• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

methods of data collection and analysis in qualitative research

Home Market Research

Qualitative Data Analysis: What is it, Methods + Examples

Explore qualitative data analysis with diverse methods and real-world examples. Uncover the nuances of human experiences with this guide.

In a world rich with information and narrative, understanding the deeper layers of human experiences requires a unique vision that goes beyond numbers and figures. This is where the power of qualitative data analysis comes to light.

In this blog, we’ll learn about qualitative data analysis, explore its methods, and provide real-life examples showcasing its power in uncovering insights.

What is Qualitative Data Analysis?

Qualitative data analysis is a systematic process of examining non-numerical data to extract meaning, patterns, and insights.

In contrast to quantitative analysis, which focuses on numbers and statistical metrics, the qualitative study focuses on the qualitative aspects of data, such as text, images, audio, and videos. It seeks to understand every aspect of human experiences, perceptions, and behaviors by examining the data’s richness.

Companies frequently conduct this analysis on customer feedback. You can collect qualitative data from reviews, complaints, chat messages, interactions with support centers, customer interviews, case notes, or even social media comments. This kind of data holds the key to understanding customer sentiments and preferences in a way that goes beyond mere numbers.

Importance of Qualitative Data Analysis

Qualitative data analysis plays a crucial role in your research and decision-making process across various disciplines. Let’s explore some key reasons that underline the significance of this analysis:

In-Depth Understanding

It enables you to explore complex and nuanced aspects of a phenomenon, delving into the ‘how’ and ‘why’ questions. This method provides you with a deeper understanding of human behavior, experiences, and contexts that quantitative approaches might not capture fully.

Contextual Insight

You can use this analysis to give context to numerical data. It will help you understand the circumstances and conditions that influence participants’ thoughts, feelings, and actions. This contextual insight becomes essential for generating comprehensive explanations.

Theory Development

You can generate or refine hypotheses via qualitative data analysis. As you analyze the data attentively, you can form hypotheses, concepts, and frameworks that will drive your future research and contribute to theoretical advances.

Participant Perspectives

When performing qualitative research, you can highlight participant voices and opinions. This approach is especially useful for understanding marginalized or underrepresented people, as it allows them to communicate their experiences and points of view.

Exploratory Research

The analysis is frequently used at the exploratory stage of your project. It assists you in identifying important variables, developing research questions, and designing quantitative studies that will follow.

Types of Qualitative Data

When conducting qualitative research, you can use several qualitative data collection methods , and here you will come across many sorts of qualitative data that can provide you with unique insights into your study topic. These data kinds add new views and angles to your understanding and analysis.

Interviews and Focus Groups

Interviews and focus groups will be among your key methods for gathering qualitative data. Interviews are one-on-one talks in which participants can freely share their thoughts, experiences, and opinions.

Focus groups, on the other hand, are discussions in which members interact with one another, resulting in dynamic exchanges of ideas. Both methods provide rich qualitative data and direct access to participant perspectives.

Observations and Field Notes

Observations and field notes are another useful sort of qualitative data. You can immerse yourself in the research environment through direct observation, carefully documenting behaviors, interactions, and contextual factors.

These observations will be recorded in your field notes, providing a complete picture of the environment and the behaviors you’re researching. This data type is especially important for comprehending behavior in their natural setting.

Textual and Visual Data

Textual and visual data include a wide range of resources that can be qualitatively analyzed. Documents, written narratives, and transcripts from various sources, such as interviews or speeches, are examples of textual data.

Photographs, films, and even artwork provide a visual layer to your research. These forms of data allow you to investigate what is spoken and the underlying emotions, details, and symbols expressed by language or pictures.

When to Choose Qualitative Data Analysis over Quantitative Data Analysis

As you begin your research journey, understanding why the analysis of qualitative data is important will guide your approach to understanding complex events. If you analyze qualitative data, it will provide new insights that complement quantitative methodologies, which will give you a broader understanding of your study topic.

It is critical to know when to use qualitative analysis over quantitative procedures. You can prefer qualitative data analysis when:

  • Complexity Reigns: When your research questions involve deep human experiences, motivations, or emotions, qualitative research excels at revealing these complexities.
  • Exploration is Key: Qualitative analysis is ideal for exploratory research. It will assist you in understanding a new or poorly understood topic before formulating quantitative hypotheses.
  • Context Matters: If you want to understand how context affects behaviors or results, qualitative data analysis provides the depth needed to grasp these relationships.
  • Unanticipated Findings: When your study provides surprising new viewpoints or ideas, qualitative analysis helps you to delve deeply into these emerging themes.
  • Subjective Interpretation is Vital: When it comes to understanding people’s subjective experiences and interpretations, qualitative data analysis is the way to go.

You can make informed decisions regarding the right approach for your research objectives if you understand the importance of qualitative analysis and recognize the situations where it shines.

Qualitative Data Analysis Methods and Examples

Exploring various qualitative data analysis methods will provide you with a wide collection for making sense of your research findings. Once the data has been collected, you can choose from several analysis methods based on your research objectives and the data type you’ve collected.

There are five main methods for analyzing qualitative data. Each method takes a distinct approach to identifying patterns, themes, and insights within your qualitative data. They are:

Method 1: Content Analysis

Content analysis is a methodical technique for analyzing textual or visual data in a structured manner. In this method, you will categorize qualitative data by splitting it into manageable pieces and assigning the manual coding process to these units.

As you go, you’ll notice ongoing codes and designs that will allow you to conclude the content. This method is very beneficial for detecting common ideas, concepts, or themes in your data without losing the context.

Steps to Do Content Analysis

Follow these steps when conducting content analysis:

  • Collect and Immerse: Begin by collecting the necessary textual or visual data. Immerse yourself in this data to fully understand its content, context, and complexities.
  • Assign Codes and Categories: Assign codes to relevant data sections that systematically represent major ideas or themes. Arrange comparable codes into groups that cover the major themes.
  • Analyze and Interpret: Develop a structured framework from the categories and codes. Then, evaluate the data in the context of your research question, investigate relationships between categories, discover patterns, and draw meaning from these connections.

Benefits & Challenges

There are various advantages to using content analysis:

  • Structured Approach: It offers a systematic approach to dealing with large data sets and ensures consistency throughout the research.
  • Objective Insights: This method promotes objectivity, which helps to reduce potential biases in your study.
  • Pattern Discovery: Content analysis can help uncover hidden trends, themes, and patterns that are not always obvious.
  • Versatility: You can apply content analysis to various data formats, including text, internet content, images, etc.

However, keep in mind the challenges that arise:

  • Subjectivity: Even with the best attempts, a certain bias may remain in coding and interpretation.
  • Complexity: Analyzing huge data sets requires time and great attention to detail.
  • Contextual Nuances: Content analysis may not capture all of the contextual richness that qualitative data analysis highlights.

Example of Content Analysis

Suppose you’re conducting market research and looking at customer feedback on a product. As you collect relevant data and analyze feedback, you’ll see repeating codes like “price,” “quality,” “customer service,” and “features.” These codes are organized into categories such as “positive reviews,” “negative reviews,” and “suggestions for improvement.”

According to your findings, themes such as “price” and “customer service” stand out and show that pricing and customer service greatly impact customer satisfaction. This example highlights the power of content analysis for obtaining significant insights from large textual data collections.

Method 2: Thematic Analysis

Thematic analysis is a well-structured procedure for identifying and analyzing recurring themes in your data. As you become more engaged in the data, you’ll generate codes or short labels representing key concepts. These codes are then organized into themes, providing a consistent framework for organizing and comprehending the substance of the data.

The analysis allows you to organize complex narratives and perspectives into meaningful categories, which will allow you to identify connections and patterns that may not be visible at first.

Steps to Do Thematic Analysis

Follow these steps when conducting a thematic analysis:

  • Code and Group: Start by thoroughly examining the data and giving initial codes that identify the segments. To create initial themes, combine relevant codes.
  • Code and Group: Begin by engaging yourself in the data, assigning first codes to notable segments. To construct basic themes, group comparable codes together.
  • Analyze and Report: Analyze the data within each theme to derive relevant insights. Organize the topics into a consistent structure and explain your findings, along with data extracts that represent each theme.

Thematic analysis has various benefits:

  • Structured Exploration: It is a method for identifying patterns and themes in complex qualitative data.
  • Comprehensive knowledge: Thematic analysis promotes an in-depth understanding of the complications and meanings of the data.
  • Application Flexibility: This method can be customized to various research situations and data kinds.

However, challenges may arise, such as:

  • Interpretive Nature: Interpreting qualitative data in thematic analysis is vital, and it is critical to manage researcher bias.
  • Time-consuming: The study can be time-consuming, especially with large data sets.
  • Subjectivity: The selection of codes and topics might be subjective.

Example of Thematic Analysis

Assume you’re conducting a thematic analysis on job satisfaction interviews. Following your immersion in the data, you assign initial codes such as “work-life balance,” “career growth,” and “colleague relationships.” As you organize these codes, you’ll notice themes develop, such as “Factors Influencing Job Satisfaction” and “Impact on Work Engagement.”

Further investigation reveals the tales and experiences included within these themes and provides insights into how various elements influence job satisfaction. This example demonstrates how thematic analysis can reveal meaningful patterns and insights in qualitative data.

Method 3: Narrative Analysis

The narrative analysis involves the narratives that people share. You’ll investigate the histories in your data, looking at how stories are created and the meanings they express. This method is excellent for learning how people make sense of their experiences through narrative.

Steps to Do Narrative Analysis

The following steps are involved in narrative analysis:

  • Gather and Analyze: Start by collecting narratives, such as first-person tales, interviews, or written accounts. Analyze the stories, focusing on the plot, feelings, and characters.
  • Find Themes: Look for recurring themes or patterns in various narratives. Think about the similarities and differences between these topics and personal experiences.
  • Interpret and Extract Insights: Contextualize the narratives within their larger context. Accept the subjective nature of each narrative and analyze the narrator’s voice and style. Extract insights from the tales by diving into the emotions, motivations, and implications communicated by the stories.

There are various advantages to narrative analysis:

  • Deep Exploration: It lets you look deeply into people’s personal experiences and perspectives.
  • Human-Centered: This method prioritizes the human perspective, allowing individuals to express themselves.

However, difficulties may arise, such as:

  • Interpretive Complexity: Analyzing narratives requires dealing with the complexities of meaning and interpretation.
  • Time-consuming: Because of the richness and complexities of tales, working with them can be time-consuming.

Example of Narrative Analysis

Assume you’re conducting narrative analysis on refugee interviews. As you read the stories, you’ll notice common themes of toughness, loss, and hope. The narratives provide insight into the obstacles that refugees face, their strengths, and the dreams that guide them.

The analysis can provide a deeper insight into the refugees’ experiences and the broader social context they navigate by examining the narratives’ emotional subtleties and underlying meanings. This example highlights how narrative analysis can reveal important insights into human stories.

Method 4: Grounded Theory Analysis

Grounded theory analysis is an iterative and systematic approach that allows you to create theories directly from data without being limited by pre-existing hypotheses. With an open mind, you collect data and generate early codes and labels that capture essential ideas or concepts within the data.

As you progress, you refine these codes and increasingly connect them, eventually developing a theory based on the data. Grounded theory analysis is a dynamic process for developing new insights and hypotheses based on details in your data.

Steps to Do Grounded Theory Analysis

Grounded theory analysis requires the following steps:

  • Initial Coding: First, immerse yourself in the data, producing initial codes that represent major concepts or patterns.
  • Categorize and Connect: Using axial coding, organize the initial codes, which establish relationships and connections between topics.
  • Build the Theory: Focus on creating a core category that connects the codes and themes. Regularly refine the theory by comparing and integrating new data, ensuring that it evolves organically from the data.

Grounded theory analysis has various benefits:

  • Theory Generation: It provides a one-of-a-kind opportunity to generate hypotheses straight from data and promotes new insights.
  • In-depth Understanding: The analysis allows you to deeply analyze the data and reveal complex relationships and patterns.
  • Flexible Process: This method is customizable and ongoing, which allows you to enhance your research as you collect additional data.

However, challenges might arise with:

  • Time and Resources: Because grounded theory analysis is a continuous process, it requires a large commitment of time and resources.
  • Theoretical Development: Creating a grounded theory involves a thorough understanding of qualitative data analysis software and theoretical concepts.
  • Interpretation of Complexity: Interpreting and incorporating a newly developed theory into existing literature can be intellectually hard.

Example of Grounded Theory Analysis

Assume you’re performing a grounded theory analysis on workplace collaboration interviews. As you open code the data, you will discover notions such as “communication barriers,” “team dynamics,” and “leadership roles.” Axial coding demonstrates links between these notions, emphasizing the significance of efficient communication in developing collaboration.

You create the core “Integrated Communication Strategies” category through selective coding, which unifies new topics.

This theory-driven category serves as the framework for understanding how numerous aspects contribute to effective team collaboration. This example shows how grounded theory analysis allows you to generate a theory directly from the inherent nature of the data.

Method 5: Discourse Analysis

Discourse analysis focuses on language and communication. You’ll look at how language produces meaning and how it reflects power relations, identities, and cultural influences. This strategy examines what is said and how it is said; the words, phrasing, and larger context of communication.

The analysis is precious when investigating power dynamics, identities, and cultural influences encoded in language. By evaluating the language used in your data, you can identify underlying assumptions, cultural standards, and how individuals negotiate meaning through communication.

Steps to Do Discourse Analysis

Conducting discourse analysis entails the following steps:

  • Select Discourse: For analysis, choose language-based data such as texts, speeches, or media content.
  • Analyze Language: Immerse yourself in the conversation, examining language choices, metaphors, and underlying assumptions.
  • Discover Patterns: Recognize the dialogue’s reoccurring themes, ideologies, and power dynamics. To fully understand the effects of these patterns, put them in their larger context.

There are various advantages of using discourse analysis:

  • Understanding Language: It provides an extensive understanding of how language builds meaning and influences perceptions.
  • Uncovering Power Dynamics: The analysis reveals how power dynamics appear via language.
  • Cultural Insights: This method identifies cultural norms, beliefs, and ideologies stored in communication.

However, the following challenges may arise:

  • Complexity of Interpretation: Language analysis involves navigating multiple levels of nuance and interpretation.
  • Subjectivity: Interpretation can be subjective, so controlling researcher bias is important.
  • Time-Intensive: Discourse analysis can take a lot of time because careful linguistic study is required in this analysis.

Example of Discourse Analysis

Consider doing discourse analysis on media coverage of a political event. You notice repeating linguistic patterns in news articles that depict the event as a conflict between opposing parties. Through deconstruction, you can expose how this framing supports particular ideologies and power relations.

You can illustrate how language choices influence public perceptions and contribute to building the narrative around the event by analyzing the speech within the broader political and social context. This example shows how discourse analysis can reveal hidden power dynamics and cultural influences on communication.

How to do Qualitative Data Analysis with the QuestionPro Research suite?

QuestionPro is a popular survey and research platform that offers tools for collecting and analyzing qualitative and quantitative data. Follow these general steps for conducting qualitative data analysis using the QuestionPro Research Suite:

  • Collect Qualitative Data: Set up your survey to capture qualitative responses. It might involve open-ended questions, text boxes, or comment sections where participants can provide detailed responses.
  • Export Qualitative Responses: Export the responses once you’ve collected qualitative data through your survey. QuestionPro typically allows you to export survey data in various formats, such as Excel or CSV.
  • Prepare Data for Analysis: Review the exported data and clean it if necessary. Remove irrelevant or duplicate entries to ensure your data is ready for analysis.
  • Code and Categorize Responses: Segment and label data, letting new patterns emerge naturally, then develop categories through axial coding to structure the analysis.
  • Identify Themes: Analyze the coded responses to identify recurring themes, patterns, and insights. Look for similarities and differences in participants’ responses.
  • Generate Reports and Visualizations: Utilize the reporting features of QuestionPro to create visualizations, charts, and graphs that help communicate the themes and findings from your qualitative research.
  • Interpret and Draw Conclusions: Interpret the themes and patterns you’ve identified in the qualitative data. Consider how these findings answer your research questions or provide insights into your study topic.
  • Integrate with Quantitative Data (if applicable): If you’re also conducting quantitative research using QuestionPro, consider integrating your qualitative findings with quantitative results to provide a more comprehensive understanding.

Qualitative data analysis is vital in uncovering various human experiences, views, and stories. If you’re ready to transform your research journey and apply the power of qualitative analysis, now is the moment to do it. Book a demo with QuestionPro today and begin your journey of exploration.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

methods of data collection and analysis in qualitative research

QuestionPro Thrive: A Space to Visualize & Share the Future of Technology

Jun 18, 2024

methods of data collection and analysis in qualitative research

Relationship NPS Fails to Understand Customer Experiences — Tuesday CX

CX Platforms

CX Platform: Top 13 CX Platforms to Drive Customer Success

Jun 17, 2024

methods of data collection and analysis in qualitative research

How to Know Whether Your Employee Initiatives are Working

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Grad Coach

Qualitative Data Analysis Methods 101:

The “big 6” methods + examples.

By: Kerryn Warren (PhD) | Reviewed By: Eunice Rautenbach (D.Tech) | May 2020 (Updated April 2023)

Qualitative data analysis methods. Wow, that’s a mouthful. 

If you’re new to the world of research, qualitative data analysis can look rather intimidating. So much bulky terminology and so many abstract, fluffy concepts. It certainly can be a minefield!

Don’t worry – in this post, we’ll unpack the most popular analysis methods , one at a time, so that you can approach your analysis with confidence and competence – whether that’s for a dissertation, thesis or really any kind of research project.

Qualitative data analysis methods

What (exactly) is qualitative data analysis?

To understand qualitative data analysis, we need to first understand qualitative data – so let’s step back and ask the question, “what exactly is qualitative data?”.

Qualitative data refers to pretty much any data that’s “not numbers” . In other words, it’s not the stuff you measure using a fixed scale or complex equipment, nor do you analyse it using complex statistics or mathematics.

So, if it’s not numbers, what is it?

Words, you guessed? Well… sometimes , yes. Qualitative data can, and often does, take the form of interview transcripts, documents and open-ended survey responses – but it can also involve the interpretation of images and videos. In other words, qualitative isn’t just limited to text-based data.

So, how’s that different from quantitative data, you ask?

Simply put, qualitative research focuses on words, descriptions, concepts or ideas – while quantitative research focuses on numbers and statistics . Qualitative research investigates the “softer side” of things to explore and describe , while quantitative research focuses on the “hard numbers”, to measure differences between variables and the relationships between them. If you’re keen to learn more about the differences between qual and quant, we’ve got a detailed post over here .

qualitative data analysis vs quantitative data analysis

So, qualitative analysis is easier than quantitative, right?

