TutorialAICSIP

A best blog for CBSE Class IX to Class XII

Introduction to problem solving Computer Science Class 11 Notes

This article – introduction to problem solving Computer Science Class 11 offers comprehensive notes for Chapter 4 of the CBSE Computer Science Class 11 NCERT textbook.

Topics Covered

Introduction to problem solving Computer Science class 11

Computers, mobiles, the internet, etc. becomes our essentials nowadays for our routine life. We are using the to make our tasks easy and faster.

For example, earlier we were going to banks and standing in long queues for any type of transaction like money deposits or withdrawals. Today we can do these tasks from anywhere without visiting banks through internet banking and mobiles.

Basically, this was a complex problem and solved by a computer. The system was made online with the help of computers and the internet and made our task very easy.

This process is termed “Computerisations”. The problem is solved by using software to make a task easy and comfortable. Problem solving is a key term related to computer science.

The question comes to your mind how to solve a complex problem using computers? Let’s begin the article introduction to problem-solving Computer Science 11.

Introduction to problem solving Computer Science Class 11 – Steps for problem solving

“Computer Science is a science of abstraction -creating the right model for a problem and devising the appropriate mechanizable techniques to solve it.”

Solving any complex problem starts with understanding the problem and identifying the problem.

Suppose you are going to school by your bicycle. While riding on it you hear some noise coming from it. So first you will try to find that from where the noise is coming. So if you couldn’t solve the problem, you need to get it repaired.

The bicycle mechanic identifies the problem like a source of noise, causes of noise etc. then understand them and repair it for you.

So there are multiple steps involved in problem-solving. If the problem is simple and easy, we will find the solution easily. But the complex problem needs a few methods or steps to solve.

So complex problem requires some tools, a system or software in order to provide the solution. So it is a step-by-step process. These steps are as follows:

Analysing the problem

Developing an algorithm, testing and debugging.

The first step in the introduction to problem solving Computer Science Class 11 is analyzing the problem.

When you need to find a solution for a problem, you need to understand the problem in detail. You should identify the reasons and causes of the problem as well as what to be solved.

So this step involves a detailed study of the problem and then you need to follow some principles and core functionality of the solution.

In this step input and output, elements should be produced.

The second step for introduction to problem solving Computer Science class 11 is developing an algorithm.

An algorithm is a step-by-step process of a solution to a complex problem. It is written in natural language. An algorithm consists of various steps and begins from start to end. In between input, process and output will be specified. More details we will cover in the next section.

In short, the algorithm provides all the steps required to solve a problem.

For example:

Finding the simple interest, you need to follow the given steps:

  • Gather required information and data such as principle amount, rate of interest and duration.
  • Apply the formula for computing simple interest i.e. si=prn/100
  • Now store the answer in si
  • Display the calculated simple interest

In the above example, I have started and completed a task in a finite number of steps. It is completed in 4 finite steps.

Why algorithm is needed?

The algorithm helps developers in many ways. So it is needed for them for the following reasons:

  • It prepares a roadmap of the program to be written before writing code.
  • It helps to clearly visualise the instructions to be given in the program.
  • When the algorithm is developed, a programmer knows the number of steps required to follow for the particular task.
  • Algorithm writing is the initial stage (first step) of programming.
  • It makes program writing easy and simple.
  • It also ensures the accuracy of data and program output.
  • It increases the reliability and efficiency of the solution.

Characteristics of a good algorithm

The characteristics of a good algorithm are as follows:

  • It starts and ends with a finite number of steps. Therefore the steps are precisely stated or defined.
  • In the algorithm, the result of each step is defined uniquely and based on the given input and process.
  • After completion of the task, the algorithm will end.
  • The algorithm accepts input and produces the output.

While writing the algorithm the following things should be clearly identified:

  • The input required for the task
  • The computation formula or processing instructions

After writing the algorithm, it is required to represent it. Once the steps are finalised, it is required to be represented logically. This logical representation of the program clearly does the following:

  • Clears the logic of the program
  • The execution of the program

The algorithm is steps written in the form of text. So it is difficult to read sometimes. So if it is represented in pictorial form it would be better for analysis of the program.

The flowchart is used to represent the algorithm in visual form.

Flowchart – Visual representation of an algorithm

A flowchart is made of some symbols or shapes like rectangles, squares, and diamonds connected by arrows. Every shape represents each step of an algorithm. The arrow basically represents the order or link of the steps.

The symbols used in the flow chart are as follows:

flow chart symbols introduction to problem solving computer science class 11

Coding is an essential part of the introduction to problem solving ComputerScience11.

  • It is pronounced as soo-doh-kohd
  • It is one of the ways of representing algorithms in a systematic way
  • The word pseudo means not real, therefore pseudocode means not real code
  • It is non-formal language, that helps programmers to write code
  • It is written in human understandable language
  • It cannot be directly read by computers
  • There is no specific standard or way of writing pseudocode is there

When an algorithm is prepared, the next step is writing code. This code will be written in a specific programming language. The code follows certain rules and regulations of the programing language and provides solutions.

When coding is done you need to maintain it with proper documentation as well. The best practices for coding procedures must be followed. Because this code can be reviewed a number of times for further development and upgradation.

Let’s understand this step with a simple example!!

When your mother prepares a cake at your home, she will give peace of cake to someone before serving it to check the taste of the cake, right!!! If anything is needed like sugar or softness or hardness should be improved she will decide and do the improvement.

Similarly after writing code testing and debugging are required to check the software whether is providing the solution in a good manner not.

