Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 3. Psychological Science

3.2 Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behaviour

Learning objectives.

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 3.2, are known as research designs . A research design  is the specific method a researcher uses to collect, analyze, and interpret data . Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research  is research designed to provide a snapshot of the current state of affairs . Correlational research  is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge . Experimental research  is research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation . Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Table 3.2 Characteristics of the Three Research Designs
Research design Goal Advantages Disadvantages
Descriptive To create a snapshot of the current state of affairs Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study. Does not assess relationships among variables. May be unethical if participants do not know they are being observed.
Correlational To assess the relationships between and among two or more variables Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events. Cannot be used to draw inferences about the causal relationships between and among the variables.
Experimental To assess the causal impact of one or more experimental manipulations on a dependent variable Allows drawing of conclusions about the causal relationships among variables. Cannot experimentally manipulate many important variables. May be expensive and time consuming.
Source: Stangor, 2011.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews three types of descriptive research : case studies , surveys , and naturalistic observation (Figure 3.4).

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies — descriptive records of one or more individual’s experiences and behaviour . Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Rokeach (1964), who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey — a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest . The people chosen to participate in the research (known as the sample) are selected to be representative of all the people that the researcher wishes to know about (the population). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of 10 doctors prefer Tymenocin” or “The median income in the city of Hamilton is $46,712.” Yet other times (particularly in discussions of social behaviour), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence ) of psychological disorders.

A final type of descriptive research — known as naturalistic observation — is research based on the observation of everyday events . For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation , used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table 3.3.

Table 3.3 Sample Coding Form Used to Assess Child’s and Mother’s Behaviour in the Strange Situation
Coder name:
This table represents a sample coding sheet from an episode of the “strange situation,” in which an infant (usually about one year old) is observed playing in a room with two adults — the child’s mother and a stranger. Each of the four coding categories is scored by the coder from 1 (the baby makes no effort to engage in the behaviour) to 7 (the baby makes a significant effort to engage in the behaviour). More information about the meaning of the coding can be found in Ainsworth, Blehar, Waters, and Wall (1978).
Coding categories explained
Proximity The baby moves toward, grasps, or climbs on the adult.
Maintaining contact The baby resists being put down by the adult by crying or trying to climb back up.
Resistance The baby pushes, hits, or squirms to be put down from the adult’s arms.
Avoidance The baby turns away or moves away from the adult.
Episode Coding categories
Proximity Contact Resistance Avoidance
Mother and baby play alone 1 1 1 1
Mother puts baby down 4 1 1 1
Stranger enters room 1 2 3 1
Mother leaves room; stranger plays with baby 1 3 1 1
Mother re-enters, greets and may comfort baby, then leaves again 4 2 1 2
Stranger tries to play with baby 1 3 1 1
Mother re-enters and picks up baby 6 6 1 2
Source: Stang0r, 2011.

The results of descriptive research projects are analyzed using descriptive statistics — numbers that summarize the distribution of scores on a measured variable . Most variables have distributions similar to that shown in Figure 3.5 where most of the scores are located near the centre of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution .

A distribution can be described in terms of its central tendency — that is, the point in the distribution around which the data are centred — and its dispersion, or spread . The arithmetic average, or arithmetic mean , symbolized by the letter M , is the most commonly used measure of central tendency . It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N ). In the data presented in Figure 3.5 the mean height of the students is 67.12 inches (170.5 cm). The sample mean is usually indicated by the letter M .

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers ) at one end of the distribution. Consider, for instance, the variable of family income (see Figure 3.6), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure 3.6 that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The median  is the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median . In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

A final measure of central tendency, known as the mode , represents the value that occurs most frequently in the distribution . You can see from Figure 3.6 that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency , as seen in Figure 3.7.

Or they may be more spread out away from it, as seen in Figure 3.8.

One simple measure of dispersion is to find the largest (the maximum ) and the smallest (the minimum ) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure 3.5 is 72 – 62 = 10. The standard deviation , symbolized as s , is the most commonly used measure of dispersion . Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behaviour. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviours of a large population of people, and naturalistic observation objectively records the behaviour of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviours or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. When there are two variables in the research design, one of them is called the predictor variable and the other the outcome variable . The research design can be visualized as shown in Figure 3.9, where the curved arrow represents the expected correlation between these two variables.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot . As you can see in Figure 3.10 a scatter plot  is a visual image of the relationship between two variables . A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line , as in parts (a) and (b) of Figure 3.10 the variables are said to have a linear relationship .