Not quite. In many ways, qualitative data can be challenging and time-consuming to analyse and interpret. At the end of your data collection phase (which itself takes a lot of time), you’ll likely have many pages of text-based data or hours upon hours of audio to work through. You might also have subtle nuances of interactions or discussions that have danced around in your mind, or that you scribbled down in messy field notes. All of this needs to work its way into your analysis.

Making sense of all of this is no small task and you shouldn’t underestimate it. Long story short – qualitative analysis can be a lot of work! Of course, quantitative analysis is no piece of cake either, but it’s important to recognise that qualitative analysis still requires a significant investment in terms of time and effort.

Need a helping hand?

methods of data collection and analysis in qualitative research

In this post, we’ll explore qualitative data analysis by looking at some of the most common analysis methods we encounter. We’re not going to cover every possible qualitative method and we’re not going to go into heavy detail – we’re just going to give you the big picture. That said, we will of course includes links to loads of extra resources so that you can learn more about whichever analysis method interests you.

Without further delay, let’s get into it.

The “Big 6” Qualitative Analysis Methods 

There are many different types of qualitative data analysis, all of which serve different purposes and have unique strengths and weaknesses . We’ll start by outlining the analysis methods and then we’ll dive into the details for each.

The 6 most popular methods (or at least the ones we see at Grad Coach) are:

  • Content analysis
  • Narrative analysis
  • Discourse analysis
  • Thematic analysis
  • Grounded theory (GT)
  • Interpretive phenomenological analysis (IPA)

Let’s take a look at each of them…

QDA Method #1: Qualitative Content Analysis

Content analysis is possibly the most common and straightforward QDA method. At the simplest level, content analysis is used to evaluate patterns within a piece of content (for example, words, phrases or images) or across multiple pieces of content or sources of communication. For example, a collection of newspaper articles or political speeches.

With content analysis, you could, for instance, identify the frequency with which an idea is shared or spoken about – like the number of times a Kardashian is mentioned on Twitter. Or you could identify patterns of deeper underlying interpretations – for instance, by identifying phrases or words in tourist pamphlets that highlight India as an ancient country.

Because content analysis can be used in such a wide variety of ways, it’s important to go into your analysis with a very specific question and goal, or you’ll get lost in the fog. With content analysis, you’ll group large amounts of text into codes , summarise these into categories, and possibly even tabulate the data to calculate the frequency of certain concepts or variables. Because of this, content analysis provides a small splash of quantitative thinking within a qualitative method.

Naturally, while content analysis is widely useful, it’s not without its drawbacks . One of the main issues with content analysis is that it can be very time-consuming , as it requires lots of reading and re-reading of the texts. Also, because of its multidimensional focus on both qualitative and quantitative aspects, it is sometimes accused of losing important nuances in communication.

Content analysis also tends to concentrate on a very specific timeline and doesn’t take into account what happened before or after that timeline. This isn’t necessarily a bad thing though – just something to be aware of. So, keep these factors in mind if you’re considering content analysis. Every analysis method has its limitations , so don’t be put off by these – just be aware of them ! If you’re interested in learning more about content analysis, the video below provides a good starting point.

QDA Method #2: Narrative Analysis 

As the name suggests, narrative analysis is all about listening to people telling stories and analysing what that means . Since stories serve a functional purpose of helping us make sense of the world, we can gain insights into the ways that people deal with and make sense of reality by analysing their stories and the ways they’re told.

You could, for example, use narrative analysis to explore whether how something is being said is important. For instance, the narrative of a prisoner trying to justify their crime could provide insight into their view of the world and the justice system. Similarly, analysing the ways entrepreneurs talk about the struggles in their careers or cancer patients telling stories of hope could provide powerful insights into their mindsets and perspectives . Simply put, narrative analysis is about paying attention to the stories that people tell – and more importantly, the way they tell them.

Of course, the narrative approach has its weaknesses , too. Sample sizes are generally quite small due to the time-consuming process of capturing narratives. Because of this, along with the multitude of social and lifestyle factors which can influence a subject, narrative analysis can be quite difficult to reproduce in subsequent research. This means that it’s difficult to test the findings of some of this research.

Similarly, researcher bias can have a strong influence on the results here, so you need to be particularly careful about the potential biases you can bring into your analysis when using this method. Nevertheless, narrative analysis is still a very useful qualitative analysis method – just keep these limitations in mind and be careful not to draw broad conclusions . If you’re keen to learn more about narrative analysis, the video below provides a great introduction to this qualitative analysis method.

QDA Method #3: Discourse Analysis 

Discourse is simply a fancy word for written or spoken language or debate . So, discourse analysis is all about analysing language within its social context. In other words, analysing language – such as a conversation, a speech, etc – within the culture and society it takes place. For example, you could analyse how a janitor speaks to a CEO, or how politicians speak about terrorism.

To truly understand these conversations or speeches, the culture and history of those involved in the communication are important factors to consider. For example, a janitor might speak more casually with a CEO in a company that emphasises equality among workers. Similarly, a politician might speak more about terrorism if there was a recent terrorist incident in the country.

So, as you can see, by using discourse analysis, you can identify how culture , history or power dynamics (to name a few) have an effect on the way concepts are spoken about. So, if your research aims and objectives involve understanding culture or power dynamics, discourse analysis can be a powerful method.

Because there are many social influences in terms of how we speak to each other, the potential use of discourse analysis is vast . Of course, this also means it’s important to have a very specific research question (or questions) in mind when analysing your data and looking for patterns and themes, or you might land up going down a winding rabbit hole.

Discourse analysis can also be very time-consuming  as you need to sample the data to the point of saturation – in other words, until no new information and insights emerge. But this is, of course, part of what makes discourse analysis such a powerful technique. So, keep these factors in mind when considering this QDA method. Again, if you’re keen to learn more, the video below presents a good starting point.

QDA Method #4: Thematic Analysis

Thematic analysis looks at patterns of meaning in a data set – for example, a set of interviews or focus group transcripts. But what exactly does that… mean? Well, a thematic analysis takes bodies of data (which are often quite large) and groups them according to similarities – in other words, themes . These themes help us make sense of the content and derive meaning from it.

Let’s take a look at an example.

With thematic analysis, you could analyse 100 online reviews of a popular sushi restaurant to find out what patrons think about the place. By reviewing the data, you would then identify the themes that crop up repeatedly within the data – for example, “fresh ingredients” or “friendly wait staff”.

So, as you can see, thematic analysis can be pretty useful for finding out about people’s experiences , views, and opinions . Therefore, if your research aims and objectives involve understanding people’s experience or view of something, thematic analysis can be a great choice.

Since thematic analysis is a bit of an exploratory process, it’s not unusual for your research questions to develop , or even change as you progress through the analysis. While this is somewhat natural in exploratory research, it can also be seen as a disadvantage as it means that data needs to be re-reviewed each time a research question is adjusted. In other words, thematic analysis can be quite time-consuming – but for a good reason. So, keep this in mind if you choose to use thematic analysis for your project and budget extra time for unexpected adjustments.

Thematic analysis takes bodies of data and groups them according to similarities (themes), which help us make sense of the content.

QDA Method #5: Grounded theory (GT) 

Grounded theory is a powerful qualitative analysis method where the intention is to create a new theory (or theories) using the data at hand, through a series of “ tests ” and “ revisions ”. Strictly speaking, GT is more a research design type than an analysis method, but we’ve included it here as it’s often referred to as a method.

What’s most important with grounded theory is that you go into the analysis with an open mind and let the data speak for itself – rather than dragging existing hypotheses or theories into your analysis. In other words, your analysis must develop from the ground up (hence the name). 

Let’s look at an example of GT in action.

Assume you’re interested in developing a theory about what factors influence students to watch a YouTube video about qualitative analysis. Using Grounded theory , you’d start with this general overarching question about the given population (i.e., graduate students). First, you’d approach a small sample – for example, five graduate students in a department at a university. Ideally, this sample would be reasonably representative of the broader population. You’d interview these students to identify what factors lead them to watch the video.

After analysing the interview data, a general pattern could emerge. For example, you might notice that graduate students are more likely to read a post about qualitative methods if they are just starting on their dissertation journey, or if they have an upcoming test about research methods.

From here, you’ll look for another small sample – for example, five more graduate students in a different department – and see whether this pattern holds true for them. If not, you’ll look for commonalities and adapt your theory accordingly. As this process continues, the theory would develop . As we mentioned earlier, what’s important with grounded theory is that the theory develops from the data – not from some preconceived idea.

So, what are the drawbacks of grounded theory? Well, some argue that there’s a tricky circularity to grounded theory. For it to work, in principle, you should know as little as possible regarding the research question and population, so that you reduce the bias in your interpretation. However, in many circumstances, it’s also thought to be unwise to approach a research question without knowledge of the current literature . In other words, it’s a bit of a “chicken or the egg” situation.

Regardless, grounded theory remains a popular (and powerful) option. Naturally, it’s a very useful method when you’re researching a topic that is completely new or has very little existing research about it, as it allows you to start from scratch and work your way from the ground up .

Grounded theory is used to create a new theory (or theories) by using the data at hand, as opposed to existing theories and frameworks.

QDA Method #6:   Interpretive Phenomenological Analysis (IPA)

Interpretive. Phenomenological. Analysis. IPA . Try saying that three times fast…

Let’s just stick with IPA, okay?

IPA is designed to help you understand the personal experiences of a subject (for example, a person or group of people) concerning a major life event, an experience or a situation . This event or experience is the “phenomenon” that makes up the “P” in IPA. Such phenomena may range from relatively common events – such as motherhood, or being involved in a car accident – to those which are extremely rare – for example, someone’s personal experience in a refugee camp. So, IPA is a great choice if your research involves analysing people’s personal experiences of something that happened to them.

It’s important to remember that IPA is subject – centred . In other words, it’s focused on the experiencer . This means that, while you’ll likely use a coding system to identify commonalities, it’s important not to lose the depth of experience or meaning by trying to reduce everything to codes. Also, keep in mind that since your sample size will generally be very small with IPA, you often won’t be able to draw broad conclusions about the generalisability of your findings. But that’s okay as long as it aligns with your research aims and objectives.

Another thing to be aware of with IPA is personal bias . While researcher bias can creep into all forms of research, self-awareness is critically important with IPA, as it can have a major impact on the results. For example, a researcher who was a victim of a crime himself could insert his own feelings of frustration and anger into the way he interprets the experience of someone who was kidnapped. So, if you’re going to undertake IPA, you need to be very self-aware or you could muddy the analysis.

IPA can help you understand the personal experiences of a person or group concerning a major life event, an experience or a situation.

How to choose the right analysis method

In light of all of the qualitative analysis methods we’ve covered so far, you’re probably asking yourself the question, “ How do I choose the right one? ”

Much like all the other methodological decisions you’ll need to make, selecting the right qualitative analysis method largely depends on your research aims, objectives and questions . In other words, the best tool for the job depends on what you’re trying to build. For example:

  • Perhaps your research aims to analyse the use of words and what they reveal about the intention of the storyteller and the cultural context of the time.
  • Perhaps your research aims to develop an understanding of the unique personal experiences of people that have experienced a certain event, or
  • Perhaps your research aims to develop insight regarding the influence of a certain culture on its members.

As you can probably see, each of these research aims are distinctly different , and therefore different analysis methods would be suitable for each one. For example, narrative analysis would likely be a good option for the first aim, while grounded theory wouldn’t be as relevant. 

It’s also important to remember that each method has its own set of strengths, weaknesses and general limitations. No single analysis method is perfect . So, depending on the nature of your research, it may make sense to adopt more than one method (this is called triangulation ). Keep in mind though that this will of course be quite time-consuming.

As we’ve seen, all of the qualitative analysis methods we’ve discussed make use of coding and theme-generating techniques, but the intent and approach of each analysis method differ quite substantially. So, it’s very important to come into your research with a clear intention before you decide which analysis method (or methods) to use.

Start by reviewing your research aims , objectives and research questions to assess what exactly you’re trying to find out – then select a qualitative analysis method that fits. Never pick a method just because you like it or have experience using it – your analysis method (or methods) must align with your broader research aims and objectives.

No single analysis method is perfect, so it can often make sense to adopt more than one  method (this is called triangulation).

Let’s recap on QDA methods…

In this post, we looked at six popular qualitative data analysis methods:

  • First, we looked at content analysis , a straightforward method that blends a little bit of quant into a primarily qualitative analysis.
  • Then we looked at narrative analysis , which is about analysing how stories are told.
  • Next up was discourse analysis – which is about analysing conversations and interactions.
  • Then we moved on to thematic analysis – which is about identifying themes and patterns.
  • From there, we went south with grounded theory – which is about starting from scratch with a specific question and using the data alone to build a theory in response to that question.
  • And finally, we looked at IPA – which is about understanding people’s unique experiences of a phenomenon.

Of course, these aren’t the only options when it comes to qualitative data analysis, but they’re a great starting point if you’re dipping your toes into qualitative research for the first time.

If you’re still feeling a bit confused, consider our private coaching service , where we hold your hand through the research process to help you develop your best work.

methods of data collection and analysis in qualitative research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Sampling methods and strategies in research

86 Comments

Richard N

This has been very helpful. Thank you.

netaji

Thank you madam,

Mariam Jaiyeola

Thank you so much for this information

Nzube

I wonder it so clear for understand and good for me. can I ask additional query?

Lee

Very insightful and useful

Susan Nakaweesi

Good work done with clear explanations. Thank you.

Titilayo

Thanks so much for the write-up, it’s really good.

Hemantha Gunasekara

Thanks madam . It is very important .

Gumathandra

thank you very good

Faricoh Tushera

Great presentation

Pramod Bahulekar

This has been very well explained in simple language . It is useful even for a new researcher.

Derek Jansen

Great to hear that. Good luck with your qualitative data analysis, Pramod!

Adam Zahir

This is very useful information. And it was very a clear language structured presentation. Thanks a lot.

Golit,F.

Thank you so much.

Emmanuel

very informative sequential presentation

Shahzada

Precise explanation of method.

Alyssa

Hi, may we use 2 data analysis methods in our qualitative research?

Thanks for your comment. Most commonly, one would use one type of analysis method, but it depends on your research aims and objectives.

Dr. Manju Pandey

You explained it in very simple language, everyone can understand it. Thanks so much.

Phillip

Thank you very much, this is very helpful. It has been explained in a very simple manner that even a layman understands

Anne

Thank nicely explained can I ask is Qualitative content analysis the same as thematic analysis?

Thanks for your comment. No, QCA and thematic are two different types of analysis. This article might help clarify – https://onlinelibrary.wiley.com/doi/10.1111/nhs.12048

Rev. Osadare K . J

This is my first time to come across a well explained data analysis. so helpful.

Tina King

I have thoroughly enjoyed your explanation of the six qualitative analysis methods. This is very helpful. Thank you!

Bromie

Thank you very much, this is well explained and useful

udayangani

i need a citation of your book.

khutsafalo

Thanks a lot , remarkable indeed, enlighting to the best

jas

Hi Derek, What other theories/methods would you recommend when the data is a whole speech?

M

Keep writing useful artikel.

Adane

It is important concept about QDA and also the way to express is easily understandable, so thanks for all.

Carl Benecke

Thank you, this is well explained and very useful.

Ngwisa

Very helpful .Thanks.

Hajra Aman

Hi there! Very well explained. Simple but very useful style of writing. Please provide the citation of the text. warm regards

Hillary Mophethe

The session was very helpful and insightful. Thank you

This was very helpful and insightful. Easy to read and understand

Catherine

As a professional academic writer, this has been so informative and educative. Keep up the good work Grad Coach you are unmatched with quality content for sure.

Keep up the good work Grad Coach you are unmatched with quality content for sure.

Abdulkerim

Its Great and help me the most. A Million Thanks you Dr.

Emanuela

It is a very nice work

Noble Naade

Very insightful. Please, which of this approach could be used for a research that one is trying to elicit students’ misconceptions in a particular concept ?

Karen

This is Amazing and well explained, thanks

amirhossein

great overview

Tebogo

What do we call a research data analysis method that one use to advise or determining the best accounting tool or techniques that should be adopted in a company.

Catherine Shimechero

Informative video, explained in a clear and simple way. Kudos

Van Hmung

Waoo! I have chosen method wrong for my data analysis. But I can revise my work according to this guide. Thank you so much for this helpful lecture.

BRIAN ONYANGO MWAGA

This has been very helpful. It gave me a good view of my research objectives and how to choose the best method. Thematic analysis it is.

Livhuwani Reineth

Very helpful indeed. Thanku so much for the insight.

Storm Erlank

This was incredibly helpful.

Jack Kanas

Very helpful.

catherine

very educative

Wan Roslina

Nicely written especially for novice academic researchers like me! Thank you.

Talash

choosing a right method for a paper is always a hard job for a student, this is a useful information, but it would be more useful personally for me, if the author provide me with a little bit more information about the data analysis techniques in type of explanatory research. Can we use qualitative content analysis technique for explanatory research ? or what is the suitable data analysis method for explanatory research in social studies?

ramesh

that was very helpful for me. because these details are so important to my research. thank you very much

Kumsa Desisa

I learnt a lot. Thank you

Tesfa NT

Relevant and Informative, thanks !

norma

Well-planned and organized, thanks much! 🙂

Dr. Jacob Lubuva

I have reviewed qualitative data analysis in a simplest way possible. The content will highly be useful for developing my book on qualitative data analysis methods. Cheers!

Nyi Nyi Lwin

Clear explanation on qualitative and how about Case study

Ogobuchi Otuu

This was helpful. Thank you

Alicia

This was really of great assistance, it was just the right information needed. Explanation very clear and follow.

Wow, Thanks for making my life easy

C. U

This was helpful thanks .

Dr. Alina Atif

Very helpful…. clear and written in an easily understandable manner. Thank you.

Herb

This was so helpful as it was easy to understand. I’m a new to research thank you so much.

cissy

so educative…. but Ijust want to know which method is coding of the qualitative or tallying done?

Ayo

Thank you for the great content, I have learnt a lot. So helpful

Tesfaye

precise and clear presentation with simple language and thank you for that.

nneheng

very informative content, thank you.

Oscar Kuebutornye

You guys are amazing on YouTube on this platform. Your teachings are great, educative, and informative. kudos!

NG

Brilliant Delivery. You made a complex subject seem so easy. Well done.

Ankit Kumar

Beautifully explained.

Thanks a lot

Kidada Owen-Browne

Is there a video the captures the practical process of coding using automated applications?

Thanks for the comment. We don’t recommend using automated applications for coding, as they are not sufficiently accurate in our experience.

Mathewos Damtew

content analysis can be qualitative research?

Hend

THANK YOU VERY MUCH.

Dev get

Thank you very much for such a wonderful content

Kassahun Aman

do you have any material on Data collection

Prince .S. mpofu

What a powerful explanation of the QDA methods. Thank you.