Have look at this also: Computer Science Class XI

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)

' src=

By Sanjay Parmar

More on this, computer science class 11 sample paper 2023-24 comprehensive guide, split up syllabus computer science class 11 comprehensive guide, comprehensive notes types of software class 11, leave a reply cancel reply.

You must be logged in to post a comment.

techtipnow

Introduction to Problem Solving Class 11 Notes | CBSE Computer Science

Latest Problem Solving Class 11 Notes includes Problem Solving, steps, algorithm and its need, flow chart, pseudo code with lots of examples.

  • 1 What is Problem Solving?
  • 2 Steps for problem solving
  • 3 What is Algorithm?
  • 4 Why do we need Algorithm?
  • 5.1 Flow chart
  • 5.2 Flow Chart Examples
  • 5.3 Pseudo code
  • 5.4 Pseudo Code Example
  • 6.1 Selection
  • 6.2 Algorithm, Pseudocode, Flowchart with Selection ( Using if ) Examples
  • 6.3 Repetition
  • 6.4 Algorithm, Pseudocode, Flowchart with Repetition ( Loop ) Examples
  • 7 Decomposition

What is Problem Solving?

Problem solving is the process of identifying a problem, analyze the problem, developing an algorithm for the identified problem and finally implementing the algorithm to develop program.

Steps for problem solving

There are 4 basic steps involved in problem solving

Analyze the problem

  • Developing an algorithm
  • Testing and debugging

Analyzing the problem is basically understanding a problem very clearly before finding its solution. Analyzing a problem involves

  • List the principal components of the problem
  • List the core functionality of the problem
  • Figure out inputs to be accepted and output to be produced

Developing an Algorithm

  • A set of precise and sequential steps written to solve a problem
  • The algorithm can be written in natural language
  • There can be more than one algorithm for a problem among which we can select the most suitable solution.

Algorithm written in natural language is not understood by computer and hence it has to be converted in machine language. And to do so program based on that algorithm is written using high level programming language for the computer to get the desired solution.

Testing and Debugging

After writing program it has to be tested on various parameters to ensure that program is producing correct output within expected time and meeting the user requirement.

There are many standard software testing methods used in IT industry such as

  • Component testing
  • Integration testing
  • System testing
  • Acceptance testing

What is Algorithm?

  • A set of precise, finite and sequential set of steps written to solve a problem and get the desired output.
  • Algorithm has definite beginning and definite end.
  • It lead to desired result in finite amount of time of followed correctly.

Why do we need Algorithm?

  • Algorithm helps programmer to visualize the instructions to be written clearly.
  • Algorithm enhances the reliability, accuracy and efficiency of obtaining solution.
  • Algorithm is the easiest way to describe problem without going into too much details.
  • Algorithm lets programmer understand flow of problem concisely.

Characteristics of a good algorithm

  • Precision — the steps are precisely stated or defined.
  • Uniqueness — results of each step are uniquely defined and only depend on the input and the result of the preceding steps.
  • Finiteness — the algorithm always stops after a finite number of steps.
  • Input — the algorithm receives some input.
  • Output — the algorithm produces some output.

What are the points that should be clearly identified while writing Algorithm?

  • The input to be taken from the user
  • Processing or computation to be performed to get the desired result
  • The output desired by the user

Representation of Algorithm

An algorithm can be represented in two ways:

Pseudo code

  • Flow chart is visual representation of an algorithm.
  • It’s a diagram made up of boxes, diamonds and other shapes, connected by arrows.
  • Each step represents a step of solution process.
  • Arrows in the follow chart represents the flow and link among the steps.

class 11 computer science chapter 5 introduction to problem solving

Flow Chart Examples

Example 1: Write an algorithm to divide a number by another and display the quotient.

Input: Two Numbers to be divided Process: Divide number1 by number2 to get the quotient Output: Quotient of division

Step 1: Input a two numbers and store them in num1 and num2 Step 2: Compute num1/num2 and store its quotient in num3 Step 3: Print num3

class 11 computer science chapter 5 introduction to problem solving

  • Pseudo code means ‘not real code’.
  • A pseudo code is another way to represent an algorithm.  It is an informal language used by programmer to write algorithms.
  • It does not require strict syntax and technological support.
  • It is a detailed description of what algorithm would do.
  • It is intended for human reading and cannot be executed directly by computer.
  • There is no specific standard for writing a pseudo code exists.

Keywords used in writing pseudo code

Pseudo Code Example

Example:  write an algorithm to display the square of a given number.

Input, Process and Output Identification

Input: Number whose square is required Process: Multiply the number by itself to get its square Output: Square of the number

Step 1: Input a number and store it to num. Step 2: Compute num * num and store it in square. Step 3: Print square.

INPUT num COMPUTE  square = num*num PRINT square

class 11 computer science chapter 5 introduction to problem solving

Example: Write an algorithm to calculate area and perimeter of a rectangle, using both pseudo code and flowchart.

