Advertisement

Advertisement

The Health Benefits of Exercise and Physical Activity

  • Gastroenterology, Critical Care, and Lifestyle Medicine (SA McClave, Section Editor)
  • Published: 14 July 2016
  • Volume 5 , pages 204–212, ( 2016 )

Cite this article

benefits of exercise essay pdf

  • Keith R. Miller 1 ,
  • Stephen A. McClave 2 ,
  • Melina B. Jampolis 3 ,
  • Ryan T. Hurt 4 ,
  • Kristine Krueger 2 ,
  • Sarah Landes 2 &
  • Bryan Collier 5  

25k Accesses

25 Citations

51 Altmetric

Explore all metrics

Physical inactivity is a modifiable risk factor (similar to dyslipidemia and hypertension) for a variety of chronic diseases, including cancer and cardiovascular disease. Exercise provides a clear health benefit, which serves in the primary and secondary prevention of these disease processes (the most important being a reduction in cardiovascular disease and premature death). The physiologic mechanisms for such a benefit occur at both a cellular and multisystem level. Prolonged periods of occupational or leisure-time sitting have adverse health effects independent of exercise performed before or after. Almost any form of physical activity (PA) is beneficial, whether part of a regular exercise program or as a series of intermittent, incidental, non-purposeful, lifestyle-embedded activity (causing non-exercise activity thermogenesis or NEAT). The health benefits of exercise appear to be dose-dependent. Physicians should recommend near daily exercise which includes at various times strength training, stretching, and aerobic activity in addition to emphasizing adjustments that allow for reduced sitting and increased activity during daily routines. Patients should understand that for optimal health, exercise is no longer optional.

Similar content being viewed by others

benefits of exercise essay pdf

The Influence of Exercise on Cancer Risk, the Tumor Microenvironment and the Treatment of Cancer

benefits of exercise essay pdf

Exercise and Type 2 Diabetes

benefits of exercise essay pdf

International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines

Avoid common mistakes on your manuscript.

Introduction

Physical inactivity is a modifiable risk factor for cardiovascular disease, obesity, depression, cancer, diabetes mellitus, hypertension, and osteoporosis. Physical exercise reduces the risk of premature death and prolongs longevity, and is an important treatment modality in the primary and secondary prevention of the above disorders [ 1 ]. For most states in this country, less than half of the population meets CDC exercise recommendations [ 2 •]. The decline in physical activity (PA) occurs both at work and in leisure time, and may have at least partially contributed to the increase in obesity over the past 30 years. Low recreational physical activities have been associated with a threefold increase for major weight gain in men and a fourfold increase in women [ 3 ]. Surveys of PA across the lifecycle show that physical exercise peaks in the middle high-school age range and begins declining through high school and into adult life. A vicious cycle of decline occurs between inactivity and loss of skeletal muscle mass which accelerates with age. With avoidance of activity requiring effort, there is increased loss of exercise capacity. This loss causes the perception of effort associated with even sub-maximal work to worsen, as the anaerobic threshold decreases. The vicious cycle contributes to further inactivity and deterioration of physical function. The only treatment that can break the cycle is exercise.

Impact of Exercise on Aging

Exercise provides powerful health benefits for quality of life, physical function, and independent living throughout the life cycle. Exercise impedes the aging process and promotes longevity. Observational studies have shown that even in the presence of disease processes such as hypertension (HTN), chronic obstructive pulmonary disease (COPD), diabetes, smoking, high body mass index (BMI), and hypercholesterolemia, increasing PA has a dose-dependent effect in decreasing relative risk of death [ 4 ]. In a study of subjects over a 13-year time period, both baseline fitness, and improvement in physical fitness through exercise and PA was associated with significant increases in longevity [ 4 ]. Functional independence with advanced age relates to the overall level of physical fitness. Physical fitness is most affected by the status of the cardiorespiratory and vascular systems, as well as muscle function [ 5 •].

Garatachea et al. provide an excellent review of the effect of exercise on the physiologic changes associated with aging [ 5 •]. Exercise exerts its positive influence on both a cellular level and at the level of organ systems. At the cellular level, exercise helps reduce genomic instability, epigenetic alteration, loss of proteostasis, dysregulated nutrient sensing, cellular senescence, and altered intracellular communication that leads to inflammation. These effects alter the way the body performs transcellular signaling in the skeletal muscle, the turning on and off of genes through epigenetics, and the manner in which the system manages reactive oxygen species [ 5 •]. On a multisystem level, the benefits of exercise include improvement in brain, cardiovascular, lung, and muscle function, favorable alterations in body composition, and advantageous changes in metabolic responses. The report concludes by suggesting that in the future, pharmaceuticals should be designed which mimic the effects of exercise on the aging process [ 5 •].

Effect of Exercise on Treatment of Disease

Robert Butler from the National Institute on Aging has said that “If exercise could be put in a bottle, it would be the strongest medicine money could buy” [ 6 ]. Exercise helps prevent common chronic diseases (primary prevention), and often plays an important role in the treatment of these disease processes (secondary prevention). Specific benefits from exercise have been seen with cardiovascular disease, stroke, diabetes mellitus, depression, cancer, obesity, and osteoporosis [ 7 , 8 ]

Cardiovascular Disease

Increased levels of PA and physical fitness have a graded effect in reducing the risk of death from cardiovascular disease. The relative risk from all cause and cardiovascular disease mortality is reduced 20–35 % by exercise and PA [ 9 ]. In an observational study, subjects in the lowest quintile of exercise had a relative risk of 3.4 in men and 4.7 in women for death compared to those in the highest quintile [ 10 ]. An increase in activity-related energy expenditure by as little as 1000 kcal or 1 metabolic equivalent (MET)-hour of exercise per week has a mortality benefit of 20 % [ 11 ]. Physically inactive women have a 52 % increase in death, a cardiovascular disease-related death that is doubled, and a cancer-related death rate that is increased by 29 % [ 11 ]. These risks on mortality from inactivity are similar to other modifiable risk factors such as HTN, hypercholesterolemia, and obesity. In randomized controlled trials (RCT)s, exercise and PA are valuable for the secondary prevention of cardiovascular disease. Whereas in the past, traditional recommendations for patients with a heart attack included rest and physical inactivity. Newer information demonstrates that exercise actually attenuates or reverses risk of cardiovascular disease [ 12 ]. The benefit of exercise is seen in cardiac rehabilitation, where increasing PA reduces the risk of premature death following a myocardial infarction [ 12 ]. Added energy expenditure of 1600 kcal/week from exercise may halt the progression of heart disease and energy expenditure of >2200 kcal/week can lead to plaque reduction [ 13 ]. The minimum training recommendation for patients following myocardial infarction is to reach 45 % of their heart rate reserve through cardiac rehabilitation [ 12 , 13 ].

Multiple mechanisms have been identified whereby exercise reduces the risk of premature death [ 4 ]. Exercise affects body composition by decreasing abdominal adiposity and improving weight control. Exercise enhances lipid profiles by reducing serum triglyceride levels, raising HDL, and reducing the LDL/HDL ratio. In addition, a recent meta-analysis showed beneficial changes in lipoprotein subclasses associated with regular exercise including a reduction in small LDL-p and an increase in large LDL-p [ 14 ]. Exercise enhances hemodynamics by decreasing blood pressure, increasing cardiac function, and improving coronary blood flow. Autonomic tone is enhanced and shear stress-mediated endothelial function is improved. Exercise reduces systemic inflammation, as evidenced by reduced C-reactive protein (CRP) levels. Improved psychological well-being in response to exercise is associated with reduced stress, anxiety, and depression [ 4 ].

PA is inversely correlated with risk of incident stroke as shown in a large nurses’ health study [ 15 ]. Habitual exercise reduces risk of stroke by 40–50 % at the highest level of PA. Change in PA is protective against stroke as evidenced by the fact that an increase of 3.5 h of exercise or PA per week is associated with a 29 % reduction in ischemic stroke [ 15 ].

Diabetes Mellitus

Exercise is valuable in both the primary and secondary prevention of diabetes mellitus. Aerobic and resistant-type exercise reduces the likelihood of developing type-2 diabetes mellitus. For each 500 kcal of energy expended per week, there is an associated 6 % reduction in the likelihood of type-2 diabetes (which may be even greater with increasing BMI) [ 16 ]. In patients already diagnosed to have diabetes mellitus, walking 2 h per week is associated with a 39–54 % reduction in all-cause mortality from diabetes mellitus, and a 34–53 % reduction in mortality related to cardiovascular disease [ 17 ]. The benefit of exercise on glycemic control appears to be greater with resistance training than aerobic exercise. A meta-analysis of exercise and PA in diabetes showed that exercise reduces hemoglobin A1C by 0.66 %, an effect similar to intensive glucose-lowering pharmacologic therapy [ 18 ]. The mechanisms by which exercise benefits diabetes relate to the fact that exercise increases glycogen synthetase and hexokinase activity [ 4 ]. Exercise reduces GLUT-4 protein and messenger RNA expression and increases muscle capillary density, which helps improve glucose delivery to the muscle [ 4 ].

Increasing PA, either occupational or at leisure, has been shown to exert a primary preventative effect on two cancers—breast and colon cancer [ 19 ]. Moderate exercise of as little as 4–5 METs (equivalent to mowing the lawn or brisk walking), is required to achieve this effect [ 20 ]. Exercise is associated with a 20–30 % reduction in the incidence of breast cancer in women, and a 30–40 % reduction in the incidence of colon cancer in both men and women [ 20 ]. In those patients already diagnosed to have one of these cancers, exercise reduces the likelihood for cancer recurrence and reduces risk from cancer death by as much as 26–40 % [ 21 ]. PA improves quality of life and overall health status in cancer patients. The mechanisms by which exercise improves risk from cancer may relate to reduced fat stores, an increase in energy expenditure offsetting a high-fat diet, activity-related changes in sex hormone levels, improvement in immune function, and reduced generation of free oxygen radicals [ 4 ].

Osteoporosis

Exercise has a valuable effect in the primary prevention of osteoporosis. Routine PA minimizes age-related bone loss. Weight-bearing exercise (especially resistance exercise) increases bone density compared to low impact non-weight-bearing exercise. Exercise prevents 1 % of bone loss per year, an effect which is greater in post-menopausal than pre-menopausal women [ 22 ]. In RCTs, exercise reduces the risk and number of falls, as well as the risk of fracture [ 22 ]. Even in men, PA reduces the risk of fracture by 62 % over the age of 21 years [ 23 ]. Exercise is also valuable in the secondary prevention of osteoporosis. RCTs in the past have shown that exercise with resistance training increases bone density in older osteoporotic women by as much as 1.4 %, while agility training alone increases bone density by 0.5 % [ 24 ]. Stretching, which was used as sham control, was shown to have no effect on the expected decrease in bone density with age [ 24 ]. In a 12-year follow up of over 60,000 post-menopausal women, risk of hip fracture was lowered 6 % for each increase of three MET-hours per week of activity (the equivalent of walking three miles in 1 h) [ 25 ]. Active women with at least 24 met-hours of exercise per week had a 55 % lower risk of hip fracture than sedentary women with no other exercise. Walking at least 4 h per week was associated with a 41 % lower risk of hip fracture than walking less than one hour per week [ 25 ].

Exercise has a valuable therapeutic effect on the treatment on multiple types of depression, including dysthymic, seasonal, bipolar, post-natal, pre-menstrual, atypical, and major depression [ 26 ]. The value in treating depression comes from an innate anti-depressive effect from exercise. Combining exercise with psychotropic medications achieves better treatment results than the same medications alone [ 26 ]. Exercise is relatively inexpensive, safe, and has minimal side effects when done correctly. Exercise may help reduce the dose of anti-depressive medications required. Subjects are less likely to relapse with an active exercise program [ 26 ].

The patients with depression who are most likely to benefit from exercise include those with age <20 or >40 years, higher education, higher baseline physical status, females, untrained subjects, and those with mild to moderate depression [ 26 ]. There are a number of aspects of exercise that get the optimal results in treating depression including programs that are structured, individually tailored to the patient, low to moderate intensity, when it is used as an adjunct to medication therapy, and exercise that is a combination of aerobic or resistive training performed 3–4 times per week [ 26 ]. The mechanism of effect from exercise on depression occurs on a systemic level as well as a direct effect on central nervous system (CNS) function. Exercise appears to increase serotonin, ACTH, endorphins, and endocannabinoids within the CNS. On a systemic level, exercise increases norepinephrine and reduces cortisol, tumor necrosis factor (TNF), and interleukin-6 [ 26 ].

In a controversial article that appeared in Time magazine in 2009, the journalist John Cloud wrote about “The Myth of Exercise” and its effect on treating obesity [ 27 ]. The article suggested that exercise was not good for weight management in obesity. The author pointed out that exercise leads to increased appetite and intake of food and causes a decrease in non-exercise energy expenditure, and therefore that exercise was a poor strategy for weight loss [ 27 ]. A number of letters to the editor of Time magazine followed the publication of this article, including letters from the American Society for Sports Medicine, arguing that facts were misrepresented and that the article gave the wrong message about the health benefits of exercise.

A recent review by Swift clarified the role of exercise in managing or preventing obesity, and suggested that Cloud’s article was in fact an accurate portrayal of the facts [ 28 ]. The key issue of Swift’s review is that exercise without caloric restriction is unlikely to succeed in weight loss [ 28 ]. Increasing PA can prevent weight gain, but it requires 150–250 min per week of moderate to vigorous exercise or 1200–2000 kcal/week expended through exercise to accomplish this feat [ 29 ]. Aerobic exercise by itself is minimally helpful in promoting weight loss, successful in loss of only 0–2 kg total [ 29 ]. Extreme high-volume aerobic exercise can achieve significant weight loss, but this is usually unsustainable by most obese patients. Moderate intensity, surprisingly, is no different than vigorous intensity in achieving weight loss, unless subjects are matched for exercise duration. Resistance training by itself has no impact on weight loss, and aerobic training combined with resistant training has no greater effect than aerobic training alone. However, adding caloric restriction to aerobic training does result in successful weight loss of 9–13 kg, and higher intensity of exercise has the potential for even greater weight loss [ 29 ]. Some obese subjects do experience weight compensation in response to exercise, defined by the circumstances where less weight is lost than expected with the amount of exercise sustained, often a factor related to an increase in caloric intake [ 28 , 30 ]. This is more likely to occur in women performing 150 % of weekly recommendations (compared to women performing only 100 % or 50 % of weekly recommendations) [ 28 , 30 ]. Even if minimal or no weight loss occurs in response to exercise, obese subjects still benefit from the increase in PA due to increased cardiorespiratory fitness, glucose control, endothelial function, improvements in hyperlipidemia, quality of life, and a reduction in future weight gain [ 28 ].

Caloric restriction is better than exercise for significant weight loss initially, and the weight loss is not necessarily enhanced significantly by adding exercise [ 28 ], although exercise training plus caloric restriction does improve body composition by increasing fat loss and decreasing loss of lean body mass [ 31 ]. The greatest value of exercise in the management of obesity occurs not in the initial weight loss, but in the situation where obese patients have lost weight successfully and now require substantial PA to maintain that weight loss [ 28 ]. Interestingly, an “energy gap” has been identified as the difference in energy expenditure before and after weight loss [ 32 ]. The energy gap is estimated to be approximately 8 kcal per day per pound of weight lost. An energy gap, for example, of 40 lbs lost would be associated with 320 kcal of energy. Sustaining this weight loss successfully would require either a continued reduction in energy consumption by 320 kcal per day, or increasing activity-associated energy expenditure by the same amount [ 32 ]. Based on the Set Point theory, both biological and environmental pressures oppose the strategy of food restriction in keeping weight off, but the same effect does not occur with increased PA [ 32 ]. Therefore, while food restriction is the key to weight loss, PA is the key to successful maintenance of the weight lost [ 32 ]. The ACSM has identified that people who successfully maintain weight loss average at least 250 min of PA per week [ 29 ].

Low Back Pain

A 2016 systematic review and meta-analysis reviewed 23 randomized controlled trials evaluating the prevention of low back pain [ 33 ]. Over 30,000 patients were involved in these studies. Ultimately, the combination of exercise (varying regimens of abdominal strengthening, core stability, cardiovascular, and isometrics) plus education regarding prevention of low back pain was found to reduce the risk of low back pain as well as sick leave related to low back pain. Exercise alone was also found to have an impact but had a more short term effect (<12 months), thought to be due to cessation of exercise following the intervention. Other interventions, including back belts, insoles, and education alone were not found to have any impact [ 33 ].

Not All Exercise is Created Equal

Physical activity versus physical fitness.

The lay public tends to use the terms PA and physical fitness interchangeably, but subtle differences between the two exist. Physical fitness is a physiologic state of being with regard to daily living and/or sports performance [ 4 ]. Physical fitness is comprised of cardiovascular, musculoskeletal, body composition, and metabolic components [ 4 ]. Physical fitness is similar to PA, but is more predictive of health outcomes. For example, a high-fit versus a low-fit person is estimated to have a 50 % lower mortality [ 34 ]. Physical fitness, therefore, becomes a better measure of PA than self-reporting. From a public health standpoint, however, it is better and more productive to encourage the public to be physically active and not push the need to be physically fit. Eventually, increased activity should lead to physical fitness.

In the past, guidelines for optimal health seemed to have had a singular focus on aerobic fitness. But a new paradigm shift has occurred with the addition of the concept of musculoskeletal fitness [ 4 ]. In other words, health status can improve due to increased PA in the absence of changes in aerobic fitness. Regular PA can decrease risk factors from chronic disease and disability without changing cardiac output or oxidative potential, especially in the elderly [ 4 ]. The shift has been to focus on the health benefits of musculoskeletal fitness, which may be a critical factor in the functional threshold for dependence with the aging population. Loss of muscular fitness can result in loss of capacity for daily living, and a cycle of decline can ensue [ 4 ]. Improvement in musculoskeletal function can delay the onset of disability, dependence, and chronic disease [ 35 ]. Musculoskeletal fitness is associated with fewer functional limitations and a reduced incidence of cardiovascular disease, diabetes, degenerative joint disease, and coronary artery disease [ 35 ]. Therefore, resistance training that works all the major muscle groups (including legs, hips, back, abdomen, chest, shoulders, and arms) and flexibility exercise, which are necessary to achieve musculoskeletal fitness, are recommended to be done at least twice weekly, to complement aerobic fitness and optimize overall health status.

Adverse Health Risk from Sitting

In an effort to delineate those factors which contribute to the obesity epidemic, researchers are increasingly focused on the adverse health risk from prolonged sitting [ 36 •]. A newly recognized occupational hazard has evolved because of workers needing to sit at a computer screen throughout the workday. Each mean hour of sitting after a total mean of 7 h per day is associated with a 5 % increase in premature death [ 36 •]. More time sitting at work has been shown to correlate with more sitting in leisure time. Prolonged sitting while watching TV at home, for example, has adverse effects on mental health, well-being, and muscle strength. Long sedentary hours have been linked to a twofold increase in diabetes, a twofold increase in cardiovascular disease, a 13 % increase in the incidence of cancer, and a 17 % increase in mortality related to cancer [ 36 •]. It is estimated that the average worker in the USA and England spends 60–70 % of waking hours in a sedentary sitting position. The effect of sitting has been likened to the transmission of a car. Sitting for such a prolonged period is like putting a car in reverse, causing one’s overall health status to go in the wrong direction [ 36 •]. Approximately 20–30 % of the time is spent in light intensity activity, described as postural changes, standing and movement, or ambulation. For less than 5–10 % of waking hours, individuals spend in moderate to vigorous PA. The adverse effect of sitting on health status is independent of the exercise or PA done before or after [ 36 •]. In other words, no amount of PA later can overcome the negative health effects of prolonged sitting.