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable , as in part (a), the relationship is said to be positive linear . Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships , in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships . Part (c) of Figure 3.10 shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables, and they are said to be independent . Parts (d) and (e) of Figure 3.10 show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships .

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient , which is symbolized by the letter r . The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = .54 or r = .67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –.30 or r = –.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r , and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one predictor variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991).  Multiple regression  is a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable . For instance, Figure 3.11 shows a multiple regression analysis in which three predictor variables (Salary, job satisfaction, and years employed) are used to predict a single outcome (job performance). The use of multiple regression analysis shows an important advantage of correlational research designs — they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables.

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. He has collected, from a sample of Grade 4 children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home (Figure 3.13):

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other (Figure 3.14).

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable ). A common-causal variable  is a variable that is not part of the research hypothesis but that causes both the predictor and the outcome variable and thus produces the observed correlation between them . In our example, a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who like to watch violent television and who also behave aggressively in comparison to children whose parents use less harsh discipline (Figure 3.15)

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When the predictor and outcome variables are both caused by a common-causal variable, the observed relationship between them is said to be spurious . A spurious relationship  is a relationship between two variables in which a common-causal variable produces and “explains away” the relationship . If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example, the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behaviour might go away.

Common-causal variables in correlational research designs can be thought of as mystery variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could cause both the predictor and outcome variables, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the predictor variables cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. And we can also use correlational designs to make predictions — for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

Experimental Research: Understanding the Causes of Behaviour

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables ) and the dependent variable . The independent variable  in an experiment is the causing variable that is created (manipulated) by the experimenter . The dependent variable  in an experiment is a measured variable that is expected to be influenced by the experimental manipulation . The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality (Figure 3.16):

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure 3.17

Two advantages of the experimental research design are (a) the assurance that the independent variable (also known as the experimental manipulation ) occurs prior to the measured dependent variable, and (b) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table . Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation — they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behaviour, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviours in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient ( r ) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may cause both the predictor and outcome variable in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  • There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  • Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Image Attributions

Figure 3.4: “ Reading newspaper ” by Alaskan Dude (http://commons.wikimedia.org/wiki/File:Reading_newspaper.jpg) is licensed under CC BY 2.0

Aiken, L., & West, S. (1991).  Multiple regression: Testing and interpreting interactions . Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978).  Patterns of attachment: A psychological study of the strange situation . Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.  Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In  Social neuroscience: Key readings.  (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),  Personality: Readings in theory and research  (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909).

Kotowicz, Z. (2007). The strange case of Phineas Gage.  History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964).  The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioural sciences (4th ed.). Mountain View, CA: Cengage.

Long Descriptions

Figure 3.6 long description: There are 25 families. 24 families have an income between $44,000 and $111,000 and one family has an income of $3,800,000. The mean income is $223,960 while the median income is $73,000. [Return to Figure 3.6]

Figure 3.10 long description: Types of scatter plots.

  • Positive linear, r=positive .82. The plots on the graph form a rough line that runs from lower left to upper right.
  • Negative linear, r=negative .70. The plots on the graph form a rough line that runs from upper left to lower right.
  • Independent, r=0.00. The plots on the graph are spread out around the centre.
  • Curvilinear, r=0.00. The plots of the graph form a rough line that goes up and then down like a hill.
  • Curvilinear, r=0.00. The plots on the graph for a rough line that goes down and then up like a ditch.

[Return to Figure 3.10]

Introduction to Psychology - 1st Canadian Edition Copyright © 2014 by Jennifer Walinga and Charles Stangor is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

case study vs correlational study

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Correlation Studies in Psychology Research

Determining the relationship between two or more variables.

Verywell / Brianna Gilmartin

  • Characteristics

Potential Pitfalls

Frequently asked questions.

A correlational study is a type of research design that looks at the relationships between two or more variables. Correlational studies are non-experimental, which means that the experimenter does not manipulate or control any of the variables.

A correlation refers to a relationship between two variables. Correlations can be strong or weak and positive or negative. Sometimes, there is no correlation.

There are three possible outcomes of a correlation study: a positive correlation, a negative correlation, or no correlation. Researchers can present the results using a numerical value called the correlation coefficient, a measure of the correlation strength. It can range from –1.00 (negative) to +1.00 (positive). A correlation coefficient of 0 indicates no correlation.