INPUT L INPUT B COMPUTER Area = L * B PRINT Area COMPUTE Perimeter = 2 * ( L + B ) PRINT Perimeter

class 11 computer science chapter 5 introduction to problem solving

Flow of Control

An algorithm is considered as finite set of steps that are executed in a sequence. But sometimes the algorithm may require executing some steps conditionally or repeatedly. In such situations algorithm can be written using

Selection in algorithm refers to Conditionals which means performing operations (sequence of steps) depending on True or False value of given conditions. Conditionals are written in the algorithm as follows:

If <condition> then                 Steps to be taken when condition is true Otherwise                 Steps to be taken when condition is false

Algorithm, Pseudocode, Flowchart with Selection ( Using if ) Examples

Example: write an algorithm, pseudocode and flowchart to display larger between two numbers

INPUT: Two numbers to be compared PROCESS: compare two numbers and depending upon True and False value of comparison display result OUTPUT: display larger no

STEP1: read two numbers in num1, num2 STEP 2: if num1 > num2 then STEP 3: display num1 STEP 4: else STEP 5: display num2

INPUT num1 , num2 IF num1 > num2 THEN                 PRINT “num1 is largest” ELSE                 PRINT “num2 is largest” ENDIF

class 11 computer science chapter 5 introduction to problem solving

Example: write pseudocode and flowchart to display largest among three numbers

INPUT: Three numbers to be compared PROCESS: compare three numbers and depending upon True and False value of comparison display result OUTPUT: display largest number

INPUT num1, num2, num3 PRINT “Enter three numbers” IF num1 > num2 THEN                 IF num1 > num3 THEN                                 PRINT “num1 is largest”                 ELSE                                 PRINT “num3 is largest”                 END IF ELSE                 IF num2 > num3 THEN                                 PRINT “num2 is largest”                 ELSE                                 PRINT “num3 is largest”                 END IF END IF

class 11 computer science chapter 5 introduction to problem solving

  • Repetition in algorithm refers to performing operations (Set of steps) repeatedly for a given number of times (till the given condition is true).
  • Repetition is also known as Iteration or Loop

Repetitions are written in algorithm is as follows:

While <condition>, repeat step numbers                 Steps to be taken when condition is true End while

Algorithm, Pseudocode, Flowchart with Repetition ( Loop ) Examples

Example: write an algorithm, pseudocode and flow chart to display “Techtipnow” 10 times

Step1: Set count = 0 Step2: while count is less than 10, repeat step 3,4 Step 3:                  print “techtipnow” Step 4:                  count = count + 1 Step 5: End while

SET count = 0 WHILE count<10                 PRINT “Techtipnow”                 Count = count + 1 END WHILE

class 11 computer science chapter 5 introduction to problem solving

Example: Write pseudocode and flow chart to calculate total of 10 numbers

Step 1: SET count = 0, total = 0 Step 2: WHILE count < 10, REPEAT steps 3 to 5 Step 3:                  INPUT a number in var Step 4:                  COMPUTE total = total + var Step 5:                  count = count + 1 Step 6: END WHILE Step 7: PRINT total

Example: Write pseudo code and flow chart to find factorial of a given number

Step 1: SET fact = 1 Step 2: INPUT a number in num Step 3: WHILE num >=1 REPEAT step 4, 5 Step 4:                  fact = fact * num Step 5:                  num = num – 1 Step 6: END WHILE Step 7: PRINT fact

class 11 computer science chapter 5 introduction to problem solving

Decomposition

  • Decomposition means breaking down a complex problem into smaller sub problems to solve them conveniently and easily.
  • Breaking down complex problem into sub problem also means analyzing each sub problem in detail.
  • Decomposition also helps in reducing time and effort as different subprograms can be assigned to different experts in solving such problems.
  • To get the complete solution, it is necessary to integrate the solution of all the sub problems once done.

Following image depicts the decomposition of a problem

class 11 computer science chapter 5 introduction to problem solving

2 thoughts on “Introduction to Problem Solving Class 11 Notes | CBSE Computer Science”

' src=

SO HELPFUL AND BEST NOTES ARE AVAILABLE TO GAIN KNOWLEDGE EASILY THANK YOU VERY VERY HEPFUL CONTENTS

' src=

THANK YOU SO MUCH FOR THE WONDERFUL NOTES

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

MyCSTutorial- The path to Success in Exam

THE PATH TO SUCCESS IN EXAM...

Class 11 Computer Science NCERT Exercise Solution

Class 11 – computer science – ncert solution, class 11 ncert exercise solution of computer science, computer science exercise class 11 ncert solution.

Chapter 7: Functions

NCERT Book Solution Computer Science of Class 11

Related posts.

society law ethics

Society, Law, and Ethics: Societal Impacts – Notes

Data structure: stacks – notes.

Class 12 computer science Python revision tour - I

Python Revision Tour I : Basics of Python – Notes

python module math random statistic

Introduction to Python Module – Notes

Tuples manipulation in python notes.

data handling in python

Data Handling – Notes

python fundamentals

Python Fundamentals – Notes

getting_started_python

Getting Started with Python – Notes

Leave a comment cancel reply.

You must be logged in to post a comment.

You cannot copy content of this page

class 11 computer science chapter 5 introduction to problem solving

CBSE Skill Education

Introduction to Problem Solving Class 11 Notes

Teachers and Examiners ( CBSESkillEduction ) collaborated to create the Introduction to Problem Solving Class 11 Notes . All the important Information are taken from the NCERT Textbook Computer Science (083) class 11 .

Introduction to Problem Solving

Problems cannot be resolved by computers alone. We must provide clear, step-by-step directions on how to solve the issue. Therefore, the effectiveness of a computer in solving a problem depends on how exactly and correctly we describe the problem, create an algorithm to solve it, and then use a programming language to implement the algorithm to create a programme. So, the process of identifying a problem, creating an algorithm to solve it, and then putting the method into practise to create a computer programme is known as problem solving.