Changes in the workplace environment may be the key issue to minimizing the negative effects of prolonged sitting. Particularly, in the UK, recommendations and guidelines have been developed to avoid this health hazard [ 36 •]. Workers are encouraged to accumulate up to 2 h per day at work standing or performing light walking, with the goal to progress ultimately to 4 h per day. Workers should interrupt seat-based work with standing-based work. However, workers should avoid both prolonged periods of standing as well as prolonged periods of sitting. Adaptation of these guidelines may lead to musculoskeletal complaints and fatigue, which should be monitored by managers in the workplace. Such health promotion strategies should eventually extend from the workplace to the leisure time [ 36 •].

Non-Exercise Activity Thermogenesis

Non-exercise activity thermogenesis (NEAT) has been described as unstructured PA, energy expended unrelated to sleeping, eating, or sports exercise. NEAT is energy expended outside of purposeful exercise [ 37 ]. Surprisingly, this incidental, non-purposeful lifestyle-embedded PA can have tremendous health benefits. Three components of NEAT include body posture, ambulation, and all other movements (the most important of which may be fidgeting) [ 38 ]. Researchers involved in the study of obesity are finding that in some cases what delineates the lean subject from an obese one is a difference in NEAT, not exercise-associated activity thermogenesis [ 38 ]. Early experiments which helped identify NEAT came from studies where energy requirements were measured and all subjects were placed on a diet of 1000 cal over requirements [ 39 ]. Subjects were then videotaped, and in a blinded fashion designated as fidgeters or non-fidgeters. At the end of the trial, those patients who were designated as fidgeters failed to gain weight, while those identified to be non-fidgeters sustained significant weight gain. The increase in kilocalories of energy expenditure attributed to NEAT was inversely proportional to fat gain in pounds [ 39 ]. NEAT ranges from 15 % of total energy expenditure (TEE) in sedentary subjects to as much as 50 % of TEE in fidgeting physically active people [ 39 ]. Fidgeting has been shown in twin studies to be genetic, with an estimated >62 % heritability [ 40 ]. Simply standing or lightly ambulating can increase energy expenditure by an average of 350 kcal/day (range 269–477 kcal/day) [ 37 ]. NEAT tends to be greater in men than women, in obese subjects rather than lean, and in those with more education than those with less [ 38 , 39 ]. NEAT tends to be seasonal and overall, declines with age [ 39 ]. The concept of an energy gap is pertinent to NEAT. An average citizen in the USA has been shown to gain 1–2 lbs each year through their adult life. An energy gap of 100 kcal additional energy consumed each day would account for this weight gain [ 41 ]. NEAT can be an important contributor to TEE, such that increases in NEAT of as little as 100–150 kcal of activity per day could prevent such weight gain (by offsetting the energy gap) in the vast majority of people [ 41 ]. Recommendations now suggest that if you were not lucky enough to inherit fidgeting, you should “act like a fidgeter,” standing often, getting up from sitting, pacing, parking at the back of a parking lot, and taking stairs instead of elevators [ 40 ].

Continuous Versus Interval Exercise

Long bouts of continuous exercise as a strategy for weight loss or weight maintenance can be a contentious and challenging recommendation for the general public. Longer duration, continuous exercise may be difficult and not particularly enjoyable for patients and may not fit as well with work or home schedules. Research now has shown that interval exercise, which involves alternating short bouts of high-intensity exercise with lower-intensity exercise that allows for partial recovery, can match the health benefits of continuous exercise [ 42 ]. Studies in patients with class-1 obesity (BMI 30–34.9 kg/m 2 ), walking at a moderate level of intensity, randomized to two 15-min intervals of walking versus one 30-min interval, showed essentially the same improvements in overall health status [ 42 ]. Both intermittent and continuous exercise resulted in improvement of maximum oxygen consumption, body composition, and lipid profiles. In some categories, interval exercise even exceeded the benefit seen with continuous exercise (such as VLDL levels and percent fat lost) [ 42 ]. The value of these findings for intermittent exercise stems from three factors: there is less attrition with recommendations for interval exercise, time constraints, and short periods of interval exercising may allow for greater intensity of PA [ 42 ]. An additional study involving 28 sedentary overweight or obese men compared five 45- to 60-min sessions of continuous moderate intensity cycling per week for 6 weeks with three 20-min sessions of high-intensity interval exercise per week (for a total of 60 min) for 6 weeks. Similar improvements in cardio-metabolic risk factors including improved insulin sensitivity, cardiovascular fitness, and a reduction in blood lipids and body fat percentage were observed in the groups [ 43 ]. While cardiovascular fitness was improved to a greater extent in the continuous exercise group, this study, along with numerous other studies of interval exercise showing similar outcomes in different populations, are encouraging in that they show many of the same improvements in overall health with a substantially reduced time commitment [ 43 ]. This is especially relevant as lack of time is cited as the most common reason for not exercising by many. In addition, interval exercise can be easily adapted to an individual’s starting fitness level by adjusting either the duration or intensity (or both) of the high-intensity component of exercise. This may be especially beneficial for sedentary overweight or obese individuals who are new to exercise. In light of both the potential health and time saving benefits, interval exercise training appears to be an appealing and worthwhile exercise option in addition to, or instead of, continuous exercise. The good news for public health is that short walks on a subject’s lunch break or brief periods of activity before and after work all count, and the sum of their duration may have similar benefits to a single continuous interval of exercise of the same duration.

Success of Pedometers

The use of pedometers to increase PA was generated years ago in Japanese walking clubs. The rationalization for the pedometer was that the average stride was estimated to be 2.5 ft. Therefore, 2000 steps should approximately equal a mile, 10,000 equaling about 5 miles [ 44 ]. Based on this rationalization, PA can be classified as sedentary (<5000 steps per day), low active (5000 to 7500 steps), somewhat active (7500 to 10,000 steps), and active (>10,000 steps per day). Highly active physical exercise is associated with >12,500 steps per day [ 44 ]. This is an arbitrary categorization, however, and 10,000 steps per day may be too little for children or too much for the elderly. Weight loss using a pedometer without caloric restriction is associated with minimal to modest weight loss of <2 kg [ 44 ]. Health benefits associated with use of the pedometer may be limited to a reduction in blood pressure, with not much change in cholesterol, triglycerides, or fasting glucose [ 44 ].

Exercise in the Intensive Care Unit

Exercise is becoming increasingly important in one of the least expected circumstances, that of a critically ill patient in the intensive care unit (ICU). Researchers have found that exercising muscle increases the uptake of amino acid fuel and promotes greater protein synthesis [ 45 , 46 ]. Patients in the ICU on a ventilator in some centers are gotten out of bed and encouraged to walk with assistance in the hallway. Other centers have used a pedaling device, some of which can even be adapted for passive activity in a patient who is otherwise sedated and minimally responsive. Exercise in the critical care setting helps maintain muscular strength, reduces the risk for long-term neuromuscular weakness, shortens rehabilitation, and is more likely to result in the patient being discharged to their home [ 45 , 46 ].

Recommendations for Public Health

Similar to the Food Guide Pyramid designed by the USDA, an activity pyramid has been created to guide the public in strategies to increase flexibility, muscular strength, and aerobic capacity ( www.wellspan.org/media/3648/activitypyramid-2009.pdf ). Every day, subjects are encouraged to increase activity in leisure and at work. Three to five times per week, aerobic activity should occur, accumulating 150 min each week ( www.wellspan.org/media/3648/activitypyramid-2009.pdf ). Two to three times per week, muscular activity focusing on flexibility and strength training should be scheduled. Sitting more than 30 min at a time, watching TV, or staring at a computer screen should be minimized or reduced as much as possible ( www.wellspan.org/media/3648/activitypyramid-2009.pdf ).

Guidelines differentiate between moderate and vigorous intensity of PA. Moderate intensity is defined by a 3–5 MET level of effort, and includes activities that cause some increase in breathing and heart rate (such as walking 3–4 miles per hour, bicycling on level ground, light swimming, gardening, or mowing a lawn) [ 4 ]. Vigorous intensity is defined by ≥6 METs, and is exemplified by activities causing large increases in breathing, heart rate, and sweating. Such activities of vigorous intensity would include jogging or running at faster than a 10 min mile, aerobic dancing, competitive sports, heavy yard or construction work, brisk swimming, or fast bicycling [ 4 ].

The amount of PA needed to optimize health is not clear. The particular dose of exercise required to achieve benefits with regard to a particular disease process is difficult to ascertain. For cardiovascular disease, the intensity of PA is inversely and linearly associated with increased mortality, with the biggest effect seen as a reduction of premature death [ 47 ]. PA of >2000 kcal per week extends life by 1–2 years by age 80 [ 47 ]. An average energy expenditure of 1000 kcal per week is associated with a 20–30 % decrease in all-cause mortality. Beginning at a minimum of 1000 kcal per week, increasing benefits are seen with increasing energy expenditure, suggesting a dose-response gradient to the effect of exercise on cardiovascular health [ 47 ]. For diabetes mellitus, there is decreased risk from this disease process with PA of >5.5 METs for at least 40 min per week [ 48 ]. Walking 2 h per week decreases the risk of premature death from diabetes [ 48 ]. Moderate exercise defined by a >4.5 METs for 30–60 min per day reduces both the risk of colon cancer and breast cancer [ 19 ]. For women in particular, >7 h per week of moderate exercise has been shown to be successful in reducing risk of breast cancer (TI01). For osteoporosis, the dose-response gradient is less clear, with recommendations simply emphasizing that osteogenic adaptation is load-dependent and site-specific [ 4 ]. The Center for Disease Control (CDC), the American College of Sports Medicine, and the Healthy People 2010 recommendations provide guidelines for aerobic activity for public health purposes [ 49 ]. Adults should engage in PA of moderate intensity for at least 150 min per week or engage in PA of vigorous intensity for at least 75 min per week. Bouts of exercise may be broken up into smaller increments lasting at least 10 min [ 49 ].

Should Anyone Not be Exercising?

Jim Fixx was a celebrity journalist who helped contribute to the running craze seen in the 1980s in the USA. His sudden death from cardiovascular disease, while jogging, raised questions as to the need for medical evaluation prior to engaging in a program of increasing PA. Moderately strenuous PA may trigger ischemic events, particularly among sedentary people. There is an increased incidence of primary heart attack in high-intensity exercise. In competitive athletes, 80 % of deaths are caused by coronary artery disease. Some subjects do need to have their health risks assessed prior to engaging in an aggressive program.

The degree to which a person is evaluated prior to exercise depends on the presence or absence of cardiovascular disease risk factors and whether the exercise will be moderate or vigorous in intensity [ 50 ]. Subjects at low risk would be those who are young in age (<45 years for male, <55 years for female), are asymptomatic, and have ≤1 cardiovascular risk disease factors. These patients do not need a medical evaluation or stress test for moderate or even vigorous exercise. Subjects at moderate risk are older (men >45 years, women >55 years), or have ≥2 risk factors for cardiovascular disease. For moderate exercise, no medical evaluation may be needed, but these subjects should undergo a stress test. If exercise of vigorous intensity is planned, both a medical evaluation and a stress test should be performed. For those patients at high risk, however, defined by ≥1 sign or symptom of cardiovascular, pulmonary, or metabolic disease, both a full medical evaluation and stress test should be performed before any program is undertaken [ 50 ].

Specifically, those subjects who should not be exercising are those experiencing an acute myocardial infarction, subjects with unstable angina, systolic blood pressure >180, diastolic pressure >110 ml/Hg, uncontrolled diabetes mellitus, poorly controlled congestive heart failure, or thrombophlebitis [ 50 ].

While formal studies have shown that physician counseling is time-intensive and only minimally effective in changing behavior, physicians should no longer avoid the subject of recommendations for exercise as part of the healthcare they deliver to their patients. Physicians can begin by suggesting lifestyle changes such as climbing stairs at work, parking further away from the door on errands, walking regularly, and doing chores at home and in the yard. Clinicians should write on a prescription pad for the patient, specifying the type of exercise, duration, frequency, and intensity. The physician upon discharge from an office visit should determine plans for support and follow up to encourage success, manage obstacles, and prevent relapses. Clinicians should encourage their outpatients to involve community services such as physical therapy, mall-walking programs, school tracks, safe neighborhoods, the YMCA, and walk-a-thon’s.

Physicians should counsel that exercise is not an option. The exercise does not have to be continuous to be effective, and any physical activity counts. Patients should sit less, stand more, and plan their exercise activity at the beginning of each week. Subjects should be encouraged to find activities which they enjoy and involve others to maintain compliance. As Edward Stanley, the Earl of Derby in 1873 said, “Those who think they have not time for bodily exercise will sooner or later have to find time for illness” [ 51 ].

Papers of particular interest, published recently, have been highlighted as: • Of importance

Rezende LF, Rey Lopez JP, Matsudo VK, Luiz OD. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 2014;14(1):333.

Article   PubMed   PubMed Central   Google Scholar  

www.cdc.gov/nchs/fastats/exercise.htm . Accessed June 12, 2016. Center for Disease Control and Prevention statistics regarding current levels of PA in the United States and trends in physican recommendations to patients relevant to exercise.

Lee IM, Djoussé L, Sesso HD, Wang L, Buring JE. Physical activity and weight gain prevention. JAMA. 2010;303(12):1173–9.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.

Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18(1):57–89. Discussion regarding the exercise mediated attenuation of physical fitness and functional decline in aging.

"Working With Special Populations Sport Essay." UKessays.com. 11 2013. All Answers Ltd. 06 2016 < https://www.ukessays.com/essays/sports/working-with-special-populations-sport-essay.php?cref=1 >

Blumenthal JA, Babyak MA, Moore KA, Craighead WE, Herman S, Khatri P, et al. Effects of exercise training on older patients with major depression. Arch Intern Med. 1999;159(19):2349–56.

Article   CAS   PubMed   Google Scholar  

Byrne A, Byrne DG. The effect of exercise on depression, anxiety and other mood states: a review. J Psychosom Res. 1993;37(6):565–74.

Macera CA, Hootman JM, Sniezek JE. Major public health benefits of physical activity. Arthritis Rheum. 2003;49(1):122–8.

Article   PubMed   Google Scholar  

Blair SN, Kohl 3rd HW, Paffenbarger Jr RS, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 2004;351(26):2694–703.

Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.

Hambrecht R, Niebauer J, Marburger C, Grunze M, Kälberer B, Hauer K, et al. Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions. J Am Coll Cardiol. 1993;22(2):468–77.

Sarzynski MA1, Burton J2, Rankinen T2, Blair SN3, Church TS2, Després JP4, et al. The effects of exercise on the lipoprotein subclass profile: a meta-analysis of 10 interventions. Atherosclerosis. 2015;243(2):364–72.

Hu FB, Stampfer MJ, Colditz GA, Ascherio A, Rexrode KM, Willett WC, et al. Physical activity and risk of stroke in women. JAMA. 2000;283(22):2961–7.

Helmrich SP, Ragland DR, Leung RW, Paffenbarger Jr RS. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med. 1991;325(3):147–52.

Gregg EW, Gerzoff RB, Caspersen CJ, Williamson DF, Narayan KM. Relationship of walking to mortality among US adults with diabetes. Arch Intern Med. 2003;163(12):1440–7.

Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

Thune I, Furberg AS. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc. 2001;33(6 Suppl):S530–50. discussion S609-10.

Lee IM. Physical activity and cancer prevention—data from epidemiologic studies. Med Sci Sports Exerc. 2003;35(11):1823–7.

Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86.

Wolff I, van Croonenborg JJ, Kemper HC, Kostense PJ, Twisk JW. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int. 1999;9(1):1–12.

Kujala UM, Kaprio J, Kannus P, Sarna S, Koskenvuo M. Physical activity and osteoporotic hip fracture risk in men. Arch Intern Med. 2000;160(5):705–8.

Liu-Ambrose TY, Khan KM, Eng JJ, Heinonen A, McKay HA. Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom. 2004;7(4):390–8.

Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA. 2002;288(18):2300–6.

Ranjbar E, Memari AH, Hafizi S, Shayestehfar M, Mirfazeli FS. Eshghi MA. J Sports Med. 2015;6(2):e24055.

Google Scholar  

Cloud J. Why exercise won’t make you thin. Time. 2009;174(6):49–51.

Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7.

Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

Church TS, Martin CK, Thompson AM, Earnest CP, Mikus CR, Blair SN. Changes in weight, waist circumference and compensatory responses with different doses of exercise among sedentary, overweight postmenopausal women. PLoS One. 2009;4(2):e4515.

Miller CT, Fraser SF, Levinger I, Straznicky NE, Dixon JB, Reynolds J, et al. The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review. PLoS One. 2013;8(11):e81692.

Hill JO, Thompson H, Wyatt H. Weight maintenance: what’s missing? J Am Diet Assoc. 2005;105(5 Suppl 1):S63–6.

Steffens D, Maher CG, Pereira LS, Stevens ML, Oliveira VC, Chapple M, et al. Prevention of low back pain: a systematic review and meta-analysis. JAMA Intern Med. 2016;176(2):199–208.

Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, et al. Fitness versus physical activity patterns in predicting mortality in men. Am J Med. 2004;117(12):912–8.

Warburton DE, Gledhill N, Quinney A. Musculoskeletal fitness and health. Can J Appl Physiol. 2001;26(2):217–37.

Buckley JP, Hedge A, Yates T, Copeland RJ, Loosemore M, Hamer M, et al. The sedentary office: an expert statement on the growing case for change towards better health and productivity. Br J Sports Med. 2015;49(21):1357–62. Expert consensus on techniques to combat increased periods of sitting and inactivity in the modern workplace.

Tremblay MS, Esliger DW, Tremblay A, Colley R. Incidental movement, lifestyle-embedded activity and sleep: new frontiers in physical activity assessment. Can J Public Health. 2007;98 Suppl 2:S208–17.

PubMed   Google Scholar  

McManus AM. Physical activity—a neat solution to an impending crisis. J Sports Sci Med. 2007;6(3):368–73.

PubMed   PubMed Central   Google Scholar  

Levine JA. Non-exercise activity thermogenesis (NEAT). Nutr Rev. 2004;62(7 Pt 2):S82–97.

Bouchard C, Tremblay A. Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins. J Nutr. 1997;127(5 Suppl):943S–7S.

CAS   PubMed   Google Scholar  

Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299(5608):853–5.

Campbell L, Wallman K, Green D. The effects of intermittent exercise on physiological outcomes in an obese population: continuous versus interval walking. J Sports Sci Med. 2010;9(1):24–30.

Fisher G, Brown AW, Bohan Brown MM, Alcorn A, Noles C, Winwood L, et al. High intensity interval- vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One. 2015;10(10):e0138853.

Tudor-Locke C, Bassett Jr DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.

Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238–43.

Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.

Paffenbarger Jr RS, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med. 1986;314(10):605–13.

Lynch J, Helmrich SP, Lakka TA, Kaplan GA, Cohen RD, Salonen R, et al. Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men. Arch Intern Med. 1996;156(12):1307–14.