  • Positive correlations : Both variables increase or decrease at the same time. A correlation coefficient close to +1.00 indicates a strong positive correlation.
  • Negative correlations : As the amount of one variable increases, the other decreases (and vice versa). A correlation coefficient close to -1.00 indicates a strong negative correlation.
  • No correlation : There is no relationship between the two variables. A correlation coefficient of 0 indicates no correlation.

Characteristics of a Correlational Study

Correlational studies are often used in psychology, as well as other fields like medicine. Correlational research is a preliminary way to gather information about a topic. The method is also useful if researchers are unable to perform an experiment.

Researchers use correlations to see if a relationship between two or more variables exists, but the variables themselves are not under the control of the researchers.

While correlational research can demonstrate a relationship between variables, it cannot prove that changing one variable will change another. In other words, correlational studies cannot prove cause-and-effect relationships.

When you encounter research that refers to a "link" or an "association" between two things, they are most likely talking about a correlational study.

Types of Correlational Research

There are three types of correlational research: naturalistic observation, the survey method, and archival research. Each type has its own purpose, as well as its pros and cons.

Naturalistic Observation

The naturalistic observation method involves observing and recording variables of interest in a natural setting without interference or manipulation.  

Can inspire ideas for further research

Option if lab experiment not available

Variables are viewed in natural setting

Can be time-consuming and expensive

Extraneous variables can't be controlled

No scientific control of variables

Subjects might behave differently if aware of being observed

This method is well-suited to studies where researchers want to see how variables behave in their natural setting or state.   Inspiration can then be drawn from the observations to inform future avenues of research.

In some cases, it might be the only method available to researchers; for example, if lab experimentation would be precluded by access, resources, or ethics. It might be preferable to not being able to conduct research at all, but the method can be costly and usually takes a lot of time.  

Naturalistic observation presents several challenges for researchers. For one, it does not allow them to control or influence the variables in any way nor can they change any possible external variables.

However, this does not mean that researchers will get reliable data from watching the variables, or that the information they gather will be free from bias.

For example, study subjects might act differently if they know that they are being watched. The researchers might not be aware that the behavior that they are observing is not necessarily the subject's natural state (i.e., how they would act if they did not know they were being watched).

Researchers also need to be aware of their biases, which can affect the observation and interpretation of a subject's behavior.  

Surveys and questionnaires are some of the most common methods used for psychological research. The survey method involves having a  random sample  of participants complete a survey, test, or questionnaire related to the variables of interest.   Random sampling is vital to the generalizability of a survey's results.

Cheap, easy, and fast

Can collect large amounts of data in a short amount of time

Results can be affected by poor survey questions

Results can be affected by unrepresentative sample

Outcomes can be affected by participants

If researchers need to gather a large amount of data in a short period of time, a survey is likely to be the fastest, easiest, and cheapest option.  

It's also a flexible method because it lets researchers create data-gathering tools that will help ensure they get the information they need (survey responses) from all the sources they want to use (a random sample of participants taking the survey).

Survey data might be cost-efficient and easy to get, but it has its downsides. For one, the data is not always reliable—particularly if the survey questions are poorly written or the overall design or delivery is weak.   Data is also affected by specific faults, such as unrepresented or underrepresented samples .

The use of surveys relies on participants to provide useful data. Researchers need to be aware of the specific factors related to the people taking the survey that will affect its outcome.

For example, some people might struggle to understand the questions. A person might answer a particular way to try to please the researchers or to try to control how the researchers perceive them (such as trying to make themselves "look better").

Sometimes, respondents might not even realize that their answers are incorrect or misleading because of mistaken memories .

Archival Research

Many areas of psychological research benefit from analyzing studies that were conducted long ago by other researchers, as well as reviewing historical records and case studies.

For example, in an experiment known as  "The Irritable Heart ," researchers used digitalized records containing information on American Civil War veterans to learn more about post-traumatic stress disorder (PTSD).

Large amount of data

Can be less expensive

Researchers cannot change participant behavior

Can be unreliable

Information might be missing

No control over data collection methods

Using records, databases, and libraries that are publicly accessible or accessible through their institution can help researchers who might not have a lot of money to support their research efforts.

Free and low-cost resources are available to researchers at all levels through academic institutions, museums, and data repositories around the world.