Steps for Problem Solving

To identify the best solution to a difficult problem in a computer system, a Problem Solving methodical approach is necessary. To put it another way, we must use problem-solving strategies to solve the difficult problem in a computer system. Problem fixing starts with the accurate identification of the issue and concludes with a fully functional programme or software application. Program Solving Steps are – 1. Analysing the problem 2. Developing an Algorithm 3. Coding 4. Testing and Debugging

Analyzing  the problem – It is important to clearly understand a problem before we begin to find the solution for it. If we are not clear as to what is to be solved, we may end up developing a program which may not solve our purpose.

Developing an Algorithm – Before creating the programme code to solve a particular problem, a solution must be thought out. Algorithm is a step by step process where we write the problem and the steps of the programs.

Coding – After the algorithm is completed, it must be translated into a form that the computer can understand in order to produce the desired outcome. A programme can be written in a number of high level programming languages.

Testing and Debugging – The developed programme needs to pass different parameter tests. The programme needs to fulfil the user’s requirements. It must answer in the anticipated amount of time. For all conceivable inputs, it must produce accurate output.

What is the purpose of Algorithm?

A programme is created by a programmer to tell the computer how to carry out specific activities. Then, the computer executes the instructions contained in the programme code. As a result, before creating any code, the programmer first creates a roadmap for the software. Without a roadmap, a programmer might not be able to visualise the instructions that need to be written clearly and might end up creating a software that might not function as intended. This roadmap is known as algorithm.

Why do we need an Algorithm?

The purpose of using an algorithm is to increase the reliability, accuracy and efficiency of obtaining solutions.

Characteristics of a good algorithm

• Precision — the steps are precisely stated or defined. • Uniqueness — results of each step are uniquely defined and only depend on the input and the result of the preceding steps. • Finiteness — the algorithm always stops after a finite number of steps. • Input — the algorithm receives some input. • Output — the algorithm produces some output.

While writing an algorithm, it is required to clearly identify the following:

• The input to be taken from the user • Processing or computation to be performed to get the desired result • The output desired by the user

Representation of Algorithms

There are two common methods of representing an algorithm —flowchart and pseudocode. Either of the methods can be used to represent an algorithm while keeping in mind the following: • it showcases the logic of the problem solution, excluding any implementational details • it clearly reveals the flow of control during execution of the program

Flowchart — Visual Representation of Algorithms

A flowchart is a visual representation of an algorithm. A flowchart is a diagram made up of boxes, diamonds and other shapes, connected by arrows. Each shape represents a step of the solution process and the arrow represents the order or link among the steps.

There are standardized symbols to draw flowcharts. Some are given below –

flow chart symbols

Flow Chart Syntax

flow chart syntax

How to draw flowchart

Q. Draw a flowchart to find the sum of two numbers?

algorithm and flowchart for addition of two numbers

Q. Draw a flowchart to print the number from 1 to 10?

print the number from 1 to 10

Another way to represent an algorithm is with a pseudocode, which is pronounced Soo-doh-kohd. It is regarded as a non-formal language that aids in the creation of algorithms by programmers. It is a thorough explanation of the steps a computer must take in a specific order.

The word “pseudo” means “not real,” so “pseudocode” means “not real code”. Following are some of the frequently used keywords while writing pseudocode –

Write an algorithm to display the sum of two numbers entered by user, using both pseudocode and flowchart.

Pseudocode for the sum of two numbers will be – input num1 input num2 COMPUTE Result = num1 + num2 PRINT Result

Flowchart for this pseudocode or algorithm –

Flow of Control

The flow of control depicts the flow of events as represented in the flow chart. The events can flow in a sequence, or on branch based on a decision or even repeat some part for a finite number of times.

Sequence –  These algorithms are referred to as executing in sequence when each step is carried out one after the other.

Selection – An algorithm may require a question at some point because it has come to a stage when one or more options are available. This type of problem we can solve using If Statement and Switch Statement in algorithm or in the program.

Repetition – We often use phrases like “go 50 steps then turn right” while giving directions. or “Walk to the next intersection and turn right.” These are the kind of statements we use, when we want something to be done repeatedly.  This type of problem we can solve using For Statement, While and do-while statement.

Verifying Algorithms

Software is now used in even more important services, such as the medical industry and space missions. Such software must function properly in any circumstance. As a result, the software designer must ensure that every component’s operation is accurately defined, validated, and confirmed in every way.

To verify, we must use several input values and run the algorithm for each one to produce the desired result. We can then tweak or enhance the algorithm as necessary.

Comparison of Algorithm

There may be more than one method to use a computer to solve a problem, If you wish to compare two programmes that were created using two different approaches for resolving the same issue, they should both have been built using the same compiler and executed on the same machine under identical circumstances.

Once an algorithm is decided upon, it should be written in the high-level programming language of the programmer’s choice. By adhering to its grammar, the ordered collection of instructions is written in that programming language. The grammar or set of rules known as syntax controls how sentences are produced in a language, including word order, punctuation, and spelling.

Decomposition

A problem may occasionally be complex, meaning that its solution cannot always be found. In these circumstances, we must break it down into simpler components. Decomposing or breaking down a complicated problem into smaller subproblems is the fundamental concept behind addressing a complex problem by decomposition. These side issues are more straightforward to resolve than the main issue.