U.S. Department of Health and Human Services. Healthy People 2010: Understanding and improving health. 2nd ed. Washington DC: US Government Printing Office; 2000.

Balady GJ, Weiner DA. Exercise testing for sports and the exercise prescription. Cardiol Clin. 1987;5(2):183–96.

http://www.britannica.com/biography/Edward-Stanley-3rd-earl-of-Derby/article-supplemental-information.htm Accessed June 2016

Download references

Author information

Authors and affiliations.

Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA

Keith R. Miller

Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA

Stephen A. McClave, Kristine Krueger & Sarah Landes

National Board of Physician Nutrition Specialists, Valley Village, CA, 91607, USA

Melina B. Jampolis

Department of Medicine, Mayo Clinic, Rochester, MN, USA

Ryan T. Hurt

Department of Surgery, East Virginia University, Roanoke, VA, USA

Bryan Collier

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Keith R. Miller .

Ethics declarations

Conflict of interest.

Keith R. Miller has received compensation from Nestlé for serving as faculty in its fellowship program, from Abbott for serving on a surgical advisory board, and from Metagenics for serving on an advisory board.

Stephen A. McClave declares that he has no conflict of interest.

Melina B. Jampolis declares that she has no conflict of interest.

Ryan T. Hurt has received compensation from Nestlé Nutrition for service as a consultant.

Kristine Krueger declares that she has no conflict of interest.

Sarah Landes declares that she has no conflict of interest.

Bryan Collier declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gastroenterology, Critical Care, and Lifestyle Medicine

Rights and permissions

Reprints and permissions

About this article

Miller, K.R., McClave, S.A., Jampolis, M.B. et al. The Health Benefits of Exercise and Physical Activity. Curr Nutr Rep 5 , 204–212 (2016). https://doi.org/10.1007/s13668-016-0175-5

Download citation

Published : 14 July 2016

Issue Date : September 2016

DOI : https://doi.org/10.1007/s13668-016-0175-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Physical activity
  • Energy expenditure
  • Non-exercise activity thermogenesis
  • Find a journal
  • Publish with us
  • Track your research

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

2.1 An Introduction to the Benefits of Physical Activity

Regular participation in exercise may improve an individual’s physiological, cognitive, and psychological health. Many decades of research illustrate the positive effect physical activity has on the body and mind. When practiced across the lifespan, physical activity may result in greater overall health, and a reduced risk for many chronic diseases.

Despite the aforementioned benefits, many Americans do not currently meet national recommendations for physical activity participation. College students in particular may face unique challenges to participating in regular physical activity, often due to perceived and environmental barriers. However, many college students report a deep desire to maintain physical fitness and wellness in the midst of hectic academic schedules.

Chapter 2 will present an overview of the numerous benefits incurred from physical activity participation, after which the underlying factors influencing participation in exercise (or lack thereof) in college-aged populations will be reviewed. Finally, several behavioral strategies which may aid an individual’s initiation and maintenance of a physical activity regimen will be explored.

A Guide to Physical Activity Copyright © 2019 by Eydie Kramer is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Appointments at Mayo Clinic

Exercise: 7 benefits of regular physical activity.

You know exercise is good for you, but do you know how good? From boosting your mood to improving your sex life, find out how exercise can improve your life.

Want to feel better, have more energy and even add years to your life? Just exercise.

The health benefits of regular exercise and physical activity are hard to ignore. Everyone benefits from exercise, no matter their age, sex or physical ability.

Need more convincing to get moving? Check out these seven ways that exercise can lead to a happier, healthier you.

1. Exercise controls weight

Exercise can help prevent excess weight gain or help you keep off lost weight. When you take part in physical activity, you burn calories. The more intense the activity, the more calories you burn.

Regular trips to the gym are great, but don't worry if you can't find a large chunk of time to exercise every day. Any amount of activity is better than none. To gain the benefits of exercise, just get more active throughout your day. For example, take the stairs instead of the elevator or rev up your household chores. Consistency is key.

2. Exercise combats health conditions and diseases

Worried about heart disease? Hoping to prevent high blood pressure? No matter what your current weight is, being active boosts high-density lipoprotein (HDL) cholesterol, the "good" cholesterol, and it decreases unhealthy triglycerides. This one-two punch keeps your blood flowing smoothly, which lowers your risk of heart and blood vessel, called cardiovascular, diseases.

Regular exercise helps prevent or manage many health problems and concerns, including:

  • Metabolic syndrome.
  • High blood pressure.
  • Type 2 diabetes.
  • Depression.
  • Many types of cancer.

It also can help improve cognitive function and helps lower the risk of death from all causes.

3. Exercise improves mood

Need an emotional lift? Or need to lower stress after a stressful day? A gym session or brisk walk can help. Physical activity stimulates many brain chemicals that may leave you feeling happier, more relaxed and less anxious.

You also may feel better about your appearance and yourself when you exercise regularly, which can boost your confidence and improve your self-esteem.

4. Exercise boosts energy

Winded by grocery shopping or household chores? Regular physical activity can improve your muscle strength and boost your endurance.

Exercise sends oxygen and nutrients to your tissues and helps your cardiovascular system work more efficiently. And when your heart and lung health improve, you have more energy to tackle daily chores.

5. Exercise promotes better sleep

Struggling to snooze? Regular physical activity can help you fall asleep faster, get better sleep and deepen your sleep. Just don't exercise too close to bedtime, or you may be too energized to go to sleep.

6. Exercise puts the spark back into your sex life

Do you feel too tired or too out of shape to enjoy physical intimacy? Regular physical activity can improve energy levels and give you more confidence about your physical appearance, which may boost your sex life.

But there's even more to it than that. Regular physical activity may enhance arousal for women. And men who exercise regularly are less likely to have problems with erectile dysfunction than are men who don't exercise.

7. Exercise can be fun — and social!

Exercise and physical activity can be fun. They give you a chance to unwind, enjoy the outdoors or simply do activities that make you happy. Physical activity also can help you connect with family or friends in a fun social setting.

So take a dance class, hit the hiking trails or join a soccer team. Find a physical activity you enjoy, and just do it. Bored? Try something new, or do something with friends or family.

Exercise to feel better and have fun

Exercise and physical activity are great ways to feel better, boost your health and have fun. For most healthy adults, the U.S. Department of Health and Human Services recommends these exercise guidelines:

Aerobic activity. Get at least 150 minutes of moderate aerobic activity. Or get at least 75 minutes of vigorous aerobic activity a week. You also can get an equal combination of moderate and vigorous activity. Aim to spread out this exercise over a few days or more in a week.

For even more health benefits, the guidelines suggest getting 300 minutes a week or more of moderate aerobic activity. Exercising this much may help with weight loss or keeping off lost weight. But even small amounts of physical activity can be helpful. Being active for short periods of time during the day can add up and have health benefits.

  • Strength training. Do strength training exercises for all major muscle groups at least two times a week. One set of each exercise is enough for health and fitness benefits. Use a weight or resistance level heavy enough to tire your muscles after about 12 to 15 repetitions.

Moderate aerobic exercise includes activities such as brisk walking, biking, swimming and mowing the lawn.

Vigorous aerobic exercise includes activities such as running, swimming laps, heavy yardwork and aerobic dancing.

You can do strength training by using weight machines or free weights, your own body weight, heavy bags, or resistance bands. You also can use resistance paddles in the water or do activities such as rock climbing.

If you want to lose weight, keep off lost weight or meet specific fitness goals, you may need to exercise more.

Remember to check with a health care professional before starting a new exercise program, especially if you have any concerns about your fitness or haven't exercised for a long time. Also check with a health care professional if you have chronic health problems, such as heart disease, diabetes or arthritis.

There is a problem with information submitted for this request. Review/update the information highlighted below and resubmit the form.

From Mayo Clinic to your inbox

Sign up for free and stay up to date on research advancements, health tips, current health topics, and expertise on managing health. Click here for an email preview.

Error Email field is required

Error Include a valid email address

To provide you with the most relevant and helpful information, and understand which information is beneficial, we may combine your email and website usage information with other information we have about you. If you are a Mayo Clinic patient, this could include protected health information. If we combine this information with your protected health information, we will treat all of that information as protected health information and will only use or disclose that information as set forth in our notice of privacy practices. You may opt-out of email communications at any time by clicking on the unsubscribe link in the e-mail.

Thank you for subscribing!

You'll soon start receiving the latest Mayo Clinic health information you requested in your inbox.

Sorry something went wrong with your subscription

Please, try again in a couple of minutes

  • AskMayoExpert. Physical activity (adult). Mayo Clinic; 2021.
  • Physical Activity Guidelines for Americans. 2nd ed. U.S. Department of Health and Human Services. https://health.gov/our-work/physical-activity/current-guidelines. Accessed June 25, 2021.
  • Peterson DM. The benefits and risk of aerobic exercise. https://www.uptodate.com/contents/search. Accessed June 24, 2021.
  • Maseroli E, et al. Physical activity and female sexual dysfunction: A lot helps, but not too much. The Journal of Sexual Medicine. 2021; doi:10.1016/j.jsxm.2021.04.004.
  • Allen MS. Physical activity as an adjunct treatment for erectile dysfunction. Nature Reviews: Urology. 2019; doi:10.1038/s41585-019-0210-6.
  • Tips for starting physical activity. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/weight-management/tips-get-active/tips-starting-physical-activity. Accessed June 25, 2021.
  • Laskowski ER (expert opinion). Mayo Clinic. June 16, 2021.

Products and Services

  • A Book: The Mayo Clinic Diet Bundle
  • A Book: Live Younger Longer
  • Available Solutions under FSA/HSA Coverage from Mayo Clinic Store
  • Available Health Products from Mayo Clinic Store
  • Mayo Clinic Sports Medicine
  • A Book: Mayo Clinic on High Blood Pressure
  • Newsletter: Mayo Clinic Health Letter — Digital Edition
  • A Book: Mayo Clinic Book of Home Remedies
  • A Book: Mayo Clinic Family Health Book, 5th Edition
  • The Mayo Clinic Diet Online
  • Balance exercises
  • Blood Doping
  • Can I exercise if I have atopic dermatitis?
  • Core exercises
  • Exercise and chronic disease
  • Exercise and illness
  • Stress relief
  • Exercising with arthritis
  • Fitness ball exercises videos
  • Fitness program
  • Fitness training routine
  • Hate to exercise? Try these tips
  • Hockey Flywheel
  • How fit are you?
  • Marathon and the Heat
  • BMI and waist circumference calculator
  • Mayo Clinic Minute: How to hit your target heart rate
  • Staying active with Crohn's disease
  • Strength training: How-to video collection

Mayo Clinic does not endorse companies or products. Advertising revenue supports our not-for-profit mission.

  • Opportunities

Mayo Clinic Press

Check out these best-sellers and special offers on books and newsletters from Mayo Clinic Press .

  • Mayo Clinic on Incontinence - Mayo Clinic Press Mayo Clinic on Incontinence
  • The Essential Diabetes Book - Mayo Clinic Press The Essential Diabetes Book
  • Mayo Clinic on Hearing and Balance - Mayo Clinic Press Mayo Clinic on Hearing and Balance
  • FREE Mayo Clinic Diet Assessment - Mayo Clinic Press FREE Mayo Clinic Diet Assessment
  • Mayo Clinic Health Letter - FREE book - Mayo Clinic Press Mayo Clinic Health Letter - FREE book
  • Healthy Lifestyle
  • Exercise 7 benefits of regular physical activity

Your gift holds great power – donate today!

Make your tax-deductible gift and be a part of the cutting-edge research and care that's changing medicine.

Benefits of Physical Activity

Obesity and Excess Weight Increase Risk of Severe Illness; Racial and Ethnic Disparities Persist

Food Assistance and Food Systems Resources

Immediate Benefits

Weight management, reduce your health risk, strengthen your bones and muscles, improve your ability to do daily activities and prevent falls, increase your chances of living longer, manage chronic health conditions & disabilities.

Regular physical activity is one of the most important things you can do for your health. Being physically active can improve your brain health , help manage weight , reduce the risk of disease , strengthen bones and muscles , and improve your ability to do everyday activities .

Adults who sit less and do any amount of moderate-to-vigorous physical activity gain some health benefits. Only a few lifestyle choices have as large an impact on your health as physical activity.

Everyone can experience the health benefits of physical activity – age, abilities, ethnicity, shape, or size do not matter.

Some benefits of physical activity on brain health [PDF-14.4MB] happen right after a session of moderate-to-vigorous physical activity. Benefits include improved thinking or cognition for children 6 to 13 years of age and reduced short-term feelings of anxiety for adults. Regular physical activity can help keep your thinking, learning, and judgment skills sharp as you age. It can also reduce your risk of depression and anxiety and help you sleep better.

Both eating patterns and physical activity routines play a critical role in weight management. You gain weight when you consume more calories through eating and drinking than the amount of calories you burn , including those burned during physical activity.

To maintain your weight:  Work your way up to 150 minutes a week of moderate physical activity, which could include dancing or yard work. You could achieve the goal of 150 minutes a week with 30 minutes a day, 5 days a week.

People vary greatly in how much physical activity they need for weight management. You may need to be more active than others to reach or maintain a healthy weight.

To lose weight and keep it off: You will need a high amount of physical activity unless you also adjust your eating patterns and reduce the amount of calories you’re eating and drinking. Getting to and staying at a healthy weight requires both regular physical activity and healthy eating.

See more information about:

  • Getting started with weight loss .
  • Getting started with physical activity .
  • Improving your eating patterns .

Benefits of Physical Activity

Learn more about the health benefits of physical activity  for children, adults, and adults age 65 and older.

See these tips  on getting started.

The good news [PDF-14.5MB]  is that  moderate physical activity , such as brisk walking, is generally  safe for most people .

Cardiovascular Disease

Heart disease and stroke are two leading causes of death in the United States. Getting at least 150 minutes a week of moderate physical activity can put you at a lower risk for these diseases. You can reduce your risk even further with more physical activity. Regular physical activity can also lower your blood pressure and improve your cholesterol levels.

Type 2 Diabetes and Metabolic Syndrome

Regular physical activity can reduce your risk of developing type 2 diabetes  and metabolic syndrome. Metabolic syndrome is some combination of too much fat around the waist, high blood pressure, low high-density lipoproteins (HDL) cholesterol, high triglycerides, or high blood sugar. People start to see benefits at levels from physical activity even without meeting the recommendations for 150 minutes a week of moderate physical activity. Additional amounts of physical activity seem to lower risk even more.

Infectious Diseases

Physical activity may help reduce the risk of serious outcomes from infectious diseases, including COVID-19, the flu, and pneumonia. For example:

  • People who do little or no physical activity are more likely to get very sick from COVID-19 than those who are physically active. A CDC systematic review [PDF-931KB] found that physical activity is associated with a decrease in COVID-19 hospitalizations and deaths, while inactivity increases that risk.
  • People who are more active may be less likely to die from flu or pneumonia. A CDC study found that adults who meet the aerobic and muscle-strengthening physical activity guidelines are about half as likely to die from flu and pneumonia as adults who meet neither guideline.

Some Cancers

Being physically active lowers your risk for developing several common cancers .  Adults who participate in greater amounts of physical activity have reduced risks of developing cancers of the:

  • Colon (proximal and distal)
  • Endometrium
  • Esophagus (adenocarcinoma)
  • Stomach (cardia and non-cardia adenocarcinoma)

If you are a cancer survivor, getting regular physical activity  not only helps give you a better quality of life, but also improves your physical fitness.

Regular Physical Activity Helps Lower Your Cancer Risk

Learn more about Physical Activity and Cancer

A woman jogging in a park with her dog.

As you age, it’s important to protect your bones, joints, and muscles – they support your body and help you move. Keeping bones, joints, and muscles healthy can help ensure that you’re able to do your daily activities and be physically active.

Muscle-strengthening activities like lifting weights can help you increase or maintain your muscle mass and strength. This is important for older adults who experience reduced muscle mass and muscle strength with aging. Slowly increasing the amount of weight and number of repetitions you do as part of muscle strengthening activities will give you even more benefits, no matter your age.

Everyday activities include climbing stairs, grocery shopping, or playing with your grandchildren. Being unable to do everyday activities is called a functional limitation. Physically active middle-aged or older adults have a lower risk of functional limitations than people who are inactive.

For older adults, doing a variety of physical activity improves physical function and decreases the risk of falls or injury from a fall . Include physical activities such as aerobic, muscle strengthening, and balance training. Multicomponent physical activity can be done at home or in a community setting as part of a structured program.

Hip fracture is a serious health condition that can result from a fall. Breaking a hip have life-changing negative effects, especially if you’re an older adult. Physically active people have a lower risk of hip fracture than inactive people.

See physical activity recommendations for different groups, including:

  • Children age 3-5 .
  • Children and adolescents age 6-17 .
  • Adults age 18-64 .
  • Adults 65 and older .
  • Adults with chronic health conditions and disabilities .
  • Healthy pregnant and postpartum women .

An estimated 110,000 deaths  per year could be prevented if US adults ages 40 and older increased their moderate-to-vigorous physical activity by a small amount. Even 10 minutes more a day would make a difference.

Taking more steps a day also helps lower the risk of premature death from all causes. For adults younger than 60, the risk of premature death leveled off at about 8,000 to 10,000 steps per day. For adults 60 and older, the risk of premature death leveled off at about 6,000 to 8,000 steps per day.

Regular physical activity can help people manage existing chronic conditions and disabilities. For example, regular physical activity can:

  • Reduce pain and improve function, mood, and quality of life for adults with arthritis.
  • Help control blood sugar levels and lower risk of heart disease and nerve damage for people with type 2 diabetes.
  • Health Benefits Associated with Physical Activity for People with Chronic Conditions and Disabilities [PDF-14.4MB]
  • Key Recommendations for Adults with Chronic Conditions and Disabilities [PDF-14.4MB]

Active People, Healthy Nation SM is a CDC initiative to help people be more physically active.

Active People, Healthy Nation logo

Sign up today!

To receive email updates about this topic, enter your email address.

Active People, Healthy Nation. Creating an Active America, Together.

  • Physical Activity
  • Overweight & Obesity
  • Healthy Weight, Nutrition, and Physical Activity
  • Breastfeeding
  • Micronutrient Malnutrition
  • State and Local Programs
  • Physical Activity for Arthritis
  • Diabetes — Get Active
  • Physical Activity for People with Disabilities
  • Prevent Heart Disease
  • Healthy Schools – Promoting Healthy Behaviors
  • Healthy Aging

Exit Notification / Disclaimer Policy

  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
  • Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
  • You will be subject to the destination website's privacy policy when you follow the link.
  • CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.

Home — Essay Samples — Nursing & Health — Physical Exercise — The Importance of Exercise for a Healthy Lifestyle

test_template

The Importance of Exercise for a Healthy Lifestyle

  • Categories: Healthy Lifestyle Physical Exercise

About this sample

close

Words: 638 |

Published: Mar 16, 2024

Words: 638 | Page: 1 | 4 min read

Table of contents

Impact on physical health, impact on mental health, barriers to exercise.

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Verified writer

  • Expert in: Life Nursing & Health

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

3 pages / 1154 words

3 pages / 1541 words

4 pages / 1936 words

2 pages / 714 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Physical Exercise

My plan to improve my health and fitness is to try my best to stay consistent with my exercise and meal plan. Being consistent in any plan is very important because it allows you not to be so strict with yourself and teaches [...]

