R. Mines (1990). Critical thinking among college and graduate students. Review of Higher Education 13: 167–186.

McLeish, J. (1968). The Lecture Method (Cambridge Monograph on Teaching Methods, No. 1). Cambridge, England: Cambridge Institute of Education.

McMillan, J. (1987). Enhancing college students' critical thinking: A review of studies. Research in Higher Education 26: 3–29.

National Education Goals Panel (1991). Executive Summary: The National Education Goals Report, 1991: Building a Nation of Learners . Washington, DC: Author.

Ory, J., and L. Braskamp (1988). Involvement and growth of students in three academic programs. Research in Higher Education 28: 116–129.

Pace, C. (1984). Measuring the Quality of College Student Experiences . Los Angeles: University of California, Higher Education Research Institute.

Pace, C. (1987). Good Things Go Together . Los Angeles: University of California at Los Angeles, Center for the Study of Evaluation.

Pace, C. (1990). The Undergraduates: A Report of Their Activities and Progress in Colleges in the 1980s . Los Angeles: University of California at Los Angeles, Center for the Study of Evaluation.

Pascarella, E. (1985). College environmental influences on learning and cognitive development: A critical review and synthesis. In J. Smart (ed.), Higher Education: Handbook of Theory and Research (vol. 1, pp. 1–61). New York: Agathon.

Pascarella, E. (1989). The development of critical thinking: Does college make a difference? Journal of College Student Development 30: 19–26.

Pascarella, E., and P. Terenzini (1978). Student-faculty informal relationships and freshman year educational outcomes. Journal of Educational Research 71: 183–189.

Pascarella, E., and P. Terenzini (1991). How College Affects Students: Findings and Insights from Twenty Years of Research . San Francisco: Jossey-Bass.

Pike, G. (1989). Background, college experiences, and the ACT-COMP exam: Using construct validity to evaluate assessment instruments. Review of Higher Education 13: 91–117.

Pike, G., and T. Banta (1989). Using construct validity to evaluate assessment instruments: A comparison of the ACT-COMP exam and the ETS Academic Profile. Paper presented at the meeting of the American Educational Research Association, San Francisco.

Pike, G., and R. Phillippi (1988). Relationships between self-reported coursework and performance on the ACT-COMP exam: An analysis of the generalizability of the differential coursework methodology. Paper presented at the meeting of the Association for the Study of Higher Education, St. Louis.

Sanford, N. (1962). Developmental status of the entering freshman. In N. Sanford (ed.), The American College: A Psychological and Social Interpretation of the Higher Learning (pp. 253–282). New York: Wiley.

Smith, D. (1977). College classroom interactions and critical thinking. Journal of Educational Psychology 69: 180–190.

Smith, D. (1981). Instruction and outcomes in an undergraduate setting. Paper presented at the meeting of the American Educational Research Association, Los Angeles.

Terenzini, P. and E. Pascarella (1980). Student/faculty relationships and freshman year educational outcomes: A further investigation. Journal of College Student Personnel 21: 521–528.

Terenzini, P., L. Springer, E. Pascarella, and A. Nora (in press) Academic and out-of-class influences affecting the development of students' intellectual orientations. Review of Higher Education .

Terenzini, P., C. Theophilides, and W. Lorang (1984). Influences on students' perceptions of their academic skill development during college. Journal of Higher Education 55: 621–636.

Terenzini, P., and T. Wright (1987). Influences on students' academic growth during four years of college. Research in Higher Education 26: 161–179.

Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of Educational Research 45: 89–125.

Tinto, V. (1987). Leaving College: Rethinking the Causes and Cures of Student Attrition . Chicago: University of Chicago Press.

Volkwein, J., T. Wright, and M. Agrotes (1987). The impact of college experiences on the intellectual growth of transfer students. Paper presented to the meeting of the North East Association for Institutional Research, Rochester, NY.

Weidman, J. (1989). Undergraduate socialization: A conceptual approach. In J. Smart (ed.), Higher Education: Handbook of Theory and Research (vol. 5, pp. 289–322). New York: Agathon.

Wilson, R., J. Gaff, E. Dienst, L. Wood, and J. Bavry (1975). College Professors and Their Impact on Students . New York: Wiley-Interscience.

Wilson, R., L. Wood, and J. Gaff (1974). Social-psychological accessibility and faculty-student interaction beyond the classroom. Sociology of Education 47: 74–92.

Winter, D., D. McClelland, and A. Stewart (1981). A New Case for the Liberal Arts: Assessing Institutional Goals and Student Development . San Francisco: Jossey-Bass.

Download references

Author information

Authors and affiliations.

The Pennsylvania State University, 403 South Allen St., Suite 104, 16801-5202, University Park, PA

Patrick T. Terenzini ( Professor, Senior Scientist, and Associate Director National Center on Postsecondary Teaching, Learning, and Assessment ) & Leonard Springer ( Research Assistant, National Center on Postsecondary Teaching, Learning, and Assessment )

University of Illinois at Chicago, USA

Ernest T. Pascarella ( Professor and Director, National Study of Student Learning, National Center on Postsecondary Teaching, Learning, and Assessment ) & Amaury Nora ( Associate Professor and Senior Research Associate, National Study of Student Learning, National Center on Postsecondary Teaching, Learning, and Assessment )

You can also search for this author in PubMed   Google Scholar

Additional information

The National Center on Postsecondary Teaching, Learning, and Assessment is funded by the U.S. Department of Education, Office of Educational Research and Improvement (OERI), under Grant No. R117G10037. The opinions herein do not necessarily reflect the position or policies of OERI, and no official endorsement should be inferred.

Rights and permissions

Reprints and permissions

About this article

Terenzini, P.T., Springer, L., Pascarella, E.T. et al. Influences affecting the development of students' critical thinking skills. Res High Educ 36 , 23–39 (1995). https://doi.org/10.1007/BF02207765

Download citation

Issue Date : February 1995

DOI : https://doi.org/10.1007/BF02207765

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Critical Thinking
  • Unique Contribution
  • Unique Effect
  • Thinking Skill
  • College Experience
  • Find a journal
  • Publish with us
  • Track your research

Stephen Camarata Ph.D.

The Emerging Crisis in Critical Thinking

Today's college students all too often struggle with real-world problem-solving..

Posted March 21, 2017 | Reviewed by Ekua Hagan

The mid to late 1990s witnessed the rise of misguided attempts to arti­ficially accelerate brain development in children. Parents began force-feeding infants and toddlers special “educational” DVDs and flashcards in the hopes of taking advantage of unique features of the developing brain to “hardwire genius” by the age of three—or even younger.

Since then, it has become increasingly clear that the brain science of “critical periods” and “neuroplasticity” has been grossly misunderstood and that efforts to artifi­cially harness these important features of brain development by accelerating and distorting real-world learning beyond all reason are not producing the promised results. Recent years have seen only an acceleration of this trend, with parents and teachers adopting rote learning and “baby genius”-style activities.

The first generation of children educated under the “earlier is better,” “wire the brain,” and “baby genius” methodology is now graduating from high school and college, so we can examine the results of these techniques. Unfortunately, rather than creating a generation of “super-geniuses,” there are emerging reports that although modern students are quite adept at memorizing and regurgitating facts presented in class or in reading materials, the ability to reason, think critically, and problem-solve has actually been dramatically reduced in recent years.

A recent article in The Wall Street Journal reported: “On average, students make strides in their ability to reason, but because so many start at such a [critical thinking] de­ficit, many still graduate without the ability to read a scatterplot, construct a cohesive argument or identify a logical fallacy” [1]

Similarly, in their book, Academically Adrift: Limited Learning on College Campuses , Richard Arum and Josipa Roksa studied 2,400 college students at 24 different universities over a 4-year period [2]. They reported that critical thinking and other skills such as writing were no longer progressing during college as compared to previous generations of students.

In an interview with NPR, Arum sounded the alarm as to why we should be concerned about these findings: “Our country today is part of a global economic system, where we no longer have the luxury to put large numbers of kids through college and university and not demand of them that they are developing these higher-order skills [such as critical thinking] that are necessary not just for them, but for our society as a whole.” [3]

Arum and Roksa describe a number of factors that may be contributing to this decline in critical thinking skills, including pressure on college faculty to make lessons easier in order to get higher course evaluations for their classes.

Why is this happening? What is causing the dearth of thinking ability in young adults, especially after the Herculean efforts parents made during infancy and early childhood to ensure optimal brain development?

One possible explanation is that these college students and recent graduates were at the forefront of the “earlier and earlier education is better” and “rote learning” approaches to teaching preschoolers and even toddlers and babies. Perhaps they—and their developing brains—have been programmed in a way that actually inhibits reasoning, critical thinking, and problem-solving.

In essence, these children—and their developing brains—have been “wired” from an early to memorize and retrieve “facts” on-demand but not to think or reason. Indeed, it is likely that the kind of learning that fosters these skills—namely, intuitive parenting [4]—has been displaced by parenting and teaching styles that overemphasize “teaching to the test,” and treat developing young minds as if they are computer “hard drives” to be inscribed using rote memorization.

critical thinking and college students

Unfortunately, the reported decline in thinking ability is occurring at a time when there are increasing shortages of quali­fied candidates for jobs in science, technology, engineering, and mathematics (STEM). Indeed, a young adult whose brain has been “wired” to be innovative, think critically, and problem-solve is at a tremendous competitive advantage in today’s increasingly complex and competitive world.

Because of this, parents should consciously seek to foster independence, problem-solving, critical thinking, and reasoning in their young children. This can be done by implementing an intuitive developmental “dance” between parents and their developing children; which provides everything needed to foster and nurture proper brain development and automatically yields hundreds of thousands of learning opportunities during critical learning periods.

It is vital to bear in mind that the acquisition of problem-solving skills is the direct result of children’s immature, incomplete, and often incorrect attempts to engage with the world that trigger authentic feedback and consequences. Rather than being psychologically damaging events, a child’s unsuccessful attempts are actually opportunities for them to learn persistence and resilience —as well as how to think when things don’t work out quite as they hoped. Indeed, “failure” and overcoming failure are essential events that trigger that neurological development that underpins thinking ability: Opportunities for a child to try—and to fail and then try again—are a crucial part of learning and brain development and should be sought out rather than avoided.

It is time to rethink early childhood priorities—and refocus our efforts as parents and as teachers—to emphasize critical thinking and problem-solving and to abandon misguided attempts to induce pseudo-learning using “baby genius” products and “teaching to the test” educational materials. In the long run, short-term “tricks” that artificially—and temporarily—boost test scores are no match for intuitive parenting and effective teaching; which convey a lifelong competitive advantage by providing a solid foundation for critical thinking and problem-solving.

1. Douglas Belkin, “Test Finds College Graduates Lack Skills for White-Collar Jobs,” Wall Street Journal, January 16, 2015, http://www.wsj.com/articles/test -­ nds-many-students-ill-prepared-to-enter-work-force-1421432744.

2. Richard Arum and Josipa Roksa, Academically Adrift: Limited Learning on College Campuses (Chicago: University of Chicago Press, 2011).

3. “A Lack of Rigor Leaves Students ‘Adrift’ in College,” Morning Edition, NPR, February 9, 2011, http://www.npr.org/2011/02/09/133310978/in-college -a-lack-of-rigor-leaves-students-adrift.

4. Stephen M. Camarata (2015). The Intuitive Parent. New York: Current/Penguin/Random House.

Stephen Camarata Ph.D.