Computer Science Class 11 Notes

  • Unit 1 : Basic Computer Organisation
  • Unit 1 : Encoding Schemes and Number System
  • Unit 2 : Introduction to problem solving
  • Unit 2 : Getting Started with Python
  • Unit 2 : Conditional statement and Iterative statements in Python
  • Unit 2 : Function in Python
  • Unit 2 : String in Python
  • Unit 2 : Lists in Python
  • Unit 2 : Tuples in Python
  • Unit 2 : Dictionary in Python
  • Unit 3 : Society, Law and Ethics

Computer Science Class 11 MCQ

Computer science class 11 ncert solutions.

  • Unit 2 : Tuples and Dictionary in Python
  • Introduction to Algorithms and Flowcharts

Problem Solving

Today, we use computers in every field for various purposes. But, we know that they cannot solve the problems all by themselves. Furthermore, we have to give step by step instructions to the computer for solving the problem. We can define problem-solving as a process of understanding the problem, finding solutions for the problem, and finally implementing the solution to it. We can design the solution before coding in the form of algorithms and flowcharts. Moreover, the identification of arithmetic and logical operations is very important in developing the program.

Therefore, we can say that a successful problem-solving process depends on the following factors:

  • understanding the problem and defining it precisely.
  • designing proper algorithms and flowcharts of the solution.
  • implementing the algorithm successfully.

When the problems are easy we can easily search out a solution. Whereas, complex problems require step by step process to solve. Hence, this means that we have to apply problem-solving techniques to solve the problem. Furthermore, this starts with finding a precise definition of the problem and ends with a successful solution. Moreover, the identification of arithmetic and logical operations plays a vital role while designing the algorithm. Here, we will study the algorithms and flowcharts.

Designing the solution

After understanding the relationship between input and output and the functionalities required we have to design an algorithm or flowchart. Furthermore, the algorithm should contain all the necessary functions to solve the problem. Moreover, it should produce a proper output for every input.

Hence, we can say that before writing the exact code for the problem it is necessary to define a solution. We can do this by starting with an initial plan and improvising it till it gives perfect results. Moreover, there can be more than one possible solution for a problem. Therefore, it is the responsibility of the programmer to choose the best solution.

While designing a problem we can represent it in algorithms and flowcharts. Hence, before writing the program code we can design the solution either in the form of an algorithm or a flowchart.

Browse more Topics Under Problem Solving Methodologies

  • Understanding of the Problem
  • Solution for the Problem
  • Breaking Down Solution into Simple Steps
  • Identification of Arithmetic and Logical Operations
  • Control Structure

Introduction to Algorithms

An algorithm is basically a procedure of steps that we exactly follow to solve a particular task or problem. We can say that it is a set of rules that we need to follow while developing a program code during problem-solving. Furthermore, if we write an algorithm before actually writing a code, it becomes easy to perform the coding part. Moreover, the algorithm is in simple English language hence, others can also easily understand it and develop the code.

Features of an algorithm

The features of an algorithm are as follows:

The algorithm should be very clear and unambiguous in its meaning. It should be simple so that one can understand it easily.

  • Well-defined inputs

A program may require to take input from the user. Therefore, the algorithm should clearly define the inputs.

  • Well-defined outputs

The algorithm should clearly specify the output that the program will produce.

The algorithm should have a termination point. This means that the algorithm should not be such that it runs infinite times or end up in loops.

  • Feasibility

The algorithm should be such that we can implement it easily. Hence, it should be simple and practical to implement.

  • Language independent

It should be in simple English language. Since the code implementation should result in the same output no matter which programming language we use while writing the code.

Introduction to Flowcharts

It is basically a diagrammatic representation of an algorithm. Furthermore, it uses various symbols and arrows to describe the beginning, ending, and flow of the program. Moreover, the programmers use it to depicting the flow of data and instructions while problem-solving. F lowcharting is the process of drawing a flowchart for an algorithm.

Symbols in a flowchart

The flowchart uses various symbols in the representation. These basic symbols are as follows:

It represents the start, stop, or halt in a program’s flow. The flowchart always starts and ends with this symbol. Besides, we represent it using an oval shape.

Input/Output

We represent it using a parallelogram . It indicates any input from the user or output of the program.

We represent it using a rectangle . It indicates any arithmetic operation’s processing such as addition, subtraction, multiplication, division, etc.

We represent it using the diamond symbol. It represents any type of decision in a program that results in true or false. For example. if-conditions.

We represent it using a circle . Whenever a flowchart is too large we can use connectors to avoid confusion.

These are basically arrows that represent the flow of the program.

Frequently Asked Questions (FAQs)

Q1. What are the main steps in problem-solving?

A1. A successful problem-solving process depends on the following factors:

  • understanding the problem.
  • designing proper algorithms and flowcharts.
  • implementing the algorithm.

Q2. What is problem-solving?

A2. We can define problem-solving as a process of understanding the problem, finding solution for the problem, and finally implementing the solution to it.

Q3. What is an algorithm?

A3. An algorithm is basically a procedure of steps that we exactly follow to solve a particular task or problem.

Q4. What is a flowchart?

A4. It is basically a diagrammatic representation of an algorithm. Furthermore, it uses various symbols and arrows to describe the beginning, ending, and flow of the program.

Q5. Name the features of an algorithm.