Sports are an essential part of many people's lives, providing not only physical exercise but also valuable life lessons in discipline and resilience. Among the various sports available, running stands out as a particularly [...]

Bianchi, R., Mamo, C., Riva, D., & Rocca, F. (2016). Proprioceptive Training and Injury Prevention in a Professional Men's Basketball Team: A Six-Year Prospective Study. Journal of strength and conditioning research, 30(2), [...]

High blood pressure is a significant health concern affecting adults worldwide. This quantitative essay employs a research investigation approach to examine the effects of physical activity on blood pressure levels in adults. [...]

What do you feel after exercise? Exercise is the cheapest and most useful tool for not only stress, but for many other things. For me, when I exercise, I get a feeling of comfort and relaxation. My whole body changes into a more [...]

First, what exactly is flexibility? When you hear the word flexibility, you probably think of a contortionist or gymnast, but the technical definition is being able to move your joints through their whole range of motion. [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

benefits of exercise essay pdf

Importance of Exercise Essay

500 words essay on exercise essay.

Exercise is basically any physical activity that we perform on a repetitive basis for relaxing our body and taking away all the mental stress. It is important to do regular exercise. When you do this on a daily basis, you become fit both physically and mentally. Moreover, not exercising daily can make a person susceptible to different diseases. Thus, just like eating food daily, we must also exercise daily. The importance of exercise essay will throw more light on it.

importance of exercise essay

Importance of Exercise

Exercising is most essential for proper health and fitness. Moreover, it is essential for every sphere of life. Especially today’s youth need to exercise more than ever. It is because the junk food they consume every day can hamper their quality of life.

If you are not healthy, you cannot lead a happy life and won’t be able to contribute to the expansion of society. Thus, one needs to exercise to beat all these problems. But, it is not just about the youth but also about every member of the society.

These days, physical activities take places in colleges more than often. The professionals are called to the campus for organizing physical exercises. Thus, it is a great opportunity for everyone who wishes to do it.

Just like exercise is important for college kids, it is also essential for office workers. The desk job requires the person to sit at the desk for long hours without breaks. This gives rise to a very unhealthy lifestyle.

They get a limited amount of exercise as they just sit all day then come back home and sleep. Therefore, it is essential to exercise to adopt a healthy lifestyle that can also prevent any damaging diseases .

Benefits of Exercise

Exercise has a lot of benefits in today’s world. First of all, it helps in maintaining your weight. Moreover, it also helps you reduce weight if you are overweight. It is because you burn calories when you exercise.

Further, it helps in developing your muscles. Thus, the rate of your body will increases which helps to burn calories. Moreover, it also helps in improving the oxygen level and blood flow of the body.

When you exercise daily, your brain cells will release frequently. This helps in producing cells in the hippocampus. Moreover, it is the part of the brain which helps to learn and control memory.

The concentration level in your body will improve which will ultimately lower the danger of disease like Alzheimer’s. In addition, you can also reduce the strain on your heart through exercise. Finally, it controls the blood sugar levels of your body so it helps to prevent or delay diabetes.

Get the huge list of more than 500 Essay Topics and Ideas

Conclusion of Importance of Exercise Essay

In order to live life healthily, it is essential to exercise for mental and physical development. Thus, exercise is important for the overall growth of a person. It is essential to maintain a balance between work, rest and activities. So, make sure to exercise daily.

FAQ of Importance of Exercise Essay

Question 1: What is the importance of exercise?

Answer 1: Exercise helps people lose weight and lower the risk of some diseases. When you exercise daily, you lower the risk of developing some diseases like obesity, type 2 diabetes, high blood pressure and more. It also helps to keep your body at a healthy weight.

Question 2: Why is exercising important for students?

Answer 2: Exercising is important for students because it helps students to enhance their cardiorespiratory fitness and build strong bones and muscles. In addition, it also controls weight and reduces the symptoms of anxiety and depression. Further, it can also reduce the risk of health conditions like heart diseases and more.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.15(1); 2023 Jan

Logo of cureus

Role of Physical Activity on Mental Health and Well-Being: A Review

Aditya mahindru.

1 Department of Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND

Pradeep Patil

Varun agrawal.

In addition to the apparent physical health benefits, physical activity also affects mental health positively. Physically inactive individuals have been reported to have higher rates of morbidity and healthcare expenditures. Commonly, exercise therapy is recommended to combat these challenges and preserve mental wellness. According to empirical investigations, physical activity is positively associated with certain mental health traits. In nonclinical investigations, the most significant effects of physical exercise have been on self-concept and body image. An attempt to review the current understanding of the physiological and psychological mechanisms by which exercise improves mental health is presented in this review article. Regular physical activity improves the functioning of the hypothalamus-pituitary-adrenal axis. Depression and anxiety appear to be influenced by physical exercise, but to a smaller extent in the population than in clinical patients. Numerous hypotheses attempt to explain the connection between physical fitness and mental wellness. Physical activity was shown to help with sleep and improve various psychiatric disorders. Exercise in general is associated with a better mood and improved quality of life. Physical exercise and yoga may help in the management of cravings for substances, especially in people who may not have access to other forms of therapy. Evidence suggests that increased physical activity can help attenuate some psychotic symptoms and treat medical comorbidities that accompany psychotic disorders. The dearth of literature in the Indian context also indicated that more research was needed to evaluate and implement interventions for physical activity tailored to the Indian context.

Introduction and background

Physical activity has its origins in ancient history. It is thought that the Indus Valley civilization created the foundation of modern yoga in approximately 3000 B.C. during the early Bronze Age [ 1 ]. The beneficial role of physical activity in healthy living and preventing and managing health disorders is well documented in the literature. Physical activity provides various significant health benefits. Mechanical stress and repeated exposure to gravitational forces created by frequent physical exercise increase a variety of characteristics, including physical strength, endurance, bone mineral density, and neuromusculoskeletal fitness, all of which contribute to a functional and independent existence. Exercise, defined as planned, systematic, and repetitive physical activity, enhances athletic performance by improving body composition, fitness, and motor abilities [ 2 ]. The function of physical activity in preventing a wide range of chronic illnesses and premature mortality has been extensively examined and studied. Adequate evidence links medical conditions such as cardiovascular disease and individual lifestyle behaviours, particularly exercise [ 3 ]. Regular exercise lowered the incidence of cardiometabolic illness, breast and colon cancer, and osteoporosis [ 4 ]. In addition to improving the quality of life for those with nonpsychiatric diseases such as peripheral artery occlusive disease and fibromyalgia, regular physical activity may help alleviate the discomforts of these particular diseases [ 5 ]. Exercise also helps with various substance use disorders, such as reducing or quitting smoking. As physical exercise strongly impacts health, worldwide standards prescribe a weekly allowance of "150 minutes" of modest to vigorous physical exercise in clinical and non-clinical populations [ 6 ]. When these recommendations are followed, many chronic diseases can be reduced by 20%-30%. Furthermore, thorough evaluations of global studies have discovered that a small amount of physical exercise is sufficient to provide health benefits [ 7 ].

Methodology

In this review article, a current understanding of the underlying physiological and psychological processes during exercise or physical activity that are implicated in improving mental health is presented. Search terms like "exercise" or "physical activity" and "mental health", "exercise" or "physical activity" and "depression", "exercise" or "physical activity" and "stress", "exercise" or "physical activity" and "anxiety", "exercise" or "physical activity" and "psychosis," "exercise" or "physical activity" and "addiction" were used as search terms in PubMed, Google Scholar, and Medline. An overwhelming majority of references come from works published within the past decade.

The impact of physical health on mental health

There is an increasing amount of evidence documenting the beneficial impacts of physical activity on mental health, with studies examining the effects of both brief bouts of exercise and more extended periods of activity. Systematic evaluations have indicated better outcomes for mental diseases with physical activity. Numerous psychological effects, such as self-esteem, cognitive function, mood, depression, and quality of life, have been studied [ 8 ]. According to general results, exercise enhances mood and self-esteem while decreasing stress tendencies, a factor known to aggravate mental and physical diseases [ 9 ]. Studies show that people who exercise regularly have a better frame of mind. However, it should be highlighted that a consistent link between mood enhancement and exercise in healthy individuals has not been established.

Additionally, human beings produce more of these two neurochemicals when they engage in physical activity. Human bodies manufacture opioids and endocannabinoids that are linked to pleasure, anxiolytic effects, sleepiness, and reduced pain sensitivity [ 10 ]. It has been shown that exercise can improve attention, focus, memory, cognition, language fluency, and decision-making for up to two hours [ 11 ]. Researchers state that regular physical activity improves the functioning of the hypothalamus-pituitary-adrenal (HPA) axis, lowering cortisol secretion and restoring the balance of leptin and ghrelin (Figure ​ (Figure1) 1 ) [ 12 ].

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000033475-i01.jpg

HPA: hypothalamus-pituitary-adrenal

This image has been created by the authors.

Regular exercise has immunomodulatory effects such as optimising catecholamine, lowering cortisol levels, and lowering systemic inflammation. Physical activity has been shown to increase plasma brain-derived neurotrophic factor (BDNF), which is thought to reduce amyloid-beta toxicity linked to Alzheimer's disease progression [ 13 ].

Although no causal correlations have been proven, methodologically sound research has discovered a related improvement in mentally and physically ill populations. These findings are based on research and studies conducted all across the globe, particularly in the Western Hemisphere. In order to address a widespread health problem in India, it is useful to do a literature review that draws on research conducted in a variety of settings. In addition, the prevalence of these mental illnesses and the benefits of exercise as a complementary therapy might be made clear by a meta-analysis of research undertaken in India [ 14 ].

This review also analysed published literature from India to understand the effects of exercise on mental health and the implications for disease management and treatment in the Indian context. Results from Indian studies were consistent with those found in global meta-analyses. The Indian government has made public data on interventions, such as the effects of different amounts of physical exercise. Exercising and yoga have been shown to be effective adjunct therapies for a variety of mental health conditions [ 12 ]. Though yoga may not require a lot of effort to perform, other aspects of the program, such as breathing or relaxation exercises, may have an impact on a practitioner's mental health at the same time. Due to its cultural significance as a common physical practice among Indians and its low to moderate activity level, yoga would be an appropriate activity for this assessment [ 15 ].

Yoga as an adjunctive treatment 

Although yoga is a centuries-old Hindu practice, its possible therapeutic effects have recently been studied in the West. Mind-body approaches have been the subject of a lot of studies, and some of the findings suggest they may aid with mental health issues on the neurosis spectrum. As defined by the National Center for Complementary and Alternative Medicine, "mind-body interventions" aim to increase the mind's potential to alter bodily functions [ 16 ]. Due to its beneficial effects on the mind-body connection, yoga is used as a treatment for a wide range of conditions. Possible therapeutic benefits of yoga include the activation of antagonistic neuromuscular systems, stimulation of the limbic system, and a reduction in sympathetic tone.

Anxiety and depression sufferers might benefit from practising yoga. Yoga is generally safe for most people and seldom causes unintended negative consequences. Adding yoga to traditional treatment for mental health issues may be beneficial. Many of the studies on yoga included meditation as an integral part of their methodology. Meditation and other forms of focused mental practice may set off a physiological reaction known as the relaxation response. Functional imaging has been used to implicate certain regions of the brain that show activity during meditation. According to a wealth of anatomical and neurochemical evidence, meditation has been shown to have far-reaching physiological effects, including changes in attention and autonomic nervous system modulation [ 17 ]. Left anterior brain activity, which is associated with happiness, was shown to rise considerably during meditation. There's also some evidence that meditation might worsen psychosis by elevating dopamine levels [ 18 - 20 ]. We do not yet know enough about the possible downsides of meditation for patients with mental illness, since this research lacks randomised controlled trials.

Physical activity and schizophrenia

Schizophrenia is a debilitating mental disorder that often manifests in one's early years of productive life (late second decade). Remission of this disorder occurs in just a small fraction of cases. More than 60% will have relapses, and they might occur with or without noticeable deficits. Apart from delusions, hallucinations, and formal thought disorders, many patients exhibit cognitive deficits that emerge in the early stages of the disease and do not respond adequately to therapy [ 21 ].

Treatment for schizophrenia is challenging to master. Extrapyramidal side effects are a problem with first-generation antipsychotic drugs. Obesity and dyslipidemia have been related to second-generation drugs, which may cause or exacerbate these conditions. The majority of patients do not achieve complete remission, and many do not even experience satisfactory symptom relief. Even though certain antipsychotic medications may alleviate or even exacerbate negative and cognitive symptoms, these responses are far less common. This means that patients may benefit from cognitive rehabilitation. Because of their illness or a negative reaction to their medicine, they may also have depressive symptoms. This would make their condition even more disabling. Many patients also deal with clinical and emotional complications. Tardive extrapyramidal illnesses, metabolic syndromes, defect states, and attempted suicide are all in this category. Patient compliance with treatment plans is often poor. The caregivers take on a lot of stress and often get exhausted as a result.

Evidence suggests that increased physical activity can aid in attenuating some psychotic symptoms and treating medical comorbidities that accompany psychotic disorders, particularly those subject to the metabolic adverse effects of antipsychotics. Physically inactive people with mental disorders have increased morbidity and healthcare costs. Exercise solutions are commonly recommended to counteract these difficulties and maintain mental and physical wellness [ 22 ].

The failure of current medications to effectively treat schizophrenia and the lack of improvement in cognitive or negative symptoms with just medication is an argument in favour of utilising yoga as a complementary therapy for schizophrenia. Even without concomitant medication therapy, co-occurring psychosis and obesity, or metabolic syndrome, are possible. The endocrine and reproductive systems of drug abusers undergo subtle alterations. Numerous studies have shown that yoga may improve endocrine function, leading to improvements in weight management, cognitive performance, and menstrual regularity, among other benefits. In this context, the role of yoga in the treatment of schizophrenia has been conceptualized. However, yoga has only been studied for its potential efficacy as a therapy in a tiny number of studies. There might be several reasons for this. To begin with, many yoga academies frown against the practice being adapted into a medical modality. The second misconception is that people with schizophrenia cannot benefit from the mental and physical aspects of yoga practised in the ways that are recommended. Third, scientists may be hesitant to recommend yoga to these patients because of their lack of knowledge and treatment compliance.

In a randomised controlled experiment with a yoga group (n = 21) and an exercise group (n = 20), the yoga group exhibited a statistically significant reduction in negative symptoms [ 2 ]. In accordance with the most recent recommendations of the National Institute for Health and Care Excellence (NICE), the above research provides substantial evidence for the use of yoga in the treatment of schizophrenia. According to a meta-analysis of 17 distinct studies [ 23 ] on the subject, frequent physical activity reduces the negative symptoms associated with schizophrenia considerably.

Physical activity and alcohol dependence syndrome

Substance abuse, namely alcohol abuse, may have devastating effects on a person's mental and physical health. Tolerance and an inability to control drinking are some hallmarks of alcoholism. Research shows that physical activity is an effective supplement in the fight against alcohol use disorder. In addition to perhaps acting centrally on the neurotransmitter systems, physical exercise may mitigate the deleterious health consequences of drinking. Evidence suggests that persons with alcohol use disorder are not physically active and have low cardiorespiratory fitness. A wide number of medical comorbidities, like diabetes mellitus, hypertension, and other cardiovascular illnesses, occur with alcohol use disorders. Physical exercise may be highly useful in aiding the management of these comorbidities [ 24 ].

Physical exercise and yoga may help in the management of cravings for substances when other forms of therapy, such as counselling or medication for craving management are not feasible or acceptable. Physical exercise has been shown to have beneficial effects on mental health, relieve stress, and provide an enjoyable replacement for the substance. However, the patient must take an active role in physical activity-based therapies rather than passively accept the process as it is, which is in stark contrast to the approach used by conventional medicine. Since most substance use patients lack motivation and commitment to change, it is recommended that physical activity-based therapies be supplemented with therapies focusing on motivation to change to maximise therapeutic outcomes.

One hundred seventeen persons with alcohol use disorder participated in a single-arm, exploratory trial that involved a 12-minute fitness test using a cycle ergometer as an intervention. Statistically, significantly fewer cravings were experienced by 40% [ 24 ]. Exercise programmes were found to significantly reduce alcohol intake and binge drinking in people with alcohol use disorder in a meta-analysis and comprehensive review of the effects of such therapies [ 25 ].

Physical activity and sleep

Despite widespread agreement that they should prioritise their health by making time for exercise and sufficient sleep, many individuals fail to do so. Sleep deprivation has negative impacts on immune system function, mood, glucose metabolism, and cognitive ability. Slumber is a glycogenetic process that replenishes glucose storage in neurons, in contrast to the waking state, which is organised for the recurrent breakdown of glycogen. Considering these findings, it seems that sleep has endocrine effects on the brain that are unrelated to the hormonal control of metabolism and waste clearance at the cellular level. Several factors have been proposed as potential triggers for this chain reaction: changes in core body temperature, cytokine concentrations, energy expenditure and metabolic rate, central nervous system fatigue, mood, and anxiety symptoms, heart rate and heart rate variability, growth hormone and brain-derived neurotrophic factor secretion, fitness level, and body composition [ 26 ].

After 12 weeks of fitness training, one study indicated that both the quantity and quality of sleep in adolescents improved. Studies using polysomnography indicated that regular exercise lowered NREM stage N1 (very light sleep) and raised REM sleep (and REM sleep continuity and performance) [ 22 ]. As people age, both short- and long-term activities have increasingly deleterious effects on sleep. In general, both short- and long-term exercise were found to have a favourable effect on sleep quality; however, the degree of this benefit varied substantially among different sleep components. On measures of sleep quality, including total sleep time, slow-wave sleep, sleep onset latency, and REM sleep reduction, acute exercise had no effect. But both moderate and strenuous exercise has been shown to increase sleep quality [ 27 ]. According to a meta-analysis of randomised controlled trials, exercise has shown a statistically significant effect on sleep quality in adults with mental illness [ 28 ]. These findings emphasise the importance that exercise plays in improving outcomes for people suffering from mental illnesses.

Physical activity in depressive and anxiety disorders

Depression is the leading cause of disability worldwide and is a major contributor to the global burden of disease, as per the World Health Organization. However, only 10%-25% of depressed people actually seek therapy, maybe due to a lack of money, a lack of trained doctors, or the stigma associated with depression [ 29 ]. For those with less severe forms of mental illness, such as depression and anxiety, regular physical exercise may be a crucial part of their treatment and management. Exercise and physical activity might improve depressive symptoms in a way that is comparable to, if not more effective than, traditional antidepressants. However, research connecting exercise to a decreased risk of depression has not been analysed in depth [ 30 ]. Endorphins, like opiates, are opioid polypeptide compounds produced by the hypothalamus-pituitary system in vertebrates in response to extreme physical exertion, emotional arousal, or physical pain. The opioid system may mediate analgesia, social bonding, and depression due to the link between b-endorphins and depressive symptoms (Figure ​ (Figure2 2 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0015-00000033475-i02.jpg

The "endorphin hypothesis" states that physical activity causes the brain to produce more endogenous opioid peptides, which reduce pain and boost mood. The latter reduces feelings of worry and hopelessness. A recent study that demonstrated endorphins favourably improved mood during exercise, and provided support for these theories suggested that further research into the endorphin theory is required [ 31 ].