Stephen Camarata, Ph.D. is a professor at both the Bill Wilkerson Center and the Vanderbilt University School of Medicine, and author of The Intuitive Parent: Why the Best Thing for Your Child Is You .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

critical thinking and college students

The State of Critical Thinking 2020

November 2020, introduction.

In 2018, the Reboot Foundation released a first-of-its-kind survey looking at the public’s attitudes toward critical thinking and critical thinking education. The report found that critical thinking skills are highly valued, but not taught or practiced as much as might be hoped for in schools or in public life. 

The survey suggested that, despite recognizing the importance of critical thinking, when it came to critical thinking practices—like seeking out multiple sources of information and engaging others with opposing views—many people’s habits were lacking. Significant numbers of respondents reported relying on inadequate sources of information, making decisions without doing enough research, and avoiding those with conflicting viewpoints.

In late 2019, the Foundation conducted a follow up survey in order to see how the landscape may have shifted. Without question, the stakes surrounding better reasoning have increased. The COVID-19 pandemic requires deeper interpretive and analytical skills. For instance, when it comes to news about a possible vaccine, people need to assess how it was developed in order to judge whether it will actually work. 

Misinformation, from both foreign and domestic sources, continues to proliferate online and, perhaps most disturbingly, surrounding the COVID-19 health crisis. Meanwhile, political polarization has deepened and become more personal . At the same time, there’s both a growing awareness and divide over issues of racism and inequality. If that wasn’t enough, changes to the journalism industry have weakened local civic life and incentivized clickbait, and sensationalized and siloed content. 

critical thinking and college students

Part of the problem is that much of our public discourse takes place online, where cognitive biases can become amplified, and where groupthink and filter bubbles proliferate. Meanwhile, face-to-face conversations—which can dissolve misunderstandings and help us recognize the shared humanity of those we disagree with—go missing. 

Critical thinking is, of course, not a cure-all, but a lack of critical thinking skills across the population exacerbates all these problems. More than ever, we need skills and practice in managing our emotions, stepping back from quick-trigger evaluations and decisions, and over-relying on biased or false sources of information. 

To keep apprised of the public’s view of critical thinking, the Reboot Foundation conducted its second annual survey in late 2019. Unfortunately, the COVID-19 pandemic forced a delay in the release of the results. Nevertheless, this most recent survey dug deeper than our 2018 poll, and looked especially into how the public understands the state of critical thinking education. For the first time, our team also surveyed teachers on their views on teaching critical thinking.

General Findings

Support for critical thinking skills remains high, but there is also clearly skepticism that individuals are getting the help they need to acquire improved reasoning skills. A very high majority of people surveyed (94 percent) believe that critical thinking is “extremely” or “very important.” But they generally (86 percent) find those skills lacking in the public at large. Indeed, 60 percent of the respondents reported not having studied critical thinking in school. And only about 55 percent reported that their critical thinking skills had improved since high school, with almost a quarter reporting that those skills had deteriorated. 

There is also broad support among the public and teachers for critical thinking education, both at the K-12 and collegiate levels. For example, 90 percent think courses covering critical thinking should be required in K-12. 

Many respondents (43 percent) also encouragingly identified early childhood as the best age to develop critical thinking skills. This was a big increase from our previous survey (just 20 percent) and is consistent with the general consensus among social scientists and psychologists. 

There are worrisome trends—and promising signs—in critical thinking habits and daily practices. In particular, individuals still don’t do enough to engage people with whom they disagree. 

Given the deficits in critical thinking acquisition during school, we would hope that respondents’ critical thinking skills continued to improve after they’ve left school. But only about 55 percent reported that their critical thinking skills had improved since high school, with almost a quarter reporting that their skills had actually deteriorated since then. 

Questions about respondents’ critical thinking habits brought out some encouraging information. People reported using more than one source of information when making a decision at a high rate (around 77 percent said they did this “always” or “often”) and giving reasons for their opinions (85 percent). These numbers were, in general, higher than in our previous survey (see “Comparing Survey Results” below).

In other areas of critical thinking, responses were more mixed. Almost half of respondents, for example, reported only “sometimes,” “rarely,” or “never” seeking out people with different opinions to engage in discussion. Many also reported only “sometimes,” “rarely,” or “never” planning where (35 percent) or how (36 percent) to get information on a given topic. 

critical thinking and college students

These factors are tied closely together. Critical thinking skills have been challenged and devalued at many different levels of society. There is, therefore, no simple fix. Simply cleansing the internet of misinformation, for example, would not suddenly make us better thinkers. Improving critical thinking across society will take a many-pronged effort.

Comparing Survey Results  

Several interesting details emerged in the comparison of results from this survey to our 2018 poll. First, a word of caution: there were some demographic differences in the respondents between the two surveys. This survey skewed a bit older: the average age was 47, as opposed to 36.5. In addition, more females responded this time: 57 percent versus 46 percent.

That said, there was a great deal of consistency between the surveys on participants’ general views of critical thinking. Belief in the importance of critical thinking remains high (94 percent versus 96 percent), as does belief that these skills are generally lacking in society at large. Blame, moreover, was spread to many of the same culprits. Slightly more participants blamed technology this time (29 versus 27 percent), while slightly fewer blamed the education system (22 versus 26 percent). 

Respondents were also generally agreed on the importance of teaching critical thinking at all levels. Ninety-five percent thought critical thinking courses should be required at the K-12 level (slightly up from 92 percent); and 91 percent thought they should be required in college (slightly up from 90 percent). (These questions were framed slightly differently from year to year, which could have contributed to the small increases.)

One significant change came over the question of when it is appropriate to start developing critical thinking skills. In our first survey, less than 20 percent of respondents said that early childhood was the ideal time to develop critical thinking skills. This time, 43 percent of respondents did so. As discussed below, this is an encouraging development since research indicates that children become capable of learning how to think critically at a young age. 

In one potentially discouraging difference between the two surveys, our most recent survey saw more respondents indicate that they did less critical thinking since high school (18 percent versus just 4 percent). But similar numbers of respondents indicated their critical thinking skills had deteriorated since high school (23 percent versus 21 percent).

Finally, encouraging points of comparison emerged in responses to questions about particular critical thinking activities. Our most recent survey saw a slight uptick in the number of respondents reporting engagement in activities like collaborating with others, planning on where to get information, seeking out the opinions of those they disagree with, keeping an open mind, and verifying information. (See Appendix 1: Data Tables.)

These results could reflect genuine differences from 2018, in either actual activity or respondents’ sense of the importance of these activities. But demographic differences in age and gender could also be responsible. 

There is reason to believe, however, that demographic differences are not the main factor, since there is no evident correlation between gender and responses in either survey. Meanwhile, in our most recent survey older respondents reported doing these activities less frequently . Since this survey skewed older, it might have been anticipated that respondents would report doing these activities less. But the opposite is the case.

Findings From Teacher Survey

Teachers generally agree with general survey respondents about the importance of critical thinking. Ninety-four percent regard critical thinking as “extremely” or “very important.” 

Teachers, like general survey participants, also share concerns that young people aren’t acquiring the critical thinking skills they need. They worry, in particular, about the impact of technology on their students’ critical thinking skills. In response to a question about how their school’s administration can help them teach critical thinking education more effectively, some teachers said updated technology (along with new textbooks and other materials) would help, but others thought laptops, tablets, and smartphones were inhibiting students’ critical thinking development. 

critical thinking and college students

This is an important point to clarify if we are to better integrate critical thinking into K-12 education. Research strongly suggests that critical thinking skills are best acquired in combination with basic facts in a particular subject area. The idea that critical thinking is a skill that can be effectively taught in isolation from basic facts is mistaken. 

Another common misconception reflected in the teacher survey involves critical thinking and achievement. Although a majority of teachers (52 percent) thought all students benefited from critical thinking instruction, a significant percentage (35) said it primarily benefited high-ability students. 

At Reboot, we believe that all students are capable of critical thinking and will benefit from critical thinking instruction. Critical thinking is, after all, just a refinement of everyday thinking, decision-making, and problem-solving. These are skills all students must have. The key is instilling in our young people both the habits and subject-area knowledge needed to facilitate the improvement and refinement of these skills.

Teachers need more support when it comes to critical thinking instruction. In the survey, educators repeatedly mentioned a lack of resources and updated professional development. In response to a question about how administrators could help teachers teach critical thinking more effectively, one teacher asked for “better tools and materials for teaching us how to teach these things.” 

Others wanted more training, asking directly for additional support in terms of resources and professional training. One educator put it bluntly: “Provide extra professional development to give resources and training on how to do this in multiple disciplines.” 

Media literacy is still not being taught as widely as it should be. Forty-four percent of teachers reported that media literacy courses are not offered at their schools, with just 31 percent reporting required media literacy courses. 

This is despite the fact that teachers, in their open responses, recognized the importance of media literacy, with some suggesting it should be a graduation requirement. Many organizations and some governments, notably   Finland’s , have recognized the media literacy deficit and taken action to address it, but the U.S. education system has been slow to act.

Thinking skills have been valuable in all places and at all times. But with the recent upheavals in communication, information, and media, particularly around the COVID-19 crisis, such skills are perhaps more important than ever. 

Part of the issue is that the production of information has been democratized—no longer vetted by gatekeepers but generated by anyone who has an internet connection and something to say. This has undoubtedly had positive effects, as events and voices come to light that might have previously not emerged. The recording of George Floyd’s killing is one such example. But, at the same time, finding and verifying good information has become much more difficult. 

Technological changes have also put financial pressures on so-called “legacy media” like newspapers and television stations, leading to sometimes precipitous drops in quality, less rigorous fact-checking (in the original sense of the term), and the blending of news reports and opinion pieces. The success of internet articles and videos is too often measured by clicks instead of quality. A stable business model for high-quality public interest journalism remains lacking. And, as biased information and propaganda fills gaps left by shrinking newsrooms, polarization worsens. (1)

Traditional and social media both play into our biases and needs for in-group approval. Online platforms have proven ideal venues for misinformation and manipulation. And distractions abound, damaging attention spans and the quality of debate.

Many hold this digital upheaval at least partially responsible for recent political upheavals around the world. Our media consumption habits increasingly reinforce biases and previously held beliefs, and expose us to only the worst and most inflammatory views from the other side. Demagogues and the simple, emotion-driven ideas they advance thrive in this environment of confusion, isolation, and sensationalism. 

critical thinking and college students

It’s not only our public discourse that suffers. Some studies have suggested that digital media may be partially responsible for rising rates of depression and other mood disorders among the young. (2)

Coping with this fast-paced, distraction-filled world in a healthy and productive manner requires better thinking and better habits of mind, but the online world itself tends to encourage the opposite. This is not to suggest our collective thinking skills were pristine before the internet came along, only that the internet presents challenges to our thinking that we have not seen before and have not yet proven able to meet. 

There are some positive signs, with more attention and resources being devoted to neglected areas of education like civics and media literacy ; organizations trying to address internet-fueled polarization and extremism; and online tools being developed to counter fake news and flawed information. 

But we also need to support the development of more general reasoning skills and habits: in other words, “critical thinking.” 

Critical thinking has long been a staple of K-12 and college education, theoretically, at least, if not always in practice. But the concept can easily appear vague and merely rhetorical without definite ideas and practices attached to it. 

When, for example, is the best age to teach critical thinking? What activities are appropriate? Should basic knowledge be acquired at the same time as critical thinking skills, or separately? Some of these questions remain difficult to answer, but research and practice have gone far in addressing others.