Kassahun

Great explanation both written and Video. i have been using of it on a day to day working of my thesis project in accounting and finance. Thank you very much for your support.

BORA SAMWELI MATUTULI

very helpful, thank you so much

ngoni chibukire

The tutorial is useful. I benefited a lot.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.14(1); Jan-Mar 2023
  • PMC10003579

Introduction to qualitative research methods – Part I

Shagufta bhangu.

Department of Global Health and Social Medicine, King's College London, London, United Kingdom

Fabien Provost

Carlo caduff.

Qualitative research methods are widely used in the social sciences and the humanities, but they can also complement quantitative approaches used in clinical research. In this article, we discuss the key features and contributions of qualitative research methods.

INTRODUCTION

Qualitative research methods refer to techniques of investigation that rely on nonstatistical and nonnumerical methods of data collection, analysis, and evidence production. Qualitative research techniques provide a lens for learning about nonquantifiable phenomena such as people's experiences, languages, histories, and cultures. In this article, we describe the strengths and role of qualitative research methods and how these can be employed in clinical research.

Although frequently employed in the social sciences and humanities, qualitative research methods can complement clinical research. These techniques can contribute to a better understanding of the social, cultural, political, and economic dimensions of health and illness. Social scientists and scholars in the humanities rely on a wide range of methods, including interviews, surveys, participant observation, focus groups, oral history, and archival research to examine both structural conditions and lived experience [ Figure 1 ]. Such research can not only provide robust and reliable data but can also humanize and add richness to our understanding of the ways in which people in different parts of the world perceive and experience illness and how they interact with medical institutions, systems, and therapeutics.

An external file that holds a picture, illustration, etc.
Object name is PCR-14-39-g001.jpg

Examples of qualitative research techniques

Qualitative research methods should not be seen as tools that can be applied independently of theory. It is important for these tools to be based on more than just method. In their research, social scientists and scholars in the humanities emphasize social theory. Departing from a reductionist psychological model of individual behavior that often blames people for their illness, social theory focuses on relations – disease happens not simply in people but between people. This type of theoretically informed and empirically grounded research thus examines not just patients but interactions between a wide range of actors (e.g., patients, family members, friends, neighbors, local politicians, medical practitioners at all levels, and from many systems of medicine, researchers, policymakers) to give voice to the lived experiences, motivations, and constraints of all those who are touched by disease.

PHILOSOPHICAL FOUNDATIONS OF QUALITATIVE RESEARCH METHODS

In identifying the factors that contribute to the occurrence and persistence of a phenomenon, it is paramount that we begin by asking the question: what do we know about this reality? How have we come to know this reality? These two processes, which we can refer to as the “what” question and the “how” question, are the two that all scientists (natural and social) grapple with in their research. We refer to these as the ontological and epistemological questions a research study must address. Together, they help us create a suitable methodology for any research study[ 1 ] [ Figure 2 ]. Therefore, as with quantitative methods, there must be a justifiable and logical method for understanding the world even for qualitative methods. By engaging with these two dimensions, the ontological and the epistemological, we open a path for learning that moves away from commonsensical understandings of the world, and the perpetuation of stereotypes and toward robust scientific knowledge production.

An external file that holds a picture, illustration, etc.
Object name is PCR-14-39-g002.jpg

Developing a research methodology

Every discipline has a distinct research philosophy and way of viewing the world and conducting research. Philosophers and historians of science have extensively studied how these divisions and specializations have emerged over centuries.[ 1 , 2 , 3 ] The most important distinction between quantitative and qualitative research techniques lies in the nature of the data they study and analyze. While the former focus on statistical, numerical, and quantitative aspects of phenomena and employ the same in data collection and analysis, qualitative techniques focus on humanistic, descriptive, and qualitative aspects of phenomena.[ 4 ]

For the findings of any research study to be reliable, they must employ the appropriate research techniques that are uniquely tailored to the phenomena under investigation. To do so, researchers must choose techniques based on their specific research questions and understand the strengths and limitations of the different tools available to them. Since clinical work lies at the intersection of both natural and social phenomena, it means that it must study both: biological and physiological phenomena (natural, quantitative, and objective phenomena) and behavioral and cultural phenomena (social, qualitative, and subjective phenomena). Therefore, clinical researchers can gain from both sets of techniques in their efforts to produce medical knowledge and bring forth scientifically informed change.

KEY FEATURES AND CONTRIBUTIONS OF QUALITATIVE RESEARCH METHODS

In this section, we discuss the key features and contributions of qualitative research methods [ Figure 3 ]. We describe the specific strengths and limitations of these techniques and discuss how they can be deployed in scientific investigations.

An external file that holds a picture, illustration, etc.
Object name is PCR-14-39-g003.jpg

Key features of qualitative research methods

One of the most important contributions of qualitative research methods is that they provide rigorous, theoretically sound, and rational techniques for the analysis of subjective, nebulous, and difficult-to-pin-down phenomena. We are aware, for example, of the role that social factors play in health care but find it hard to qualify and quantify these in our research studies. Often, we find researchers basing their arguments on “common sense,” developing research studies based on assumptions about the people that are studied. Such commonsensical assumptions are perhaps among the greatest impediments to knowledge production. For example, in trying to understand stigma, surveys often make assumptions about its reasons and frequently associate it with vague and general common sense notions of “fear” and “lack of information.” While these may be at work, to make such assumptions based on commonsensical understandings, and without conducting research inhibit us from exploring the multiple social factors that are at work under the guise of stigma.

In unpacking commonsensical understandings and researching experiences, relationships, and other phenomena, qualitative researchers are assisted by their methodological commitment to open-ended research. By open-ended research, we mean that these techniques take on an unbiased and exploratory approach in which learnings from the field and from research participants, are recorded and analyzed to learn about the world.[ 5 ] This orientation is made possible by qualitative research techniques that are particularly effective in learning about specific social, cultural, economic, and political milieus.

Second, qualitative research methods equip us in studying complex phenomena. Qualitative research methods provide scientific tools for exploring and identifying the numerous contributing factors to an occurrence. Rather than establishing one or the other factor as more important, qualitative methods are open-ended, inductive (ground-up), and empirical. They allow us to understand the object of our analysis from multiple vantage points and in its dispersion and caution against predetermined notions of the object of inquiry. They encourage researchers instead to discover a reality that is not yet given, fixed, and predetermined by the methods that are used and the hypotheses that underlie the study.

Once the multiple factors at work in a phenomenon have been identified, we can employ quantitative techniques and embark on processes of measurement, establish patterns and regularities, and analyze the causal and correlated factors at work through statistical techniques. For example, a doctor may observe that there is a high patient drop-out in treatment. Before carrying out a study which relies on quantitative techniques, qualitative research methods such as conversation analysis, interviews, surveys, or even focus group discussions may prove more effective in learning about all the factors that are contributing to patient default. After identifying the multiple, intersecting factors, quantitative techniques can be deployed to measure each of these factors through techniques such as correlational or regression analyses. Here, the use of quantitative techniques without identifying the diverse factors influencing patient decisions would be premature. Qualitative techniques thus have a key role to play in investigations of complex realities and in conducting rich exploratory studies while embracing rigorous and philosophically grounded methodologies.

Third, apart from subjective, nebulous, and complex phenomena, qualitative research techniques are also effective in making sense of irrational, illogical, and emotional phenomena. These play an important role in understanding logics at work among patients, their families, and societies. Qualitative research techniques are aided by their ability to shift focus away from the individual as a unit of analysis to the larger social, cultural, political, economic, and structural forces at work in health. As health-care practitioners and researchers focused on biological, physiological, disease and therapeutic processes, sociocultural, political, and economic conditions are often peripheral or ignored in day-to-day clinical work. However, it is within these latter processes that both health-care practices and patient lives are entrenched. Qualitative researchers are particularly adept at identifying the structural conditions such as the social, cultural, political, local, and economic conditions which contribute to health care and experiences of disease and illness.

For example, the decision to delay treatment by a patient may be understood as an irrational choice impacting his/her chances of survival, but the same may be a result of the patient treating their child's education as a financial priority over his/her own health. While this appears as an “emotional” choice, qualitative researchers try to understand the social and cultural factors that structure, inform, and justify such choices. Rather than assuming that it is an irrational choice, qualitative researchers try to understand the norms and logical grounds on which the patient is making this decision. By foregrounding such logics, stories, fears, and desires, qualitative research expands our analytic precision in learning about complex social worlds, recognizing reasons for medical successes and failures, and interrogating our assumptions about human behavior. These in turn can prove useful in arriving at conclusive, actionable findings which can inform institutional and public health policies and have a very important role to play in any change and transformation we may wish to bring to the societies in which we work.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Data Collection | Definition, Methods & Examples

Data Collection | Definition, Methods & Examples

Published on June 5, 2020 by Pritha Bhandari . Revised on June 21, 2023.

Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem .

While methods and aims may differ between fields, the overall process of data collection remains largely the same. Before you begin collecting data, you need to consider:

  • The  aim of the research
  • The type of data that you will collect
  • The methods and procedures you will use to collect, store, and process the data

To collect high-quality data that is relevant to your purposes, follow these four steps.

Table of contents

Step 1: define the aim of your research, step 2: choose your data collection method, step 3: plan your data collection procedures, step 4: collect the data, other interesting articles, frequently asked questions about data collection.

Before you start the process of data collection, you need to identify exactly what you want to achieve. You can start by writing a problem statement : what is the practical or scientific issue that you want to address and why does it matter?

Next, formulate one or more research questions that precisely define what you want to find out. Depending on your research questions, you might need to collect quantitative or qualitative data :

  • Quantitative data is expressed in numbers and graphs and is analyzed through statistical methods .
  • Qualitative data is expressed in words and analyzed through interpretations and categorizations.

If your aim is to test a hypothesis , measure something precisely, or gain large-scale statistical insights, collect quantitative data. If your aim is to explore ideas, understand experiences, or gain detailed insights into a specific context, collect qualitative data. If you have several aims, you can use a mixed methods approach that collects both types of data.

  • Your first aim is to assess whether there are significant differences in perceptions of managers across different departments and office locations.
  • Your second aim is to gather meaningful feedback from employees to explore new ideas for how managers can improve.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

methods of data collection and analysis in qualitative research

Based on the data you want to collect, decide which method is best suited for your research.

  • Experimental research is primarily a quantitative method.
  • Interviews , focus groups , and ethnographies are qualitative methods.
  • Surveys , observations, archival research and secondary data collection can be quantitative or qualitative methods.

Carefully consider what method you will use to gather data that helps you directly answer your research questions.

Data collection methods
Method When to use How to collect data
Experiment To test a causal relationship. Manipulate variables and measure their effects on others.
Survey To understand the general characteristics or opinions of a group of people. Distribute a list of questions to a sample online, in person or over-the-phone.
Interview/focus group To gain an in-depth understanding of perceptions or opinions on a topic. Verbally ask participants open-ended questions in individual interviews or focus group discussions.
Observation To understand something in its natural setting. Measure or survey a sample without trying to affect them.
Ethnography To study the culture of a community or organization first-hand. Join and participate in a community and record your observations and reflections.
Archival research To understand current or historical events, conditions or practices. Access manuscripts, documents or records from libraries, depositories or the internet.
Secondary data collection To analyze data from populations that you can’t access first-hand. Find existing datasets that have already been collected, from sources such as government agencies or research organizations.

When you know which method(s) you are using, you need to plan exactly how you will implement them. What procedures will you follow to make accurate observations or measurements of the variables you are interested in?

For instance, if you’re conducting surveys or interviews, decide what form the questions will take; if you’re conducting an experiment, make decisions about your experimental design (e.g., determine inclusion and exclusion criteria ).

Operationalization

Sometimes your variables can be measured directly: for example, you can collect data on the average age of employees simply by asking for dates of birth. However, often you’ll be interested in collecting data on more abstract concepts or variables that can’t be directly observed.

Operationalization means turning abstract conceptual ideas into measurable observations. When planning how you will collect data, you need to translate the conceptual definition of what you want to study into the operational definition of what you will actually measure.

  • You ask managers to rate their own leadership skills on 5-point scales assessing the ability to delegate, decisiveness and dependability.
  • You ask their direct employees to provide anonymous feedback on the managers regarding the same topics.

You may need to develop a sampling plan to obtain data systematically. This involves defining a population , the group you want to draw conclusions about, and a sample, the group you will actually collect data from.

Your sampling method will determine how you recruit participants or obtain measurements for your study. To decide on a sampling method you will need to consider factors like the required sample size, accessibility of the sample, and timeframe of the data collection.

Standardizing procedures

If multiple researchers are involved, write a detailed manual to standardize data collection procedures in your study.

This means laying out specific step-by-step instructions so that everyone in your research team collects data in a consistent way – for example, by conducting experiments under the same conditions and using objective criteria to record and categorize observations. This helps you avoid common research biases like omitted variable bias or information bias .

This helps ensure the reliability of your data, and you can also use it to replicate the study in the future.

Creating a data management plan

Before beginning data collection, you should also decide how you will organize and store your data.

  • If you are collecting data from people, you will likely need to anonymize and safeguard the data to prevent leaks of sensitive information (e.g. names or identity numbers).
  • If you are collecting data via interviews or pencil-and-paper formats, you will need to perform transcriptions or data entry in systematic ways to minimize distortion.
  • You can prevent loss of data by having an organization system that is routinely backed up.

Finally, you can implement your chosen methods to measure or observe the variables you are interested in.

The closed-ended questions ask participants to rate their manager’s leadership skills on scales from 1–5. The data produced is numerical and can be statistically analyzed for averages and patterns.

To ensure that high quality data is recorded in a systematic way, here are some best practices:

  • Record all relevant information as and when you obtain data. For example, note down whether or how lab equipment is recalibrated during an experimental study.
  • Double-check manual data entry for errors.
  • If you collect quantitative data, you can assess the reliability and validity to get an indication of your data quality.

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 21). Data Collection | Definition, Methods & Examples. Scribbr. Retrieved June 20, 2024, from https://www.scribbr.com/methodology/data-collection/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, sampling methods | types, techniques & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Open access
  • Published: 27 May 2020

How to use and assess qualitative research methods

  • Loraine Busetto   ORCID: orcid.org/0000-0002-9228-7875 1 ,
  • Wolfgang Wick 1 , 2 &
  • Christoph Gumbinger 1  

Neurological Research and Practice volume  2 , Article number:  14 ( 2020 ) Cite this article

748k Accesses

317 Citations

84 Altmetric

Metrics details

This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions, and focussing on intervention improvement. The most common methods of data collection are document study, (non-) participant observations, semi-structured interviews and focus groups. For data analysis, field-notes and audio-recordings are transcribed into protocols and transcripts, and coded using qualitative data management software. Criteria such as checklists, reflexivity, sampling strategies, piloting, co-coding, member-checking and stakeholder involvement can be used to enhance and assess the quality of the research conducted. Using qualitative in addition to quantitative designs will equip us with better tools to address a greater range of research problems, and to fill in blind spots in current neurological research and practice.

The aim of this paper is to provide an overview of qualitative research methods, including hands-on information on how they can be used, reported and assessed. This article is intended for beginning qualitative researchers in the health sciences as well as experienced quantitative researchers who wish to broaden their understanding of qualitative research.

What is qualitative research?

Qualitative research is defined as “the study of the nature of phenomena”, including “their quality, different manifestations, the context in which they appear or the perspectives from which they can be perceived” , but excluding “their range, frequency and place in an objectively determined chain of cause and effect” [ 1 ]. This formal definition can be complemented with a more pragmatic rule of thumb: qualitative research generally includes data in form of words rather than numbers [ 2 ].

Why conduct qualitative research?

Because some research questions cannot be answered using (only) quantitative methods. For example, one Australian study addressed the issue of why patients from Aboriginal communities often present late or not at all to specialist services offered by tertiary care hospitals. Using qualitative interviews with patients and staff, it found one of the most significant access barriers to be transportation problems, including some towns and communities simply not having a bus service to the hospital [ 3 ]. A quantitative study could have measured the number of patients over time or even looked at possible explanatory factors – but only those previously known or suspected to be of relevance. To discover reasons for observed patterns, especially the invisible or surprising ones, qualitative designs are needed.

While qualitative research is common in other fields, it is still relatively underrepresented in health services research. The latter field is more traditionally rooted in the evidence-based-medicine paradigm, as seen in " research that involves testing the effectiveness of various strategies to achieve changes in clinical practice, preferably applying randomised controlled trial study designs (...) " [ 4 ]. This focus on quantitative research and specifically randomised controlled trials (RCT) is visible in the idea of a hierarchy of research evidence which assumes that some research designs are objectively better than others, and that choosing a "lesser" design is only acceptable when the better ones are not practically or ethically feasible [ 5 , 6 ]. Others, however, argue that an objective hierarchy does not exist, and that, instead, the research design and methods should be chosen to fit the specific research question at hand – "questions before methods" [ 2 , 7 , 8 , 9 ]. This means that even when an RCT is possible, some research problems require a different design that is better suited to addressing them. Arguing in JAMA, Berwick uses the example of rapid response teams in hospitals, which he describes as " a complex, multicomponent intervention – essentially a process of social change" susceptible to a range of different context factors including leadership or organisation history. According to him, "[in] such complex terrain, the RCT is an impoverished way to learn. Critics who use it as a truth standard in this context are incorrect" [ 8 ] . Instead of limiting oneself to RCTs, Berwick recommends embracing a wider range of methods , including qualitative ones, which for "these specific applications, (...) are not compromises in learning how to improve; they are superior" [ 8 ].

Research problems that can be approached particularly well using qualitative methods include assessing complex multi-component interventions or systems (of change), addressing questions beyond “what works”, towards “what works for whom when, how and why”, and focussing on intervention improvement rather than accreditation [ 7 , 9 , 10 , 11 , 12 ]. Using qualitative methods can also help shed light on the “softer” side of medical treatment. For example, while quantitative trials can measure the costs and benefits of neuro-oncological treatment in terms of survival rates or adverse effects, qualitative research can help provide a better understanding of patient or caregiver stress, visibility of illness or out-of-pocket expenses.

How to conduct qualitative research?

Given that qualitative research is characterised by flexibility, openness and responsivity to context, the steps of data collection and analysis are not as separate and consecutive as they tend to be in quantitative research [ 13 , 14 ]. As Fossey puts it : “sampling, data collection, analysis and interpretation are related to each other in a cyclical (iterative) manner, rather than following one after another in a stepwise approach” [ 15 ]. The researcher can make educated decisions with regard to the choice of method, how they are implemented, and to which and how many units they are applied [ 13 ]. As shown in Fig.  1 , this can involve several back-and-forth steps between data collection and analysis where new insights and experiences can lead to adaption and expansion of the original plan. Some insights may also necessitate a revision of the research question and/or the research design as a whole. The process ends when saturation is achieved, i.e. when no relevant new information can be found (see also below: sampling and saturation). For reasons of transparency, it is essential for all decisions as well as the underlying reasoning to be well-documented.

figure 1

Iterative research process

While it is not always explicitly addressed, qualitative methods reflect a different underlying research paradigm than quantitative research (e.g. constructivism or interpretivism as opposed to positivism). The choice of methods can be based on the respective underlying substantive theory or theoretical framework used by the researcher [ 2 ].