Physical activity and exercise have been shown to improve depressive symptoms and overall mood in people of all ages. Exercise has been implicated in lowering depressive and anxious symptoms in children and adolescents as well [ 32 ]. Pooled research worldwide has revealed that physical exercise is more effective than a control group and is a viable remedy for depression [ 33 ]. Most forms of yoga that start with a focus on breathing exercises, self-awareness, and relaxation techniques have a positive effect on depression and well-being [ 34 ]. Despite claims that exercise boosts mood, the optimal kind or amount of exercise required to have this effect remains unclear and seems to depend on a number of factors [ 35 ].

Exercise as a therapy for unipolar depression was studied in a meta-analysis of 23 randomised controlled trials involving 977 subjects. The effect of exercise on depression was small and not statistically significant at follow-up, although it was moderate in the initial setting. When compared to no intervention, the effect size of exercise was large and significant, and when compared to normal care, it was moderate but still noteworthy [ 36 ]. A systematic evaluation of randomised controlled trials evaluating exercise therapies for anxiety disorders indicated that exercise appeared useful as an adjuvant treatment for anxiety disorders but was less effective than antidepressant treatment [ 37 ].

Conclusions

The effects of exercise on mental health have been shown to be beneficial. Among persons with schizophrenia, yoga was shown to have more positive effects with exercise when compared with no intervention. Consistent physical activity may also improve sleep quality significantly. Patients with alcohol dependence syndrome benefit from a combination of medical therapy and regular exercise since it motivates them to battle addiction by decreasing the craving. There is also adequate evidence to suggest that physical exercise improves depressive and anxiety symptoms. Translating the evidence of the benefits of physical exercise on mental health into clinical practice is of paramount importance. Future implications of this include developing a structured exercise therapy and training professionals to deliver it. The dearth of literature in the Indian context also indicates that more research is required to evaluate and implement interventions involving physical activity that is tailored to the Indian context.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

  • Research article
  • Open access
  • Published: 16 November 2020

Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews

  • Pawel Posadzki 1 , 2 ,
  • Dawid Pieper   ORCID: orcid.org/0000-0002-0715-5182 3 ,
  • Ram Bajpai 4 ,
  • Hubert Makaruk 5 ,
  • Nadja Könsgen 3 ,
  • Annika Lena Neuhaus 3 &
  • Monika Semwal 6  

BMC Public Health volume  20 , Article number:  1724 ( 2020 ) Cite this article

33k Accesses

140 Citations

131 Altmetric

Metrics details

Sedentary lifestyle is a major risk factor for noncommunicable diseases such as cardiovascular diseases, cancer and diabetes. It has been estimated that approximately 3.2 million deaths each year are attributable to insufficient levels of physical activity. We evaluated the available evidence from Cochrane systematic reviews (CSRs) on the effectiveness of exercise/physical activity for various health outcomes.

Overview and meta-analysis. The Cochrane Library was searched from 01.01.2000 to issue 1, 2019. No language restrictions were imposed. Only CSRs of randomised controlled trials (RCTs) were included. Both healthy individuals, those at risk of a disease, and medically compromised patients of any age and gender were eligible. We evaluated any type of exercise or physical activity interventions; against any types of controls; and measuring any type of health-related outcome measures. The AMSTAR-2 tool for assessing the methodological quality of the included studies was utilised.

Hundred and fifty CSRs met the inclusion criteria. There were 54 different conditions. Majority of CSRs were of high methodological quality. Hundred and thirty CSRs employed meta-analytic techniques and 20 did not. Limitations for studies were the most common reasons for downgrading the quality of the evidence. Based on 10 CSRs and 187 RCTs with 27,671 participants, there was a 13% reduction in mortality rates risk ratio (RR) 0.87 [95% confidence intervals (CI) 0.78 to 0.96]; I 2  = 26.6%, [prediction interval (PI) 0.70, 1.07], median effect size (MES) = 0.93 [interquartile range (IQR) 0.81, 1.00]. Data from 15 CSRs and 408 RCTs with 32,984 participants showed a small improvement in quality of life (QOL) standardised mean difference (SMD) 0.18 [95% CI 0.08, 0.28]; I 2  = 74.3%; PI -0.18, 0.53], MES = 0.20 [IQR 0.07, 0.39]. Subgroup analyses by the type of condition showed that the magnitude of effect size was the largest among patients with mental health conditions.

There is a plethora of CSRs evaluating the effectiveness of physical activity/exercise. The evidence suggests that physical activity/exercise reduces mortality rates and improves QOL with minimal or no safety concerns.

Trial registration

Registered in PROSPERO ( CRD42019120295 ) on 10th January 2019.

Peer Review reports

The World Health Organization (WHO) defines physical activity “as any bodily movement produced by skeletal muscles that requires energy expenditure” [ 1 ]. Therefore, physical activity is not only limited to sports but also includes walking, running, swimming, gymnastics, dance, ball games, and martial arts, for example. In the last years, several organizations have published or updated their guidelines on physical activity. For example, the Physical Activity Guidelines for Americans, 2nd edition, provides information and guidance on the types and amounts of physical activity that provide substantial health benefits [ 2 ]. The evidence about the health benefits of regular physical activity is well established and so are the risks of sedentary behaviour [ 2 ]. Exercise is dose dependent, meaning that people who achieve cumulative levels several times higher than the current recommended minimum level have a significant reduction in the risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events [ 3 ]. Benefits of physical activity have been reported for numerous outcomes such as mortality [ 4 , 5 ], cognitive and physical decline [ 5 , 6 , 7 ], glycaemic control [ 8 , 9 ], pain and disability [ 10 , 11 ], muscle and bone strength [ 12 ], depressive symptoms [ 13 ], and functional mobility and well-being [ 14 , 15 ]. Overall benefits of exercise apply to all bodily systems including immunological [ 16 ], musculoskeletal [ 17 ], respiratory [ 18 ], and hormonal [ 19 ]. Specifically for the cardiovascular system, exercise increases fatty acid oxidation, cardiac output, vascular smooth muscle relaxation, endothelial nitric oxide synthase expression and nitric oxide availability, improves plasma lipid profiles [ 15 ] while at the same time reducing resting heart rate and blood pressure, aortic valve calcification, and vascular resistance [ 20 ].

However, the degree of all the above-highlighted benefits vary considerably depending on individual fitness levels, types of populations, age groups and the intensity of different physical activities/exercises [ 21 ]. The majority of guidelines in different countries recommend a goal of 150 min/week of moderate-intensity aerobic physical activity (or equivalent of 75 min of vigorous-intensity) [ 22 ] with differences for cardiovascular disease [ 23 ] or obesity prevention [ 24 ] or age groups [ 25 ].

There is a plethora of systematic reviews published by the Cochrane Library critically evaluating the effectiveness of physical activity/exercise for various health outcomes. Cochrane systematic reviews (CSRs) are known to be a source of high-quality evidence. Thus, it is not only timely but relevant to evaluate the current knowledge, and determine the quality of the evidence-base, and the magnitude of the effect sizes given the negative lifestyle changes and rising physical inactivity-related burden of diseases. This overview will identify the breadth and scope to which CSRs have appraised the evidence for exercise on health outcomes; and this will help in directing future guidelines and identifying current gaps in the literature.

The objectives of this research were to a. answer the following research questions: in children, adolescents and adults (both healthy and medically compromised) what are the effects (and adverse effects) of exercise/physical activity in improving various health outcomes (e.g., pain, function, quality of life) reported in CSRs; b. estimate the magnitude of the effects by pooling the results quantitatively; c. evaluate the strength and quality of the existing evidence; and d. create recommendations for future researchers, patients, and clinicians.

Our overview was registered with PROSPERO (CRD42019120295) on 10th January 2019. The Cochrane Handbook for Systematic Reviews of interventions and Preferred Reporting Items for Overviews of Reviews were adhered to while writing and reporting this overview [ 26 , 27 ].

Search strategy and selection criteria

We followed the practical guidance for conducting overviews of reviews of health care interventions [ 28 ] and searched the Cochrane Database of Systematic Reviews (CDSR), 2019, Issue 1, on the Cochrane Library for relevant papers using the search strategy: (health) and (exercise or activity or physical). The decision to seek CSRs only was based on three main aspects. First, high quality (CSRs are considered to be the ‘gold methodological standard’) [ 29 , 30 , 31 ]. Second, data saturation (enough high-quality evidence to reach meaningful conclusions based on CSRs only). Third, including non-CSRs would have heavily increased the issue of overlapping reviews (also affecting data robustness and credibility of conclusions). One reviewer carried out the searches. The study screening and selection process were performed independently by two reviewers. We imported all identified references into reference manager software EndNote (X8). Any disagreements were resolved by discussion between the authors with third overview author acting as an arbiter, if necessary.

We included CSRs of randomised controlled trials (RCTs) involving both healthy individuals and medically compromised patients of any age and gender. Only CSRs assessing exercise or physical activity as a stand-alone intervention were included. This included interventions that could initially be taught by a professional or involve ongoing supervision (the WHO definition). Complex interventions e.g., assessing both exercise/physical activity and behavioural changes were excluded if the health effects of the interventions could not have been attributed to exercise distinctly.

Any types of controls were admissible. Reviews evaluating any type of health-related outcome measures were deemed eligible. However, we excluded protocols or/and CSRs that have been withdrawn from the Cochrane Library as well as reviews with no included studies.

Data analysis

Three authors (HM, ALN, NK) independently extracted relevant information from all the included studies using a custom-made data collection form. The methodological quality of SRs included was independently evaluated by same reviewers using the AMSTAR-2 tool [ 32 ]. Any disagreements on data extraction or CSR quality were resolved by discussion. The entire dataset was validated by three authors (PP, MS, DP) and any discrepant opinions were settled through discussions.

The results of CSRs are presented in a narrative fashion using descriptive tables. Where feasible, we presented outcome measures across CSRs. Data from the subset of homogeneous outcomes were pooled quantitatively using the approach previously described by Bellou et al. and Posadzki et al. [ 33 , 34 ]. For mortality and quality of life (QOL) outcomes, the number of participants and RCTs involved in the meta-analysis, summary effect sizes [with 95% confidence intervals (CI)] using random-effects model were calculated. For binary outcomes, we considered relative risks (RRs) as surrogate measures of the corresponding odds ratio (OR) or risk ratio/hazard ratio (HR). To stabilise the variance and normalise the distributions, we transformed RRs into their natural logarithms before pooling the data (a variation was allowed, however, it did not change interpretation of results) [ 35 ]. The standard error (SE) of the natural logarithm of RR was derived from the corresponding CIs, which was either provided in the study or calculated with standard formulas [ 36 ]. Binary outcomes reported as risk difference (RD) were also meta-analysed if two more estimates were available. For continuous outcomes, we only meta-analysed estimates that were available as standardised mean difference (SMD), and estimates reported with mean differences (MD) for QOL were presented separately in a supplementary Table  9 . To estimate the overall effect size, each study was weighted by the reciprocal of its variance. Random-effects meta-analysis, using DerSimonian and Laird method [ 37 ] was applied to individual CSR estimates to obtain a pooled summary estimate for RR or SMD. The 95% prediction interval (PI) was also calculated (where ≥3 studies were available), which further accounts for between-study heterogeneity and estimates the uncertainty around the effect that would be anticipated in a new study evaluating that same association. I -squared statistic was used to measure between study heterogeneity; and its various thresholds (small, substantial and considerable) were interpreted considering the size and direction of effects and the p -value from Cochran’s Q test ( p  < 0.1 considered as significance) [ 38 ]. Wherever possible, we calculated the median effect size (with interquartile range [IQR]) of each CSR to interpret the direction and magnitude of the effect size. Sub-group analyses are planned for type and intensity of the intervention; age group; gender; type and/or severity of the condition, risk of bias in RCTs, and the overall quality of the evidence (Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria). To assess overlap we calculated the corrected covered area (CCA) [ 39 ]. All statistical analyses were conducted on Stata statistical software version 15.2 (StataCorp LLC, College Station, Texas, USA).

The searches generated 280 potentially relevant CRSs. After removing of duplicates and screening, a total of 150 CSRs met our eligibility criteria [ 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , 112 , 113 , 114 , 115 , 116 , 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 , 131 , 132 , 133 , 134 , 135 , 136 , 137 , 138 , 139 , 140 , 141 , 142 , 143 , 144 , 145 , 146 , 147 , 148 , 149 , 150 , 151 , 152 , 153 , 154 , 155 , 156 , 157 , 158 , 159 , 160 , 161 , 162 , 163 , 164 , 165 , 166 , 167 , 168 , 169 , 170 , 171 , 172 , 173 , 174 , 175 , 176 , 177 , 178 , 179 , 180 , 181 , 182 , 183 , 184 , 185 , 186 , 187 , 188 , 189 ] (Fig.  1 ). Reviews were published between September 2002 and December 2018. A total of 130 CSRs employed meta-analytic techniques and 20 did not. The total number of RCTs in the CSRs amounted to 2888; with 485,110 participants (mean = 3234, SD = 13,272). The age ranged from 3 to 87 and gender distribution was inestimable. The main characteristics of included reviews are summarised in supplementary Table  1 . Supplementary Table  2 summarises the effects of physical activity/exercise on health outcomes. Conclusions from CSRs are listed in supplementary Table  3 . Adverse effects are listed in supplementary Table  4 . Supplementary Table  5 presents summary of withdrawals/non-adherence. The methodological quality of CSRs is presented in supplementary Table  6 . Supplementary Table  7 summarises studies assessed at low risk of bias (by the authors of CSRs). GRADE-ings of the review’s main comparison are listed in supplementary Table  8 .

figure 1

Study selection process

There were 54 separate populations/conditions, considerable range of interventions and comparators, co-interventions, and outcome measures. For detailed description of interventions, please refer to the supplementary tables . Most commonly measured outcomes were - function 112 (75%), QOL 83 (55%), AEs 70 (47%), pain 41 (27%), mortality 28 (19%), strength 30 (20%), costs 47 (31%), disability 14 (9%), and mental health in 35 (23%) CSRs.

There was a 13% reduction in mortality rates risk ratio (RR) 0.87 [95% CI 0.78 to 0.96]; I 2  = 26.6%, [PI 0.70, 1.07], median effect size (MES) = 0.93 [interquartile range (IQR) 0.81, 1.00]; 10 CSRs, 187 RCTs, 27,671 participants) following exercise when compared with various controls (Table 1 ). This reduction was smaller in ‘other groups’ of patients when compared to cardiovascular diseases (CVD) patients - RR 0.97 [95% CI 0.65, 1.45] versus 0.85 [0.76, 0.96] respectively. The effects of exercise were not intensity or frequency dependent. Sessions more than 3 times per week exerted a smaller reduction in mortality as compared with sessions of less than 3 times per week RR 0.87 [95% CI 0.78, 0.98] versus 0.63 [0.39, 1.00]. Subgroup analyses by risk of bias (ROB) in RCTs showed that RCTs at low ROB exerted smaller reductions in mortality when compared to RCTs at an unclear or high ROB, RR 0.90 [95% CI 0.78, 1.02] versus 0.72 [0.42, 1.22] versus 0.86 [0.69, 1.06] respectively. CSRs with moderate quality of evidence (GRADE), showed slightly smaller reductions in mortality when compared with CSRs that relied on very low to low quality evidence RR 0.88 [95% CI 0.79, 0.98] versus 0.70 [0.47, 1.04].

Exercise also showed an improvement in QOL, standardised mean difference (SMD) 0.18 [95% CI 0.08, 0.28]; I 2  = 74.3%; PI -0.18, 0.53], MES = 0.20 [IQR 0.07, 0.39]; 15 CSRs, 408 RCTs, 32,984 participants) when compared with various controls (Table 2 ). These improvements were greater observed for health related QOL when compared to overall QOL SMD 0.30 [95% CI 0.21, 0.39] vs 0.06 [− 0.08, 0.20] respectively. Again, the effects of exercise were duration and frequency dependent. For instance, sessions of more than 90 mins exerted a greater improvement in QOL as compared with sessions up to 90 min SMD 0.24 [95% CI 0.11, 0.37] versus 0.22 [− 0.30, 0.74]. Subgroup analyses by the type of condition showed that the magnitude of effect was the largest among patients with mental health conditions, followed by CVD and cancer. Physical activity exerted negative effects on QOL in patients with respiratory conditions (2 CSRs, 20 RCTs with 601 patients; SMD -0.97 [95% CI -1.43, 0.57]; I 2  = 87.8%; MES = -0.46 [IQR-0.97, 0.05]). Subgroup analyses by risk of bias (ROB) in RCTs showed that RCTs at low or unclear ROB exerted greater improvements in QOL when compared to RCTs at a high ROB SMD 0.21 [95% CI 0.10, 0.31] versus 0.17 [0.03, 0.31]. Analogically, CSRs with moderate to high quality of evidence showed slightly greater improvements in QOL when compared with CSRs that relied on very low to low quality evidence SMD 0.19 [95% CI 0.05, 0.33] versus 0.15 [− 0.02, 0.32]. Please also see supplementary Table  9 more studies reporting QOL outcomes as mean difference (not quantitatively synthesised herein).

Adverse events (AEs) were reported in 100 (66.6%) CSRs; and not reported in 50 (33.3%). The number of AEs ranged from 0 to 84 in the CSRs. The number was inestimable in 83 (55.3%) CSRs. Ten (6.6%) reported no occurrence of AEs. Mild AEs were reported in 28 (18.6%) CSRs, moderate in 9 (6%) and serious/severe in 20 (13.3%). There were 10 deaths and in majority of instances, the causality was not attributed to exercise. For this outcome, we were unable to pool the data as effect sizes were too heterogeneous (Table 3 ).

In 38 CSRs, the total number of trials reporting withdrawals/non-adherence was inestimable. There were different ways of reporting it such as adherence or attrition (high in 23.3% of CSRs) as well as various effect estimates including %, range, total numbers, MD, RD, RR, OR, mean and SD. The overall pooled estimates are reported in Table 3 .

Of all 16 domains of the AMSTAR-2 tool, 1876 (78.1%) scored ‘yes’, 76 (3.1%) ‘partial yes’; 375 (15.6%) ‘no’, and ‘not applicable’ in 25 (1%) CSRs. Ninety-six CSRs (64%) were scored as ‘no’ on reporting sources of funding for the studies followed by 88 (58.6%) failing to explain the selection of study designs for inclusion. One CSR (0.6%) each were judged as ‘no’ for reporting any potential sources of conflict of interest, including any funding for conducting the review as well for performing study selection in duplicate.

In 102 (68%) CSRs, there was predominantly a high risk of bias in RCTs. In 9 (6%) studies, this was reported as a range, e.g., low or unclear or low to high. Two CSRs used different terminology i.e., moderate methodological quality; and the risk of bias was inestimable in one CSR. Sixteen (10.6%) CSRs did not identify any studies (RCTs) at low risk of random sequence generation, 28 (18.6%) allocation concealment, 28 (18.6%) performance bias, 84 (54%) detection bias, 35 (23.3%) attrition bias, 18 (12%) reporting bias, and 29 (19.3%) other bias.

In 114 (76%) CSRs, limitation of studies was the main reason for downgrading the quality of the evidence followed by imprecision in 98 (65.3%) and inconsistency in 68 (45.3%). Publication bias was the least frequent reason for downgrading in 26 (17.3%) CSRs. Ninety-one (60.7%) CSRs reached equivocal conclusions, 49 (32.7%) reviews reached positive conclusions and 10 (6.7%) reached negative conclusions (as judged by the authors of CSRs).