Part of the goal of our survey was to compare general attitudes about critical thinking education—both in the teaching profession and the general public—to what the best and most recent research suggests. If there is to be progress in the development of critical thinking skills across society, it requires not just learning how best to teach critical thinking but diffusing that knowledge widely, especially to parents and educators. 

The surveys were distributed through Amazon’s MTurk Prime service. 

For the general survey, respondents answered a series of questions about critical thinking, followed by a section that asked respondents to estimate how often they do certain things, such as consult more than one source when searching for information. The questions in the “personal habit” section appeared in a randomized order to reduce question ordering effects. Demographic questions appeared at the end of the survey.

For the teacher survey, respondents were all part of a teacher panel created by MTurk Prime. They also answered a series of questions on critical thinking, especially focused on the role of critical thinking in their classrooms. After that, respondents answered a series of questions about how they teach—these questions were also randomized to reduce question ordering effects. Finally, we asked questions related to the role of media literacy in their classrooms.

critical thinking and college students

To maintain consistency with the prior survey and to explore relationships across time, many of the questions remained the same from 2018. In some cases, following best practices in questionnaire design , we revamped questions to improve clarity and increase the validity and reliability of the responses.

For all surveys, only completed responses coming from IP addresses located in the U.S. were analyzed. 1152 respondents completed the general survey; 499 teachers completed the teacher survey.

The complete set of questions for each survey is available upon request

Detailed Findings and Discussion

As summarized above, the survey produced a number of noteworthy findings. One central theme that emerged was a general pessimism about the state of critical thinking and uncertainty about how to improve it. That is, despite the near-universal acknowledgment of the importance of critical thinking, respondents generally think society at large is doing a bad job of cultivating critical thinking skills. Respondents were, moreover, divided about what needs to be done.

Almost all the people surveyed (94 percent) believe that critical thinking is “extremely” or “very important.” But they generally (86 percent) find those skills lacking in the public at large. These numbers don’t come as a huge surprise—and they echo the 2018 results—but they do suggest broad public support for initiatives that advance critical thinking skills, both inside and outside of schools.

Respondents also reported deficits in their own critical thinking training and practices. They tended not to think critical thinking had been a point of emphasis in their own education, with a substantial majority of over 63 percent reporting that they had not studied critical thinking in school. Around 20 percent said their schools had provided no background in critical thinking at all, and another 20 percent said the background in critical thinking they gained from school was only slight.

There were significant differences among age groups in these self-reports. Around half of respondents in both the 0-19 and 20-39 age groups reported having studied critical thinking in school. Those numbers dwindled among older groups, bottoming out at 11 percent among 80 to 100-year-olds.

This result is likely in part due to the increased popularity of the phrase “critical thinking”: prior generations may have spent a substantial amount of time on reasoning skills without it coming under the same vocabulary. The young are also closer to school-age, of course, so may simply have sharper memories of critical thinking activities. But the differences in responses might also reflect genuine differences in education. 

In any case it’s clear that, even recently, many—if not most—students come out of school feeling as if they have not learned how to think critically, despite the fact that there is broad consensus on the importance of these skills. Only around 25 percent of respondents reported receiving an “extremely” or “very” strong background in critical thinking from their schools. 

There are a number of potential causes—technology, social norms, misguided educational priorities—but perhaps the most salient is that, as cognitive scientist Tim van Gelder puts it, “critical thinking is hard.” As van Gelder emphasizes, we don’t naturally think reasonably and rationally; instead we tend to rely on narrative, emotion, and intuition—what feels right. (3)   Teaching students to think critically requires much more guidance and practice, throughout the curriculum, than is currently being provided. 

There is broad support among the public and among teachers for critical thinking education, both at the K-12 and collegiate levels. 

Around 90 percent of respondents in the general public said that courses covering critical thinking should be required at the K-12 level, while 94 percent of teachers said critical thinking is important.

And schools usually echo this sentiment as well, citing the phrase “critical thinking” frequently in curricula and other materials. But it remains unclear if, in practice, critical thinking is really the priority it’s made out to be rhetorically.

One problem is a tendency to think critical thinking and reasoning are too complex for younger students to tackle. But research has shown that children start reasoning logically at a very young age. (4)   Critical thinking through activities like open-ended dialogue, weighing opposing perspectives, and backing up opinions with reasoning can have a positive effect even at the K-5 level. For example, philosophy for kids courses have shown some  positive effects on students’ reading and math skills (gains were even more substantial for disadvantaged students). (5)

Our survey respondents generally agreed that critical thinking skills should be taught from an early age. Forty-three percent favored beginning critical thinking instruction during early childhood (another 27 percent favored beginning at ages 6-12). This was more than a twofold increase over the results from 2018’s survey, in which just 20 percent thought it was best to begin instruction in critical thinking before the age of 6. This increase is encouraging since it’s consistent with recent research that understands critical thinking as part of general cognitive development that starts even before children enter school. (6)

Many teachers likewise support critical thinking instruction beginning at a young age. In the open response, for example, one wrote, “Critical thinking should be explicitly taught in earlier grades than late middle school and high school.” 

critical thinking and college students

Another wrote: “By the time students get to high school they should have this skill [critical thinking] well tuned. The pressure to meet standards earlier and earlier makes it harder to teach basic skills like critical thinking.” 

Many teachers (55 percent) also thought the emphasis on standardized testing has made it more difficult to incorporate critical thinking instruction in the classroom. For example, one wrote, “Standardized testing has created an environment of quantitative results that don’t always represent qualitative gains.” 

Moreover, a plurality of teachers (25 percent) believe that state standardized tests do not assess critical thinking skills well at all, while just 13 percent believe they assess critical thinking skills extremely well. Teachers generally (52 percent) believe that their own tests do a better job of measuring critical thinking skills.

The survey also found some worrisome trends—as well as some promising signs—in how people evaluated their own critical thinking skills and daily practices. In particular, individuals don’t do enough to engage people with whom they disagree. 

Given the deficits in critical thinking acquisition during school, it might be hoped that respondents’ critical thinking skills continued to improve after they’ve left school. But only about 55 percent reported that their critical thinking skills had improved since high school, with almost a quarter reporting that their skills had actually deteriorated since then. 

This is especially alarming because thinking critically, unlike say learning about calculus or the Russian Revolution, is generally thought to be a lifelong endeavour. We are supposed to become better with age and experience. Research into adult education suggests that it’s never too late to make gains in critical thinking.  (7)

Questions about respondents’ critical thinking habits brought out more detailed information. Some of these responses were encouraging. People reported using more than one source of information when making a decision at a high rate (around 77 percent said they did this “always” or “often”), giving reason for their opinions (85 percent), supporting their decisions with information (84 percent), and listening to the ideas of those they disagree with (81 percent). Participants generally reported engaging in more critical thinking activities this time than in our initial survey. (See “Comparing Survey Results” above.)

critical thinking and college students

It’s difficult to totally identify the drivers of these figures. After all, all humans are prone to overestimating the amount and quality of reasoning we do when we come to decisions, solve problems, or research information. But, at the very least, these numbers indicate that people acknowledge that these various critical thinking habits are admirable goals to shoot for. 

At the same time and unsurprisingly, these results suggest a reluctance to engage in the more demanding aspects of critical thinking: difficult or unpleasant tasks like seriously considering the possibility that our opponents might be right or thinking carefully about how to approach information-gathering before we engage in it.

Weaknesses in these areas of critical thinking can be especially easily exploited by emotionalized, oversimplified, and sensationalistic news and rhetoric. If people jump in to information-gathering without even a rough plan or method in mind they’re more likely to get swept up by clickbait or worse. 

The current media environment requires a mindful and deliberate approach if it is to be navigated successfully. And one’s own opinions will remain under-nuanced, reactive, and prone to groupthink if they’re influenced by the extreme opinions and caricatures that are often found online and on television instead of by engagement with well-reasoned and well-intentioned perspectives.

Poor media consumption habits can have a distorting effect on our political perceptions, especially. Recent research, for example, has identified wildly inaccurate stereotypes among the general public about the composition of political parties. One study found that “people think that 32% of Democrats are LGBT (versus 6% in reality) and 38% of Republicans earn over $250,000 per year (vs. 2% in reality).” (8) The study also suggested, alarmingly, that “those who pay the most attention to political media may […] also [be] the likeliest to possess the most misinformation about party composition.” (9)

The public is worried about the impact of technology on the acquisition of critical thinking skills. They also blamed deficits in critical thinking on changing societal norms and the education system.

Modern technology was the most cited reason for a lack of critical thinking skills among the general public, with “changing societal norms” coming in a close second. Over 200 respondents also cited the educational system (see chart below).

Graph: why people lack critical thinking skills

A number of the teachers also mentioned potential drawbacks of technology in the classroom environment. For example, in the open response portion of the survey, which allowed teachers to voice general concerns, one teacher wrote: “Get rid of the laptops and tablets and bring back pencil and paper because the students aren’t learning anything using technology.” Another said: “Personal Electronic devices need to be banned in schools.”

In our own work at the Reboot Foundation, the research team found evidence of negative correlations between technology use at schools and achievement. For example, an analysis of data from the National Assessment of Education Progress (NAEP) showed that fourth graders using tablets “in all or almost all” classes performed significantly worse (the equivalent of a full grade level) than their peers who didn’t use them. 

Another recent study the foundation supported also suggested students benefited from using pencil and paper as opposed to technology to do math homework. The Organization for Economic Cooperation and Development found similar results a few years ago in their international study of 15-year-olds and computer usage. (10)

There is a great deal the field still doesn’t know about the effects of different kinds of technology on different kinds of learning. But a growing stock of research suggests that schools should be cautious about introducing technology into classrooms and the lives of students in general, especially young students. (11)

It would also be a mistake to slip into simple Luddism though. Technology, obviously, provides benefits as well—making education more accessible, reducing costs, helping teachers to fine-tune instruction to student needs, to name a few. During the coronavirus crisis, moreover, educators have had no choice but to rely and hopefully help improve these tools.

Still, too often in the past schools have turn ed to technology without properly weighing the costs against the benefits, and without determining whether technology is truly needed or effective. A recent RAND Corporation paper, for example, discussed programs “seeking to implement personalized learning” but without “clearly defined evidence-based models to adopt.” (12)

The Reboot survey suggests that members of the public as well as teachers generally share these concerns, both about educational technology specifically and about the general impact of technology on student learning.

Math teacher at chalkboard

While teachers support critical thinking instruction, they are divided about how to teach it, and some educators have beliefs about critical thinking instruction that conflict with established research.

One central question in the research about how to best instill critical thinking skills in students is whether critical thinking should be taught in conjunction with basic facts and knowledge or separated from it. 

Teachers were split on this question, with 41 percent thinking students should engage in critical thinking practice while learning basic facts, while 42 percent thought students should learn basic facts first then engage in critical thinking practice. A further 16 percent believe that basic facts and critical thinking should be taught separately. (However, only about 13 percent of teachers surveyed say that content knowledge either doesn’t matter at all or only matters slightly for critical thinking skills.)

The view that knowledge and critical thinking skills can and should be taught separately is mistaken. There is a common view that since information is so widely accessible today, learning basic facts is no longer important. According to this view, it’s only cognitive skills that matter. But the two cannot be so neatly divorced as is often assumed. (13)

Research in cognitive science strongly suggests that critical thinking is not the type of skill that can be divorced from content and applied generically to all kinds of different contexts. As cognitive scientist Daniel T. Willingham argues, “The ability to think critically […] depends on domain knowledge and practice.” (14)

This means students need to practice critical thinking in many different kinds of contexts throughout the curriculum as they acquire the background knowledge needed to reason in a given context. There are of course general skills and habits that can be extrapolated from these various kinds of practice, but it is very unlikely that critical thinking can be taught as a skill divorced from content. “It […] makes no sense,” Willingham writes, “to try to teach critical thinking devoid of factual content.”