Data collection

The methods of qualitative data collection most commonly used in health research are document study, observations, semi-structured interviews and focus groups [ 1 , 14 , 16 , 17 ].

Document study

Document study (also called document analysis) refers to the review by the researcher of written materials [ 14 ]. These can include personal and non-personal documents such as archives, annual reports, guidelines, policy documents, diaries or letters.

Observations

Observations are particularly useful to gain insights into a certain setting and actual behaviour – as opposed to reported behaviour or opinions [ 13 ]. Qualitative observations can be either participant or non-participant in nature. In participant observations, the observer is part of the observed setting, for example a nurse working in an intensive care unit [ 18 ]. In non-participant observations, the observer is “on the outside looking in”, i.e. present in but not part of the situation, trying not to influence the setting by their presence. Observations can be planned (e.g. for 3 h during the day or night shift) or ad hoc (e.g. as soon as a stroke patient arrives at the emergency room). During the observation, the observer takes notes on everything or certain pre-determined parts of what is happening around them, for example focusing on physician-patient interactions or communication between different professional groups. Written notes can be taken during or after the observations, depending on feasibility (which is usually lower during participant observations) and acceptability (e.g. when the observer is perceived to be judging the observed). Afterwards, these field notes are transcribed into observation protocols. If more than one observer was involved, field notes are taken independently, but notes can be consolidated into one protocol after discussions. Advantages of conducting observations include minimising the distance between the researcher and the researched, the potential discovery of topics that the researcher did not realise were relevant and gaining deeper insights into the real-world dimensions of the research problem at hand [ 18 ].

Semi-structured interviews

Hijmans & Kuyper describe qualitative interviews as “an exchange with an informal character, a conversation with a goal” [ 19 ]. Interviews are used to gain insights into a person’s subjective experiences, opinions and motivations – as opposed to facts or behaviours [ 13 ]. Interviews can be distinguished by the degree to which they are structured (i.e. a questionnaire), open (e.g. free conversation or autobiographical interviews) or semi-structured [ 2 , 13 ]. Semi-structured interviews are characterized by open-ended questions and the use of an interview guide (or topic guide/list) in which the broad areas of interest, sometimes including sub-questions, are defined [ 19 ]. The pre-defined topics in the interview guide can be derived from the literature, previous research or a preliminary method of data collection, e.g. document study or observations. The topic list is usually adapted and improved at the start of the data collection process as the interviewer learns more about the field [ 20 ]. Across interviews the focus on the different (blocks of) questions may differ and some questions may be skipped altogether (e.g. if the interviewee is not able or willing to answer the questions or for concerns about the total length of the interview) [ 20 ]. Qualitative interviews are usually not conducted in written format as it impedes on the interactive component of the method [ 20 ]. In comparison to written surveys, qualitative interviews have the advantage of being interactive and allowing for unexpected topics to emerge and to be taken up by the researcher. This can also help overcome a provider or researcher-centred bias often found in written surveys, which by nature, can only measure what is already known or expected to be of relevance to the researcher. Interviews can be audio- or video-taped; but sometimes it is only feasible or acceptable for the interviewer to take written notes [ 14 , 16 , 20 ].

Focus groups

Focus groups are group interviews to explore participants’ expertise and experiences, including explorations of how and why people behave in certain ways [ 1 ]. Focus groups usually consist of 6–8 people and are led by an experienced moderator following a topic guide or “script” [ 21 ]. They can involve an observer who takes note of the non-verbal aspects of the situation, possibly using an observation guide [ 21 ]. Depending on researchers’ and participants’ preferences, the discussions can be audio- or video-taped and transcribed afterwards [ 21 ]. Focus groups are useful for bringing together homogeneous (to a lesser extent heterogeneous) groups of participants with relevant expertise and experience on a given topic on which they can share detailed information [ 21 ]. Focus groups are a relatively easy, fast and inexpensive method to gain access to information on interactions in a given group, i.e. “the sharing and comparing” among participants [ 21 ]. Disadvantages include less control over the process and a lesser extent to which each individual may participate. Moreover, focus group moderators need experience, as do those tasked with the analysis of the resulting data. Focus groups can be less appropriate for discussing sensitive topics that participants might be reluctant to disclose in a group setting [ 13 ]. Moreover, attention must be paid to the emergence of “groupthink” as well as possible power dynamics within the group, e.g. when patients are awed or intimidated by health professionals.

Choosing the “right” method

As explained above, the school of thought underlying qualitative research assumes no objective hierarchy of evidence and methods. This means that each choice of single or combined methods has to be based on the research question that needs to be answered and a critical assessment with regard to whether or to what extent the chosen method can accomplish this – i.e. the “fit” between question and method [ 14 ]. It is necessary for these decisions to be documented when they are being made, and to be critically discussed when reporting methods and results.

Let us assume that our research aim is to examine the (clinical) processes around acute endovascular treatment (EVT), from the patient’s arrival at the emergency room to recanalization, with the aim to identify possible causes for delay and/or other causes for sub-optimal treatment outcome. As a first step, we could conduct a document study of the relevant standard operating procedures (SOPs) for this phase of care – are they up-to-date and in line with current guidelines? Do they contain any mistakes, irregularities or uncertainties that could cause delays or other problems? Regardless of the answers to these questions, the results have to be interpreted based on what they are: a written outline of what care processes in this hospital should look like. If we want to know what they actually look like in practice, we can conduct observations of the processes described in the SOPs. These results can (and should) be analysed in themselves, but also in comparison to the results of the document analysis, especially as regards relevant discrepancies. Do the SOPs outline specific tests for which no equipment can be observed or tasks to be performed by specialized nurses who are not present during the observation? It might also be possible that the written SOP is outdated, but the actual care provided is in line with current best practice. In order to find out why these discrepancies exist, it can be useful to conduct interviews. Are the physicians simply not aware of the SOPs (because their existence is limited to the hospital’s intranet) or do they actively disagree with them or does the infrastructure make it impossible to provide the care as described? Another rationale for adding interviews is that some situations (or all of their possible variations for different patient groups or the day, night or weekend shift) cannot practically or ethically be observed. In this case, it is possible to ask those involved to report on their actions – being aware that this is not the same as the actual observation. A senior physician’s or hospital manager’s description of certain situations might differ from a nurse’s or junior physician’s one, maybe because they intentionally misrepresent facts or maybe because different aspects of the process are visible or important to them. In some cases, it can also be relevant to consider to whom the interviewee is disclosing this information – someone they trust, someone they are otherwise not connected to, or someone they suspect or are aware of being in a potentially “dangerous” power relationship to them. Lastly, a focus group could be conducted with representatives of the relevant professional groups to explore how and why exactly they provide care around EVT. The discussion might reveal discrepancies (between SOPs and actual care or between different physicians) and motivations to the researchers as well as to the focus group members that they might not have been aware of themselves. For the focus group to deliver relevant information, attention has to be paid to its composition and conduct, for example, to make sure that all participants feel safe to disclose sensitive or potentially problematic information or that the discussion is not dominated by (senior) physicians only. The resulting combination of data collection methods is shown in Fig.  2 .

figure 2

Possible combination of data collection methods

Attributions for icons: “Book” by Serhii Smirnov, “Interview” by Adrien Coquet, FR, “Magnifying Glass” by anggun, ID, “Business communication” by Vectors Market; all from the Noun Project

The combination of multiple data source as described for this example can be referred to as “triangulation”, in which multiple measurements are carried out from different angles to achieve a more comprehensive understanding of the phenomenon under study [ 22 , 23 ].

Data analysis

To analyse the data collected through observations, interviews and focus groups these need to be transcribed into protocols and transcripts (see Fig.  3 ). Interviews and focus groups can be transcribed verbatim , with or without annotations for behaviour (e.g. laughing, crying, pausing) and with or without phonetic transcription of dialects and filler words, depending on what is expected or known to be relevant for the analysis. In the next step, the protocols and transcripts are coded , that is, marked (or tagged, labelled) with one or more short descriptors of the content of a sentence or paragraph [ 2 , 15 , 23 ]. Jansen describes coding as “connecting the raw data with “theoretical” terms” [ 20 ]. In a more practical sense, coding makes raw data sortable. This makes it possible to extract and examine all segments describing, say, a tele-neurology consultation from multiple data sources (e.g. SOPs, emergency room observations, staff and patient interview). In a process of synthesis and abstraction, the codes are then grouped, summarised and/or categorised [ 15 , 20 ]. The end product of the coding or analysis process is a descriptive theory of the behavioural pattern under investigation [ 20 ]. The coding process is performed using qualitative data management software, the most common ones being InVivo, MaxQDA and Atlas.ti. It should be noted that these are data management tools which support the analysis performed by the researcher(s) [ 14 ].

figure 3

From data collection to data analysis

Attributions for icons: see Fig. 2 , also “Speech to text” by Trevor Dsouza, “Field Notes” by Mike O’Brien, US, “Voice Record” by ProSymbols, US, “Inspection” by Made, AU, and “Cloud” by Graphic Tigers; all from the Noun Project

How to report qualitative research?

Protocols of qualitative research can be published separately and in advance of the study results. However, the aim is not the same as in RCT protocols, i.e. to pre-define and set in stone the research questions and primary or secondary endpoints. Rather, it is a way to describe the research methods in detail, which might not be possible in the results paper given journals’ word limits. Qualitative research papers are usually longer than their quantitative counterparts to allow for deep understanding and so-called “thick description”. In the methods section, the focus is on transparency of the methods used, including why, how and by whom they were implemented in the specific study setting, so as to enable a discussion of whether and how this may have influenced data collection, analysis and interpretation. The results section usually starts with a paragraph outlining the main findings, followed by more detailed descriptions of, for example, the commonalities, discrepancies or exceptions per category [ 20 ]. Here it is important to support main findings by relevant quotations, which may add information, context, emphasis or real-life examples [ 20 , 23 ]. It is subject to debate in the field whether it is relevant to state the exact number or percentage of respondents supporting a certain statement (e.g. “Five interviewees expressed negative feelings towards XYZ”) [ 21 ].

How to combine qualitative with quantitative research?

Qualitative methods can be combined with other methods in multi- or mixed methods designs, which “[employ] two or more different methods [ …] within the same study or research program rather than confining the research to one single method” [ 24 ]. Reasons for combining methods can be diverse, including triangulation for corroboration of findings, complementarity for illustration and clarification of results, expansion to extend the breadth and range of the study, explanation of (unexpected) results generated with one method with the help of another, or offsetting the weakness of one method with the strength of another [ 1 , 17 , 24 , 25 , 26 ]. The resulting designs can be classified according to when, why and how the different quantitative and/or qualitative data strands are combined. The three most common types of mixed method designs are the convergent parallel design , the explanatory sequential design and the exploratory sequential design. The designs with examples are shown in Fig.  4 .

figure 4

Three common mixed methods designs

In the convergent parallel design, a qualitative study is conducted in parallel to and independently of a quantitative study, and the results of both studies are compared and combined at the stage of interpretation of results. Using the above example of EVT provision, this could entail setting up a quantitative EVT registry to measure process times and patient outcomes in parallel to conducting the qualitative research outlined above, and then comparing results. Amongst other things, this would make it possible to assess whether interview respondents’ subjective impressions of patients receiving good care match modified Rankin Scores at follow-up, or whether observed delays in care provision are exceptions or the rule when compared to door-to-needle times as documented in the registry. In the explanatory sequential design, a quantitative study is carried out first, followed by a qualitative study to help explain the results from the quantitative study. This would be an appropriate design if the registry alone had revealed relevant delays in door-to-needle times and the qualitative study would be used to understand where and why these occurred, and how they could be improved. In the exploratory design, the qualitative study is carried out first and its results help informing and building the quantitative study in the next step [ 26 ]. If the qualitative study around EVT provision had shown a high level of dissatisfaction among the staff members involved, a quantitative questionnaire investigating staff satisfaction could be set up in the next step, informed by the qualitative study on which topics dissatisfaction had been expressed. Amongst other things, the questionnaire design would make it possible to widen the reach of the research to more respondents from different (types of) hospitals, regions, countries or settings, and to conduct sub-group analyses for different professional groups.

How to assess qualitative research?

A variety of assessment criteria and lists have been developed for qualitative research, ranging in their focus and comprehensiveness [ 14 , 17 , 27 ]. However, none of these has been elevated to the “gold standard” in the field. In the following, we therefore focus on a set of commonly used assessment criteria that, from a practical standpoint, a researcher can look for when assessing a qualitative research report or paper.

Assessors should check the authors’ use of and adherence to the relevant reporting checklists (e.g. Standards for Reporting Qualitative Research (SRQR)) to make sure all items that are relevant for this type of research are addressed [ 23 , 28 ]. Discussions of quantitative measures in addition to or instead of these qualitative measures can be a sign of lower quality of the research (paper). Providing and adhering to a checklist for qualitative research contributes to an important quality criterion for qualitative research, namely transparency [ 15 , 17 , 23 ].

Reflexivity

While methodological transparency and complete reporting is relevant for all types of research, some additional criteria must be taken into account for qualitative research. This includes what is called reflexivity, i.e. sensitivity to the relationship between the researcher and the researched, including how contact was established and maintained, or the background and experience of the researcher(s) involved in data collection and analysis. Depending on the research question and population to be researched this can be limited to professional experience, but it may also include gender, age or ethnicity [ 17 , 27 ]. These details are relevant because in qualitative research, as opposed to quantitative research, the researcher as a person cannot be isolated from the research process [ 23 ]. It may influence the conversation when an interviewed patient speaks to an interviewer who is a physician, or when an interviewee is asked to discuss a gynaecological procedure with a male interviewer, and therefore the reader must be made aware of these details [ 19 ].

Sampling and saturation

The aim of qualitative sampling is for all variants of the objects of observation that are deemed relevant for the study to be present in the sample “ to see the issue and its meanings from as many angles as possible” [ 1 , 16 , 19 , 20 , 27 ] , and to ensure “information-richness [ 15 ]. An iterative sampling approach is advised, in which data collection (e.g. five interviews) is followed by data analysis, followed by more data collection to find variants that are lacking in the current sample. This process continues until no new (relevant) information can be found and further sampling becomes redundant – which is called saturation [ 1 , 15 ] . In other words: qualitative data collection finds its end point not a priori , but when the research team determines that saturation has been reached [ 29 , 30 ].

This is also the reason why most qualitative studies use deliberate instead of random sampling strategies. This is generally referred to as “ purposive sampling” , in which researchers pre-define which types of participants or cases they need to include so as to cover all variations that are expected to be of relevance, based on the literature, previous experience or theory (i.e. theoretical sampling) [ 14 , 20 ]. Other types of purposive sampling include (but are not limited to) maximum variation sampling, critical case sampling or extreme or deviant case sampling [ 2 ]. In the above EVT example, a purposive sample could include all relevant professional groups and/or all relevant stakeholders (patients, relatives) and/or all relevant times of observation (day, night and weekend shift).

Assessors of qualitative research should check whether the considerations underlying the sampling strategy were sound and whether or how researchers tried to adapt and improve their strategies in stepwise or cyclical approaches between data collection and analysis to achieve saturation [ 14 ].

Good qualitative research is iterative in nature, i.e. it goes back and forth between data collection and analysis, revising and improving the approach where necessary. One example of this are pilot interviews, where different aspects of the interview (especially the interview guide, but also, for example, the site of the interview or whether the interview can be audio-recorded) are tested with a small number of respondents, evaluated and revised [ 19 ]. In doing so, the interviewer learns which wording or types of questions work best, or which is the best length of an interview with patients who have trouble concentrating for an extended time. Of course, the same reasoning applies to observations or focus groups which can also be piloted.

Ideally, coding should be performed by at least two researchers, especially at the beginning of the coding process when a common approach must be defined, including the establishment of a useful coding list (or tree), and when a common meaning of individual codes must be established [ 23 ]. An initial sub-set or all transcripts can be coded independently by the coders and then compared and consolidated after regular discussions in the research team. This is to make sure that codes are applied consistently to the research data.

Member checking

Member checking, also called respondent validation , refers to the practice of checking back with study respondents to see if the research is in line with their views [ 14 , 27 ]. This can happen after data collection or analysis or when first results are available [ 23 ]. For example, interviewees can be provided with (summaries of) their transcripts and asked whether they believe this to be a complete representation of their views or whether they would like to clarify or elaborate on their responses [ 17 ]. Respondents’ feedback on these issues then becomes part of the data collection and analysis [ 27 ].

Stakeholder involvement

In those niches where qualitative approaches have been able to evolve and grow, a new trend has seen the inclusion of patients and their representatives not only as study participants (i.e. “members”, see above) but as consultants to and active participants in the broader research process [ 31 , 32 , 33 ]. The underlying assumption is that patients and other stakeholders hold unique perspectives and experiences that add value beyond their own single story, making the research more relevant and beneficial to researchers, study participants and (future) patients alike [ 34 , 35 ]. Using the example of patients on or nearing dialysis, a recent scoping review found that 80% of clinical research did not address the top 10 research priorities identified by patients and caregivers [ 32 , 36 ]. In this sense, the involvement of the relevant stakeholders, especially patients and relatives, is increasingly being seen as a quality indicator in and of itself.

How not to assess qualitative research

The above overview does not include certain items that are routine in assessments of quantitative research. What follows is a non-exhaustive, non-representative, experience-based list of the quantitative criteria often applied to the assessment of qualitative research, as well as an explanation of the limited usefulness of these endeavours.

Protocol adherence

Given the openness and flexibility of qualitative research, it should not be assessed by how well it adheres to pre-determined and fixed strategies – in other words: its rigidity. Instead, the assessor should look for signs of adaptation and refinement based on lessons learned from earlier steps in the research process.

Sample size

For the reasons explained above, qualitative research does not require specific sample sizes, nor does it require that the sample size be determined a priori [ 1 , 14 , 27 , 37 , 38 , 39 ]. Sample size can only be a useful quality indicator when related to the research purpose, the chosen methodology and the composition of the sample, i.e. who was included and why.

Randomisation

While some authors argue that randomisation can be used in qualitative research, this is not commonly the case, as neither its feasibility nor its necessity or usefulness has been convincingly established for qualitative research [ 13 , 27 ]. Relevant disadvantages include the negative impact of a too large sample size as well as the possibility (or probability) of selecting “ quiet, uncooperative or inarticulate individuals ” [ 17 ]. Qualitative studies do not use control groups, either.