In this systematic review of CSRs, we found a large body of evidence on the beneficial effects of physical activity/exercise on health outcomes in a wide range of heterogeneous populations. Our data shows a 13% reduction in mortality rates among 27,671 participants, and a small improvement in QOL and health-related QOL following various modes of physical activity/exercises. This means that both healthy individuals and medically compromised patients can significantly improve function, physical and mental health; or reduce pain and disability by exercising more [ 190 ]. In line with previous findings [ 191 , 192 , 193 , 194 ], where a dose-specific reduction in mortality has been found, our data shows a greater reduction in mortality in studies with longer follow-up (> 12 months) as compared to those with shorter follow-up (< 12 months). Interestingly, we found a consistent pattern in the findings, the higher the quality of evidence and the lower the risk of bias in primary studies, the smaller reductions in mortality. This pattern is observational in nature and cannot be over-generalised; however this might mean less certainty in the estimates measured. Furthermore, we found that the magnitude of the effect size was the largest among patients with mental health conditions. A possible mechanism of action may involve elevated levels of brain-derived neurotrophic factor or beta-endorphins [ 195 ].

We found the issue of poor reporting or underreporting of adherence/withdrawals in over a quarter of CSRs (25.3%). This is crucial both for improving the accuracy of the estimates at the RCT level as well as maintaining high levels of physical activity and associated health benefits at the population level.

Even the most promising interventions are not entirely risk-free; and some minor AEs such as post-exercise pain and soreness or discomfort related to physical activity/exercise have been reported. These were typically transient; resolved within a few days; and comparable between exercise and various control groups. However worryingly, the issue of poor reporting or underreporting of AEs has been observed in one third of the CSRs. Transparent reporting of AEs is crucial for identifying patients at risk and mitigating any potential negative or unintended consequences of the interventions.

High risk of bias of the RCTs evaluated was evident in more than two thirds of the CSRs. For example, more than half of reviews identified high risk of detection bias as a major source of bias suggesting that lack of blinding is still an issue in trials of behavioural interventions. Other shortcomings included insufficiently described randomisation and allocation concealment methods and often poor outcome reporting. This highlights the methodological challenges in RCTs of exercise and the need to counterbalance those with the underlying aim of strengthening internal and external validity of these trials.

Overall, high risk of bias in the primary trials was the main reason for downgrading the quality of the evidence using the GRADE criteria. Imprecision was frequently an issue, meaning the effective sample size was often small; studies were underpowered to detect the between-group differences. Pooling too heterogeneous results often resulted in inconsistent findings and inability to draw any meaningful conclusions. Indirectness and publication bias were lesser common reasons for downgrading. However, with regards to the latter, the generally accepted minimum number of 10 studies needed for quantitatively estimate the funnel plot asymmetry was not present in 69 (46%) CSRs.

Strengths of this research are the inclusion of large number of ‘gold standard’ systematic reviews, robust screening, data extractions and critical methodological appraisal. Nevertheless, some weaknesses need to be highlighted when interpreting findings of this overview. For instance, some of these CSRs analysed the same primary studies (RCTs) but, arrived at slightly different conclusions. Using, the Pieper et al. [ 39 ] formula, the amount of overlap ranged from 0.01% for AEs to 0.2% for adherence, which indicates slight overlap. All CSRs are vulnerable to publication bias [ 196 ] - hence the conclusions generated by them may be false-positive. Also, exercise was sometimes part of a complex intervention; and the effects of physical activity could not be distinguished from co-interventions. Often there were confounding effects of diet, educational, behavioural or lifestyle interventions; selection, and measurement bias were inevitably inherited in this overview too. Also, including CSRs only might lead to selection bias; and excluding reviews published before 2000 might limit the overall completeness and applicability of the evidence. A future update should consider these limitations, and in particular also including non-CSRs.

Conclusions

Trialists must improve the quality of primary studies. At the same time, strict compliance with the reporting standards should be enforced. Authors of CSRs should better explain eligibility criteria and report sources of funding for the primary studies. There are still insufficient physical activity trends worldwide amongst all age groups; and scalable interventions aimed at increasing physical activity levels should be prioritized [ 197 ]. Hence, policymakers and practitioners need to design and implement comprehensive and coordinated strategies aimed at targeting physical activity programs/interventions, health promotion and disease prevention campaigns at local, regional, national, and international levels [ 198 ].

Availability of data and materials

Data sharing is not applicable to this article as no raw data were analysed during the current study. All information in this article is based on published systematic reviews.

Abbreviations

Adverse events

Cardiovascular diseases

Cochrane Database of Systematic Reviews

Cochrane systematic reviews

Confidence interval

Grading of Recommendations Assessment, Development and Evaluation

Hazard ratio

Interquartile range

Mean difference

Prediction interval

Quality of life

Randomised controlled trials

Relative risk

Risk difference

Risk of bias

Standard error

Standardised mean difference

World Health Organization

https://www.who.int/dietphysicalactivity/pa/en/ . (Accessed 8 June 2020).

Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for AmericansPhysical activity guidelines for AmericansPhysical activity guidelines for Americans. Jama. 2018;320(19):2020–8.

PubMed   Google Scholar  

Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the global burden of disease study 2013. BMJ. 2016;354:i3857.

PubMed   PubMed Central   Google Scholar  

Abell B, Glasziou P, Hoffmann T. The contribution of individual exercise training components to clinical outcomes in randomised controlled trials of cardiac rehabilitation: a systematic review and meta-regression. Sports Med Open. 2017;3(1):19.

Anderson D, Seib C, Rasmussen L. Can physical activity prevent physical and cognitive decline in postmenopausal women? A systematic review of the literature. Maturitas. 2014;79(1):14–33.

Barbaric M, Brooks E, Moore L, Cheifetz O. Effects of physical activity on cancer survival: a systematic review. Physiother Can. 2010;62(1):25–34.

Barlow PA, Otahal P, Schultz MG, Shing CM, Sharman JE. Low exercise blood pressure and risk of cardiovascular events and all-cause mortality: systematic review and meta-analysis. Atherosclerosis. 2014;237(1):13–22.

CAS   PubMed   Google Scholar  

Aljawarneh YM, Wardell DW, Wood GL, Rozmus CL. A systematic review of physical activity and exercise on physiological and biochemical outcomes in children and adolescents with type 1 diabetes. J Nurs Scholarsh. 2019.

Chastin SFM, De Craemer M, De Cocker K, Powell L, Van Cauwenberg J, Dall P, Hamer M, Stamatakis E. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med. 2019;53(6):370–6.

Abdulla SY, Southerst D, Cote P, Shearer HM, Sutton D, Randhawa K, Varatharajan S, Wong JJ, Yu H, Marchand AA, et al. Is exercise effective for the management of subacromial impingement syndrome and other soft tissue injuries of the shoulder? A systematic review by the Ontario protocol for traffic injury management (OPTIMa) collaboration. Man Ther. 2015;20(5):646–56.

Alanazi MH, Parent EC, Dennett E. Effect of stabilization exercise on back pain, disability and quality of life in adults with scoliosis: a systematic review. Eur J Phys Rehabil Med. 2018;54(5):647–53.

Adsett JA, Mudge AM, Morris N, Kuys S, Paratz JD. Aquatic exercise training and stable heart failure: a systematic review and meta-analysis. Int J Cardiol. 2015;186:22–8.

Adamson BC, Ensari I, Motl RW. Effect of exercise on depressive symptoms in adults with neurologic disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2015;96(7):1329–38.

Abdin S, Welch RK, Byron-Daniel J, Meyrick J. The effectiveness of physical activity interventions in improving well-being across office-based workplace settings: a systematic review. Public Health. 2018;160:70–6.

Albalawi H, Coulter E, Ghouri N, Paul L. The effectiveness of structured exercise in the south Asian population with type 2 diabetes: a systematic review. Phys Sportsmed. 2017;45(4):408–17.

Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front Immunol. 2018;9:2187.

Hagen KB, Dagfinrud H, Moe RH, Østerås N, Kjeken I, Grotle M, Smedslund G. Exercise therapy for bone and muscle health: an overview of systematic reviews. BMC Med. 2012;10(1):167.

Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Contin Educ Anaesth Crit Care Pain. 2004;4(6):185–8.

Google Scholar  

Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135.

CAS   PubMed   PubMed Central   Google Scholar  

Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12.

Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56.

Excellence NIfHaC: Cardiovascular disease prevention public health guideline [PH25] Published date: June 2010. Available at: https://www.nice.org.uk/guidance/ph25/resources/cardiovascular-disease-prevention-pdf-1996238687173 .

Excellence NIfHaC: Obesity prevention clinical guideline [CG43] published date: December 2006 Last updated: March 2015. Available at: https://www.nice.org.uk/guidance/cg43/resources/obesity-prevention-pdf-975445344709 .

Excellence NIfHaC: Physical activity for children and young people public health guideline [PH17] Published date: January 2009. Available at: https://www.nice.org.uk/guidance/ph17/resources/physical-activity-for-children-and-young-people-pdf-1996181580229 .

Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 6 [updated September 2018] edition. Available from www.cochrane-handbook.org : The Cochrane Collaboration, 2011. 2011.

Bougioukas KI, Liakos A, Tsapas A, Ntzani E, Haidich A-B. Preferred reporting items for overviews of systematic reviews including harms checklist: a pilot tool to be used for balanced reporting of benefits and harms. J Clin Epidemiol. 2018;93:9–24.

Pollock M, Fernandes RM, Newton AS, Scott SD, Hartling L. The impact of different inclusion decisions on the comprehensiveness and complexity of overviews of reviews of healthcare interventions. Syst Rev. 2019;8(1):18.

Handoll H, Madhok R. Quality of Cochrane reviews. Another study found that most Cochrane reviews are of a good standard. BMJ. 2002;324(7336):545.

Petticrew M, Wilson P, Wright K, Song F. Quality of Cochrane reviews. Quality of Cochrane reviews is better than that of non-Cochrane reviews. BMJ. 2002;324(7336):545.

Shea B, Moher D, Graham I, Pham B, Tugwell P. A comparison of the quality of Cochrane reviews and systematic reviews published in paper-based journals. Eval Health Prof. 2002;25(1):116–29.

Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

Posadzki PP, Bajpai R, Kyaw BM, Roberts NJ, Brzezinski A, Christopoulos GI, Divakar U, Bajpai S, Soljak M, Dunleavy G, et al. Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med. 2018;16(1):18.

Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JP. Environmental risk factors and Parkinson's disease: an umbrella review of meta-analyses. Parkinsonism Relat Disord. 2016;23:1–9.

Walter SD, Cook RJ. A comparison of several point estimators of the odds ratio in a single 2 x 2 contingency table. Biometrics. 1991;47(3):795–811.

Khan H, Sempos CT. Statistical methods in epidemiology. New York: Oxford University Press; 1989.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

CAS   Google Scholar  

Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019): Cochrane; 2019. Available from www.training.cochrane.org/handbook .

Pieper D, Antoine SL, Mathes T, Neugebauer EA, Eikermann M. Systematic review finds overlapping reviews were not mentioned in every other overview. J Clin Epidemiol. 2014;67(4):368–75.

Adeniyi FB, Young T. Weight loss interventions for chronic asthma. Cochrane Database Syst Rev. 2012;7.

Al-Khudairy L, Loveman E, Colquitt JL, Mead E, Johnson RE, Fraser H, Olajide J, Murphy M, Velho RM, O'Malley C, et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane Database Syst Rev. 2017;6.

Amorim Adegboye AR, Linne YM. Diet or exercise, or both, for weight reduction in women after childbirth. Cochrane Database Syst Rev. 2013;7.

Anderson L, Nguyen TT, Dall CH, Burgess L, Bridges C, Taylor RS. Exercise-based cardiac rehabilitation in heart transplant recipients. Cochrane Database Syst Rev. 2017;4.

Anderson L, Thompson DR, Oldridge N, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016;1.

Andriolo RB, El Dib RP, Ramos L, Atallah Á, da Silva EMK. Aerobic exercise training programmes for improving physical and psychosocial health in adults with Down syndrome. Cochrane Database Syst Rev. 2010;5.

Araujo DN, Ribeiro CTD, Maciel ACC, Bruno SS, Fregonezi GAF, Dias FAL. Physical exercise for the treatment of non-ulcerated chronic venous insufficiency. Cochrane Database Syst Rev. 2016;12.

Ashworth NL, Chad KE, Harrison EL, Reeder BA, Marshall SC. Home versus center based physical activity programs in older adults. Cochrane Database Syst Rev. 2005;1.

Bartels EM, Juhl CB, Christensen R, Hagen KB, Danneskiold-Samsøe B, Dagfinrud H, Lund H. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst Rev. 2016;3.

Beggs S, Foong YC, Le HCT, Noor D, Wood-Baker R, Walters JAE. Swimming training for asthma in children and adolescents aged 18 years and under. Cochrane Database Syst Rev. 2013;4.

Bergenthal N, Will A, Streckmann F, Wolkewitz KD, Monsef I, Engert A, Elter T, Skoetz N. Aerobic physical exercise for adult patients with haematological malignancies. Cochrane Database Syst Rev. 2014;11.

Bidonde J, Busch AJ, Schachter CL, Overend TJ, Kim SY, Góes SM, Boden C, Foulds HJA. Aerobic exercise training for adults with fibromyalgia. Cochrane Database Syst Rev. 2017;6.

Bidonde J, Busch AJ, van der Spuy I, Tupper S, Kim SY, Boden C. Whole body vibration exercise training for fibromyalgia. Cochrane Database Syst Rev. 2017;9.

Bidonde J, Busch AJ, Webber SC, Schachter CL, Danyliw A, Overend TJ, Richards RS, Rader T. Aquatic exercise training for fibromyalgia. Cochrane Database Syst Rev. 2014;10.

Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJL. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;3.

Bradt J, Shim M, Goodill SW. Dance/movement therapy for improving psychological and physical outcomes in cancer patients. Cochrane Database Syst Rev. 2015;1.

Broderick J, Crumlish N, Waugh A, Vancampfort D. Yoga versus non-standard care for schizophrenia. Cochrane Database Syst Rev. 2017;9.

Broderick J, Knowles A, Chadwick J, Vancampfort D. Yoga versus standard care for schizophrenia. Cochrane Database Syst Rev. 2015;10.

Broderick J, Vancampfort D. Yoga as part of a package of care versus standard care for schizophrenia. Cochrane Database Syst Rev. 2017;9.

Brown J, Ceysens G, Boulvain M. Exercise for pregnant women with gestational diabetes for improving maternal and fetal outcomes. Cochrane Database Syst Rev. 2017;6.

Busch AJ, Barber KA, Overend TJ, Peloso PMJ, Schachter CL. Exercise for treating fibromyalgia syndrome. Cochrane Database Syst Rev. 2007;4.

Busch AJ, Webber SC, Richards RS, Bidonde J, Schachter CL, Schafer LA, Danyliw A, Sawant A, Dal Bello-Haas V, Rader T, et al. Resistance exercise training for fibromyalgia. Cochrane Database Syst Rev. 2013;12.

Cameron ID, Dyer SM, Panagoda CE, Murray GR, Hill KD, Cumming RG, Kerse N. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2018;9.

Carson KV, Chandratilleke MG, Picot J, Brinn MP, Esterman AJ, Smith BJ. Physical training for asthma. Cochrane Database Syst Rev. 2013;9.

Carvalho APV, Vital FMR, Soares BGO. Exercise interventions for shoulder dysfunction in patients treated for head and neck cancer. Cochrane Database Syst Rev. 2012;4.

Cavalheri V, Granger C. Preoperative exercise training for patients with non-small cell lung cancer. Cochrane Database Syst Rev. 2017;6.

Cavalheri V, Tahirah F, Nonoyama ML, Jenkins S, Hill K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst Rev. 2013;7.

Ceysens G, Rouiller D, Boulvain M. Exercise for diabetic pregnant women. Cochrane Database Syst Rev. 2006;3.

Choi BKL, Verbeek JH, Tam WWS, Jiang JY. Exercises for prevention of recurrences of low-back pain. Cochrane Database Syst Rev. 2010;1.

Colquitt JL, Loveman E, O'Malley C, Azevedo LB, Mead E, Al-Khudairy L, Ells LJ, Metzendorf MI, Rees K. Diet, physical activity, and behavioural interventions for the treatment of overweight or obesity in preschool children up to the age of 6 years. Cochrane Database Syst Rev. 2016;3.

Connolly B, Salisbury L, O'Neill B, Geneen LJ, Douiri A, Grocott MPW, Hart N, Walsh TS, Blackwood B. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst Rev. 2015;6.

Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE. Exercise for depression. Cochrane Database Syst Rev. 2013;9.

Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev. 2015;10.

Cramer H, Lauche R, Klose P, Lange S, Langhorst J, Dobos GJ. Yoga for improving health-related quality of life, mental health and cancer-related symptoms in women diagnosed with breast cancer. Cochrane Database Syst Rev. 2017;1.

Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012;11.

Dal Bello-Haas V, Florence JM. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev. 2013;5.

Dale MT, McKeough ZJ, Troosters T, Bye P, Alison JA. Exercise training to improve exercise capacity and quality of life in people with non-malignant dust-related respiratory diseases. Cochrane Database Syst Rev. 2015;11.

Daley A, Stokes-Lampard H, Thomas A, MacArthur C. Exercise for vasomotor menopausal symptoms. Cochrane Database Syst Rev. 2014;11.

de Morton N, Keating JL, Jeffs K. Exercise for acutely hospitalised older medical patients. Cochrane Database Syst Rev. 2007;1.

Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2.

Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018;3.

Ekeland E, Heian F, Hagen KB, Abbott JM, Nordheim L. Exercise to improve self-esteem in children and young people. Cochrane Database Syst Rev. 2004;1.

Elbers RG, Verhoef J, van Wegen EEH, Berendse HW, Kwakkel G. Interventions for fatigue in Parkinson's disease. Cochrane Database Syst Rev. 2015;10.

Felbel S, Meerpohl JJ, Monsef I, Engert A, Skoetz N. Yoga in addition to standard care for patients with haematological malignancies. Cochrane Database Syst Rev. 2014;6.

Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2015;4.

Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, Bennell KL. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev. 2015;1.

Fransen M, McConnell S, Hernandez-Molina G, Reichenbach S. Exercise for osteoarthritis of the hip. Cochrane Database Syst Rev. 2014;4.

Freitas DA, Holloway EA, Bruno SS, Chaves GSS, Fregonezi GAF, Mendonça K. Breathing exercises for adults with asthma. Cochrane Database Syst Rev. 2013;10.

Furmaniak AC, Menig M, Markes MH. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev. 2016;9.

Giangregorio LM, MacIntyre NJ, Thabane L, Skidmore CJ, Papaioannou A. Exercise for improving outcomes after osteoporotic vertebral fracture. Cochrane Database Syst Rev. 2013;1.

Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9.

Gorczynski P, Faulkner G. Exercise therapy for schizophrenia. Cochrane Database Syst Rev. 2010;5.

Grande AJ, Keogh J, Hoffmann TC, Beller EM, Del Mar CB. Exercise versus no exercise for the occurrence, severity and duration of acute respiratory infections. Cochrane Database Syst Rev. 2015;6.