A5. The features of an algorithm are as follows:

Customize your course in 30 seconds

Which class are you in.

tutor

Problem Solving Methodologies

  • Control Structures
  • Identification of Arithmetic and Logical Operations Required for Solution
  • Understanding the Problem

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

  • Class 6 Maths
  • Class 6 Science
  • Class 6 Social Science
  • Class 6 English
  • Class 7 Maths
  • Class 7 Science
  • Class 7 Social Science
  • Class 7 English
  • Class 8 Maths
  • Class 8 Science
  • Class 8 Social Science
  • Class 8 English
  • Class 9 Maths
  • Class 9 Science
  • Class 9 Social Science
  • Class 9 English
  • Class 10 Maths
  • Class 10 Science
  • Class 10 Social Science
  • Class 10 English
  • Class 11 Maths
  • Class 11 Computer Science (Python)
  • Class 11 English
  • Class 12 Maths
  • Class 12 English
  • Class 12 Economics
  • Class 12 Accountancy
  • Class 12 Physics
  • Class 12 Chemistry
  • Class 12 Biology
  • Class 12 Computer Science (Python)
  • Class 12 Physical Education
  • GST and Accounting Course
  • Excel Course
  • Tally Course
  • Finance and CMA Data Course
  • Payroll Course

Interesting

  • Learn English
  • Learn Excel
  • Learn Tally
  • Learn GST (Goods and Services Tax)
  • Learn Accounting and Finance
  • GST Tax Invoice Format
  • Accounts Tax Practical
  • Tally Ledger List
  • GSTR 2A - JSON to Excel

Are you in school ? Do you love Teachoo?

We would love to talk to you! Please fill this form so that we can contact you

  • MCQ questions (1 mark each)
  • True or False Questions (1 mark each)
  • Fill in the Blanks Questions (1 Mark each)
  • Very Short Answer Type Questions (1 Mark each)
  • Short Answer Type Questions (2 Marks each)
  • Long Answer Type Questions (3 Marks each)

Steps for Problem Solving

Last updated at April 16, 2024 by Teachoo

Steps for Problem Solving - Teachoo.jpg

  • Analyzing the Problem: Involves identifying the problem , inputs the program should accept and the desired output of the program.
  • Developing an Algorithm: The solution to the problem represented in natural language is called Algorithm. For a given problem, more than one algorithm is possible and we have to select the most suitable solution.
  • Coding: Different high level languages can be used for writing the code based on the algorithm developed.
  • Testing and Debugging: To ensure that the software meets all the business and technical requirements and works as expected . The errors or defects found in the testing phases are debugged or rectified and the program is again tested . This continues till all the errors are removed from the program.  

Davneet Singh's photo - Co-founder, Teachoo

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.

Hi, it looks like you're using AdBlock :(

Please login to view more pages. it's free :), solve all your doubts with teachoo black.

CBSECONTENT.COM LOGO

Computer Science Presentations for Class 11

Chapter 1: computer system and organisation, chapter 2: introduction to problem solving and basics of python programming, chapter 3: operators statements in python, chapter 4: strings, chapter 5: lists, chapter 6: tuples, chapter 7: dictionaries, chapter 8: modules, chapter 9: society law and ethics.

class 11 computer science chapter 5 introduction to problem solving

Amazon Affiliate Disclaimer:    cbsecontent.com is a part of Amazon Services LLC Associates Program, an affiliate advertising program  designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.in. As an amazon associates we earn from qualifying purchases.

guest

Net Explanations

  • Book Solutions
  • State Boards

NCERT Solutions Class 11 Computer Science Chapter 4 Introduction to Problem Solving

NCERT Solutions Class 11 Computer Science Chapter 4 Introduction to Problem Solving: National Council of Educational Research and Training Class 11 Computer Science Chapter 4 Solutions – Introduction to Problem Solving. NCERT Solutions Class 11 Computer Science Chapter 4 PDF Download.

NCERT Solutions Class 11 Computer Science Chapter 4: Overview

Question 3. Write the pseudocode to print all multiples of 5 between 10 and 25 (including both 10 and 25).

FOR EACH I := 10 TO 15

IF I % 5 :=0   THEN

Question 4. Give an example of a loop that is to be executed a certain number of times.

Answer: Suppose we certain number starting from 11 to 16. The loop will be executed as follow:

SET i: = 11

FOR i: = 11 to 16 do

Question 5. Suppose you are collecting money for something. You need ` 200 in all. You ask your parents, uncles and aunts as well as grandparents. Different people may give either ` 10, ` 20 or even ` 50. You will collect till the total becomes 200. Write the algorithm.

Step 1: Set need Money := 0

Step 2: While Loop (need Money <200)

Input money

Step 3: need Money : = need Money + money

Step 4: End Loop

Question 6. Write the pseudocode to print the bill depending upon the price and quantity of an item. Also print Bill GST, which is the bill after adding 5% of tax in the total bill.

INPUT all_Item

INPUT price_for_each_Item

COMPUTE bill :=totalItem * price_for_each_Item

COMPUTE tax := bill * (5 / 100)

COMPUTE bill_with_gst := bill + tax

PRINT bill_with_gst

Question 7. Write pseudocode that will perform the following: a) Read the marks of three subjects: Computer Science, Mathematics and Physics, out of 100 b) Calculate the aggregate marks c) Calculate the percentage of marks.

INPUT Computer_Science, maths, physics

COMPUTE aggregate := (Computer_Science + maths + physics) / 3

COMPUTE percentage := ((Computer_Science + math + physics) / 300) * 100

PRINT aggregate

PRINT percentage

Question8. Write an algorithm to find the greatest among two different numbers entered by the user.

Step1: READ num1

Step2: READ num2

Step3:IF (num1 > num2)

Question9 . Write an algorithm that performs the following: Ask a user to enter a number. If the number is between 5 and 15, write the word GREEN. If the number is between 15 and 25, write the word BLUE. if the number is between 25 and 35, write the word ORANGE. If it is any other number, write that ALL COLOURS ARE BEAUTIFUL.