Interrater reliability, variability and other “objectivity checks”

The concept of “interrater reliability” is sometimes used in qualitative research to assess to which extent the coding approach overlaps between the two co-coders. However, it is not clear what this measure tells us about the quality of the analysis [ 23 ]. This means that these scores can be included in qualitative research reports, preferably with some additional information on what the score means for the analysis, but it is not a requirement. Relatedly, it is not relevant for the quality or “objectivity” of qualitative research to separate those who recruited the study participants and collected and analysed the data. Experiences even show that it might be better to have the same person or team perform all of these tasks [ 20 ]. First, when researchers introduce themselves during recruitment this can enhance trust when the interview takes place days or weeks later with the same researcher. Second, when the audio-recording is transcribed for analysis, the researcher conducting the interviews will usually remember the interviewee and the specific interview situation during data analysis. This might be helpful in providing additional context information for interpretation of data, e.g. on whether something might have been meant as a joke [ 18 ].

Not being quantitative research

Being qualitative research instead of quantitative research should not be used as an assessment criterion if it is used irrespectively of the research problem at hand. Similarly, qualitative research should not be required to be combined with quantitative research per se – unless mixed methods research is judged as inherently better than single-method research. In this case, the same criterion should be applied for quantitative studies without a qualitative component.

The main take-away points of this paper are summarised in Table 1 . We aimed to show that, if conducted well, qualitative research can answer specific research questions that cannot to be adequately answered using (only) quantitative designs. Seeing qualitative and quantitative methods as equal will help us become more aware and critical of the “fit” between the research problem and our chosen methods: I can conduct an RCT to determine the reasons for transportation delays of acute stroke patients – but should I? It also provides us with a greater range of tools to tackle a greater range of research problems more appropriately and successfully, filling in the blind spots on one half of the methodological spectrum to better address the whole complexity of neurological research and practice.

Availability of data and materials

Not applicable.

Abbreviations

Endovascular treatment

Randomised Controlled Trial

Standard Operating Procedure

Standards for Reporting Qualitative Research

Philipsen, H., & Vernooij-Dassen, M. (2007). Kwalitatief onderzoek: nuttig, onmisbaar en uitdagend. In L. PLBJ & H. TCo (Eds.), Kwalitatief onderzoek: Praktische methoden voor de medische praktijk . [Qualitative research: useful, indispensable and challenging. In: Qualitative research: Practical methods for medical practice (pp. 5–12). Houten: Bohn Stafleu van Loghum.

Chapter   Google Scholar  

Punch, K. F. (2013). Introduction to social research: Quantitative and qualitative approaches . London: Sage.

Kelly, J., Dwyer, J., Willis, E., & Pekarsky, B. (2014). Travelling to the city for hospital care: Access factors in country aboriginal patient journeys. Australian Journal of Rural Health, 22 (3), 109–113.

Article   Google Scholar  

Nilsen, P., Ståhl, C., Roback, K., & Cairney, P. (2013). Never the twain shall meet? - a comparison of implementation science and policy implementation research. Implementation Science, 8 (1), 1–12.

Howick J, Chalmers I, Glasziou, P., Greenhalgh, T., Heneghan, C., Liberati, A., Moschetti, I., Phillips, B., & Thornton, H. (2011). The 2011 Oxford CEBM evidence levels of evidence (introductory document) . Oxford Center for Evidence Based Medicine. https://www.cebm.net/2011/06/2011-oxford-cebm-levels-evidence-introductory-document/ .

Eakin, J. M. (2016). Educating critical qualitative health researchers in the land of the randomized controlled trial. Qualitative Inquiry, 22 (2), 107–118.

May, A., & Mathijssen, J. (2015). Alternatieven voor RCT bij de evaluatie van effectiviteit van interventies!? Eindrapportage. In Alternatives for RCTs in the evaluation of effectiveness of interventions!? Final report .

Google Scholar  

Berwick, D. M. (2008). The science of improvement. Journal of the American Medical Association, 299 (10), 1182–1184.

Article   CAS   Google Scholar  

Christ, T. W. (2014). Scientific-based research and randomized controlled trials, the “gold” standard? Alternative paradigms and mixed methodologies. Qualitative Inquiry, 20 (1), 72–80.

Lamont, T., Barber, N., Jd, P., Fulop, N., Garfield-Birkbeck, S., Lilford, R., Mear, L., Raine, R., & Fitzpatrick, R. (2016). New approaches to evaluating complex health and care systems. BMJ, 352:i154.

Drabble, S. J., & O’Cathain, A. (2015). Moving from Randomized Controlled Trials to Mixed Methods Intervention Evaluation. In S. Hesse-Biber & R. B. Johnson (Eds.), The Oxford Handbook of Multimethod and Mixed Methods Research Inquiry (pp. 406–425). London: Oxford University Press.

Chambers, D. A., Glasgow, R. E., & Stange, K. C. (2013). The dynamic sustainability framework: Addressing the paradox of sustainment amid ongoing change. Implementation Science : IS, 8 , 117.

Hak, T. (2007). Waarnemingsmethoden in kwalitatief onderzoek. In L. PLBJ & H. TCo (Eds.), Kwalitatief onderzoek: Praktische methoden voor de medische praktijk . [Observation methods in qualitative research] (pp. 13–25). Houten: Bohn Stafleu van Loghum.

Russell, C. K., & Gregory, D. M. (2003). Evaluation of qualitative research studies. Evidence Based Nursing, 6 (2), 36–40.

Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and evaluating qualitative research. Australian and New Zealand Journal of Psychiatry, 36 , 717–732.

Yanow, D. (2000). Conducting interpretive policy analysis (Vol. 47). Thousand Oaks: Sage University Papers Series on Qualitative Research Methods.

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for Information, 22 , 63–75.

van der Geest, S. (2006). Participeren in ziekte en zorg: meer over kwalitatief onderzoek. Huisarts en Wetenschap, 49 (4), 283–287.

Hijmans, E., & Kuyper, M. (2007). Het halfopen interview als onderzoeksmethode. In L. PLBJ & H. TCo (Eds.), Kwalitatief onderzoek: Praktische methoden voor de medische praktijk . [The half-open interview as research method (pp. 43–51). Houten: Bohn Stafleu van Loghum.

Jansen, H. (2007). Systematiek en toepassing van de kwalitatieve survey. In L. PLBJ & H. TCo (Eds.), Kwalitatief onderzoek: Praktische methoden voor de medische praktijk . [Systematics and implementation of the qualitative survey (pp. 27–41). Houten: Bohn Stafleu van Loghum.

Pv, R., & Peremans, L. (2007). Exploreren met focusgroepgesprekken: de ‘stem’ van de groep onder de loep. In L. PLBJ & H. TCo (Eds.), Kwalitatief onderzoek: Praktische methoden voor de medische praktijk . [Exploring with focus group conversations: the “voice” of the group under the magnifying glass (pp. 53–64). Houten: Bohn Stafleu van Loghum.

Carter, N., Bryant-Lukosius, D., DiCenso, A., Blythe, J., & Neville, A. J. (2014). The use of triangulation in qualitative research. Oncology Nursing Forum, 41 (5), 545–547.

Boeije H: Analyseren in kwalitatief onderzoek: Denken en doen, [Analysis in qualitative research: Thinking and doing] vol. Den Haag Boom Lemma uitgevers; 2012.

Hunter, A., & Brewer, J. (2015). Designing Multimethod Research. In S. Hesse-Biber & R. B. Johnson (Eds.), The Oxford Handbook of Multimethod and Mixed Methods Research Inquiry (pp. 185–205). London: Oxford University Press.

Archibald, M. M., Radil, A. I., Zhang, X., & Hanson, W. E. (2015). Current mixed methods practices in qualitative research: A content analysis of leading journals. International Journal of Qualitative Methods, 14 (2), 5–33.

Creswell, J. W., & Plano Clark, V. L. (2011). Choosing a Mixed Methods Design. In Designing and Conducting Mixed Methods Research . Thousand Oaks: SAGE Publications.

Mays, N., & Pope, C. (2000). Assessing quality in qualitative research. BMJ, 320 (7226), 50–52.

O'Brien, B. C., Harris, I. B., Beckman, T. J., Reed, D. A., & Cook, D. A. (2014). Standards for reporting qualitative research: A synthesis of recommendations. Academic Medicine : Journal of the Association of American Medical Colleges, 89 (9), 1245–1251.

Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bartlam, B., Burroughs, H., & Jinks, C. (2018). Saturation in qualitative research: Exploring its conceptualization and operationalization. Quality and Quantity, 52 (4), 1893–1907.

Moser, A., & Korstjens, I. (2018). Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis. European Journal of General Practice, 24 (1), 9–18.

Marlett, N., Shklarov, S., Marshall, D., Santana, M. J., & Wasylak, T. (2015). Building new roles and relationships in research: A model of patient engagement research. Quality of Life Research : an international journal of quality of life aspects of treatment, care and rehabilitation, 24 (5), 1057–1067.

Demian, M. N., Lam, N. N., Mac-Way, F., Sapir-Pichhadze, R., & Fernandez, N. (2017). Opportunities for engaging patients in kidney research. Canadian Journal of Kidney Health and Disease, 4 , 2054358117703070–2054358117703070.

Noyes, J., McLaughlin, L., Morgan, K., Roberts, A., Stephens, M., Bourne, J., Houlston, M., Houlston, J., Thomas, S., Rhys, R. G., et al. (2019). Designing a co-productive study to overcome known methodological challenges in organ donation research with bereaved family members. Health Expectations . 22(4):824–35.

Piil, K., Jarden, M., & Pii, K. H. (2019). Research agenda for life-threatening cancer. European Journal Cancer Care (Engl), 28 (1), e12935.

Hofmann, D., Ibrahim, F., Rose, D., Scott, D. L., Cope, A., Wykes, T., & Lempp, H. (2015). Expectations of new treatment in rheumatoid arthritis: Developing a patient-generated questionnaire. Health Expectations : an international journal of public participation in health care and health policy, 18 (5), 995–1008.

Jun, M., Manns, B., Laupacis, A., Manns, L., Rehal, B., Crowe, S., & Hemmelgarn, B. R. (2015). Assessing the extent to which current clinical research is consistent with patient priorities: A scoping review using a case study in patients on or nearing dialysis. Canadian Journal of Kidney Health and Disease, 2 , 35.

Elsie Baker, S., & Edwards, R. (2012). How many qualitative interviews is enough? In National Centre for Research Methods Review Paper . National Centre for Research Methods. http://eprints.ncrm.ac.uk/2273/4/how_many_interviews.pdf .

Sandelowski, M. (1995). Sample size in qualitative research. Research in Nursing & Health, 18 (2), 179–183.

Sim, J., Saunders, B., Waterfield, J., & Kingstone, T. (2018). Can sample size in qualitative research be determined a priori? International Journal of Social Research Methodology, 21 (5), 619–634.

Download references

Acknowledgements

no external funding.

Author information

Authors and affiliations.

Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany

Loraine Busetto, Wolfgang Wick & Christoph Gumbinger

Clinical Cooperation Unit Neuro-Oncology, German Cancer Research Center, Heidelberg, Germany

Wolfgang Wick

You can also search for this author in PubMed   Google Scholar

Contributions

LB drafted the manuscript; WW and CG revised the manuscript; all authors approved the final versions.

Corresponding author

Correspondence to Loraine Busetto .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Busetto, L., Wick, W. & Gumbinger, C. How to use and assess qualitative research methods. Neurol. Res. Pract. 2 , 14 (2020). https://doi.org/10.1186/s42466-020-00059-z

Download citation

Received : 30 January 2020

Accepted : 22 April 2020

Published : 27 May 2020

DOI : https://doi.org/10.1186/s42466-020-00059-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative research
  • Mixed methods
  • Quality assessment

Neurological Research and Practice

ISSN: 2524-3489

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

methods of data collection and analysis in qualitative research

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals

You are here

  • Volume 21, Issue 3
  • Data collection in qualitative research
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • David Barrett 1 ,
  • http://orcid.org/0000-0003-1130-5603 Alison Twycross 2
  • 1 Faculty of Health Sciences , University of Hull , Hull , UK
  • 2 School of Health and Social Care , London South Bank University , London , UK
  • Correspondence to Dr David Barrett, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; D.I.Barrett{at}hull.ac.uk

https://doi.org/10.1136/eb-2018-102939

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Qualitative research methods allow us to better understand the experiences of patients and carers; they allow us to explore how decisions are made and provide us with a detailed insight into how interventions may alter care. To develop such insights, qualitative research requires data which are holistic, rich and nuanced, allowing themes and findings to emerge through careful analysis. This article provides an overview of the core approaches to data collection in qualitative research, exploring their strengths, weaknesses and challenges.

Collecting data through interviews with participants is a characteristic of many qualitative studies. Interviews give the most direct and straightforward approach to gathering detailed and rich data regarding a particular phenomenon. The type of interview used to collect data can be tailored to the research question, the characteristics of participants and the preferred approach of the researcher. Interviews are most often carried out face-to-face, though the use of telephone interviews to overcome geographical barriers to participant recruitment is becoming more prevalent. 1

A common approach in qualitative research is the semistructured interview, where core elements of the phenomenon being studied are explicitly asked about by the interviewer. A well-designed semistructured interview should ensure data are captured in key areas while still allowing flexibility for participants to bring their own personality and perspective to the discussion. Finally, interviews can be much more rigidly structured to provide greater control for the researcher, essentially becoming questionnaires where responses are verbal rather than written.

Deciding where to place an interview design on this ‘structural spectrum’ will depend on the question to be answered and the skills of the researcher. A very structured approach is easy to administer and analyse but may not allow the participant to express themselves fully. At the other end of the spectrum, an open approach allows for freedom and flexibility, but requires the researcher to walk an investigative tightrope that maintains the focus of an interview without forcing participants into particular areas of discussion.

Example of an interview schedule 3

What do you think is the most effective way of assessing a child’s pain?

Have you come across any issues that make it difficult to assess a child’s pain?

What pain-relieving interventions do you find most useful and why?

When managing pain in children what is your overall aim?

Whose responsibility is pain management?

What involvement do you think parents should have in their child’s pain management?

What involvement do children have in their pain management?

Is there anything that currently stops you managing pain as well as you would like?

What would help you manage pain better?

Interviews present several challenges to researchers. Most interviews are recorded and will need transcribing before analysing. This can be extremely time-consuming, with 1 hour of interview requiring 5–6 hours to transcribe. 4 The analysis itself is also time-consuming, requiring transcriptions to be pored over word-for-word and line-by-line. Interviews also present the problem of bias the researcher needs to take care to avoid leading questions or providing non-verbal signals that might influence the responses of participants.

Focus groups

The focus group is a method of data collection in which a moderator/facilitator (usually a coresearcher) speaks with a group of 6–12 participants about issues related to the research question. As an approach, the focus group offers qualitative researchers an efficient method of gathering the views of many participants at one time. Also, the fact that many people are discussing the same issue together can result in an enhanced level of debate, with the moderator often able to step back and let the focus group enter into a free-flowing discussion. 5 This provides an opportunity to gather rich data from a specific population about a particular area of interest, such as barriers perceived by student nurses when trying to communicate with patients with cancer. 6

From a participant perspective, the focus group may provide a more relaxing environment than a one-to-one interview; they will not need to be involved with every part of the discussion and may feel more comfortable expressing views when they are shared by others in the group. Focus groups also allow participants to ‘bounce’ ideas off each other which sometimes results in different perspectives emerging from the discussion. However, focus groups are not without their difficulties. As with interviews, focus groups provide a vast amount of data to be transcribed and analysed, with discussions often lasting 1–2 hours. Moderators also need to be highly skilled to ensure that the discussion can flow while remaining focused and that all participants are encouraged to speak, while ensuring that no individuals dominate the discussion. 7

Observation

Participant and non-participant observation are powerful tools for collecting qualitative data, as they give nurse researchers an opportunity to capture a wide array of information—such as verbal and non-verbal communication, actions (eg, techniques of providing care) and environmental factors—within a care setting. Another advantage of observation is that the researcher gains a first-hand picture of what actually happens in clinical practice. 8 If the researcher is adopting a qualitative approach to observation they will normally record field notes . Field notes can take many forms, such as a chronological log of what is happening in the setting, a description of what has been observed, a record of conversations with participants or an expanded account of impressions from the fieldwork. 9 10

As with other qualitative data collection techniques, observation provides an enormous amount of data to be captured and analysed—one approach to helping with collection and analysis is to digitally record observations to allow for repeated viewing. 11 Observation also provides the researcher with some unique methodological and ethical challenges. Methodologically, the act of being observed may change the behaviour of the participant (often referred to as the ‘Hawthorne effect’), impacting on the value of findings. However, most researchers report a process of habitation taking place where, after a relatively short period of time, those being observed revert to their normal behaviour. Ethically, the researcher will need to consider when and how they should intervene if they view poor practice that could put patients at risk.

The three core approaches to data collection in qualitative research—interviews, focus groups and observation—provide researchers with rich and deep insights. All methods require skill on the part of the researcher, and all produce a large amount of raw data. However, with careful and systematic analysis 12 the data yielded with these methods will allow researchers to develop a detailed understanding of patient experiences and the work of nurses.

  • Twycross AM ,
  • Williams AM ,
  • Huang MC , et al
  • Onwuegbuzie AJ ,
  • Dickinson WB ,
  • Leech NL , et al
  • Twycross A ,
  • Emerson RM ,
  • Meriläinen M ,
  • Ala-Kokko T

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Commissioned; internally peer reviewed.

Read the full text or download the PDF:

Qualitative Data Collection and Analysis Methods

Qualitative data collection methods in each design or approach.

The Department of Counseling approves five approaches or designs within qualitative methodology.  Each of these designs uses its own kind of data sources.  Table 1 outlines the main primary and secondary sources of data in each design.

  • Primary sources are data from actual participants.
  • Secondary data sources are from others.
  • The researcher's notes describing observations of participants or behaviors in their natural environments. This is the more common usage, and is most common in ethnographic studies.
  • The researcher's notes to self about themes noticed while collecting data, possibly important points in the data, ideas to come back to, and so on.
  • Another related term is memos , although memos in grounded theory tend to be brief or extended essays charting the development of theory, rather than simple notes. Strictly speaking, these notes or memos are not data in themselves, but point to data in another source.

Table 1. The Fit of the Method and the Type of Data

Chosen Method

Likely Data Sources

participant observation, field notes, unstructured or structured interviews (sometimes audiotaped or videotaped).

documents, records, photographs, videotapes, maps, genograms, sociograms, focus groups.

interviews (audiotapes), participant and nonparticipant observations, documents and records, detailed descriptions of context and setting, chronological data, conversations recorded in dairies and field notes.

audiovisual data.

interviews (audiotapes), participant and nonparticipant observations, conversations recorded in dairies and field notes.

documents and records.

audiotapes of in-depth conversational interviews or dialogue.

journals, poetry, novels, biographies, literature, art, films.