This doesn’t necessarily mean standalone critical thinking courses should be rejected. Students can still gain a lot from learning about formal logic, for example, and from learning about metacognition and the best research practices. But these standalone courses or programs should include acquisition of basic factual knowledge as well, and the skills and habits learned in them must be applied and reinforced in other courses and contexts.

Students, moreover, should be reminded that being “critical” is an empty slogan unless they have the requisite factual knowledge to make a cogent argument in a given domain. They need background knowledge to be able to seek out evidence from relevant sources, to develop reliable and nuanced interpretations of information, and to back the arguments they want to make with evidence.

Teacher engaging with student

Reboot also asked teachers about which students they thought benefited from critical thinking instruction. A majority (52 percent) thought it benefits all students, but 35 percent said (with the remaining 13 percent thinking it primarily benefits lower-ability students). 

The view that critical thinking instruction is only effective for higher achieving students is another common misconception. Everyone is capable of critical thinking, and even, to a certain extent, engages in critical thinking on their own. The key is for students to develop metacognitive habits and subject-area knowledge so that they can apply critical thought in the right contexts and in the right way. Educators should not assume that lower-achieving students will not benefit from critical thinking instruction. 

Teachers need more support when it comes to critical thinking instruction, though at least some teacher training and professional development programs do seem to help.

In the survey, educators repeatedly mentioned a lack of resources and updated professional development. In response to a question about how administrators could help teachers teach critical thinking more effectively, one teacher asked for “better tools and materials for teaching us how to teach these things.” 

Another said, “Provide opportunities for teachers to collaborate and cross train across subject areas, as well as providing professional development that is not dry or outdated.” Another characteristic comment: “Provide extra professional development to give resources and training on how to do this in multiple disciplines.”

Overall teachers were relatively satisfied that teacher training and professional development programs were helping them teach critical thinking. Forty-six percent said that their teacher training helped them a lot or a great deal, while 50 percent said professional development programs help them a lot or a great deal.

But other teachers reported burdensome administrative tasks and guidelines were getting in the way of teacher autonomy and critical thinking instruction. For example, one teacher wrote, “Earlier in my career I had much more freedom to incorporate instruction of critical thinking into my lessons.”

Media literacy is still not being taught as widely as it should be. 

In our survey, teachers rightly recognized that media literacy is closely bound up with critical thinking. One said, “I believe that media literacy goes hand in hand with critical thinking skills and should be a requirement […] especially due to the increase in use of technology among our youth.” Another offered that “media literacy should be a graduation requirement like economics or government.”

But schools, at least judging by teachers’ responses in the survey, have been slow in prioritizing media literacy. More than 44 percent reported that media literacy courses are not offered at their schools, and just around 30 percent reported that media literacy courses are required. That said, the majority of teachers did report teaching typical media literacy skills occasionally in their classes. 

For example, over 60 percent said that, in at least one class, they “teach students how to distinguish legitimate from illegitimate sources,” and over two-thirds said they “teach students how to find reliable sources.” (15)

Despite the assumption sometimes made that young people (“digital natives”) must be adept navigators of the internet, recent studies have found that students have trouble evaluating the information they consume online. They have problems recognizing bias and misinformation, distinguishing between advertising and legitimate journalism, and verifying information using credible sources. 

Our age is one in which unreliable information proliferates; nefarious interests use the internet to influence public opinion; and social media encourages groupthink, emotional thinking, and pile-on. New skills and training are required to navigate this environment. Our schools must adapt. 

This means generating and implementing specific interventions that help students learn to identify markers of misinformation and develop healthy information-gathering habits. The Reboot Foundation’s own research suggests that even quick and immediate interventions can have a positive impact. But it also means instilling students with life-long critical thinking habits and skills which they’ll be able to apply to an ever-changing media landscape. 

Despite its importance, which is widely acknowledged by the general public, critical thinking remains a somewhat vague and poorly understood concept. Most people realize that it is of vital importance to individual success and educational attainment, as well as to civic life in a liberal democracy. And most seem to realize that 21st-century challenges and changes make acquiring critical thinking skills of even more urgent importance. But when it comes to instilling them in children and developing them in adults, we are, in many ways, still at square one. 

Over the course of the last few decades, K-12 educators have been urged to teach critical thinking, but they have been given conflicting and inconsistent advice on how to do it. There remains a lack of proven resources for them to rely on, a lack of administrative support—and sometimes even a lack of a clear sense of what exactly critical thinking is. Perhaps most importantly, teachers lack the time and freedom within the curriculum to teach these skills.

Elementary school students with teacher

But there have been a number of insights from cognitive science and other disciplines that suggest a way forward. Perhaps the most important is that critical thinking cannot be understood as a skill on par with learning a musical instrument or a foreign language. It is more complicated than those kinds of skills, involving cognitive development in a number of different areas and integrated with general knowledge learned in other subject areas. Critical thinking courses and interventions that ignore this basic fact may produce some gains, but they will not give students the tools to develop their thinking more broadly and apply critical thought to the world outside of school.

College and continuing education deserve attention too. It should be considered a red flag that only 55 percent of respondents didn’t think they’d made any strides in critical thinking skills since high school. Colleges have long been moving away from a traditional liberal arts curriculum . The critical thinking skills acquired across those disciplines have likely suffered as a result. 

In recent years, we’ve seen smart people who should know better time and again exhibit poor judgment online. It is important to remind each other of the importance of stepping back, managing emotions, engaging with others charitably, and seriously considering the possibility that we are wrong. This is especially important when we are searching for information online, an environment that can easily discourage these intellectual virtues. Ramping up media literacy—for both adults and young people—will be a vital part of the solution.

But, ultimately, critical thinking, which touches on so many different aspects of personal and civic life, must be fostered in a multitude of different ways and different domains. A secure, prosperous, and civil future may, quite literally, depend on it.

Appendix 1: Data Tables

When I have a task to do, I collaborate with other people to get ideas.

I plan where to get information on a topic.

[table id=72 /]

I listen to the ideas of others even if I disagree with them.

[table id=73 /]

I keep an open mind to different ideas when making a decision.

[table id=74/]

I make sure the information I use is correct.

[table id=75 /]

I seek out people who tend to have different opinions than me to engage in discussion or debate

[table id=76 /]

To download the PDF of this survey,

(please click here)

(1)* W  Gandour, R. (2016) A new information environment: How digital fragmentation is shaping the way we produce and consume news. Knight Center for Journalism in the Americas. https://knightcenter.utexas.edu/books/NewInfoEnvironmentEnglishLink.pdf (2)* Twenge, J. M., Cooper, A. B., Joiner, T. E., Duffy, M. E., & Binau, S. G. (2019). Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. Journal of Abnormal Psychology .

(3)*  Gelder, T. V. (2005). Teaching critical thinking: Some lessons from cognitive science. College Teaching , 53 (1), 41-48.

(4)*  Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23 , 183-209.

(5)*  Gorard, S., Siddiqui, N., & See, B. H. (2015). Philosophy for Children: Evaluation report and executive summary. Education Endowment Foundation. https://educationendowmentfoundation.org.uk/public/files/ Projects/Evaluation_Reports/EEF_Project_Report_PhilosophyForChildren.pdf

(6)*  Kuhn, D. (1999). A developmental model of critical thinking. Educational researcher , 28 (2), 16-46.

(7)*  Dwyer, C. P., & Walsh, A. (2019). An exploratory quantitative case study of critical thinking development through adult distance learning. Educational Technology Research and Development, 1-19.

(8)*  Ahler, D. J., & Sood, G. (2018). The parties in our heads: Misperceptions about party composition and their consequences. The Journal of Politics, 80 (3), 964-981. 964.

(9)*  Ibid., 965.

(10)*  Organization for Economic Cooperation and Development. (2015). Students, computers and learning: Making the connection . https://doi.org/10.1787/9789264239555-en

(11)*  Madigan, S., Browne, D., Racine, N., Mori, C., & Tough, S. (2019). Association between screen time and children’s performance on a developmental screening test. JAMA pediatrics, 173(3), 244-250.

(12)*  Pane, J. F. (2018). Strategies for implementing personalized learning while evidence and resources are underdeveloped. RAND Corporation. https://www.rand.org/pubs/perspectives/PE314.html

(13)*  Wexler, N. (2019). The knowledge gap: The hidden cause of America’s broken education system–and how to fix it. Avery.

(14)*  Willingham, D. T. (2007). Critical thinking: Why is it so hard to teach? American Federation of Teachers (Summer 2007) 8-19.

(15)*  Wineburg, S., McGrew, S., Breakstone, J., & Ortega, T. (2016). Evaluating information: The cornerstone of civic online reasoning. Stanford Digital Repository, 8, 2018.

please click here.

Privacy Overview

We use cookies on our website to support technical features that enhance your user experience, and to help us improve our website. By continuing to use this website, you accept our privacy policy .

  • Student Login
  • Call Us: 888-549-6755
  • 888-559-6763
  • Search site Search our site Search Now Close
  • Request Info

Skip to Content (Press Enter)

6 Critical Thinking Skills You Need to Master Now

By Will Erstad on 01/22/2018

Important Critical Thinking Skills

No matter what walk of life you come from, what industry you’re interested in pursuing or how much experience you’ve already garnered, we’ve all seen firsthand the importance of critical thinking skills. In fact, lacking such skills can truly make or break a person’s career, as the consequences of one’s inability to process and analyze information effectively can be massive.

“The ability to think critically is more important now than it has ever been,” urges Kris Potrafka , founder and CEO of Music Firsthand. “Everything is at risk if we don’t all learn to think more critically.” If people cannot think critically, he explains, they not only lessen their prospects of climbing the ladder in their respective industries, but they also become easily susceptible to things like fraud and manipulation.

With that in mind, you’re likely wondering what you can do to make sure you’re not one of those people. Developing your critical thinking skills is something that takes concentrated work. It can be best to begin by exploring the definition of critical thinking and the skills it includes—once you do, you can then venture toward the crucial question at hand: How can I improve?

This is no easy task, which is why we aimed to help break down the basic elements of critical thinking and offer suggestions on how you can hone your skills and become a better critical thinker.

What is critical thinking?

Even if you want to be a better critical thinker, it’s hard to improve upon something you can’t define. Critical thinking is the analysis of an issue or situation and the facts, data or evidence related to it. Ideally, critical thinking is to be done objectively—meaning without influence from personal feelings, opinions or biases—and it focuses solely on factual information.

Critical thinking is a skill that allows you to make logical and informed decisions to the best of your ability. For example, a child who has not yet developed such skills might believe the Tooth Fairy left money under their pillow based on stories their parents told them. A critical thinker, however, can quickly conclude that the existence of such a thing is probably unlikely—even if there are a few bucks under their pillow.

6 Crucial critical thinking skills (and how you can improve them)

While there’s no universal standard for what skills are included in the critical thinking process, we’ve boiled it down to the following six. Focusing on these can put you on the path to becoming an exceptional critical thinker.

1. Identification

The first step in the critical thinking process is to identify the situation or problem as well as the factors that may influence it. Once you have a clear picture of the situation and the people, groups or factors that may be influenced, you can then begin to dive deeper into an issue and its potential solutions.

How to improve: When facing any new situation, question or scenario, stop to take a mental inventory of the state of affairs and ask the following questions:

  • Who is doing what?
  • What seems to be the reason for this happening?
  • What are the end results, and how could they change?