Step 1: INPUT n

Step 2: IF n>5 And n<15 THEN

Step 3: PRINT “GREEN”

Step 4: ELSE IF n>15 And n<225 THEN

Step 5: PRINT “BLUE”

Step 6 : ELSE IF n>25 And n<35 THEN

Step 7: PRINT “ORANGE”

Step 8: ELSE

PRINT “ALL COLOURS ARE BEAUTIFUL”

Step 9: End IF

Question 10. Write an algorithm that accepts four numbers as input and find the largest and smallest of them.

Question11. Write an algorithm to display the total water bill charges of the month depending upon the number of units consumed by the customer as per the following criteria:

  • for the first 100 units @ 5 per unit
  • for next 150 units @ 10 per unit
  • more than 250 units @ 20 per unit Also add meter charges of 75 per month to calculate the total water bill .

Step 1: INPUT units

Setp 2: SET bill := 0

Step 3: IF units > 250 THEN

COMPUTE bill := units * 20

IF units <= 100 THEN

COMPUTE bill := units * 5

COMPUTE bill := 100 * 5 + (units – 100) * 10

Step 4: END IF

Step 5: COMPUTE total_Bill := bill + 75

Step 6: PRINT total_Bil

Question 12. What are conditionals? When they are required in a program?

In programming conditionals are used for providing the condition to values, input and output. There are various conditional statements are there to evaluate the expression. Generally conditional statement give us a output in the form of true or false which is known as Boolean value.

Conditionals are required in program to check whether the value is satisfied with required output or not.

In case you are missed :- Previous Chapter Solution

Question 13. Match the pairs

class 11 computer science chapter 5 introduction to problem solving

Question14. Following is an algorithm for going to school or college. Can you suggest improvements in this to include other options?

Reach_School_Algorithm

b) Get ready

c) Take lunch box

d) Take bus

e) Get off the bus

f) Reach school or college

  • Brush our teeth
  • Do some exercise
  • Take a bath
  • Take a breakfast
  • Take a lunch box
  • Go to bus stand
  • Get off the bus
  • Reach school or college

Question 15. Write a pseudocode to calculate the factorial of a number (Hint: Factorial of 5, written as 5!=5 4 3 21 ×××× )

INPUT number

SET factorial := 1, i := 1

WHILE i<= number DO

COMPUTE factorial := factorial * i

INCREASE i by 1

PRINT factorial

Question 16. Draw a flowchart to check whether a given number is an Armstrong number. An Armstrong number of three digits is an integer such that the sum of the cubes of its digits is equal to the number itself. For example, 371 is an Armstrong number since 3**3 + 7**3 + 1**3 = 371.

class 11 computer science chapter 5 introduction to problem solving

Question 17. Following is an algorithm to classify numbers as “Single Digit”, “Double Digit” or “Big”. Classify_Numbers_Algo

INPUT Number

IF Number < 9

“Single Digit”

 Else If Number < 99

“Double Digit”

Verify for (5, 9, 47, 99, 100 200) and correct the algorithm if required.

For given data,

5 and 9 are single digit number, so it will print “single digit”

47 and 99 are double digit number, so it will print “double digit”

100 and 200 is a three digit number, so it will print “big”

Correct algorithm:

Step 1: INPUT Number

Step 2: IF Number <= 9

Step 3: Else If Number <= 99

Step 4: Else

Step 5: End IF

Question 18. For some calculations, we want an algorithm that accepts only positive integers upto 100.Accept_1to100_Algo

IF (0<= Number) AND (Number <= 100)

a) On what values will this algorithm fail?

b) Can you improve the algorithm?

This algorithm fails at value 0. Because in condition we specify “greater than equal to operator”. So it will accept zero also.

IF (0<Number) AND (Number <= 100)

In case you are missed :- Next Chapter Solution

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

We have a strong team of experienced Teachers who are here to solve all your exam preparation doubts

Sikkim scert class 3 english chapter 1 i wish solution, case study questions class 6 maths factors and multiples, assertion and reason questions class 6 maths factors and multiples, case study questions class 6 maths number system.

Sign in to your account

Username or Email Address

Remember Me

COMMENTS

  1. Chapter 5 Introduction to Problem Solving

    in this video I have started chapter 5 Introduction to problem Solving of class 11 computer Science and in this part 1 video I have explained the following ...

  2. PDF Iˇ˝ˆ˘ ˝ ˘ˇ ˝˘ Pˆ˘ ˙ S˘ ˇ

    "Computer Science is a science of abstraction -creating the right model for a problem and devising the appropriate mechanizable techniques to solve it." -A. Aho and J. Ullman C˜˚˛˝˙ˆ 4 Iˇ˝ˆ˘ ˝ ˘ˇ ˝˘ Pˆ˘ ˙ S˘ ˇ In this chapter » Introduction » Steps for Problem Solving » Algorithm » Representation of Algorithms

  3. Chapter 5 Introduction to Problem Solving

    This video will help you to understand Pseudocode, which is a subtopic of Chapter 5 introduction to Problem-solving Class 11 Computer Science.Hashtag: #class...

  4. Chapter 5 Introduction to Problem Solving One Shot

    Chapter 5 Introduction to Problem Solving One Shot | Class 11 Computer Science | Vishal Kumar | Connect with Me: INSTAGRAM: @tbhvishalkumarhttps://www.instag...