Structured and unstructured interviews (usually audiotaped), open-ended qualitative surveys, participant observations, field notes.

documents, journals.

Data Collection in Ethnography

Typically, ethnographers collect data while in the field. Their data collection methods can include:

  • Participant observation.
  • Naturalistic observation.
  • Writing field notes.
  • Conducting unstructured or structured interviews (sometimes audiotaped or videotaped).
  • Reviewing documents, records, photographs, videotapes, maps, genograms, and sociograms.
  • Any accessible and dependable source of information about the behaviors, interactions, customs, values, beliefs, attitudes, and practices of the members of that culture can be a source of data.

It is worth remembering that the time-world of cultural groups is longer than it is for individual persons, and so:

  • Data collection may need to cover a longer time in order to capture the true flavor of the culture.
  • Field research methods need to adapt to the demands of the field; ethnography allows for flexibility in the design of its methods to accommodate the challenges of the field.

However, for both of these reasons—the longer time-world of the culture or group and the occasional need to change data collection methods to meet challenges in the field—Institutional Review Board (IRB) complications can be introduced and must be addressed, further lengthening the time of the ethnographic study.

Data Collection in Case Studies

Case studies always include multiple sources of information because the case includes multiple kinds of issues. For example, a case study of a training program would obtain and analyze information about:

  • The participants.
  • The nature of the organizational issues calling for the training.
  • The kinds of training provided.
  • The outcomes of the program.
  • The background and training of the staff, and so on.

In addition to multiple information sources, every case study provides an in-depth description of the contexts of the case:

  • Its setting (for example, the kind of business structure and office complex set-up where the training program takes place).
  • Its contexts (social contexts, political contexts, affiliations affecting outcomes, and so on).

The setting and context are an intrinsic part of the case.

Consequently, because cases contain many kinds of information and contexts, case studies use many different methods of data collection. These can include the full range of qualitative methods such as: 

  • Open-ended surveys.
  • Interviews.
  • Field observations. Reviews of documents, records, and other materials.
  • Evaluation of audiovisual materials.
  • Descriptions of contexts and collateral materials; and so on.

A well-designed case study does not rely on a single method and source of data because any true case (bounded system) will have many characteristics and it is not known ahead of time which characteristics are important. Determining that is the work of the case study.

Data Collection in Grounded Theory

The dominant methods of data collection in grounded theory research are:

  • Interviews (usually audiotaped).
  • Participant and nonparticipant observations.
  • Conversations. Recorded diaries.
  • Field notes.
  • Descriptions of comparative instances.
  • Personal narratives of experiences.

The participants in a grounded theory study often will be interviewed more than once and asked to reflect on and refine the preliminary conclusions drawn by the researcher.

  • Reinterviewing participants about them, asking for their feedback, or;
  • Interviewing a new round of participants about how well the hypothesized elements of the new theory actually explain their experiences.

The methods of doing these forms of data collection do not differ markedly from similar methods across all qualitative approaches. However, grounded theorists sometimes avoid too much study of the extant literature on their topic before going into the field, in hopes that they will not be biased by previous conjectures and data about the topic. It is their aim to allow the data to teach them and guide their analyses into rich explanations.

Data Collection in Phenomenology

There are two descriptive levels of the empirical phenomenological model that arise from the data collected:

  • Level 1: The original data are comprised of naïve descriptions obtained from participants through open-ended questions and dialogue. Naïve means simply, “in their own words, without reflection.”
  • Level 2: The researcher describes the structures of the experiences based on reflective analysis and interpretation of the research participant’s account or story.

To collect data for these levels of analysis, the primary tool is the in-depth personal interview:

  • Interviews typically are open (meaning, no forced answers), with three main kinds of questions:
  • An opening or initial question .  Usually this is only pre-written question, designed carefully to inquire into the participant’s lived (everyday) experience of the phenomenon under investigation.
  • Follow-up questions are asked to tease out deeper or more detailed elaborations of the earlier answers or to clarify unclear statements or ask about non-verbal gestures.
  • Guiding questions are asked to help the respondents return to the topic of the interview when they stray or digress.
  • The goal of the opening question (and all other questions) is to allow the respondent the maximum freedom to respond from within his or her lived (everyday, non-reflective) experience.

Because the objective is to collect data that are profoundly descriptive (rich in detail) and introspective, these interviews often can be lengthy, sometimes lasting as long as an hour or more.

Sometimes other sources of data are used in phenomenological studies, when those sources are equivalent in some way to the in-depth interview. For example:

  • In a study of the lived experience of grief, poems or other writings by the participants (or other people) about personal grief experiences might be collected in the same way as the in-depth interviews.
  • Audiovisual materials having a direct bearing on the lived experience of grief might be included as data (for example, photos of the participant with the deceased person).

Although other less personal data sources (such as letters, official documents, and news accounts) are seldom used as direct information about the lived experience, the researcher may find in a particular case that these are useful either in illuminating the participant's story itself or in creating a rich and textured background description of the contexts and settings in which the participant experienced the phenomenon.

Data Collection in Generic Qualitative Inquiry

Data collection in this approach typically uses data collection methods that elicit people’s verbal reports on their ideas about things that are outside themselves. However, its focus on real events and issues means it seldom uses unstructured data collection methods (such as open-ended conversational interviewing from phenomenology, participant and nonparticipant field observation from ethnography, and the like).

Instead, generic qualitative inquiry requires:

  • Semi- or fully structured interviews.
  • Qualitative questionnaires.
  • Qualitative surveys.
  • Content- or activity-specific observations, and the like.

The core focus is external and real-world as opposed to internal, psychological, and subjective. (The attitudes and opinions in opinion polling, for example, are valued for their reflection on the external issues.)  Here are some characteristics of generic qualitative data collection:

  • Generic qualitative data collection seeks qualitative information from representative samples of people about:
  • Real-world events.
  • Observable and experienced situations or conditions.
  • Attitudes, opinions, or beliefs about external situations or conditions, or
  • Their experiences.
  • Researchers want less to “go deep” and more to get a broad range of opinions, ideas, or reflections:
  • Occasionally, a small, non-representative but highly informed sample can provide rich information about the topic. For instance, a few experienced nurses can often provide rich, accurate, and helpful information about common patient reactions to certain procedures, because part of a nurse’s role is to observe patients’ experiences and reactions carefully.
  • More often, however, the sampling in this approach aims for larger representation of the population in mind. Although this is not a hard-and-fast rule, generic qualitative data collection typically uses larger samples than other qualitative approaches use because larger samples tend to be more widely representative.
  • As with all qualitative inquiry, if the sample is transparently and fairly representative of the target population or is clearly rich in information about the topic, readers may be persuaded to apply the findings to similar people or situations outside the sample itself.

Most generic qualitative studies rely on the following data collection methods:

  • Semi- or fully structured (pre-written questions) interviews, either oral (the most common method) or written (uncommon). In these qualitative interviews, the questions are structured based on the knowledge of the researcher, although there may be opportunities for “tell me more” kinds of questions. In other words, the data collected in this approach can be obtained from questions based on theoretical constructs in the existing literature, unlike other forms of qualitative data collection.
  • Questionnaires . Usually these are mix-scaled or quantitative items (for example, Likert-type scales asking preferences or degrees of agreement) with opportunities for qualitative comments; this approach requires mixed-method designs. Again, the researcher will build these questionnaires and their items from preknowledge about the topic.
  • Written or oral surveys . The standard opinion or voter poll is a good example, but survey research has its own rather deep literature and can be much more sophisticated that simple opinion or voter surveying. Once again, the items in the survey will be constructed on the basis of previous knowledge about the topic.

This concludes the discussion of qualitative data collection methods.  Please review the Presentation on “Quantitative Data Analysis Methods” in Unit 4, if you have not done so already.

(For a more thorough discussion of data collection, see the guide Qualitative Research Approaches in Psychology and Human Services .)

Consider this quotation from Charmaz (2006), “Simply thinking through how to word open-ended questions averts forcing responses into narrow categories” (p. 18).

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis . Thousand Oaks, CA: SAGE. ISBN: 9780761973522.

Doc. reference: phd_t3_coun_u04s3_h02_qualcoll.html

  • Privacy Policy

Research Method

Home » Data Collection – Methods Types and Examples

Data Collection – Methods Types and Examples

Table of Contents

Data collection

Data Collection

Definition:

Data collection is the process of gathering and collecting information from various sources to analyze and make informed decisions based on the data collected. This can involve various methods, such as surveys, interviews, experiments, and observation.

In order for data collection to be effective, it is important to have a clear understanding of what data is needed and what the purpose of the data collection is. This can involve identifying the population or sample being studied, determining the variables to be measured, and selecting appropriate methods for collecting and recording data.

Types of Data Collection

Types of Data Collection are as follows:

Primary Data Collection

Primary data collection is the process of gathering original and firsthand information directly from the source or target population. This type of data collection involves collecting data that has not been previously gathered, recorded, or published. Primary data can be collected through various methods such as surveys, interviews, observations, experiments, and focus groups. The data collected is usually specific to the research question or objective and can provide valuable insights that cannot be obtained from secondary data sources. Primary data collection is often used in market research, social research, and scientific research.

Secondary Data Collection

Secondary data collection is the process of gathering information from existing sources that have already been collected and analyzed by someone else, rather than conducting new research to collect primary data. Secondary data can be collected from various sources, such as published reports, books, journals, newspapers, websites, government publications, and other documents.

Qualitative Data Collection

Qualitative data collection is used to gather non-numerical data such as opinions, experiences, perceptions, and feelings, through techniques such as interviews, focus groups, observations, and document analysis. It seeks to understand the deeper meaning and context of a phenomenon or situation and is often used in social sciences, psychology, and humanities. Qualitative data collection methods allow for a more in-depth and holistic exploration of research questions and can provide rich and nuanced insights into human behavior and experiences.

Quantitative Data Collection

Quantitative data collection is a used to gather numerical data that can be analyzed using statistical methods. This data is typically collected through surveys, experiments, and other structured data collection methods. Quantitative data collection seeks to quantify and measure variables, such as behaviors, attitudes, and opinions, in a systematic and objective way. This data is often used to test hypotheses, identify patterns, and establish correlations between variables. Quantitative data collection methods allow for precise measurement and generalization of findings to a larger population. It is commonly used in fields such as economics, psychology, and natural sciences.

Data Collection Methods

Data Collection Methods are as follows:

Surveys involve asking questions to a sample of individuals or organizations to collect data. Surveys can be conducted in person, over the phone, or online.

Interviews involve a one-on-one conversation between the interviewer and the respondent. Interviews can be structured or unstructured and can be conducted in person or over the phone.

Focus Groups

Focus groups are group discussions that are moderated by a facilitator. Focus groups are used to collect qualitative data on a specific topic.

Observation

Observation involves watching and recording the behavior of people, objects, or events in their natural setting. Observation can be done overtly or covertly, depending on the research question.

Experiments

Experiments involve manipulating one or more variables and observing the effect on another variable. Experiments are commonly used in scientific research.

Case Studies

Case studies involve in-depth analysis of a single individual, organization, or event. Case studies are used to gain detailed information about a specific phenomenon.

Secondary Data Analysis

Secondary data analysis involves using existing data that was collected for another purpose. Secondary data can come from various sources, such as government agencies, academic institutions, or private companies.

How to Collect Data

The following are some steps to consider when collecting data:

  • Define the objective : Before you start collecting data, you need to define the objective of the study. This will help you determine what data you need to collect and how to collect it.
  • Identify the data sources : Identify the sources of data that will help you achieve your objective. These sources can be primary sources, such as surveys, interviews, and observations, or secondary sources, such as books, articles, and databases.
  • Determine the data collection method : Once you have identified the data sources, you need to determine the data collection method. This could be through online surveys, phone interviews, or face-to-face meetings.
  • Develop a data collection plan : Develop a plan that outlines the steps you will take to collect the data. This plan should include the timeline, the tools and equipment needed, and the personnel involved.
  • Test the data collection process: Before you start collecting data, test the data collection process to ensure that it is effective and efficient.
  • Collect the data: Collect the data according to the plan you developed in step 4. Make sure you record the data accurately and consistently.
  • Analyze the data: Once you have collected the data, analyze it to draw conclusions and make recommendations.
  • Report the findings: Report the findings of your data analysis to the relevant stakeholders. This could be in the form of a report, a presentation, or a publication.
  • Monitor and evaluate the data collection process: After the data collection process is complete, monitor and evaluate the process to identify areas for improvement in future data collection efforts.
  • Ensure data quality: Ensure that the collected data is of high quality and free from errors. This can be achieved by validating the data for accuracy, completeness, and consistency.
  • Maintain data security: Ensure that the collected data is secure and protected from unauthorized access or disclosure. This can be achieved by implementing data security protocols and using secure storage and transmission methods.
  • Follow ethical considerations: Follow ethical considerations when collecting data, such as obtaining informed consent from participants, protecting their privacy and confidentiality, and ensuring that the research does not cause harm to participants.
  • Use appropriate data analysis methods : Use appropriate data analysis methods based on the type of data collected and the research objectives. This could include statistical analysis, qualitative analysis, or a combination of both.
  • Record and store data properly: Record and store the collected data properly, in a structured and organized format. This will make it easier to retrieve and use the data in future research or analysis.
  • Collaborate with other stakeholders : Collaborate with other stakeholders, such as colleagues, experts, or community members, to ensure that the data collected is relevant and useful for the intended purpose.

Applications of Data Collection

Data collection methods are widely used in different fields, including social sciences, healthcare, business, education, and more. Here are some examples of how data collection methods are used in different fields:

  • Social sciences : Social scientists often use surveys, questionnaires, and interviews to collect data from individuals or groups. They may also use observation to collect data on social behaviors and interactions. This data is often used to study topics such as human behavior, attitudes, and beliefs.
  • Healthcare : Data collection methods are used in healthcare to monitor patient health and track treatment outcomes. Electronic health records and medical charts are commonly used to collect data on patients’ medical history, diagnoses, and treatments. Researchers may also use clinical trials and surveys to collect data on the effectiveness of different treatments.
  • Business : Businesses use data collection methods to gather information on consumer behavior, market trends, and competitor activity. They may collect data through customer surveys, sales reports, and market research studies. This data is used to inform business decisions, develop marketing strategies, and improve products and services.
  • Education : In education, data collection methods are used to assess student performance and measure the effectiveness of teaching methods. Standardized tests, quizzes, and exams are commonly used to collect data on student learning outcomes. Teachers may also use classroom observation and student feedback to gather data on teaching effectiveness.
  • Agriculture : Farmers use data collection methods to monitor crop growth and health. Sensors and remote sensing technology can be used to collect data on soil moisture, temperature, and nutrient levels. This data is used to optimize crop yields and minimize waste.
  • Environmental sciences : Environmental scientists use data collection methods to monitor air and water quality, track climate patterns, and measure the impact of human activity on the environment. They may use sensors, satellite imagery, and laboratory analysis to collect data on environmental factors.
  • Transportation : Transportation companies use data collection methods to track vehicle performance, optimize routes, and improve safety. GPS systems, on-board sensors, and other tracking technologies are used to collect data on vehicle speed, fuel consumption, and driver behavior.

Examples of Data Collection

Examples of Data Collection are as follows:

  • Traffic Monitoring: Cities collect real-time data on traffic patterns and congestion through sensors on roads and cameras at intersections. This information can be used to optimize traffic flow and improve safety.
  • Social Media Monitoring : Companies can collect real-time data on social media platforms such as Twitter and Facebook to monitor their brand reputation, track customer sentiment, and respond to customer inquiries and complaints in real-time.
  • Weather Monitoring: Weather agencies collect real-time data on temperature, humidity, air pressure, and precipitation through weather stations and satellites. This information is used to provide accurate weather forecasts and warnings.
  • Stock Market Monitoring : Financial institutions collect real-time data on stock prices, trading volumes, and other market indicators to make informed investment decisions and respond to market fluctuations in real-time.
  • Health Monitoring : Medical devices such as wearable fitness trackers and smartwatches can collect real-time data on a person’s heart rate, blood pressure, and other vital signs. This information can be used to monitor health conditions and detect early warning signs of health issues.

Purpose of Data Collection

The purpose of data collection can vary depending on the context and goals of the study, but generally, it serves to:

  • Provide information: Data collection provides information about a particular phenomenon or behavior that can be used to better understand it.
  • Measure progress : Data collection can be used to measure the effectiveness of interventions or programs designed to address a particular issue or problem.
  • Support decision-making : Data collection provides decision-makers with evidence-based information that can be used to inform policies, strategies, and actions.
  • Identify trends : Data collection can help identify trends and patterns over time that may indicate changes in behaviors or outcomes.
  • Monitor and evaluate : Data collection can be used to monitor and evaluate the implementation and impact of policies, programs, and initiatives.

When to use Data Collection

Data collection is used when there is a need to gather information or data on a specific topic or phenomenon. It is typically used in research, evaluation, and monitoring and is important for making informed decisions and improving outcomes.

Data collection is particularly useful in the following scenarios:

  • Research : When conducting research, data collection is used to gather information on variables of interest to answer research questions and test hypotheses.
  • Evaluation : Data collection is used in program evaluation to assess the effectiveness of programs or interventions, and to identify areas for improvement.
  • Monitoring : Data collection is used in monitoring to track progress towards achieving goals or targets, and to identify any areas that require attention.
  • Decision-making: Data collection is used to provide decision-makers with information that can be used to inform policies, strategies, and actions.
  • Quality improvement : Data collection is used in quality improvement efforts to identify areas where improvements can be made and to measure progress towards achieving goals.

Characteristics of Data Collection

Data collection can be characterized by several important characteristics that help to ensure the quality and accuracy of the data gathered. These characteristics include:

  • Validity : Validity refers to the accuracy and relevance of the data collected in relation to the research question or objective.
  • Reliability : Reliability refers to the consistency and stability of the data collection process, ensuring that the results obtained are consistent over time and across different contexts.
  • Objectivity : Objectivity refers to the impartiality of the data collection process, ensuring that the data collected is not influenced by the biases or personal opinions of the data collector.
  • Precision : Precision refers to the degree of accuracy and detail in the data collected, ensuring that the data is specific and accurate enough to answer the research question or objective.
  • Timeliness : Timeliness refers to the efficiency and speed with which the data is collected, ensuring that the data is collected in a timely manner to meet the needs of the research or evaluation.
  • Ethical considerations : Ethical considerations refer to the ethical principles that must be followed when collecting data, such as ensuring confidentiality and obtaining informed consent from participants.