2. Research

When comparing arguments about an issue, independent research ability is key. Arguments are meant to be persuasive—that means the facts and figures presented in their favor might be lacking in context or come from questionable sources. The best way to combat this is independent verification; find the source of the information and evaluate.

How to improve: It can be helpful to develop an eye for unsourced claims. Does the person posing the argument offer where they got this information from? If you ask or try to find it yourself and there’s no clear answer, that should be considered a red flag. It’s also important to know that not all sources are equally valid—take the time to learn the difference between popular and scholarly articles .

3. Identifying biases

This skill can be exceedingly difficult, as even the smartest among us can fail to recognize biases. Strong critical thinkers do their best to evaluate information objectively. Think of yourself as a judge in that you want to evaluate the claims of both sides of an argument, but you’ll also need to keep in mind the biases each side may possess.

It is equally important—and arguably more difficult—to learn how to set aside your own personal biases that may cloud your judgment. “Have the courage to debate and argue with your own thoughts and assumptions,” Potrafka encourages. “This is essential for learning to see things from different viewpoints.”

How to improve: “Challenge yourself to identify the evidence that forms your beliefs, and assess whether or not your sources are credible,” offers Ruth Wilson, director of development at Brightmont Academy .

First and foremost, you must be aware that bias exists. When evaluating information or an argument, ask yourself the following:

  • Who does this benefit?
  • Does the source of this information appear to have an agenda?
  • Is the source overlooking, ignoring or leaving out information that doesn’t support its beliefs or claims?
  • Is this source using unnecessary language to sway an audience’s perception of a fact?

4. Inference

The ability to infer and draw conclusions based on the information presented to you is another important skill for mastering critical thinking. Information doesn’t always come with a summary that spells out what it means. You’ll often need to assess the information given and draw conclusions based upon raw data.

The ability to infer allows you to extrapolate and discover potential outcomes when assessing a scenario. It is also important to note that not all inferences will be correct. For example, if you read that someone weighs 260 pounds, you might infer they are overweight or unhealthy. Other data points like height and body composition, however, may alter that conclusion.

How to improve: An inference is an educated guess, and your ability to infer correctly can be polished by making a conscious effort to gather as much information as possible before jumping to conclusions. When faced with a new scenario or situation to evaluate, first try skimming for clues—things like headlines, images and prominently featured statistics—and then make a point to ask yourself what you think is going on.

5. Determining relevance

One of the most challenging parts of thinking critically during a challenging scenario is figuring out what information is the most important for your consideration. In many scenarios, you’ll be presented with information that may seem important, but it may pan out to be only a minor data point to consider.

How to improve: The best way to get better at determining relevance is by establishing a clear direction in what you’re trying to figure out. Are you tasked with finding a solution? Should you be identifying a trend? If you figure out your end goal, you can use this to inform your judgment of what is relevant.

Even with a clear objective, however, it can still be difficult to determine what information is truly relevant. One strategy for combating this is to make a physical list of data points ranked in order of relevance. When you parse it out this way, you’ll likely end up with a list that includes a couple of obviously relevant pieces of information at the top of your list, in addition to some points at the bottom that you can likely disregard. From there, you can narrow your focus on the less clear-cut topics that reside in the middle of your list for further evaluation.

6. Curiosity

It’s incredibly easy to sit back and take everything presented to you at face value, but that can also be also a recipe for disaster when faced with a scenario that requires critical thinking. It’s true that we’re all naturally curious—just ask any parent who has faced an onslaught of “Why?” questions from their child. As we get older, it can be easier to get in the habit of keeping that impulse to ask questions at bay. But that’s not a winning approach for critical thinking.

How to improve: While it might seem like a curious mind is just something you’re born with, you can still train yourself to foster that curiosity productively. All it takes is a conscious effort to ask open-ended questions about the things you see in your everyday life, and you can then invest the time to follow up on these questions.

“Being able to ask open-ended questions is an important skill to develop—and bonus points for being able to probe,” Potrafka says.

Become a better critical thinker

Thinking critically is vital for anyone looking to have a successful college career and a fruitful professional life upon graduation. Your ability to objectively analyze and evaluate complex subjects and situations will always be useful. Unlock your potential by practicing and refining the six critical thinking skills above.

Most professionals credit their time in college as having been crucial in the development of their critical thinking abilities. If you’re looking to improve your skills in a way that can impact your life and career moving forward, higher education is a fantastic venue through which to achieve that. For some of the surefire signs you’re ready to take the next step in your education, visit our article, “ 6 Signs You’re Ready to Be a College Student .”

RELATED ARTICLES:

  • How To Build Your Management Skills
  • 6 Common Concerns of Adult Learners (And Why They Shouldn’t Worry)
  • I Hate My Job … What Should I Do?

EDITOR’S NOTE: This article was originally published in December 2012. It has since been updated.

  • Share on Facebook
  • Share on Twitter
  • Share on Pinterest
  • Share on LinkedIn

Request More Information

Talk with an admissions advisor today.

Fill out the form to receive information about:

  • Program Details and Applying for Classes
  • Financial Aid (for those who qualify)
  • Customized Support Services
  • Detailed Program Plans

There are some errors in the form. Please correct the errors and submit again.

Please enter your first name.

Please enter your last name.

There is an error in email. Make sure your answer has:

  • An "@" symbol
  • A suffix such as ".com", ".edu", etc.

There is an error in phone number. Make sure your answer has:

  • 10 digits with no dashes or spaces
  • No country code (e.g. "1" for USA)

There is an error in ZIP code. Make sure your answer has only 5 digits.

We offer tuition savings for many employers—see if yours is one of them.

Please enter Corporate Employer.

Can’t find your employer? Select "Other Employer Not In List" or "Not Employed".

Please choose a School of study.

Please choose a program.

Please choose a degree.

The program you have selected is not available in your ZIP code. Please select another program or contact an Admissions Advisor (877.530.9600) for help.

The program you have selected requires a nursing license. Please select another program or contact an Admissions Advisor (877.530.9600) for help.

Rasmussen University is not enrolling students in your state at this time.

By selecting "Submit," I authorize Rasmussen University to contact me by email, phone or text message at the number provided. There is no obligation to enroll. This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

About the author

Will Erstad

Will is a Sr. Content Specialist at Collegis Education. He researches and writes student-focused articles on a variety of topics for Rasmussen University. He is passionate about learning and enjoys writing engaging content to help current and future students on their path to a rewarding education.

writer

Posted in Career Search

  • college student tips
  • career advice

Related Content

illustration of a resume with with a man looking confused on it representing  resume gaps

Jordan Jantz | 11.14.2022

illustration of  a woman in a business suit at a track starting line representing entry level job experience requirements

Kalie Debelak | 10.17.2022

image of a individaul with a sweater on one half and a scrubs on the other representing career change advice

Patrick Flavin | 10.10.2022

LinkedIn Advice: 6 Tips for Job Seekers

Jordan Jantz | 09.05.2022

This piece of ad content was created by Rasmussen University to support its educational programs. Rasmussen University may not prepare students for all positions featured within this content. Please visit www.rasmussen.edu/degrees for a list of programs offered. External links provided on rasmussen.edu are for reference only. Rasmussen University does not guarantee, approve, control, or specifically endorse the information or products available on websites linked to, and is not endorsed by website owners, authors and/or organizations referenced. Rasmussen University is accredited by the Higher Learning Commission, an institutional accreditation agency recognized by the U.S. Department of Education.

Educationise

11 Activities That Promote Critical Thinking In The Class

Ignite your child’s curiosity with our exclusive “Learning Adventures Activity Workbook for Kids” a perfect blend of education and adventure!

Critical thinking activities encourage individuals to analyze, evaluate, and synthesize information to develop informed opinions and make reasoned decisions. Engaging in such exercises cultivates intellectual agility, fostering a deeper understanding of complex issues and honing problem-solving skills for navigating an increasingly intricate world. Through critical thinking, individuals empower themselves to challenge assumptions, uncover biases, and constructively contribute to discourse, thereby enriching both personal growth and societal progress.

Critical thinking serves as the cornerstone of effective problem-solving, enabling individuals to dissect challenges, explore diverse perspectives, and devise innovative solutions grounded in logic and evidence. For engaging problem solving activities, read our article problem solving activities that enhance student’s interest.

52 Critical Thinking Flashcards for Problem Solving

What is Critical Thinking?

Critical thinking is a 21st-century skill that enables a person to think rationally and logically in order to reach a plausible conclusion. A critical thinker assesses facts and figures and data objectively and determines what to believe and what not to believe. Critical thinking skills empower a person to decipher complex problems and make impartial and better decisions based on effective information.

More Articles from Educationise

  • 10 Innovative Strategies for Promoting Critical Thinking in the Classroom
  • How to Foster Critical Thinking Skills in Students? Creative Strategies and Real-World Examples
  • 9 Must-Have AI Tools for Teachers to Create Interactive Learning Materials
  • The Future of Education: 8 Predictions for the Next Decade
  • The Latest in EdTech: 5 Innovative Tools and Technologies for the Classroom
  • 8 Free Math Problem Solving Websites and Applications

Importance of Acquiring Critical Thinking Skills

Critical thinking skills cultivate habits of mind such as strategic thinking, skepticism, discerning fallacy from the facts, asking good questions and probing deep into the issues to find the truth. Acquiring critical thinking skills was never as valuable as it is today because of the prevalence of the modern knowledge economy. Today, information and technology are the driving forces behind the global economy. To keep pace with ever-changing technology and new inventions, one has to be flexible enough to embrace changes swiftly.

Today critical thinking skills are one of the most sought-after skills by the companies. In fact, critical thinking skills are paramount not only for active learning and academic achievement but also for the professional career of the students. The lack of critical thinking skills catalyzes memorization of the topics without a deeper insight, egocentrism, closed-mindedness, reduced student interest in the classroom and not being able to make timely and better decisions.

Benefits of Critical Thinking Skills in Education

Certain strategies are more eloquent than others in teaching students how to think critically. Encouraging critical thinking in the class is indispensable for the learning and growth of the students. In this way, we can raise a generation of innovators and thinkers rather than followers. Some of the benefits offered by thinking critically in the classroom are given below:

  • It allows a student to decipher problems and think through the situations in a disciplined and systematic manner
  • Through a critical thinking ability, a student can comprehend the logical correlation between distinct ideas
  • The student is able to rethink and re-justify his beliefs and ideas based on facts and figures
  • Critical thinking skills make the students curious about things around them
  • A student who is a critical thinker is creative and always strives to come up with out of the box solutions to intricate problems

Read our article: How to Foster Critical Thinking Skills in Students? Creative Strategies and Real-World Examples

  • Critical thinking skills assist in the enhanced student learning experience in the classroom and prepares the students for lifelong learning and success
  • The critical thinking process is the foundation of new discoveries and inventions in the world of science and technology
  • The ability to think critically allows the students to think intellectually and enhances their presentation skills, hence they can convey their ideas and thoughts in a logical and convincing manner
  • Critical thinking skills make students a terrific communicator because they have logical reasons behind their ideas

Critical Thinking Lessons and Activities

11 Activities that Promote Critical Thinking in the Class

We have compiled a list of 11 activities that will facilitate you to promote critical thinking abilities in the students. We have also covered problem solving activities that enhance student’s interest in our another article. Click here to read it.