  5. NCERT Books for Class 11 Computer Science PDF Download

    NCERT Books for Class 11 Computer Science - English Medium. Chapter 1 : Computer System. Chapter 2 : Encoding Schemes and Number System. Chapter 3 : Emerging Trends. Chapter 4 : Introduction to Problem SolvIng. Chapter 5 : Getting Started with Python. Chapter 6 : Flow of Control. Chapter 7 : Functions.

  6. NCERT solutions for Class 11 Computer Science chapter 5

    Maximum CBSE Class 11 Computer Science students prefer NCERT Textbook Solutions to score more in exams. Get the free view of Chapter 5, Getting Started with Python Class 11 Computer Science additional questions for Mathematics Class 11 Computer Science CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.

  7. NCERT Solutions for Class 11 Computer Science

    Get free chapter-wise NCERT Solutions for Class 11 Computer Science solved by expert according to latest syllabus. CBSE Science (English Medium) Class 11. Textbook Solutions 18391 ... • Chapter 4: Introduction to Problem Solving • Chapter 5: Getting Started with Python • Chapter 6: Flow of Control • Chapter 7: Functions • Chapter 8 ...

  8. Introduction to problem solving Computer Science Class 11 Notes

    So it is a step-by-step process. These steps are as follows: Analysing the problem. Developing an algorithm. Coding. Testing and debugging. The first step in the introduction to problem solving Computer Science Class 11 is analyzing the problem.

  9. Computer Science

    Computer science class 11 is a comprehensive and rigorous course that covers the core concepts and principles of computer science. Computer science class 11 will help you understand how computers work and how they can be used to solve various problems. ... Chapter 4 Class 11 - Introduction to Problem Solving Concepts ... Chapter 5 Class 11 ...

  10. Introduction to Problem Solving

    Step 1: Find the numbers (divisors) which can divide the given numbers. Step 2: Then find the largest common number from these two lists. A finite sequence of steps required to get the desired output is called an algorithm. Algorithm has a definite beginning and a definite end, and consists of a finite number of steps.

  11. Introduction to Problem Solving Class 11 Notes

    Steps for problem solving. There are 4 basic steps involved in problem solving. Analyze the problem. Developing an algorithm. Coding. Testing and debugging. Analyze the problem. Analyzing the problem is basically understanding a problem very clearly before finding its solution. Analyzing a problem involves.

  12. Chapter 5 Introduction to Problem Solving

    This video will help you to understand Problem-solving cycle, which is a subtopic of Chapter 5 introduction to problem-solving Class 11 Computer Science.Hash...

  13. NCERT Solutions Class 11 Computer Science Chapter 5 Getting Started

    Question 11. Write a Python program to calculate the amount payable if money has been lent on simple interest. Notes Ch 5.indd 117 08-Apr-19 12:35:13 PM 2020-21 118 Computer Science - Class xi Principal or money lent = P, Rate of interest = R% per annum and Time = T years. Then Simple Interest (SI) = (P x R x T)/ 100.

  14. Class 11 Computer Science NCERT Exercise Solution

    Chapter 4: Introduction to Problem Solving. Class 11 NCERT Exercise Solution of Computer Science. Chapter 5: Getting Started with Python. Chapter 6: Flow of Control ... Chapter 8: String Manipulation. NCERT Book Solution Computer Science of Class 11. Chapter 9: Lists Manipulation. Chapter 10: Tuples and Dictionaries. Chapter 11: Societal Impact ...

  15. Introduction to Problem Solving Class 11 Notes

    Problem fixing starts with the accurate identification of the issue and concludes with a fully functional programme or software application. Program Solving Steps are -. 1. Analysing the problem. 2. Developing an Algorithm. 3. Coding.

  16. Introduction to Algorithms and Flowcharts

    Introduction to Flowcharts. It is basically a diagrammatic representation of an algorithm. Furthermore, it uses various symbols and arrows to describe the beginning, ending, and flow of the program. Moreover, the programmers use it to depicting the flow of data and instructions while problem-solving. Flowcharting is the process of drawing a ...

  17. Steps for Problem Solving

    Analyzing the Problem:Involvesidentifying the problem,inputsthe program should accept and the desiredoutputof the program.Developing an Algorithm:Thesolution to the problem represented in natural languageis called Algorithm. For a given problem, more than one algorithm is possible and we have to sel.

  18. Computer Science Presentation for Class 11

    Subscribe. Computer Science Presentations for Class 11 Chapter 1: Computer System and Organisation Click Here Click Here Click Here Chapter 2: Introduction To problem Solving and Basics of Python Programming Click Here Click Here Click Here Click Here Chapter 3: Operators Statements in Python Click Here Click Here Click Here Click Here Click ...

  19. Introduction to Problem Solving (In Hindi)

    Introduction to Problem Solving (In Hindi) | Chapter 5 Class 11 Computer Science With Python #30👉Points covered in this video:- - Introduction to Problem So...

  20. NCERT Solutions Class 11 Computer Science Chapter 4 Introduction to

    NCERT Solutions Class 11 Computer Science Chapter 4 Introduction to Problem Solving. Question 3. Write the pseudocode to print all multiples of 5 between 10 and 25 (including both 10 and 25). Answer: FOR EACH I := 10 TO 15. IF I % 5 :=0 THEN. PRINT I. END IF. END LOOP. Question 4. Give an example of a loop that is to be executed a certain ...

  21. Chapter 5 Introduction to Problem Solving

    Chapter 5 Introduction to Problem Solving | Class 11 Computer Science | in HindiHastags: #class11 #class11th #class11python #online #education #newvideo CBSE...