Grande AJ, Reid H, Thomas EE, Nunan D, Foster C. Exercise prior to influenza vaccination for limiting influenza incidence and its related complications in adults. Cochrane Database Syst Rev. 2016;8.

Grande AJ, Silva V, Andriolo BNG, Riera R, Parra SA, Peccin MS. Water-based exercise for adults with asthma. Cochrane Database Syst Rev. 2014;7.

Gross A, Kay TM, Paquin JP, Blanchette S, Lalonde P, Christie T, Dupont G, Graham N, Burnie SJ, Gelley G, et al. Exercises for mechanical neck disorders. Cochrane Database Syst Rev. 2015;1.

Hageman D, Fokkenrood HJP, Gommans LNM, van den Houten MML, Teijink JAW. Supervised exercise therapy versus home-based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst Rev. 2018;4.

Han A, Judd M, Welch V, Wu T, Tugwell P, Wells GA. Tai chi for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2004;3.

Han S, Middleton P, Crowther CA. Exercise for pregnant women for preventing gestational diabetes mellitus. Cochrane Database Syst Rev. 2012;7.

Hartley L, Dyakova M, Holmes J, Clarke A, Lee MS, Ernst E, Rees K. Yoga for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014;5.

Hartley L, Flowers N, Lee MS, Ernst E, Rees K. Tai chi for primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2014;4.

Hartley L, Lee MS, Kwong JSW, Flowers N, Todkill D, Ernst E, Rees K. Qigong for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2015;6.

Hassett L, Moseley AM, Harmer AR. Fitness training for cardiorespiratory conditioning after traumatic brain injury. Cochrane Database Syst Rev. 2017;12.

Hayden J, van Tulder MW, Malmivaara A, Koes BW. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev. 2005;3.

Hay-Smith EJC, Herderschee R, Dumoulin C, Herbison GP. Comparisons of approaches to pelvic floor muscle training for urinary incontinence in women. Cochrane Database Syst Rev. 2011;12.

Heine M, van de Port I, Rietberg MB, van Wegen EEH, Kwakkel G. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015;9.

Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev. 2011;10.

Hemmingsen B, Gimenez-Perez G, Mauricio D, Roqué i Figuls M, Metzendorf MI, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;12.

Herbert RD, de Noronha M, Kamper SJ. Stretching to prevent or reduce muscle soreness after exercise. Cochrane Database Syst Rev. 2011;7.

Heymans MW, van Tulder MW, Esmail R, Bombardier C, Koes BW. Back schools for non-specific low-back pain. Cochrane Database Syst Rev. 2004;4.

Holland AE, Hill CJ, Jones AY, McDonald CF. Breathing exercises for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;10.

Howe TE, Rochester L, Neil F, Skelton DA, Ballinger C. Exercise for improving balance in older people. Cochrane Database Syst Rev. 2011;11.

Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011;7.

Hurkmans E, van der Giesen FJ, Vliet Vlieland TPM, Schoones J, Van den Ende E. Dynamic exercise programs (aerobic capacity and/or muscle strength training) in patients with rheumatoid arthritis. Cochrane Database Syst Rev. 2009;4.

Hurley M, Dickson K, Hallett R, Grant R, Hauari H, Walsh N, Stansfield C, Oliver S. Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: a mixed methods review. Cochrane Database Syst Rev. 2018;4.

Jones M, Harvey A, Marston L, O'Connell NE. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults. Cochrane Database Syst Rev. 2013;5.

Katsura M, Kuriyama A, Takeshima T, Fukuhara S, Furukawa TA. Preoperative inspiratory muscle training for postoperative pulmonary complications in adults undergoing cardiac and major abdominal surgery. Cochrane Database Syst Rev. 2015;10.

Kendrick D, Kumar A, Carpenter H, Zijlstra GAR, Skelton DA, Cook JR, Stevens Z, Belcher CM, Haworth D, Gawler SJ, et al. Exercise for reducing fear of falling in older people living in the community. Cochrane Database Syst Rev. 2014;11.

Kramer MS, McDonald SW. Aerobic exercise for women during pregnancy. Cochrane Database Syst Rev. 2006;3.

Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity for women with breast cancer after adjuvant therapy. Cochrane Database Syst Rev. 2018;1.

Lane R, Harwood A, Watson L, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2017;12.

Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2017;4.

Larun L, Nordheim LV, Ekeland E, Hagen KB, Heian F. Exercise in prevention and treatment of anxiety and depression among children and young people. Cochrane Database Syst Rev. 2006;3.

Lauret GJ, Fakhry F, Fokkenrood HJP, Hunink MGM, Teijink JAW, Spronk S. Modes of exercise training for intermittent claudication. Cochrane Database Syst Rev. 2014;7.

Lawrence M, Celestino Junior FT, Matozinho HHS, Govan L, Booth J, Beecher J. Yoga for stroke rehabilitation. Cochrane Database Syst Rev. 2017;12.

Lin CWC, Donkers NAJ, Refshauge KM, Beckenkamp PR, Khera K, Moseley AM. Rehabilitation for ankle fractures in adults. Cochrane Database Syst Rev. 2012;11.

Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009;3.

Long L, Anderson L, Dewhirst AM, He J, Bridges C, Gandhi M, Taylor RS. Exercise-based cardiac rehabilitation for adults with stable angina. Cochrane Database Syst Rev. 2018;2.

Loughney LA, West MA, Kemp GJ, Grocott MPW, Jack S. Exercise interventions for people undergoing multimodal cancer treatment that includes surgery. Cochrane Database Syst Rev. 2018;12.

Macedo LG, Saragiotto BT, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo R, Maher CG. Motor control exercise for acute non-specific low back pain. Cochrane Database Syst Rev. 2016;2.

Macêdo TMF, Freitas DA, Chaves GSS, Holloway EA, Mendonça K. Breathing exercises for children with asthma. Cochrane Database Syst Rev. 2016;4.

Martin A, Booth JN, Laird Y, Sproule J, Reilly JJ, Saunders DH. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst Rev. 2018;3.

McKeough ZJ, Velloso M, Lima VP, Alison JA. Upper limb exercise training for COPD. Cochrane Database Syst Rev. 2016;11.

McNamara RJ, McKeough ZJ, McKenzie DK, Alison JA. Water-based exercise training for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;12.

McNeely ML, Campbell K, Ospina M, Rowe BH, Dabbs K, Klassen TP, Mackey J, Courneya K. Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev. 2010;6.

Mead E, Brown T, Rees K, Azevedo LB, Whittaker V, Jones D, Olajide J, Mainardi GM, Corpeleijn E, O'Malley C, et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database Syst Rev. 2017;6.

Meekums B, Karkou V, Nelson EA. Dance movement therapy for depression. Cochrane Database Syst Rev. 2015;2.

Meher S, Duley L. Exercise or other physical activity for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2006;2.

Mehrholz J, Kugler J, Pohl M. Water-based exercises for improving activities of daily living after stroke. Cochrane Database Syst Rev. 2011;1.

Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev. 2012;11.

Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8.

Mishra SI, Scherer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC, Snyder C. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;8.

Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8.

Montgomery P, Dennis JA. Physical exercise for sleep problems in adults aged 60+. Cochrane Database Syst Rev. 2002;4.

Morris NR, Kermeen FD, Holland AE. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst Rev. 2017;1.

Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev. 2015;6.

Ngai SPC, Jones AYM, Tam WWS. Tai chi for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev. 2016;6.

Norton C, Cody JD. Biofeedback and/or sphincter exercises for the treatment of faecal incontinence in adults. Cochrane Database Syst Rev. 2012;7.

O'Brien K, Nixon S, Glazier R, Tynan AM. Progressive resistive exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev. 2004;4.

O'Brien K, Nixon S, Tynan AM, Glazier R. Aerobic exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev. 2010;8.

Østerås N, Kjeken I, Smedslund G, Moe RH, Slatkowsky-Christensen B, Uhlig T, Hagen KB. Exercise for hand osteoarthritis. Cochrane Database Syst Rev. 2017;1.

Page MJ, Green S, Kramer S, Johnston RV, McBain B, Chau M, Buchbinder R. Manual therapy and exercise for adhesive capsulitis (frozen shoulder). Cochrane Database Syst Rev. 2014;8.

Page MJ, Green S, McBain B, Surace SJ, Deitch J, Lyttle N, Mrocki MA, Buchbinder R. Manual therapy and exercise for rotator cuff disease. Cochrane Database Syst Rev. 2016;6.

Page MJ, O'Connor D, Pitt V, Massy-Westropp N. Exercise and mobilisation interventions for carpal tunnel syndrome. Cochrane Database Syst Rev. 2012;6.

Panebianco M, Sridharan K, Ramaratnam S. Yoga for epilepsy. Cochrane Database Syst Rev. 2017;10.

Perry A, Lee SH, Cotton S, Kennedy C. Therapeutic exercises for affecting post-treatment swallowing in people treated for advanced-stage head and neck cancers. Cochrane Database Syst Rev. 2016;8.

Radtke T, Nevitt SJ, Hebestreit H, Kriemler S. Physical exercise training for cystic fibrosis. Cochrane Database Syst Rev. 2017;11.

Regnaux JP, Lefevre-Colau MM, Trinquart L, Nguyen C, Boutron I, Brosseau L, Ravaud P. High-intensity versus low-intensity physical activity or exercise in people with hip or knee osteoarthritis. Cochrane Database Syst Rev. 2015;10.

Ren J, Xia J. Dance therapy for schizophrenia. Cochrane Database Syst Rev. 2013;10.

Rietberg MB, Brooks D, Uitdehaag BMJ, Kwakkel G. Exercise therapy for multiple sclerosis. Cochrane Database Syst Rev. 2005;1.

Risom SS, Zwisler AD, Johansen PP, Sibilitz KL, Lindschou J, Gluud C, Taylor RS, Svendsen JH, Berg SK. Exercise-based cardiac rehabilitation for adults with atrial fibrillation. Cochrane Database Syst Rev. 2017;2.

Romano M, Minozzi S, Bettany-Saltikov J, Zaina F, Chockalingam N, Kotwicki T, Maier-Hennes A, Negrini S. Exercises for adolescent idiopathic scoliosis. Cochrane Database Syst Rev. 2012;8.

Ryan JM, Cassidy EE, Noorduyn SG, O'Connell NE. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017;6.

Saragiotto BT, Maher CG, Yamato TP, Costa LOP, Menezes Costa LC, Ostelo R, Macedo LG. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. 2016;1.

Saunders DH, Sanderson M, Hayes S, Kilrane M, Greig CA, Brazzelli M, Mead GE. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2016;3.

Schulzke SM, Kaempfen S, Trachsel D, Patole SK. Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev. 2014;4.

Seron P, Lanas F, Pardo Hernandez H, Bonfill Cosp X. Exercise for people with high cardiovascular risk. Cochrane Database Syst Rev. 2014;8.

Shaw KA, Gennat HC, O'Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;4.

Shepherd E, Gomersall JC, Tieu J, Han S, Crowther CA, Middleton P. Combined diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst Rev. 2017;11.

Sibilitz KL, Berg SK, Tang LH, Risom SS, Gluud C, Lindschou J, Kober L, Hassager C, Taylor RS, Zwisler AD. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst Rev. 2016;3.

Silva IS, Fregonezi GAF, Dias FAL, Ribeiro CTD, Guerra RO, Ferreira GMH. Inspiratory muscle training for asthma. Cochrane Database Syst Rev. 2013;9.

States RA, Pappas E, Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst Rev. 2009;3.

Strike K, Mulder K, Michael R. Exercise for haemophilia. Cochrane Database Syst Rev. 2016;12.

Takken T, Van Brussel M, Engelbert RH, van der Net JJ, Kuis W, Helders P. Exercise therapy in juvenile idiopathic arthritis. Cochrane Database Syst Rev. 2008;2.

Taylor RS, Sagar VA, Davies EJ, Briscoe S, Coats AJS, Dalal H, Lough F, Rees K, Singh SJ, Mordi IR. Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev. 2014;4.

Thomas D, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;3.

Ussher MH, Taylor AH, Faulkner GEJ. Exercise interventions for smoking cessation. Cochrane Database Syst Rev. 2014;8.

Valentín-Gudiol M, Mattern-Baxter K, Girabent-Farrés M, Bagur-Calafat C, Hadders-Algra M, Angulo-Barroso RM. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev. 2017;7.

van der Heijden RA, Lankhorst NE, van Linschoten R, Bierma-Zeinstra SMA, van Middelkoop M. Exercise for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2015;1.

Vloothuis JDM, Mulder M, Veerbeek JM, Konijnenbelt M, Visser-Meily JMA, Ket JCF, Kwakkel G, van Wegen EEH. Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst Rev. 2016;12.

Voet NBM, van der Kooi EL. Riphagen, II, Lindeman E, van Engelen BGM, Geurts ACH: strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. 2013;7.

White CM, Pritchard J, Turner-Stokes L. Exercise for people with peripheral neuropathy. Cochrane Database Syst Rev. 2004;4.

Wieland LS, Skoetz N, Pilkington K, Vempati R, D'Adamo CR, Berman BM. Yoga treatment for chronic non-specific low back pain. Cochrane Database Syst Rev. 2017;1.

Williams AD, Bird ML, Hardcastle SGK, Kirschbaum M, Ogden KJ, Walters JAE. Exercise for reducing falls in people living with and beyond cancer. Cochrane Database Syst Rev. 2018;10.

Williams MA, Srikesavan C, Heine PJ, Bruce J, Brosseau L, Hoxey-Thomas N, Lamb SE. Exercise for rheumatoid arthritis of the hand. Cochrane Database Syst Rev. 2018;7.

Yamamoto S, Hotta K, Ota E, Matsunaga A, Mori R. Exercise-based cardiac rehabilitation for people with implantable ventricular assist devices. Cochrane Database Syst Rev. 2018;9.

Yamato TP, Maher CG, Saragiotto BT, Hancock MJ, Ostelo R, Cabral CMN, Menezes Costa LC, Costa LOP. Pilates for low back pain. Cochrane Database Syst Rev. 2015;7.

Yang ZY, Zhong HB, Mao C, Yuan JQ, Huang YF, Wu XY, Gao YM, Tang JL. Yoga for asthma. Cochrane Database Syst Rev. 2016;4.

Young J, Angevaren M, Rusted J, Tabet N. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2015;4.

Zainuldin R, Mackey MG, Alison JA. Optimal intensity and type of leg exercise training for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011;11.

Mok A, Khaw K-T, Luben R, Wareham N, Brage S. Physical activity trajectories and mortality: population based cohort study. Bmj. 2019;365:l2323.

Ekelund U, Brown WJ, Steene-Johannessen J, Fagerland MW, Owen N, Powell KE, Bauman AE, Lee IM. Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. Br J Sports Med. 2019;53(14):886–94. https://doi.org/10.1136/bjsports-2017-098963 . Epub 2018 Jul 10.

Article   PubMed   Google Scholar  

Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, Bauman A, Lee IM. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.

Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R, et al. The effect of physical activity on mortality and cardiovascular disease in 130000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):2643–54.

Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789–95.

Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B, Leclair E, Di Marzo V, Meeusen R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology. 2012;37(6):844–51.

Horton R. Offline: the gravy train of systematic reviews. Lancet. 2019;394(10211):1790.

Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077–86.

Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ. Promoting physical activity and exercise: JACC health promotion series. J Am Coll Cardiol. 2018;72(14):1622–39.

Download references

Acknowledgements

Not applicable.

There was no funding source for this study. Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and affiliations.

Kleijnen Systematic Reviews Ltd., York, UK

Pawel Posadzki

Nanyang Technological University, Singapore, Singapore

Institute for Research in Operative Medicine, Witten/Herdecke University, Witten, Germany

Dawid Pieper, Nadja Könsgen & Annika Lena Neuhaus

School of Medicine, Keele University, Staffordshire, UK

Jozef Pilsudski University of Physical Education in Warsaw, Faculty Physical Education and Health, Biala Podlaska, Poland

Hubert Makaruk

Health Outcomes Division, University of Texas at Austin College of Pharmacy, Austin, USA

Monika Semwal

You can also search for this author in PubMed   Google Scholar

Contributions

PP wrote the protocol, ran the searches, validated, analysed and synthesised data, wrote and revised the drafts. HM, NK and ALN screened and extracted data. MS and DP validated and analysed the data. RB ran statistical analyses. All authors contributed to writing and reviewing the manuscript. PP is the guarantor. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Dawid Pieper .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:.

Supplementary Table 1. Main characteristics of included Cochrane systematic reviews evaluating the effects of physical activity/exercise on health outcomes ( n  = 150). Supplementary Table 2. Additional information from Cochrane systematic reviews of the effects of physical activity/exercise on health outcomes ( n  = 150). Supplementary Table 3. Conclusions from Cochrane systematic reviews “quote”. Supplementary Table 4 . AEs reported in Cochrane systematic reviews. Supplementary Table 5. Summary of withdrawals/non-adherence. Supplementary Table 6. Methodological quality assessment of the included Cochrane reviews with AMSTAR-2. Supplementary Table 7. Number of studies assessed as low risk of bias per domain. Supplementary Table 8. GRADE for the review’s main comparison. Supplementary Table 9. Studies reporting quality of life outcomes as mean difference.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Posadzki, P., Pieper, D., Bajpai, R. et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health 20 , 1724 (2020). https://doi.org/10.1186/s12889-020-09855-3

Download citation

Received : 01 April 2020

Accepted : 08 November 2020

Published : 16 November 2020

DOI : https://doi.org/10.1186/s12889-020-09855-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Effectiveness

BMC Public Health

ISSN: 1471-2458

benefits of exercise essay pdf

Arab States

Asia and the pacific, europe & central asia, latin america & the caribbean.

You’re using an outdated browser. Old browsers are unstable, unsafe and do not support the features of of this website. Please upgrade to continue.

Your browser does not support JavaScript. This site relies on JavaScript to structure its navigation and load images across all pages. Please enable JavaScript to continue.

What is climate change mitigation and why is it urgent?

  • Share on LinkedIn
  • Share on Facebook
  • Share on twitter
  • Share via email

What is climate change mitigation and why is it urgent?

  • Climate change mitigation involves actions to reduce or prevent greenhouse gas emissions from human activities.
  • Mitigation efforts include transitioning to renewable energy sources, enhancing energy efficiency, adopting regenerative agricultural practices and protecting and restoring forests and critical ecosystems.
  • Effective mitigation requires a whole-of-society approach and structural transformations to reduce emissions and limit global warming to 1.5°C above pre-industrial levels.
  • International cooperation, for example through the Paris Agreement, is crucial in guiding and achieving global and national mitigation goals.
  • Mitigation efforts face challenges such as the world's deep-rooted dependency on fossil fuels, the increased demand for new mineral resources and the difficulties in revamping our food systems.
  • These challenges also offer opportunities to improve resilience and contribute to sustainable development.

What is climate change mitigation?

Climate change mitigation refers to any action taken by governments, businesses or people to reduce or prevent greenhouse gases, or to enhance carbon sinks that remove them from the atmosphere. These gases trap heat from the sun in our planet’s atmosphere, keeping it warm. 

Since the industrial era began, human activities have led to the release of dangerous levels of greenhouse gases, causing global warming and climate change. However, despite unequivocal research about the impact of our activities on the planet’s climate and growing awareness of the severe danger climate change poses to our societies, greenhouse gas emissions keep rising. If we can slow down the rise in greenhouse gases, we can slow down the pace of climate change and avoid its worst consequences.