1. Worst Case Scenario

Divide students into teams and introduce each team with a hypothetical challenging scenario. Allocate minimum resources and time to each team and ask them to reach a viable conclusion using those resources. The scenarios can include situations like stranded on an island or stuck in a forest. Students will come up with creative solutions to come out from the imaginary problematic situation they are encountering. Besides encouraging students to think critically, this activity will enhance teamwork, communication and problem-solving skills of the students.

Read our article: 10 Innovative Strategies for Promoting Critical Thinking in the Classroom

2. If You Build It

It is a very flexible game that allows students to think creatively. To start this activity, divide students into groups. Give each group a limited amount of resources such as pipe cleaners, blocks, and marshmallows etc. Every group is supposed to use these resources and construct a certain item such as building, tower or a bridge in a limited time. You can use a variety of materials in the classroom to challenge the students. This activity is helpful in promoting teamwork and creative skills among the students.

It is also one of the classics which can be used in the classroom to encourage critical thinking. Print pictures of objects, animals or concepts and start by telling a unique story about the printed picture. The next student is supposed to continue the story and pass the picture to the other student and so on.

4. Keeping it Real

In this activity, you can ask students to identify a real-world problem in their schools, community or city. After the problem is recognized, students should work in teams to come up with the best possible outcome of that problem.

5. Save the Egg

Make groups of three or four in the class. Ask them to drop an egg from a certain height and think of creative ideas to save the egg from breaking. Students can come up with diverse ideas to conserve the egg like a soft-landing material or any other device. Remember that this activity can get chaotic, so select the area in the school that can be cleaned easily afterward and where there are no chances of damaging the school property.

6. Start a Debate

In this activity, the teacher can act as a facilitator and spark an interesting conversation in the class on any given topic. Give a small introductory speech on an open-ended topic. The topic can be related to current affairs, technological development or a new discovery in the field of science. Encourage students to participate in the debate by expressing their views and ideas on the topic. Conclude the debate with a viable solution or fresh ideas generated during the activity through brainstorming.

7. Create and Invent

This project-based learning activity is best for teaching in the engineering class. Divide students into groups. Present a problem to the students and ask them to build a model or simulate a product using computer animations or graphics that will solve the problem. After students are done with building models, each group is supposed to explain their proposed product to the rest of the class. The primary objective of this activity is to promote creative thinking and problem-solving skills among the students.

8. Select from Alternatives

This activity can be used in computer science, engineering or any of the STEM (Science, Technology, Engineering, Mathematics) classes. Introduce a variety of alternatives such as different formulas for solving the same problem, different computer codes, product designs or distinct explanations of the same topic.

Form groups in the class and ask them to select the best alternative. Each group will then explain its chosen alternative to the rest of the class with reasonable justification of its preference. During the process, the rest of the class can participate by asking questions from the group. This activity is very helpful in nurturing logical thinking and analytical skills among the students.

9. Reading and Critiquing

Present an article from a journal related to any topic that you are teaching. Ask the students to read the article critically and evaluate strengths and weaknesses in the article. Students can write about what they think about the article, any misleading statement or biases of the author and critique it by using their own judgments.

In this way, students can challenge the fallacies and rationality of judgments in the article. Hence, they can use their own thinking to come up with novel ideas pertaining to the topic.

10. Think Pair Share

In this activity, students will come up with their own questions. Make pairs or groups in the class and ask the students to discuss the questions together. The activity will be useful if the teacher gives students a topic on which the question should be based.

For example, if the teacher is teaching biology, the questions of the students can be based on reverse osmosis, human heart, respiratory system and so on. This activity drives student engagement and supports higher-order thinking skills among students.

11. Big Paper – Silent Conversation

Silence is a great way to slow down thinking and promote deep reflection on any subject. Present a driving question to the students and divide them into groups. The students will discuss the question with their teammates and brainstorm their ideas on a big paper. After reflection and discussion, students can write their findings in silence. This is a great learning activity for students who are introverts and love to ruminate silently rather than thinking aloud.

Finally, for students with critical thinking, you can go to GS-JJ.co m to customize exclusive rewards, which not only enlivens the classroom, but also promotes the development and training of students for critical thinking.

rafia shabbir

Share this:

Discover more from educationise.

Subscribe to get the latest posts sent to your email.

Type your email…

4 thoughts on “ 11 Activities That Promote Critical Thinking In The Class ”

  • Pingback: What is Growth Mindset? 50+ Motivational Quotes on Growth Mindset - Educationise
  • Pingback: 6 Steps To Implement Project-Based Learning In The Classroom - Educationise
  • Pingback: Engaging Problem-Solving Activities That Spark Student Interest - Educationise

Thanks for the great article! Especially with the post-pandemic learning gap, these critical thinking skills are essential! It’s also important to teach them a growth mindset. If you are interested in that, please check out The Teachers’ Blog!

Leave a Reply Cancel reply

Subscribe now to keep reading and get access to the full archive.

Continue reading

critical thinking and college students

AI and Critical Thinking: a Resource for Faculty

  • AI, Honor Code and Course Policies
  • Assignments that help students think critically
  • Sample Lesson Ideas
  • AI Focused Journals
  • A conversation with Chat GPT
  • A Conversation with Claude.ai

Tips on using AI ethically

  • Helpful Readings recommended by other faculty

Tips to help student understand and think about their use of AI

Here are some tips for college students on how to use AI ethically when writing papers:

  • Use AI for brainstorming and research
  • Generate topic ideas or potential thesis statements
  • Find relevant sources or key search terms
  • Summarize background information on a topic
  • Cite AI properly if used
  • If you directly quote or paraphrase AI-generated text, cite it like any other source
  • Example format: (Claude AI Assistant, Anthropic, 2023)
  • Check your institution's specific guidelines on citing AI
  • Always write in your own words
  • Use AI insights as a starting point, but express ideas in your own voice
  • Avoid copying AI text verbatim into your paper
  • Focus on higher-order thinking
  • Use AI for lower-level tasks like checking grammar or formatting citations
  • Reserve analysis, argumentation, and drawing conclusions for yourself
  • Ask your professor
  • Policies on AI use vary, so get clarity on what's allowed in each class
  • Some professors may permit specific AI tools or have assignments that incorporate them
  • Use AI to enhance understanding, not bypass it
  • Have the AI explain concepts you're struggling with
  • Ask it to simplify complex texts you're reading
  • Use it to quiz yourself on the material
  • Be transparent
  • If you use AI in any capacity, consider noting this in a footnote or your process notes
  • Honesty is better than risking accusations of cheating
  • Respect the honor code
  • Remember that unauthorized aid on papers, even from an AI, may violate academic integrity policies
  • The consequences of cheating can be severe, so err on the side of caution
  • Leverage AI for editing, not generating
  • Use tools to spot grammar, spelling, clarity, or structure issues
  • But make sure all substantive content comes from you
  • Keep developing your skills
  • Don't let AI become a crutch that hinders your growth as a writer and thinker
  • The goal of education is learning, not just completing assignments

The key is to use AI in ways that support your learning and comply with academic standards - enhancing your work rather than replacing your efforts. When in doubt, discuss it with your instructor. They can provide guidance specific to their course and assignment.

  • << Previous: A Conversation with Claude.ai
  • Next: Helpful Readings recommended by other faculty >>
  • Last Updated: Aug 20, 2024 11:03 AM
  • URL: https://slulibrary.saintleo.edu/libraryai
  • Student Success
  • Health & Wellness

Survey: Getting a Grip on the Student Mental Health Crisis

Recent Student Voice survey data from Inside Higher Ed finds large numbers of students are experiencing poor mental health, but is this a generational shift or a larger systemic problem in higher education?

By  Ashley Mowreader

You have / 5 articles left. Sign up for a free account or log in.

A student sits alone on a bench, facing away from the camera

Student mental health concerns and demand for mental health services have both grown—is this a crisis, and what does that mean for colleges and universities?

FotoDuets/iStock/Getty Images Plus

Over the past decade, student mental health has grown as a retention concern for higher education leaders as young people nationally report higher rates of anxiety, depression , loneliness and suicidal ideation .

Recent data from Inside Higher Ed ’s 2024 Student Voice survey of 5,025 undergraduates, conducted by Generation Lab in May, found two in five students say their mental health is impacting their ability to focus, learn and perform academically “a great deal,” and one in 10 students rate their mental health as “poor.”

While states and institutions have invested unprecedented dollars and resources into improving student wellness, identifying the source of college students’ declining mental wellness rates is a challenge for administrators and learners alike.

Inside Higher Ed asked students and college presidents what factors are driving an increased demand for mental health services on college campuses, and the results from the two surveys highlight generational differences in language around mental health, the power of online spaces and the need for a communitywide focus on wellness.

Methodology

Inside Higher Ed ’s annual Student Voice survey was fielded in May in partnership with Generation Lab and had 5,025 total student respondents.

The sample includes over 3,500 four-year students and 1,400 two-year students. Over one-third of respondents are post-traditional (attending a two-year institution or 25 or older in age), 16 percent are exclusively online learners, and 40 percent are first-generation students. Over half (52 percent) of respondents are white, 15 percent are Hispanic, 14 percent are Asian American or Pacific Islanders, 11 percent are Black, and 8 percent are another race (international student or two or more races).

The complete data set, with interactive visualizations, is available here . In addition to questions about health and wellness , the survey asked students about their academics , college experience and preparation for life after college.

Survey says: When asked what factors are the biggest drivers of the “college mental health crisis” or high demand for student mental health services in recent years, 42 percent of Student Voice respondents said the need to balance personal, economic and family duties with schoolwork. ( This was also the No. 1 stressor students reported in the survey ).

Other top drivers, as reported by students, include increased academic stress (37 percent), prevalence of social media (33 percent) and an increase in loneliness (29 percent). Around one-quarter of respondents believe current economic events and generational differences in how students cope with stress are significant factors in the student mental health crisis.

College presidents, on the other hand, pointed to generational changes in the student experience. Inside Higher Ed ’s 2024 Presidents Survey found 86 percent of college leaders (n=362) believe social media is very or extremely influential in the demand for mental health services, followed by decreased socialization skills caused by COVID-19 (74 percent), loneliness (68 percent), pre-existing mental health conditions (62 percent), declining student resilience (62 percent) and the need to balance personal, economic and family duties with schoolwork (59 percent). Only 42 percent of presidents thought academic stress was highly influential.

Mental health experts say these results aren’t entirely off base, with changing demographics of learners in higher education and a growing consciousness of larger societal issues.

“If you ask administrators like me, we’re used to the traditional, normal college student development issues, which is what the college students are saying is what’s hard,” explains James Raper, vice president for health, well-being, access and prevention at Emory University. “‘How do I learn to be a more full human and take all those responsibilities on and be at a university and figure out how to hold that down?’”

At the same time, college leaders should understand that the nature of being a young adult has changed, which impacts students’ mental health.

“Young people are dealing with a completely different world than we were when we were younger,” says Laura Erickson-Schroth, chief medical officer at the Jed Foundation. “Some of the same stressors exist, of course—there are always going to be things going on in your family or with relationships. But young people are thinking about a lot of things that didn’t exist.”

Some of those worries are external, such as climate change, racial justice, reproductive rights, campus protests and anti-LGBTQ+ legislation. Others are more personal, such as a global rise in loneliness among young people and teens spending less time in person with their friends outside of school.

What’s in a crisis? A 2022 survey by TimelyCare (formerly TimelyMD) found 88 percent of college students believe there is a mental health crisis on college campuses.

Doug Everhart, director of student wellness and health promotion at the University of California, Irvine, pushes back against the idea of a crisis, because “language is what helps perpetuate this whole issue,” he says. “We keep saying ‘mental health crisis,’ and we perpetuate that thought by continuing to label it that way.”