Advantages of Data Collection

There are several advantages of data collection that make it an important process in research, evaluation, and monitoring. These advantages include:

  • Better decision-making : Data collection provides decision-makers with evidence-based information that can be used to inform policies, strategies, and actions, leading to better decision-making.
  • Improved understanding: Data collection helps to improve our understanding of a particular phenomenon or behavior by providing empirical evidence that can be analyzed and interpreted.
  • Evaluation of interventions: Data collection is essential in evaluating the effectiveness of interventions or programs designed to address a particular issue or problem.
  • Identifying trends and patterns: Data collection can help identify trends and patterns over time that may indicate changes in behaviors or outcomes.
  • Increased accountability: Data collection increases accountability by providing evidence that can be used to monitor and evaluate the implementation and impact of policies, programs, and initiatives.
  • Validation of theories: Data collection can be used to test hypotheses and validate theories, leading to a better understanding of the phenomenon being studied.
  • Improved quality: Data collection is used in quality improvement efforts to identify areas where improvements can be made and to measure progress towards achieving goals.

Limitations of Data Collection

While data collection has several advantages, it also has some limitations that must be considered. These limitations include:

  • Bias : Data collection can be influenced by the biases and personal opinions of the data collector, which can lead to inaccurate or misleading results.
  • Sampling bias : Data collection may not be representative of the entire population, resulting in sampling bias and inaccurate results.
  • Cost : Data collection can be expensive and time-consuming, particularly for large-scale studies.
  • Limited scope: Data collection is limited to the variables being measured, which may not capture the entire picture or context of the phenomenon being studied.
  • Ethical considerations : Data collection must follow ethical principles to protect the rights and confidentiality of the participants, which can limit the type of data that can be collected.
  • Data quality issues: Data collection may result in data quality issues such as missing or incomplete data, measurement errors, and inconsistencies.
  • Limited generalizability : Data collection may not be generalizable to other contexts or populations, limiting the generalizability of the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Recommendations

Research Recommendations – Examples and Writing...

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Research Methodology

Research Methodology – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Paper

Research Paper – Structure, Examples and Writing...

Context of the Study

Context of the Study – Writing Guide and Examples

methods of data collection and analysis in qualitative research

Level up your expertise with our growing collection of guides to qualitative research and analysis.

methods of data collection and analysis in qualitative research

The Ultimate Guide to Qualitative Research - Part 1: The Basics

Learn the essential building blocks of qualitative research. This section covers everything from key definitions to research design, data collection methods, and important ethical considerations.

  • Understand what qualitative research is and how it differs from quantitative research
  • Get an overview of qualitative data collection methods like interviews, observations, and surveys
  • Leverage best practices for conducting ethical qualitative research

methods of data collection and analysis in qualitative research

The Ultimate Guide to Qualitative Research - Part 2: Handling Qualitative Data

Get hands-on guidance for working with qualitative data. Discover how to transcribe, organize, code, and analyze textual, verbal, and visual data.

  • Transform raw qualitative data into organized, coded sets ready for analysis
  • Master qualitative analysis approaches like thematic analysis, content analysis, and grounded theory
  • Leverage qualitative data analysis software to streamline the process

methods of data collection and analysis in qualitative research

The Ultimate Guide to Qualitative Research - Part 3: Presenting Qualitative Data

Finish strong by effectively presenting qualitative findings. Learn how to visualize data, write up analyses, and meet standards for transparency and rigor.

  • Communicate insights through effective qualitative data visualization
  • Write a compelling qualitative research paper from start to finish
  • Ensure research transparency, quality, and impact through rigorous practices

methods of data collection and analysis in qualitative research

The Guide to Thematic Analysis

Master the art of thematic analysis, a powerful method for identifying patterns and themes in qualitative data. This guide covers everything from the basics to advanced techniques.

  • Understand the purpose, advantages, and unique features of thematic analysis
  • Learn how to apply thematic analysis to various qualitative data collection methods
  • Discover best practices for presenting results and ensuring research rigor
  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Variation
  • Language Families
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Culture
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business History
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic Methodology
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Research Methods in Palliative Care

  • < Previous chapter
  • Next chapter >

Research Methods in Palliative Care

9 Qualitative methods of data collection and analysis

Author Webpage

  • Published: June 2007
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter provides a comprehensive overview of qualitative methods of data collection and analysis. It also serves as an introduction to the most useful and frequently used methods in palliative care research. The discussion indicates that the popularity of these methods may be because they are simple to use and unproblematic. Although there are a number of research methods given in this chapter, it is not a ‘how to do’ text.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 6
November 2022 2
December 2022 12
January 2023 1
February 2023 4
March 2023 4
April 2023 6
May 2023 12
July 2023 8
August 2023 2
September 2023 36
October 2023 5
November 2023 4
December 2023 2
January 2024 3
February 2024 2
March 2024 2
April 2024 8
May 2024 13
June 2024 4
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Qualitative vs. quantitative data in research: what's the difference?

Qualitative vs. quantitative data in research: what's the difference?

If you're reading this, you likely already know the importance of data analysis. And you already know it can be incredibly complex.

At its simplest, research and it's data can be broken down into two different categories: quantitative and qualitative. But what's the difference between each? And when should you use them? And how can you use them together?

Understanding the differences between qualitative and quantitative data is key to any research project. Knowing both approaches can help you in understanding your data better—and ultimately understand your customers better. Quick takeaways:

Quantitative research uses objective, numerical data to answer questions like "what" and "how often." Conversely, qualitative research seeks to answer questions like "why" and "how," focusing on subjective experiences to understand motivations and reasons.

Quantitative data is collected through methods like surveys and experiments and analyzed statistically to identify patterns. Qualitative data is gathered through interviews or observations and analyzed by categorizing information to understand themes and insights.

Effective data analysis combines quantitative data for measurable insights with qualitative data for contextual depth.

What is quantitative data?

Qualitative and quantitative data differ in their approach and the type of data they collect.

Quantitative data refers to any information that can be quantified — that is, numbers. If it can be counted or measured, and given a numerical value, it's quantitative in nature. Think of it as a measuring stick.

Quantitative variables can tell you "how many," "how much," or "how often."

Some examples of quantitative data :  

How many people attended last week's webinar? 

How much revenue did our company make last year? 

How often does a customer rage click on this app?

To analyze these research questions and make sense of this quantitative data, you’d normally use a form of statistical analysis —collecting, evaluating, and presenting large amounts of data to discover patterns and trends. Quantitative data is conducive to this type of analysis because it’s numeric and easier to analyze mathematically.

Computers now rule statistical analytics, even though traditional methods have been used for years. But today’s data volumes make statistics more valuable and useful than ever. When you think of statistical analysis now, you think of powerful computers and algorithms that fuel many of the software tools you use today.

Popular quantitative data collection methods are surveys, experiments, polls, and more.

Quantitative Data 101: What is quantitative data?

Take a deeper dive into what quantitative data is, how it works, how to analyze it, collect it, use it, and more.

Learn more about quantitative data →

What is qualitative data?

Unlike quantitative data, qualitative data is descriptive, expressed in terms of language rather than numerical values.

Qualitative data analysis describes information and cannot be measured or counted. It refers to the words or labels used to describe certain characteristics or traits.

You would turn to qualitative data to answer the "why?" or "how?" questions. It is often used to investigate open-ended studies, allowing participants (or customers) to show their true feelings and actions without guidance.

Some examples of qualitative data:

Why do people prefer using one product over another?

How do customers feel about their customer service experience?

What do people think about a new feature in the app?

Think of qualitative data as the type of data you'd get if you were to ask someone why they did something. Popular data collection methods are in-depth interviews, focus groups, or observation.

Start growing with data and Fullstory.

Request your personalized demo of the Fullstory behavioral data platform.

What are the differences between qualitative vs. quantitative data?

When it comes to conducting data research, you’ll need different collection, hypotheses and analysis methods, so it’s important to understand the key differences between quantitative and qualitative data:

Quantitative data is numbers-based, countable, or measurable. Qualitative data is interpretation-based, descriptive, and relating to language.

Quantitative data tells us how many, how much, or how often in calculations. Qualitative data can help us to understand why, how, or what happened behind certain behaviors .

Quantitative data is fixed and universal. Qualitative data is subjective and unique.

Quantitative research methods are measuring and counting. Qualitative research methods are interviewing and observing.

Quantitative data is analyzed using statistical analysis. Qualitative data is analyzed by grouping the data into categories and themes.

Qualtitative vs quantitative examples

As you can see, both provide immense value for any data collection and are key to truly finding answers and patterns. 

More examples of quantitative and qualitative data

You’ve most likely run into quantitative and qualitative data today, alone. For the visual learner, here are some examples of both quantitative and qualitative data: 

Quantitative data example

The customer has clicked on the button 13 times. 

The engineer has resolved 34 support tickets today. 

The team has completed 7 upgrades this month. 

14 cartons of eggs were purchased this month.

Qualitative data example

My manager has curly brown hair and blue eyes.

My coworker is funny, loud, and a good listener. 

The customer has a very friendly face and a contagious laugh.

The eggs were delicious.

The fundamental difference is that one type of data answers primal basics and one answers descriptively. 

What does this mean for data quality and analysis? If you just analyzed quantitative data, you’d be missing core reasons behind what makes a data collection meaningful. You need both in order to truly learn from data—and truly learn from your customers. 

What are the advantages and disadvantages of each?

Both types of data has their own pros and cons. 

Advantages of quantitative data

It’s relatively quick and easy to collect and it’s easier to draw conclusions from. 

When you collect quantitative data, the type of results will tell you which statistical tests are appropriate to use. 

As a result, interpreting your data and presenting those findings is straightforward and less open to error and subjectivity.

Another advantage is that you can replicate it. Replicating a study is possible because your data collection is measurable and tangible for further applications.

Disadvantages of quantitative data

Quantitative data doesn’t always tell you the full story (no matter what the perspective). 

With choppy information, it can be inconclusive.

Quantitative research can be limited, which can lead to overlooking broader themes and relationships.

By focusing solely on numbers, there is a risk of missing larger focus information that can be beneficial.

Advantages of qualitative data

Qualitative data offers rich, in-depth insights and allows you to explore context.

It’s great for exploratory purposes.

Qualitative research delivers a predictive element for continuous data.

Disadvantages of qualitative data

It’s not a statistically representative form of data collection because it relies upon the experience of the host (who can lose data).

It can also require multiple data sessions, which can lead to misleading conclusions.

The takeaway is that it’s tough to conduct a successful data analysis without both. They both have their advantages and disadvantages and, in a way, they complement each other. 

Now, of course, in order to analyze both types of data, information has to be collected first.

Let's get into the research.

Quantitative and qualitative research

The core difference between qualitative and quantitative research lies in their focus and methods of data collection and analysis. This distinction guides researchers in choosing an appropriate approach based on their specific research needs.

Using mixed methods of both can also help provide insights form combined qualitative and quantitative data.

Best practices of each help to look at the information under a broader lens to get a unique perspective. Using both methods is helpful because they collect rich and reliable data, which can be further tested and replicated.

What is quantitative research?

Quantitative research is based on the collection and interpretation of numeric data. It's all about the numbers and focuses on measuring (using inferential statistics ) and generalizing results. Quantitative research seeks to collect numerical data that can be transformed into usable statistics.

It relies on measurable data to formulate facts and uncover patterns in research. By employing statistical methods to analyze the data, it provides a broad overview that can be generalized to larger populations.

In terms of digital experience data, it puts everything in terms of numbers (or discrete data )—like the number of users clicking a button, bounce rates , time on site, and more. 

Some examples of quantitative research: 

What is the amount of money invested into this service?

What is the average number of times a button was dead clicked ?

How many customers are actually clicking this button?

Essentially, quantitative research is an easy way to see what’s going on at a 20,000-foot view. 

Each data set (or customer action, if we’re still talking digital experience) has a numerical value associated with it and is quantifiable information that can be used for calculating statistical analysis so that decisions can be made. 

You can use statistical operations to discover feedback patterns (with any representative sample size) in the data under examination. The results can be used to make predictions , find averages, test causes and effects, and generalize results to larger measurable data pools. 

Unlike qualitative methodology, quantitative research offers more objective findings as they are based on more reliable numeric data.

Quantitative data collection methods

A survey is one of the most common research methods with quantitative data that involves questioning a large group of people. Questions are usually closed-ended and are the same for all participants. An unclear questionnaire can lead to distorted research outcomes.

Similar to surveys, polls yield quantitative data. That is, you poll a number of people and apply a numeric value to how many people responded with each answer.

Experiments

An experiment is another common method that usually involves a control group and an experimental group . The experiment is controlled and the conditions can be manipulated accordingly. You can examine any type of records involved if they pertain to the experiment, so the data is extensive. 

What is qualitative research?

Qualitative research does not simply help to collect data. It gives a chance to understand the trends and meanings of natural actions. It’s flexible and iterative.

Qualitative research focuses on the qualities of users—the actions that drive the numbers. It's descriptive research. The qualitative approach is subjective, too. 

It focuses on describing an action, rather than measuring it.

Some examples of qualitative research: 

The sunflowers had a fresh smell that filled the office.

All the bagels with bites taken out of them had cream cheese.

The man had blonde hair with a blue hat.

Qualitative research utilizes interviews, focus groups, and observations to gather in-depth insights.

This approach shines when the research objective calls for exploring ideas or uncovering deep insights rather than quantifying elements.

Qualitative data collection methods

An interview is the most common qualitative research method. This method involves personal interaction (either in real life or virtually) with a participant. It’s mostly used for exploring attitudes and opinions regarding certain issues.

Interviews are very popular methods for collecting data in product design .

Focus groups

Data analysis by focus group is another method where participants are guided by a host to collect data. Within a group (either in person or online), each member shares their opinion and experiences on a specific topic, allowing researchers to gather perspectives and deepen their understanding of the subject matter.

Digital Leadership Webinar: Accelerating Growth with Quantitative Data and Analytics

Learn how the best-of-the-best are connecting quantitative data and experience to accelerate growth.

So which type of data is better for data analysis?

So how do you determine which type is better for data analysis ?

Quantitative data is structured and accountable. This type of data is formatted in a way so it can be organized, arranged, and searchable. Think about this data as numbers and values found in spreadsheets—after all, you would trust an Excel formula.

Qualitative data is considered unstructured. This type of data is formatted (and known for) being subjective, individualized, and personalized. Anything goes. Because of this, qualitative data is inferior if it’s the only data in the study. However, it’s still valuable. 

Because quantitative data is more concrete, it’s generally preferred for data analysis. Numbers don’t lie. But for complete statistical analysis, using both qualitative and quantitative yields the best results. 

At Fullstory, we understand the importance of data, which is why we created a behavioral data platform that analyzes customer data for better insights. Our platform delivers a complete, retroactive view of how people interact with your site or app—and analyzes every point of user interaction so you can scale.

Unlock business-critical data with Fullstory

A perfect digital customer experience is often the difference between company growth and failure. And the first step toward building that experience is quantifying who your customers are, what they want, and how to provide them what they need.

Access to product analytics is the most efficient and reliable way to collect valuable quantitative data about funnel analysis, customer journey maps , user segments, and more.

But creating a perfect digital experience means you need organized and digestible quantitative data—but also access to qualitative data. Understanding the why is just as important as the what itself.

Fullstory's DXI platform combines the quantitative insights of product analytics with picture-perfect session replay for complete context that helps you answer questions, understand issues, and uncover customer opportunities.

Start a free 14-day trial to see how Fullstory can help you combine your most invaluable quantitative and qualitative insights and eliminate blind spots.

About the author

Our team of experts is committed to introducing people to important topics surrounding analytics, digital experience intelligence, product development, and more.

Related posts

Quantitative data is used for calculations or obtaining numerical results. Learn about the different types of quantitative data uses cases and more.

Discover how data discovery transforms raw data into actionable insights for informed decisions, improved strategies, and better customer experiences.

Learn the 3 key benefits democratized data can achieve, and 3 of the most pertinent dangers of keeping data (and teams) siloed.

Learn the essentials of behavioral data and its transformative impact on customer experience. Our comprehensive guide provides the tools and knowledge to harness this power effectively.

Discover how Fullstory leverages AI to turn raw data into actionable insights, transforming user experiences and driving business growth.

Discover how just-in-time data, explained by Lane Greer, enhances customer insights and decision-making beyond real-time analytics.

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • BMJ Journals

You are here

  • Online First
  • The quality of qualitative research
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0003-1144-454X Marinus H van IJzendoorn 1 ,
  • Siebren Miedema 2
  • 1 Research Department of Clinical, Education and Health Psychology , UCL , London , UK
  • 2 Educational Sciences , Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
  • Correspondence to Professor Marinus H van IJzendoorn, Research Department of Clinical, Education and Health Psychology, UCL, London WC1E 6BT, UK; m.ijzendoorn{at}ucl.ac.uk

In this contribution, we discuss criteria for the quality of qualitative research. We consider reliability and validity as specifications of the comprehensive requirement for ‘intersubjective replicability’, with which qualitative research should comply. In the data collection phase, ‘argumentative’ reliability generally must suffice; in the data analysis phase, attention must also be given to ‘technical’ reliability. Validation of qualitative research has to take place via three approaches: ‘communicative’, ‘critical’ or ‘empirical’ validation. This clarifies the relative validity or ‘authenticity’ of qualitative research.

  • philosophy of science
  • Qualitative Research
  • child and adolescent psychiatry
  • medical anthropology

Data availability statement

No data are available.

https://doi.org/10.1136/medhum-2024-012990

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Editor's note This is a translation of Van IJzendoorn, V.H. & Miedema, S. (1986) De kwaliteit van kwalitatief onderzoek, Pedagogische Studiën, 63 pp. 498-505. The translation was undertaken by Iris Maher, with edits by the authors, who have given permission for this reprint. Van IJzendoorn and Miedema have been major figures within developmental science. This early paper on the philosophy of science, inaccessible for many decades to english-speaking readers, represents a provocative statement on whether the criteria for evaluating qualitative and quantitative research are differences in degree, not differences of kind.

Contributors MvI and SM contributed equally to planning, conception and structure of the review, interpretation of concepts and issues, and writing of the original Dutch manuscript; MvI revised the English translation and is the guarantor.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Provenance and peer review Commissioned; internally peer reviewed.

Read the full text or download the PDF:

Root out friction in every digital experience, super-charge conversion rates, and optimise digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered straight to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Meet the operating system for experience management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Employee Exit Interviews
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results.

language

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Ultimate Guide to Market Research
  • Qualitative vs Quantitative Research

Try Qualtrics for free

Qualitative vs quantitative research.

13 min read You’ll use both quantitative and qualitative research methods to gather survey data. What are they exactly, and how can you best use them to gain the most accurate insights?

What is qualitative research?

Qualitative research  is all about  language, expression, body language and other forms of human communication . That covers words, meanings and understanding. Qualitative research is used to describe WHY. Why do people  feel  the way they do, why do they  act  in a certain way, what  opinions  do they have and what  motivates  them?