Reducing greenhouse gases can be achieved by:

  • Shifting away from fossil fuels : Fossil fuels are the biggest source of greenhouse gases, so transitioning to modern renewable energy sources like solar, wind and geothermal power, and advancing sustainable modes of transportation, is crucial.
  • Improving energy efficiency : Using less energy overall – in buildings, industries, public and private spaces, energy generation and transmission, and transportation – helps reduce emissions. This can be achieved by using thermal comfort standards, better insulation and energy efficient appliances, and by improving building design, energy transmission systems and vehicles.
  • Changing agricultural practices : Certain farming methods release high amounts of methane and nitrous oxide, which are potent greenhouse gases. Regenerative agricultural practices – including enhancing soil health, reducing livestock-related emissions, direct seeding techniques and using cover crops – support mitigation, improve resilience and decrease the cost burden on farmers.
  • The sustainable management and conservation of forests : Forests act as carbon sinks , absorbing carbon dioxide and reducing the overall concentration of greenhouse gases in the atmosphere. Measures to reduce deforestation and forest degradation are key for climate mitigation and generate multiple additional benefits such as biodiversity conservation and improved water cycles.
  • Restoring and conserving critical ecosystems : In addition to forests, ecosystems such as wetlands, peatlands, and grasslands, as well as coastal biomes such as mangrove forests, also contribute significantly to carbon sequestration, while supporting biodiversity and enhancing climate resilience.
  • Creating a supportive environment : Investments, policies and regulations that encourage emission reductions, such as incentives, carbon pricing and limits on emissions from key sectors are crucial to driving climate change mitigation.

Photo: Stephane Bellerose/UNDP Mauritius

Photo: Stephane Bellerose/UNDP Mauritius

Photo: La Incre and Lizeth Jurado/PROAmazonia

Photo: La Incre and Lizeth Jurado/PROAmazonia

What is the 1.5°C goal and why do we need to stick to it?

In 2015, 196 Parties to the UN Climate Convention in Paris adopted the Paris Agreement , a landmark international treaty, aimed at curbing global warming and addressing the effects of climate change. Its core ambition is to cap the rise in global average temperatures to well below 2°C above levels observed prior to the industrial era, while pursuing efforts to limit the increase to 1.5°C.

The 1.5°C goal is extremely important, especially for vulnerable communities already experiencing severe climate change impacts. Limiting warming below 1.5°C will translate into less extreme weather events and sea level rise, less stress on food production and water access, less biodiversity and ecosystem loss, and a lower chance of irreversible climate consequences.

To limit global warming to the critical threshold of 1.5°C, it is imperative for the world to undertake significant mitigation action. This requires a reduction in greenhouse gas emissions by 45 percent before 2030 and achieving net-zero emissions by mid-century.

What are the policy instruments that countries can use to drive mitigation?

Everyone has a role to play in climate change mitigation, from individuals adopting sustainable habits and advocating for change to governments implementing regulations, providing incentives and facilitating investments. The private sector, particularly those businesses and companies responsible for causing high emissions, should take a leading role in innovating, funding and driving climate change mitigation solutions. 

International collaboration and technology transfer is also crucial given the global nature and size of the challenge. As the main platform for international cooperation on climate action, the Paris Agreement has set forth a series of responsibilities and policy tools for its signatories. One of the primary instruments for achieving the goals of the treaty is Nationally Determined Contributions (NDCs) . These are the national climate pledges that each Party is required to develop and update every five years. NDCs articulate how each country will contribute to reducing greenhouse gas emissions and enhance climate resilience.   While NDCs include short- to medium-term targets, long-term low emission development strategies (LT-LEDS) are policy tools under the Paris Agreement through which countries must show how they plan to achieve carbon neutrality by mid-century. These strategies define a long-term vision that gives coherence and direction to shorter-term national climate targets.

Photo: Mucyo Serge/UNDP Rwanda

Photo: Mucyo Serge/UNDP Rwanda

Photo: William Seal/UNDP Sudan

Photo: William Seal/UNDP Sudan

At the same time, the call for climate change mitigation has evolved into a call for reparative action, where high-income countries are urged to rectify past and ongoing contributions to the climate crisis. This approach reflects the UN Framework Convention on Climate Change (UNFCCC) which advocates for climate justice, recognizing the unequal historical responsibility for the climate crisis, emphasizing that wealthier countries, having profited from high-emission activities, bear a greater obligation to lead in mitigating these impacts. This includes not only reducing their own emissions, but also supporting vulnerable countries in their transition to low-emission development pathways.

Another critical aspect is ensuring a just transition for workers and communities that depend on the fossil fuel industry and its many connected industries. This process must prioritize social equity and create alternative employment opportunities as part of the shift towards renewable energy and more sustainable practices.

For emerging economies, innovation and advancements in technology have now demonstrated that robust economic growth can be achieved with clean, sustainable energy sources. By integrating renewable energy technologies such as solar, wind and geothermal power into their growth strategies, these economies can reduce their emissions, enhance energy security and create new economic opportunities and jobs. This shift not only contributes to global mitigation efforts but also sets a precedent for sustainable development.

What are some of the challenges slowing down climate change mitigation efforts?

Mitigating climate change is fraught with complexities, including the global economy's deep-rooted dependency on fossil fuels and the accompanying challenge of eliminating fossil fuel subsidies. This reliance – and the vested interests that have a stake in maintaining it – presents a significant barrier to transitioning to sustainable energy sources.

The shift towards decarbonization and renewable energy is driving increased demand for critical minerals such as copper, lithium, nickel, cobalt, and rare earth metals. Since new mining projects can take up to 15 years to yield output, mineral supply chains could become a bottleneck for decarbonization efforts. In addition, these minerals are predominantly found in a few, mostly low-income countries, which could heighten supply chain vulnerabilities and geopolitical tensions.

Furthermore, due to the significant demand for these minerals and the urgency of the energy transition, the scaled-up investment in the sector has the potential to exacerbate environmental degradation, economic and governance risks, and social inequalities, affecting the rights of Indigenous Peoples, local communities, and workers. Addressing these concerns necessitates implementing social and environmental safeguards, embracing circular economy principles, and establishing and enforcing responsible policies and regulations .

Agriculture is currently the largest driver of deforestation worldwide. A transformation in our food systems to reverse the impact that agriculture has on forests and biodiversity is undoubtedly a complex challenge. But it is also an important opportunity. The latest IPCC report highlights that adaptation and mitigation options related to land, water and food offer the greatest potential in responding to the climate crisis. Shifting to regenerative agricultural practices will not only ensure a healthy, fair and stable food supply for the world’s population, but also help to significantly reduce greenhouse gas emissions.  

Photo: UNDP India

Photo: UNDP India

Photo: Nino Zedginidze/UNDP Georgia

Photo: Nino Zedginidze/UNDP Georgia

What are some examples of climate change mitigation?

In Mauritius , UNDP, with funding from the Green Climate Fund, has supported the government to install battery energy storage capacity that has enabled 50 MW of intermittent renewable energy to be connected to the grid, helping to avoid 81,000 tonnes of carbon dioxide annually. 

In Indonesia , UNDP has been working with the government for over a decade to support sustainable palm oil production. In 2019, the country adopted a National Action Plan on Sustainable Palm Oil, which was collaboratively developed by government, industry and civil society representatives. The plan increased the adoption of practices to minimize the adverse social and environmental effects of palm oil production and to protect forests. Since 2015, 37 million tonnes of direct greenhouse gas emissions have been avoided and 824,000 hectares of land with high conservation value have been protected.

In Moldova and Paraguay , UNDP has helped set up Green City Labs that are helping build more sustainable cities. This is achieved by implementing urban land use and mobility planning, prioritizing energy efficiency in residential buildings, introducing low-carbon public transport, implementing resource-efficient waste management, and switching to renewable energy sources. 

UNDP has supported the governments of Brazil, Costa Rica, Ecuador and Indonesia to implement results-based payments through the REDD+ (Reducing emissions from deforestation and forest degradation in developing countries) framework. These include payments for environmental services and community forest management programmes that channel international climate finance resources to local actors on the ground, specifically forest communities and Indigenous Peoples. 

UNDP is also supporting small island developing states like the Comoros to invest in renewable energy and sustainable infrastructure. Through the Africa Minigrids Program , solar minigrids will be installed in two priority communities, Grand Comore and Moheli, providing energy access through distributed renewable energy solutions to those hardest to reach.

And in South Africa , a UNDP initative to boost energy efficiency awareness among the general population and improve labelling standards has taken over commercial shopping malls.

What is climate change mitigation and why is it urgent?

What is UNDP’s role in supporting climate change mitigation?

UNDP aims to assist countries with their climate change mitigation efforts, guiding them towards sustainable, low-carbon and climate-resilient development. This support is in line with achieving the Sustainable Development Goals (SDGs), particularly those related to affordable and clean energy (SDG7), sustainable cities and communities (SDG11), and climate action (SDG13). Specifically, UNDP’s offer of support includes developing and improving legislation and policy, standards and regulations, capacity building, knowledge dissemination, and financial mobilization for countries to pilot and scale-up mitigation solutions such as renewable energy projects, energy efficiency initiatives and sustainable land-use practices. 

With financial support from the Global Environment Facility and the Green Climate Fund, UNDP has an active portfolio of 94 climate change mitigation projects in 69 countries. These initiatives are not only aimed at reducing greenhouse gas emissions, but also at contributing to sustainable and resilient development pathways.

Explore More Stories

Pacific shores, solar solutions: harnessing renewable energy in the pacific islands.

Photo: Yuichi Ishida/UNDP Timor-Leste

Photo: Yuichi Ishida/UNDP Timor-Leste

West Africa has great potential for solar energy. It’s time to release it.

Two men installing solar panels in Niger

Photo: UNDP Niger

Electric vehicles are driving a greener future in Viet Nam

Ho Tuan Anh delivers goods with his new e-motorbike

Ho Tuan Anh delivers goods with his new e-motorbike. Photo by: Phan Huong Giang/UNDP Viet Nam

Why the Western Balkans are choosing decarbonization

Carbon-intensive industries in Bosnia and Herzegovina are pursuing decarbonization

Photo: UNDP Bosnia and Herzegovina

Six lessons on how to achieve future-smart energy efficient buildings 

Solar photovoltaic systems on roofs in Lebanon.

Solar photovoltaic systems on roofs in Lebanon. Photo: Fouad Choufany / UNDP Lebanon

Six ways to achieve sustainable energy for all

Six ways to achieve sustainable energy for all

Photo: UNDP Zimbabwe

IMAGES

  1. Benefits of Exercise Essay

    benefits of exercise essay pdf

  2. ≫ Benefits of Fitness for Physical and Mental Health Free Essay Sample

    benefits of exercise essay pdf

  3. Benefits of Exercise Essay

    benefits of exercise essay pdf

  4. 💄 Benefits of doing exercise essay. Benefits Of Exercise Essays

    benefits of exercise essay pdf

  5. Benefits of Excercise in the Morning Essay Example

    benefits of exercise essay pdf

  6. Benefits of exercise

    benefits of exercise essay pdf

VIDEO

  1. Exercise //10 Lines on Exercise// Exercise essay in english

  2. Essay on Importance of Exercise and Physical activities|| English Essay Writing|| #trending #viral

  3. Write An Essay On Physical Exercise In English ll short essay writing ll

  4. व्यायाम का महत्व पर निबंध/Importance of Exercise hindi essay # व्यायाम का महत्व

  5. 35 Benefits of Exercise #exercise #weightloss #workout

  6. ورزش کے فائدےاردو مضمون| benefits of exercise essay in Urdu|warzish key fayedy Urdu mazmoon

COMMENTS

  1. (PDF) Benefits, need and importance of daily exercise

    preventing aging, strengthening muscles and the card iovascular. system, honing athletic skills, weight loss or maintenance, and. merely enjoyment. Frequent and regular physical exercise. boosts ...

  2. PDF A Sample Five-Paragraph Essay The Benefits of Regular Exercise

    physical exercise could help the person to avoid this behavior. Planned physical exercise, therefore, can eliminate, or at least control, tension.* frustrations" is followed by specific examples. *This closing sentence reinforces both the main paragraph and the essay idea. [3] An improved appearance is the second benefit of regular exercise.*

  3. PDF Healthy Mind, Healthy Body: Benefits of Exercise

    Benefits of exercise Longwood Seminars, March 13, 2014 production of ATP. Lactic acid production stops, the muscles start to recover, and your body restores normal acid balance. Your level of fitness determines how swiftly this happens. Regular exercise conditions the lungs, heart,

  4. (PDF) Exploring the Impact of Exercise on Mental Health: A

    Abstract. Exercise has long been recognized for its physical health benefits, but its impact on mental health has gained increasing attention in recent years. This paper provides a comprehensive ...

  5. PDF The Health Benefits of Exercise and Physical Activity

    Physical inactivity is a modifiable risk factor for cardiovascu-lar disease, obesity, depression, cancer, diabetes mellitus, hy-pertension, and osteoporosis. Physical exercise reduces the risk of premature death and prolongs longevity, and is an important treatment modality in the primary and secondary prevention of the above disorders [1].

  6. Health Benefits of Exercise

    The aim of this introduction is briefly to document facts that health benefits of physical activity predate its readers. In the 5th century BC, the ancient physician Hippocrates stated: "All parts of the body, if used in moderation and exercised in labors to which each is accustomed, become thereby healthy and well developed and age slowly; but if they are unused and left idle, they become ...

  7. PDF Physical Activity and Sports—Real Health Benefits: A Review with

    Muscle strengthening exercises should be performed at a high velocity, if possible. Balance training should be incorporated prior to aerobic and muscle strengthening training. Individuals with impaired ability should perform as much exercise as possible. Improvements in aerobic work capacity, muscle strength, and balance. Recommendations are ...

  8. The Health Benefits of Exercise and Physical Activity

    Physical inactivity is a modifiable risk factor (similar to dyslipidemia and hypertension) for a variety of chronic diseases, including cancer and cardiovascular disease. Exercise provides a clear health benefit, which serves in the primary and secondary prevention of these disease processes (the most important being a reduction in cardiovascular disease and premature death). The physiologic ...

  9. PDF Physical activity Fact sheet

    Benefits and risks of physical activity and sedentary behaviour Regular physical activity, such as walking, cycling, wheeling, doing sports or active recreation, provides significant benefits for health. Some physical activity is better than doing none. By becoming more active throughout the day in relatively simple ways, people can easily achieve

  10. Physical Activity and Sports—Real Health Benefits: A Review with

    2. Definitions of Physical Activity, Exercise, Training, Sport, and Health. Definitions and terms are based on "Physical activity in the prevention and treatment of disease" (FYSS, www.fyss.se [Swedish] []), World Health Organization (WHO) [] and the US Department of Human Services [].The definition of physical activity in FYSS is: "Physical activity is defined purely physiologically, as ...

  11. Physical Exercise: An Overview of Benefits From Psychological Level to

    Physical exercise influences physiological, psychological, and genetical changes, which results in producing various benefits, including preventing metabolic and mood disorders. Aerobic exercise benefits on physiology among sedentary adults have also been evaluated with genetic markers. One such study involved participants in a 30-min ...

  12. (PDF) The Benefits of Physical Education and Exercise For Health

    The purpose of this study is to identify the benefits of physical activity and exercise for. health. Physical activity an d exercises are supposed to reduce the risk of seve ral chronic. diseases ...

  13. PDF Physical activity and your mental health

    Exercise with other people - many people find that joining a group or getting active with someone they know - like a friend, family member, colleague or support worker - can be motivating and make a new activity more enjoyable. "The thought of going to a gym on my own terrified me but I started going to various exercise classes with a friend.

  14. 2.1 An Introduction to the Benefits of Physical Activity

    2.1 An Introduction to the Benefits of Physical Activity. Regular participation in exercise may improve an individual's physiological, cognitive, and psychological health. Many decades of research illustrate the positive effect physical activity has on the body and mind. When practiced across the lifespan, physical activity may result in ...

  15. THE EFFECTS OF EXERCISE ON MENTAL HEALTH

    benefits, but exercise has numerous benefits to an individual's psychology as well. Research has repeatedly suggested that regular exercise can improve mental health and lessen symptoms of depression, anxiety, and generalized stress significantly. (Mikkelsen et al., 2017). There have even been studies that suggest that physical activity can ...

  16. Real-Life Benefits of Exercise and Physical Activity

    Physical activity can help: Reduce feelings of depression and stress, while improving your mood and overall emotional well-being. Increase your energy level. Improve sleep. Empower you to feel more in control. In addition, exercise and physical activity may possibly improve or maintain some aspects of cognitive function, such as your ability to ...

  17. Exercise: 7 benefits of regular physical activity

    Check out these seven ways that exercise can lead to a happier, healthier you. 1. Exercise controls weight. Exercise can help prevent excess weight gain or help you keep off lost weight. When you take part in physical activity, you burn calories. The more intense the activity, the more calories you burn.

  18. Benefits of Physical Activity

    Benefits of Physical Activity. Regular physical activity is one of the most important things you can do for your health. Being physically active can improve your brain health, help manage weight, reduce the risk of disease, strengthen bones and muscles, and improve your ability to do everyday activities. Adults who sit less and do any amount of ...

  19. The Importance of Exercise for a Healthy Lifestyle

    The benefits of exercise are vast and well-documented. Regular physical activity has been shown to improve physical health, reduce the risk of chronic diseases, and enhance mental well-being. While barriers to exercise such as lack of time and motivation exist, it is important to recognize that even small amounts of physical activity can have ...

  20. Importance of Exercise Essay in English for Students

    Answer 1: Exercise helps people lose weight and lower the risk of some diseases. When you exercise daily, you lower the risk of developing some diseases like obesity, type 2 diabetes, high blood pressure and more. It also helps to keep your body at a healthy weight.

  21. Role of Physical Activity on Mental Health and Well-Being: A Review

    Abstract. In addition to the apparent physical health benefits, physical activity also affects mental health positively. Physically inactive individuals have been reported to have higher rates of morbidity and healthcare expenditures. Commonly, exercise therapy is recommended to combat these challenges and preserve mental wellness.

  22. Exercise/physical activity and health outcomes: an overview of Cochrane

    Sedentary lifestyle is a major risk factor for noncommunicable diseases such as cardiovascular diseases, cancer and diabetes. It has been estimated that approximately 3.2 million deaths each year are attributable to insufficient levels of physical activity. We evaluated the available evidence from Cochrane systematic reviews (CSRs) on the effectiveness of exercise/physical activity for various ...

  23. THE IMPACT OF EXERCISE (PHYSICAL ACTIVITY) AND HEALTHY ...

    research consisting of exercise, healthy lifestyle and the impact on the youth. The thesis is done by way of narrative literature review method. Thirty eight articles on exercise and healthy lifestyle are reviewed and analyzed to support the author's aim. The research review in this thesis is from reliable databases and e-journals. The result of

  24. What is climate change mitigation and why is it urgent?

    Climate change mitigation refers to any action taken by governments, businesses or people to reduce or prevent greenhouse gases, or to enhance carbon sinks that remove them from the atmosphere. These gases trap heat from the sun in our planet's atmosphere, keeping it warm. Since the industrial era began, human activities have led to the ...