For better or for worse, language around mental health has changed as health care professionals and other advocates have worked to address the stigma of mental illness.

Editors’ Picks

When professors partner with police.

  • Re: Your Recent Email to Your Professor
  • Barely Getting By

“Part of this mental health crisis that we’re all talking about on campus is a definitional one,” says Melissa Saunders, assistant director for clinical services at the University of North Carolina at Chapel Hill. “Because the term ‘mental health,’ which used to refer to traditional mental illness, like a mood disorder or something significant, has now been used much more broadly, to refer to mental and emotional discomfort that comes from the ordinary stressors of life.”

As language around mental health evolves to be more inclusive and widespread, young people are more comfortable talking about mental health. Active Minds is one example of this work, bringing together student advocates on campuses across the country to discuss mental health and provide peer support.

“We are an organization that is led by young people, so if young people are telling us that they’re in a mental health crisis, we believe them first and foremost,” says Trace Terrell, higher education and policy intern for Active Minds. “If that’s their experience, then we’re going to address their experience directly.”

May data from JED found, among 13- to 17-year-olds, stigma is not a top concern in seeking mental health care. Among Student Voice respondents, 16 percent say the destigmatization of seeking mental health services is one of the drivers of increased demand for support.

Data on students with disabilities finds there is a greater number of students receiving accommodations for mental and emotional disabilities. A May report from the U.S. Government Accountability Office found the number of postsecondary students with depression increased 226 percent from 2004 to 2020. A 2022 U.S. Department of Health and Human Services study found the number of children (ages 3 to 17) diagnosed with anxiety and depression grew by around 29 percent and 27 percent, respectively.

Only 12 percent of Student Voice participants say “more pre-existing health conditions” is one of the biggest drivers of the college mental health crisis. Fifteen percent point to a rise in self-diagnoses.

The role of social media: One in three Student Voice respondents believe social media has played a role in the rise of the college student mental health crisis, compared to 86 percent of presidents.

On the plus side, social media can be a space for students to connect with one another, find support and learn more about their interests or world events. It’s also an accepted norm in today’s culture.

“We all use social media all the time,” Erickson-Schroth says. “It’s the water we swim in at this point. We live our lives online in so many ways.”

Raper believes the challenges with students and social media go deeper than scrolling Instagram or Facebook.

“Forget the function of social media itself on a phone, but the presence of constant information in our brains, on developing brains, makes it harder,” Raper says. “Whether you’re exposed to that first when you’re 8 [years old] or 30, it makes it harder to do the normal life things.”

Electronic stimuli can make it challenging to engage in healthy mental practices, such as mindfulness and contemplative practices. Teaching those skills is a priority for Raper and his team, he says. “They need to catch up—that’s been harder for them, that ability to be bored.”

In normalizing mental health concerns, social media has been both a tool and a detriment, with more learners aware of what mental illness could look like but also more likely to self-determine they have a disorder based on what they see online.

“We have seen a tendency in the last five years or so for students to self-diagnose based on what they’re seeing on TikTok, particularly , but other social medias,” Saunders says. “There’s almost a disorder of the year on TikTok. A couple of years ago, it was autism , and then it was OCD. [Students are] getting a lot of information online, and then matching what they’re feeling at the moment with what they think is a major mental illness, when in fact it’s not.”

Terrell, an undergraduate student at Johns Hopkins, has experienced this firsthand, supporting friends as they struggle with symptoms of poor mental health.

“People can experience anxiety, but having an anxiety disorder is completely different. People can feel sad for long periods of time, but that doesn’t necessarily qualify as depression,” he explains. “It’s really important for us to teach young people how to get it right when they’re talking about it and how to accurately express their emotions.”

A culture of care: Experts agree getting ahead of the mental health crisis takes a community effort, catered to the institution and its students.

“We don’t want to engage just the individual well-being issue,” Raper from Emory says. “It’s not just ‘Go to counseling.’ We have to create a community that supports this.”

JED is seeing “unprecedented numbers” of college campuses reaching out to the organization, looking to make mental health and suicide prevention a priority. “They’re excited to think about this on a large scale in ways that they weren’t before,” Erickson-Schroth says.

The presidents’ survey found 57 percent of leaders agree somewhat or strongly that their institution has enough clinical capacity to meet the mental health needs of their undergraduate population. Seven in 10 respondents also indicate they have invested in wellness facilities or services to promote overall well-being on campus since 2020.

Emory will roll out a new well-being framework in the fall, helping students practice and reflect on eight dimensions of wellness while involving the entire campus community.

UC Irvine is piloting an initiative this fall, as well. It encourages social development of students by creating informal conversation spaces for students, faculty and staff members to engage and bond over shared interests and hobbies.

“Our hypothesis is that it’s going to improve communication, improve relationships and take down these barriers for connection and engagement that currently prevent them from doing [wellness and self-care],” Everhart says.

Active Minds is also working to start conversations with students in middle school, getting ahead of student crises by empowering them with education and programming.

Read more about institutional interventions to support student mental health here.

Two police officers stand alongside a woman in a white button-up shirt. They are looking at a whiteboard.

Universities are leveraging AI to help police overcome bias in crime fighting—while contending with the technology’s

Share This Article

More from health & wellness.

A lecture hall with three students sitting at desks

Funding Student Success: Scholarships for Former Foster Youth

California created a scholarship for students with foster care history attending public, four-year institutions in th

Diverse group of women jogging together on a summer day in public park

Student Wellness Tip: Start a Summer Walking Community

West Virginia University students get together weekly to walk around campus and improve their physical and mental hea

A group of college students move in motion blur before class.

Survey: ‘Everything’ Stresses Students Out. How Can Colleges Help?

Recent Student Voice data from Inside Higher Ed and Generation Lab finds two in five college students say st

  • Become a Member
  • Sign up for Newsletters
  • Learning & Assessment
  • Diversity & Equity
  • Career Development
  • Labor & Unionization
  • Shared Governance
  • Academic Freedom
  • Books & Publishing
  • Financial Aid
  • Residential Life
  • Free Speech
  • Physical & Mental Health
  • Race & Ethnicity
  • Sex & Gender
  • Socioeconomics
  • Traditional-Age
  • Adult & Post-Traditional
  • Teaching & Learning
  • Artificial Intelligence
  • Digital Publishing
  • Data Analytics
  • Administrative Tech
  • Alternative Credentials
  • Financial Health
  • Cost-Cutting
  • Revenue Strategies
  • Academic Programs
  • Physical Campuses
  • Mergers & Collaboration
  • Fundraising
  • Research Universities
  • Regional Public Universities
  • Community Colleges
  • Private Nonprofit Colleges
  • Minority-Serving Institutions
  • Religious Colleges
  • Women's Colleges
  • Specialized Colleges
  • For-Profit Colleges
  • Executive Leadership
  • Trustees & Regents
  • State Oversight
  • Accreditation
  • Politics & Elections
  • Supreme Court
  • Student Aid Policy
  • Science & Research Policy
  • State Policy
  • Colleges & Localities
  • Employee Satisfaction
  • Remote & Flexible Work
  • Staff Issues
  • Study Abroad
  • International Students in U.S.
  • U.S. Colleges in the World
  • Intellectual Affairs
  • Seeking a Faculty Job
  • Advancing in the Faculty
  • Seeking an Administrative Job
  • Advancing as an Administrator
  • Beyond Transfer
  • Call to Action
  • Confessions of a Community College Dean
  • Higher Ed Gamma
  • Higher Ed Policy
  • Just Explain It to Me!
  • Just Visiting
  • Law, Policy—and IT?
  • Leadership & StratEDgy
  • Leadership in Higher Education
  • Learning Innovation
  • Online: Trending Now
  • Resident Scholar
  • University of Venus
  • Student Voice
  • Academic Life
  • The College Experience
  • Life After College
  • Academic Minute
  • Weekly Wisdom
  • Reports & Data
  • Quick Takes
  • Advertising & Marketing
  • Consulting Services
  • Data & Insights
  • Hiring & Jobs
  • Event Partnerships

4 /5 Articles remaining this month.

Sign up for a free account or log in.

  • Sign Up, It’s FREE

A business journal from the Wharton School of the University of Pennsylvania

How We Can Harness AI to Fulfill Our Potential

August 20, 2024 • 6 min read.

Visiting scholar Cornelia Walther explains the four assets you need to protect your personal agency and critical thinking skills as AI becomes a bigger part of our lives.

Woman gazing thoughtfully at a large digital screen. How can we harness AI to fulfill our potential?

The following article was written by Dr. Cornelia C. Walther , a visiting scholar at Wharton and director of global alliance POZE . A humanitarian practitioner who spent over 20 years at the United Nations, Walther’s current research focuses on leveraging AI for social good.

The rapid advancement of artificial intelligence has brought immense potential to revolutionize our lives, from automating mundane tasks to offering unprecedented insights and predictions. However, as we increasingly integrate AI into our daily routines and decision-making processes, there is a growing risk of delegating too much of our cognitive autonomy. This shift can lead to overreliance on AI, diminishing our ability to think critically, make independent judgments, and maintain a sense of personal agency. Stanford studies have shown that when individuals rely excessively on AI, they tend to experience a reduction in cognitive engagement and decision-making capabilities ​.

AI’s allure lies in processing vast amounts of data and performing complex calculations far beyond human capabilities. Initially, this technology serves as a valuable tool, enhancing our productivity and aiding in various domains. As utilization turns into reliance, we may begin to trust AI systems more than our own judgment, leading to a passive acceptance of AI-driven outcomes. This transition can eventually evolve into dependency, where AI’s influence over our decisions becomes so pervasive that we lose the ability to operate independently.

A study published by the MIT Sloan School of Management highlights the dangers of this dependency. Overreliance on AI in decision-making processes can lead to a decrease in critical thinking and problem-solving skills among professionals​. Vigilance toward our own mind matters even more now. In addition to the well-known caveats of human thought like bias and prejudice, we are now at risk to slip from AI delegation to AI dependency.

The biggest challenge of the 21st century will be our ability to maintain and enhance our agency amid the growing presence of AI. We can address this challenge by adopting four assets: Attitude, Approach, Ability, and Aspiration.

1. Attitude : Cultivating Awareness, Appreciation, Acceptance, and Accountability

To counteract the risks associated with AI dependency, we can start by adopting a specific attitude. This involves cultivating awareness of the capabilities and limitations of both AI and humans, appreciating their respective potential, accepting the responsibility to use AI ethically, and holding ourselves accountable for the decisions made with AI assistance. A word on each:

Awareness: Understanding the scope and constraints of our own minds — and of AI — helps us set realistic expectations and avoid blind trust in its outputs. Awareness involves mindfulness, staying informed about AI developments, and being critical of the data and algorithms that drive these systems.

Appreciation: Recognizing what makes us unique as human beings and how AI might serve us in complementarity makes it possible to harness technological benefits while retaining our critical faculties. Appreciation involves acknowledging AI’s contributions to efficiency and innovation, but not at the expense of our judgment and free will.

Acceptance: Embracing the ethical implications of AI usage means accepting our role in ensuring these technologies are used responsibly. This includes being vigilant about the biases of humans and algorithms, and the ethical concerns in AI applications that reflect those.

Accountability: Holding ourselves accountable for AI-driven decisions ensures that we remain active participants in the decision-making process. Accountability involves regularly evaluating AI’s impact on our choices and adjusting as necessary. Ultimately, we are responsible for the outcomes that derive from the technology in our lives.