Qualitative data is used to understand phenomena – things that happen, situations that exist, and most importantly the meanings associated with them. It can help add a ‘why’ element to factual, objective data.

Qualitative research gives breadth, depth and context to questions, although its linguistic subtleties and subjectivity can mean that results are trickier to analyse than quantitative data.

This qualitative data is called  unstructured data by researchers. This is because it has not traditionally had the type of structure that can be processed by computers, until today. It has, until recently at least, been exclusively accessible to human brains. And although our brains are highly sophisticated, they have limited processing power. What can help analyse this structured data to assist computers and the human brain?

Discover the 2023 Market Research Trends Transforming the industry

What is quantitative research?

Quantitative data refers to numerical information. Quantitative research gathers information that can be counted, measured, or rated numerically – AKA quantitative data. Scores, measurements, financial records, temperature charts and receipts or ledgers are all examples of quantitative data.

Quantitative data is often structured data, because it follows a consistent, predictable pattern that computers and calculating devices are able to process with ease. Humans can process it too, although we are now able to pass it over to machines to process on our behalf. This is partly what has made quantitative data so important historically, and why quantitative data – sometimes called ‘hard data’ – has dominated over qualitative data in fields like business, finance and economics.

It’s easy to ‘crunch the numbers’ of quantitative data and produce results visually in graphs, tables and on data analysis dashboards. Thanks to today’s abundance and accessibility of processing power, combined with our ability to store huge amounts of information, quantitative data has fuelled the Big Data phenomenon, putting quantitative methods and vast amounts of quantitative data at our fingertips.

As we’ve indicated, quantitative and qualitative data are entirely different and mutually exclusive categories. Here are a few of the differences between them.

1. Data collection

Data collection methods for quantitative data and qualitative data vary, but there are also some places where they overlap.

Qualitative data collection methods Quantitative data collection methods
Gathered from focus groups, in-depth interviews, case studies, expert opinion, observation, audio recordings, and can also be collected using surveys. Gathered from surveys, questionnaires, polls, or from secondary sources like census data, reports, records and historical business data.
Uses   and open text survey questions Intended to be as close to objective as possible. Understands the ‘human touch’ only through quantifying the OE data that only this type of research can code.

2. Data analysis

Quantitative data suits statistical analysis techniques like linear regression, T-tests and ANOVA. These are quite easy to automate, and large quantities of quantitative data can be analyzed quickly.

Analyzing qualitative data needs a higher degree of human judgement, since unlike quantitative data, non numerical data of a subjective nature has certain characteristics that inferential statistics can’t perceive. Working at a human scale has historically meant that qualitative data is lower in volume – although it can be richer in insights.

Qualitative data analysis Quantitative data analysis
Results are categorised, summarised and interpreted using human language and perception, as well as logical reasoning Results are analysed mathematically and statistically, without recourse to intuition or personal experience.
Fewer respondents needed, each providing more detail Many respondents needed to achieve a representative result

3. Strengths and weaknesses

When weighing up qualitative vs quantitative research, it’s largely a matter of choosing the method appropriate to your research goals. If you’re in the position of having to choose one method over another, it’s worth knowing the strengths and limitations of each, so that you know what to expect from your results.

Qualitative approach Quantitative approach
Can be used to help formulate a theory to be researched by describing a present phenomenon Can be used to test and confirm a formulated theory
Results typically expressed as text, in a report, presentation or journal article Results expressed as numbers, tables and graphs, relying on numerical data to tell a story.
Less suitable for scientific research More suitable for scientific research and compatible with most standard statistical analysis methods
Harder to replicate, since no two people are the same Easy to replicate, since what is countable can be counted again
Less suitable for sensitive data: respondents may be biased or too familiar with the pro Ideal for sensitive data as it can be anonymized and secured

Qualitative vs quantitative – the role of research questions

How do you know whether you need qualitative or quantitative research techniques? By finding out what kind of data you’re going to be collecting.

You’ll do this as you develop your research question, one of the first steps to any research program. It’s a single sentence that sums up the purpose of your research, who you’re going to gather data from, and what results you’re looking for.

As you formulate your question, you’ll get a sense of the sort of answer you’re working towards, and whether it will be expressed in numerical data or qualitative data.

For example, your research question might be “How often does a poor customer experience cause shoppers to abandon their shopping carts?” – this is a quantitative topic, as you’re looking for numerical values.

Or it might be “What is the emotional impact of a poor customer experience on regular customers in our supermarket?” This is a qualitative topic, concerned with thoughts and feelings and answered in personal, subjective ways that vary between respondents.

Here’s how to evaluate your research question and decide which method to use:

  • Qualitative research:

Use this if your goal is to  understand  something – experiences, problems, ideas.

For example, you may want to understand how poor experiences in a supermarket make your customers feel. You might carry out this research through focus groups or in depth interviews (IDI’s). For a larger scale research method you could start  by surveying supermarket loyalty card holders, asking open text questions, like “How would you describe your experience today?” or “What could be improved about your experience?” This research will provide context and understanding that quantitative research will not.

  • Quantitative research:

Use this if your goal is to  test or confirm  a hypothesis, or to study cause and effect relationships. For example, you want to find out what percentage of your returning customers are happy with the customer experience at your store. You can collect data to answer this via a survey.

For example, you could recruit 1,000 loyalty card holders as participants, asking them, “On a scale of 1-5, how happy are you with our store?” You can then make simple mathematical calculations to find the average score. The larger sample size will help make sure your results aren’t skewed by anomalous data or outliers, so you can draw conclusions with confidence.

Qualitative and quantitative research combined?

Do you always have to choose between qualitative or quantitative data?

Qualitative vs quantitative cluster chart

In some cases you can get the best of both worlds by combining both quantitative and qualitative data.You could use pre quantitative data to understand the landscape of your research. Here you can gain  insights around a topic  and propose a  hypothesis.  Then adopt a quantitative research method to test it out. Here you’ll discover where to focus your survey appropriately or to pre-test your survey, to ensure your questions are understood as you intended. Finally, using a round of qualitative research methods to bring your insights and story to life. This mixed methods approach is becoming increasingly popular with businesses who are looking for in depth insights.

For example, in the supermarket scenario we’ve described, you could start out with a qualitative data collection phase where you use focus groups and conduct interviews with customers. You might find suggestions in your qualitative data that customers would like to be able to buy children’s clothes in the store.

In response, the supermarket might pilot a children’s clothing range. Targeted  quantitative  research could then reveal whether or not those stores selling children’s clothes achieve higher  customer satisfaction  scores  and a  rise in profits  for clothing.

Together, qualitative and quantitative data, combined with statistical analysis, have provided important insights about customer experience, and have proven the effectiveness of a solution to business problems.

Qualitative vs quantitative question types

As we’ve noted, surveys are one of the data collection methods suitable for both quantitative and qualitative research. Depending on the types of questions you choose to include, you can generate qualitative and quantitative data. Here we have summarized some of the survey question types you can use for each purpose.

Qualitative data survey questions

There are fewer survey  question  options for collecting qualitative data, since they all essentially do the same thing – provide the respondent with space to enter information in their own words. Qualitative research is not typically done with surveys alone, and researchers may use a mix of qualitative methods. As well as a survey, they might conduct in depth interviews, use observational studies or hold focus groups.

Open text ‘Other’ box (can be used with multiple choice questions)

Other text field

Text box (space for short written answer)

What is your favourite item on our drinks menu

Essay box (space for longer, more detailed written answers)

Tell us about your last visit to the café

Quantitative data survey questions

These questions will yield quantitative data – i.e. a numerical value.

Net Promoter Score (NPS)

On a scale of 1-10, how likely are you to recommend our café to other people?

Likert Scale

How would you rate the service in our café? Very dissatisfied to Very satisfied

Radio buttons (respondents choose just one option)

Which drink do you buy most often? Coffee, Tea, Hot Chocolate, Cola, Squash

Check boxes (respondents can choose multiple options)

On which days do you visit the cafe? Mon-Saturday

Sliding scale

Using the sliding scale, how much do you agree that we offer excellent service?

Star rating

Please rate the following aspects of our café: Service, Quality of food, Seating comfort, Location

Analysing data (quantitative or qualitative) using technology

We are currently at an exciting point in the history of qualitative analysis. Digital analysis and other methods that were formerly exclusively used for  quantitative data  are now used for interpreting non numerical data too.

Artificial intelligence programs can now be used to analyse open text, and turn qualitative data into structured and semi structured quantitative data that relates to qualitative data topics such as emotion and sentiment, opinion and experience.

Research that in the past would have meant qualitative researchers conducting time-intensive studies using analysis methods like thematic analysis can now be done in a very short space of time. This not only saves time and money, but opens up qualitative data analysis to a much wider range of businesses and organisations.

The most advanced tools can even be used for real-time statistical analysis, forecasting and prediction, making them a powerful asset for businesses.

Qualitative or quantitative – which is better for data analysis?

Historically, quantitative data was much easier to analyse than qualitative data. But as we’ve seen, modern technology is helping qualitative analysis to catch up, making it quicker and less labor-intensive than before.

That means the choice between qualitative and quantitative studies no longer needs to factor in ease of analysis, provided you have the right tools at your disposal. With an integrated platform like Qualtrics, which incorporates data collection, data cleaning, data coding and a powerful suite of analysis tools for both qualitative and quantitative data, you have a wide range of options at your fingertips.

eBook: A guide to building agile research functions in-house

Related resources

Market intelligence 9 min read, qualitative research questions 11 min read, ethnographic research 11 min read, business research methods 12 min read, qualitative research design 12 min read, business research 10 min read, qualitative research interviews 11 min read, request demo.

Ready to learn more about Qualtrics?

IMAGES

  1. Methods of qualitative data analysis.

    methods of data collection and analysis in qualitative research

  2. Qualitative Data Collection: What it is + Methods to do it

    methods of data collection and analysis in qualitative research

  3. What Is A Qualitative Data Analysis And What Are The Steps Involved In

    methods of data collection and analysis in qualitative research

  4. Qualitative Data Analysis: Step-by-Step Guide (Manual vs. Automatic

    methods of data collection and analysis in qualitative research

  5. 7 Data Collection Methods & Tools For Research

    methods of data collection and analysis in qualitative research

  6. Understanding Qualitative Research: An In-Depth Study Guide

    methods of data collection and analysis in qualitative research

VIDEO

  1. QUALITATIVE RESEARCH: Methods of data collection

  2. Data Collection & Analysis Chapter 5 Business Research

  3. Qualitative Data Analysis Procedures in Linguistics

  4. DATA ANALYSIS

  5. Mastering Data Collection Methods: Essential Strategies & Techniques

  6. Qualitative vs Quantitative Research Methods

COMMENTS

  1. What Is Qualitative Research?

    Qualitative research methods. Each of the research approaches involve using one or more data collection methods.These are some of the most common qualitative methods: Observations: recording what you have seen, heard, or encountered in detailed field notes. Interviews: personally asking people questions in one-on-one conversations. Focus groups: asking questions and generating discussion among ...

  2. Qualitative Data Collection: What it is + Methods to do it

    Qualitative data collection is vital in qualitative research. It helps researchers understand individuals' attitudes, beliefs, and behaviors in a specific context. Several methods are used to collect qualitative data, including interviews, surveys, focus groups, and observations. Understanding the various methods used for gathering ...

  3. Qualitative Research: Data Collection, Analysis, and Management

    Doing qualitative research is not easy and may require a complete rethink of how research is conducted, particularly for researchers who are more familiar with quantitative approaches. There are many ways of conducting qualitative research, and this paper has covered some of the practical issues regarding data collection, analysis, and management.

  4. Planning Qualitative Research: Design and Decision Making for New

    As faculty who regularly teach introductory qualitative research methods course, one of the most substantial hurdles we found is for the students to comprehend there are various approaches to qualitative research, and different sets of data collection and data analysis methods (Gonzalez & Forister, 2020).

  5. How to use and assess qualitative research methods

    How to conduct qualitative research? Given that qualitative research is characterised by flexibility, openness and responsivity to context, the steps of data collection and analysis are not as separate and consecutive as they tend to be in quantitative research [13, 14].As Fossey puts it: "sampling, data collection, analysis and interpretation are related to each other in a cyclical ...

  6. Qualitative Data Analysis: What is it, Methods + Examples

    Qualitative Data Analysis Methods and Examples. Exploring various qualitative data analysis methods will provide you with a wide collection for making sense of your research findings. Once the data has been collected, you can choose from several analysis methods based on your research objectives and the data type you've collected.

  7. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  8. PDF The SAGE Handbook of Qualitative Data Analysis

    Qualitative data analysis is the classification and interpretation of linguistic (or visual) material to make statements about implicit and explicit dimensions and structures of meaning-making in the material and what is represented in it. Meaning-making can refer to subjective or social meanings. Qualitative data analysis also is applied to ...

  9. Qualitative Research

    Qualitative Research. Qualitative research is a type of research methodology that focuses on exploring and understanding people's beliefs, attitudes, behaviors, and experiences through the collection and analysis of non-numerical data. It seeks to answer research questions through the examination of subjective data, such as interviews, focus ...

  10. The SAGE Handbook of Qualitative Data Collection

    How we understand and define qualitative data is changing, with implications not only for the techniques of data analysis, but also how data are collected. New devices, technologies and online spaces open up new ways for researchers to approach and collect images, moving images, text and talk.

  11. Methods of data collection in qualitative research: interviews and

    There are a variety of methods of data collection in qualitative research, including observations, textual or visual analysis (eg from books or videos) and interviews (individual or group). 1 ...

  12. Qualitative Data Analysis Methods: Top 6 + Examples

    QDA Method #1: Qualitative Content Analysis. Content analysis is possibly the most common and straightforward QDA method. At the simplest level, content analysis is used to evaluate patterns within a piece of content (for example, words, phrases or images) or across multiple pieces of content or sources of communication. For example, a collection of newspaper articles or political speeches.

  13. Introduction to qualitative research methods

    INTRODUCTION. Qualitative research methods refer to techniques of investigation that rely on nonstatistical and nonnumerical methods of data collection, analysis, and evidence production. Qualitative research techniques provide a lens for learning about nonquantifiable phenomena such as people's experiences, languages, histories, and cultures.

  14. PDF Methods of data collection in qualitative research: interviews and

    ever, the most common methods used, particularly in healthcare research, are interviews and focus groups. 2,3 . 1. Qualitative research in dentistry . 2. Methods of data collection in qualitative ...

  15. Data Collection

    Step 2: Choose your data collection method. Based on the data you want to collect, decide which method is best suited for your research. Experimental research is primarily a quantitative method. Interviews, focus groups, and ethnographies are qualitative methods. Surveys, observations, archival research and secondary data collection can be ...

  16. (PDF) Qualitative Research: Data Collection and Data Analysis

    Qualitative Research: Data Collection & Data Analysis Techniques (2nd Edition) has been systematically revised with additional content, more in-depth explanations, and latest references to enhance ...

  17. PDF 12 Qualitative Data, Analysis, and Design

    analysis process, as it does in the design and data collection phase. Qualitative research methods are not "routinized", meaning there are many different ways to think about qualitative research and the creative approaches that can be used. Good qualitative research contributes to science via a

  18. How to use and assess qualitative research methods

    Data collection. The methods of qualitative data collection most commonly used in health research are document study, observations, semi-structured interviews and focus groups [1, 14, 16, 17]. Document study. Document study (also called document analysis) refers to the review by the researcher of written materials . These can include personal ...

  19. Qualitative Data

    Flexible: Qualitative data collection methods are flexible and can be adapted to the specific needs of the research question. Emergent : Qualitative data analysis is often an iterative process, where new themes and patterns emerge as the data is analyzed.

  20. Data collection in qualitative research

    The three core approaches to data collection in qualitative research—interviews, focus groups and observation—provide researchers with rich and deep insights. All methods require skill on the part of the researcher, and all produce a large amount of raw data. However, with careful and systematic analysis 12 the data yielded with these ...

  21. Qualitative Data Collection and Analysis Methods

    Qualitative Data Collection Methods in Each Design or Approach. ... Level 2: The researcher describes the structures of the experiences based on reflective analysis and interpretation of the research participant's account or story. To collect data for these levels of analysis, the primary tool is the in-depth personal interview: ...

  22. Qualitative Data Collection and Analysis

    Qualitative Data Collection and Analysis. Peter D. Bachiochi, Peter D. Bachiochi. Search for more papers by this author ... Wiley Research DE&I Statement and Publishing Policies; Developing World Access ... including rights for text and data mining and training of artificial technologies or similar technologies. The full text of this article ...

  23. Data Collection

    Qualitative data collection methods allow for a more in-depth and holistic exploration of research questions and can provide rich and nuanced insights into human behavior and experiences. ... Use appropriate data analysis methods: Use appropriate data analysis methods based on the type of data collected and the research objectives. This could ...

  24. The Ultimate Guides to Qualitative Research

    The Ultimate Guide to Qualitative Research - Part 1: The Basics. Learn the essential building blocks of qualitative research. This section covers everything from key definitions to research design, data collection methods, and important ethical considerations.

  25. Qualitative methods of data collection and analysis

    This chapter provides a comprehensive overview of qualitative methods of data collection and analysis. It also serves as an introduction to the most useful and frequently used methods in palliative care research. The discussion indicates that the popularity of these methods may be because they are simple to use and unproblematic.

  26. Qualitative health research and procedural ethics: An interview study

    The interplay of data collection and analysis is a core feature of the methodology; data analysis is initiated once the first data has been collected and the results of the analysis of the first data guides further data collection. ... (2012) Introduction. In: Harper D, Thompson AR (eds) Qualitative Research Methods in Mental Health and ...

  27. Qualitative vs. Quantitative Data in Research: The Difference

    Qualitative and quantitative research methods differ on what they emphasize—qualitative focuses on meaning and understanding, and quantitative emphasizes statistical analysis and hard data. ... The core difference between qualitative and quantitative research lies in their focus and methods of data collection and analysis. This distinction ...

  28. Mapping mental models through an improved method for identifying causal

    An analyst who participated in interview data collection and analysis (EK) subsequently conducted the causal-loop diagram mapping analysis. ... Analysis steps are informed by a blend of qualitative research methods, prior mapping analysis methods, and standards and norms for creating causal-loop diagrams from system dynamics (Braun & Clarke ...

  29. The quality of qualitative research

    In this contribution, we discuss criteria for the quality of qualitative research. We consider reliability and validity as specifications of the comprehensive requirement for 'intersubjective replicability', with which qualitative research should comply. In the data collection phase, 'argumentative' reliability generally must suffice; in the data analysis phase, attention must also be ...

  30. Qualitative vs Quantitative Research

    Research that in the past would have meant qualitative researchers conducting time-intensive studies using analysis methods like thematic analysis can now be done in a very short space of time. This not only saves time and money, but opens up qualitative data analysis to a much wider range of businesses and organisations.