(All of these come together in the “A-Frame,” a concept that is explored further in this forthcoming book .)

2. Approach: Aligning Aspirations to Values and Actions

The second asset involves adopting an approach whereby we align our aspirations with our values and actions. This means ensuring that our use of AI reflects our personal and societal values and that our actions are consistent with these principles.

Aligning Aspirations to Values: Our goals in using AI should align with our core values, such as fairness, transparency, and inclusivity. This alignment helps prevent the misuse of AI and ensures that its deployment serves the greater good.

Aligning Values to Actions: Translating our values into concrete actions is crucial for maintaining agency. This involves implementing ethical guidelines and practices in AI usage, advocating for responsible AI policies, and participating in discussions about AI’s societal impact.

3. Ability: Developing “Double Literacy,” or Brain Literacy and Algorithmic Literacy

To preserve our agency amid AI, we must develop “ double literacy ”: a 360-degree understanding of both our own cognitive processes (brain literacy) and the mechanisms behind AI systems (algorithmic literacy) and how they interplay.

Brain Literacy: By understanding how our brains work, we can better recognize when AI might be influencing our decisions and take steps to mitigate this influence. Brain literacy involves being aware of cognitive biases and the ways in which AI can exploit these biases.

Algorithmic Literacy: Knowing how AI algorithms function allows us to critically assess their outputs and identify potential flaws or biases. Algorithmic literacy involves learning about the data, models, and assumptions that underpin AI systems and using this knowledge to make informed decisions.

Both types of literacy must be embedded in a holistic understanding of people and planet, and the kaleidoscope of constant change in which technology is increasingly omnipresent. AI holds the promise to enhance our lives, at work and at home. Whether it fulfills that promise depends on our ability to understand what it is (not) and who we are (not).

4. Aspiration: Embracing the Vision of a Society where Everyone Gets a Chance to Fulfill Their Potential

We have grown used to a world where only the strongest survive and resources are limited. What if we shifted our focus from scarcity to abundance, and from judgment to curiosity?

AI might serve as an ally in exploring unknown parts of our own frame of mind and expanding existing resources, whether it is knowledge or material assets to make all ends meet. Whether we are moving toward an age of abundance or perpetrating the status quo of scarcity depends on our Attitude, Approach, and the Action that we take — but most importantly, it depends on the Aspiration that underpins them, online and offline.

It is a slippery slope from experimentation with AI, to regular use of AI, to reliance and full-blown AI addiction. Hence our biggest challenge today is to consciously curate our cognitive autonomy and the power of personal agency that depends on it. By investing in cognitive autonomy, we are positioning ourselves for a journey where we remain the masters of our own decisions.

Read more of Walther’s thought leadership about agency amid AI on Forbes and check out her books here .

More From Knowledge at Wharton

critical thinking and college students

School Is Back in Session. What Role Will AI Be Playing in a Student’s Education?

critical thinking and college students

What Will AI in Education Look Like? | Christian Terwiesch

critical thinking and college students

Can the Mobile Wave Help Us Navigate the AI Wave?

Looking for more insights.

Sign up to stay informed about our latest article releases.

IMAGES

  1. Critical Thinking Skills For College Students

    critical thinking and college students

  2. Critical Thinking for College Students

    critical thinking and college students

  3. Critical Thinking Games For College Students

    critical thinking and college students

  4. How College Students Can Have Critical Thinking Process?

    critical thinking and college students

  5. 20 tips tp improve students critical thinking skills

    critical thinking and college students

  6. Critical Thinking

    critical thinking and college students

COMMENTS

  1. Developing Critical Thinking

    The Harvard EdCast is a weekly series of podcasts, available on the Harvard University iT unes U page, that features a 15-20 minute conversation with thought leaders in the field of education from across the country and around the world. Hosted by Matt Weber and co-produced by Jill Anderson, the Harvard EdCast is a space for educational ...

  2. Does College Teach Critical Thinking? A Meta-Analysis

    Even without explicit attempts to foster critical thinking, there is certainly a widespread perception that college breeds critical thinkers. Tsui (1998) reported that 92% of students in a large multi-institution study believed they had made some gains in critical thinking, and 39.3% thought their critical thinking had grown much stronger. Only 8.9% believed it had not changed or had grown weaker.

  3. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  4. Critical thinking for college, career, and citizenship

    Critical thinking is using the skills or strategies that that are most likely to lead to a desired outcome. It is purposeful, reasoned, and goal-directed. It is the sort of thinking we should be ...

  5. Frontiers

    Around 92% of students in multi-institution research reported gains in critical thinking. Only 8.9% of students believed that their critical thinking had not changed or had grown weaker . A more recent meta-analysis by Huber and Kuncel (2016) found that students make substantial gains in critical thinking during college. In addition, the ...

  6. Bridging critical thinking and transformative learning: The role of

    Although students can respond to a perspective-taking exercise in a variety of ways, I argue that instructors ought to prioritize the development of students' critical thinking skills rather than directing them toward particular transformative beliefs. In Part 3, I apply this theoretical account of perspective-taking to higher education.

  7. Teaching students to think critically (opinion)

    Teaching Students to Think Critically. Just as enough consensus exists about what critical thinking is, so too we have adequate agreement regarding how critical thinking is best taught. Research shows that elements of critical thinking need to be taught explicitly, rather than assumed to come along for the ride when thoughtful teachers run ...

  8. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  9. The State of Critical Thinking Today

    Most college faculty don't realize that they lack a substantive concept of critical thinking, believe that they sufficiently understand it, and assume they are already teaching students it. Lecture, rote memorization, and (largely ineffective) short-term study habits are still the norm in college instruction and learning today.

  10. How to Develop Critical Thinking Skills Before College

    Here are six ways high school students can develop critical-thinking skills before college: Build your domain-specific skillset. Conduct experiments. Question your presumptions. Read books written ...

  11. Assessing Critical Thinking in Higher Education: Current State and

    The CAAP Critical Thinking measures students' skills in analyzing elements of an argument, evaluating an argument, and extending arguments (CAAP Program Management, 2012) ... 2010) are great examples of how a common framework can be created to align expectations about college students' critical thinking skills. While one should pay attention to ...

  12. Critical thinking

    Critical thinking is the art of making clear, reasoned judgements based on interpreting, understanding, applying and synthesising evidence gathered from observation, reading and experimentation. Essential Study Skills: The Complete Guide to Success at University (4th ed.) London: SAGE, p94. Being critical does not just mean finding fault.

  13. The development of critical thinking: what university students have to

    Here, we argue that student voice in critical thinking research has not received enough attention and that student perspectives can contribute to its theories of teaching and learning. The research was conducted by three undergraduate authors and examine what fellow students had to say about developing critical thinking. An empirical model ...

  14. Enhancing College Students' Critical Thinking: A Review of Studies

    Twenty-seven studies are reviewed that investigate the effect of instructional methods, courses, programs, and general college experiences on changes in college students'. critical thinking. Only two studies used true experimental designs; most were nonequiva-. lent pretest-posttest control group designs.

  15. College and University Students

    In the articles below, as well as the bundle and thinker's guide set we recommend for college and university students, we introduce you to the tools of mind you need to reason well through the problems and issues you face, whether in the classroom, in your personal life, or in your professional life. If you take these ideas seriously, you could ...

  16. Developing college students' critical thinking through reflective

    This research focuses on fostering college students' critical thinking through reflective writing. During an 18-week study, a total of 60 English majors were recruited. Both quantitative and qualitative data was collected, including 1) the pre- and post-tests of the 5-point Likert scale Reflection Questionnaire, and 2) nine students ...

  17. Applying Critical and Creative Thinking Skills in College and Everyday

    Critical thinking is the active, persistent and careful consideration of a belief or form of knowledge. Every time students use evidence to form judgements, analyze the ideas or conditions that support conclusions, and evaluate their own thinking, they engage their critical thinking skills.

  18. Thinking Critically in College: The Essential Handbook for Student

    Thinking Critically in College presents a clear roadmap for the motivated student to succeed in the transition from high school to college. The skills discussed in this book are often given short shrift in K-12 education, and I would expect are now even less developed in high school students due to the disruption caused by the COVID-19 pandemic.

  19. Critical Thinking & Problem-Solving

    Critical Thinking. As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities.

  20. Critical Thinking Lessons

    TED-Ed lessons on the subject Critical Thinking. TED-Ed celebrates the ideas of teachers and students around the world. Discover hundreds of animated lessons, create customized lessons, and share your big ideas. ... Can you outsmart the college admissions fallacy? Lesson duration 06:17 836,620 Views. 05:23. Mathematics Can you solve the ...

  21. Influences affecting the development of students' critical thinking

    This study estimates the relative and unique effects on changes in critical thinking of three dimensions of students' college experience: curricular exposure, formal classroom and instructional experiences, and out-of-class experiences. Students' classroom/instructional and out-of-class experiences both make positive, statistically significant, and unique contributions to gains in critical ...

  22. The Emerging Crisis in Critical Thinking

    Cognition The Emerging Crisis in Critical Thinking Today's college students all too often struggle with real-world problem-solving. Posted March 21, 2017 | Reviewed by Ekua Hagan

  23. The State of Critical Thinking in 2020

    A very high majority of people surveyed (94 percent) believe that critical thinking is "extremely" or "very important.". But they generally (86 percent) find those skills lacking in the public at large. Indeed, 60 percent of the respondents reported not having studied critical thinking in school.

  24. 6 Critical Thinking Skills You Need to Master Now

    Critical thinking is a skill that allows you to make logical and informed decisions to the best of your ability. For example, a child who has not yet developed such skills might believe the Tooth Fairy left money under their pillow based on stories their parents told them. A critical thinker, however, can quickly conclude that the existence of ...

  25. 10 Great Critical Thinking Activities That Engage Your Learners

    Writing (or drawing) and silence are used as tools to slow down thinking and allow for silent reflection, unfiltered. By using silence and writing, learners can focus on other viewpoints. This activity uses a driving question, markers, and Big Paper (poster-sized is best).

  26. 11 Activities That Promote Critical Thinking In The Class

    6. Start a Debate. In this activity, the teacher can act as a facilitator and spark an interesting conversation in the class on any given topic. Give a small introductory speech on an open-ended topic. The topic can be related to current affairs, technological development or a new discovery in the field of science.

  27. LibGuides: AI and Critical Thinking: a Resource for Faculty: Student

    Tips to help student understand and think about their use of AI. Here are some tips for college students on how to use AI ethically when writing papers: Use AI for brainstorming and research; Generate topic ideas or potential thesis statements; Find relevant sources or key search terms; Summarize background information on a topic; Cite AI ...

  28. Experts weigh in on college student mental health crisis

    Methodology. Inside Higher Ed's annual Student Voice survey was fielded in May in partnership with Generation Lab and had 5,025 total student respondents.. The sample includes over 3,500 four-year students and 1,400 two-year students. Over one-third of respondents are post-traditional (attending a two-year institution or 25 or older in age), 16 percent are exclusively online learners, and 40 ...

  29. Developing Critical Thinking in Biology Through Progressive Writing

    This writing-based introductory science course provided an opportunity for students to learn biology content through writing while also developing critical thinking skills. In this undergraduate introductory biology course, a learning progression framework was applied to writing assignments in order to promote critical thinking.

  30. How We Can Harness AI to Fulfill Our Potential

    Overreliance on AI in decision-making processes can lead to a decrease in critical thinking and problem-solving skills among professionals . Vigilance toward our own mind matters even more now.