Another potential benefit is that these sources often provide an enormous amount of data that was collected over a very long period of time, which can give researchers a way to view trends, relationships, and outcomes related to their research.

While the inability to change variables can be a disadvantage of some methods, it can be a benefit of archival research. That said, using historical records or information that was collected a long time ago also presents challenges. For one, important information might be missing or incomplete and some aspects of older studies might not be useful to researchers in a modern context.

A primary issue with archival research is reliability. When reviewing old research, little information might be available about who conducted the research, how a study was designed, who participated in the research, as well as how data was collected and interpreted.

Researchers can also be presented with ethical quandaries—for example, should modern researchers use data from studies that were conducted unethically or with questionable ethics?

You've probably heard the phrase, "correlation does not equal causation." This means that while correlational research can suggest that there is a relationship between two variables, it cannot prove that one variable will change another.

For example, researchers might perform a correlational study that suggests there is a relationship between academic success and a person's self-esteem. However, the study cannot show that academic success changes a person's self-esteem.

To determine why the relationship exists, researchers would need to consider and experiment with other variables, such as the subject's social relationships, cognitive abilities, personality, and socioeconomic status.

The difference between a correlational study and an experimental study involves the manipulation of variables. Researchers do not manipulate variables in a correlational study, but they do control and systematically vary the independent variables in an experimental study. Correlational studies allow researchers to detect the presence and strength of a relationship between variables, while experimental studies allow researchers to look for cause and effect relationships.

If the study involves the systematic manipulation of the levels of a variable, it is an experimental study. If researchers are measuring what is already present without actually changing the variables, then is a correlational study.

The variables in a correlational study are what the researcher measures. Once measured, researchers can then use statistical analysis to determine the existence, strength, and direction of the relationship. However, while correlational studies can say that variable X and variable Y have a relationship, it does not mean that X causes Y.

The goal of correlational research is often to look for relationships, describe these relationships, and then make predictions. Such research can also often serve as a jumping off point for future experimental research. 

Heath W. Psychology Research Methods . Cambridge University Press; 2018:134-156.

Schneider FW. Applied Social Psychology . 2nd ed. SAGE; 2012:50-53.

Curtis EA, Comiskey C, Dempsey O. Importance and use of correlational research .  Nurse Researcher . 2016;23(6):20-25. doi:10.7748/nr.2016.e1382

Carpenter S. Visualizing Psychology . 3rd ed. John Wiley & Sons; 2012:14-30.

Pizarro J, Silver RC, Prause J. Physical and mental health costs of traumatic war experiences among civil war veterans .  Arch Gen Psychiatry . 2006;63(2):193. doi:10.1001/archpsyc.63.2.193

Post SG. The echo of Nuremberg: Nazi data and ethics .  J Med Ethics . 1991;17(1):42-44. doi:10.1136/jme.17.1.42

Lau F. Chapter 12 Methods for Correlational Studies . In: Lau F, Kuziemsky C, eds. Handbook of eHealth Evaluation: An Evidence-based Approach . University of Victoria.

Akoglu H. User's guide to correlation coefficients .  Turk J Emerg Med . 2018;18(3):91-93. doi:10.1016/j.tjem.2018.08.001

Price PC. Research Methods in Psychology . California State University.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Privacy Policy

Research Method

Home » Correlational Research – Methods, Types and Examples

Correlational Research – Methods, Types and Examples

Table of Contents

Correlational Research Design

Correlational Research

Correlational Research is a type of research that examines the statistical relationship between two or more variables without manipulating them. It is a non-experimental research design that seeks to establish the degree of association or correlation between two or more variables.

Types of Correlational Research

There are three types of correlational research:

Positive Correlation

A positive correlation occurs when two variables increase or decrease together. This means that as one variable increases, the other variable also tends to increase. Similarly, as one variable decreases, the other variable also tends to decrease. For example, there is a positive correlation between the amount of time spent studying and academic performance. The more time a student spends studying, the higher their academic performance is likely to be. Similarly, there is a positive correlation between a person’s age and their income level. As a person gets older, they tend to earn more money.

Negative Correlation

A negative correlation occurs when one variable increases while the other decreases. This means that as one variable increases, the other variable tends to decrease. Similarly, as one variable decreases, the other variable tends to increase. For example, there is a negative correlation between the number of hours spent watching TV and physical activity level. The more time a person spends watching TV, the less physically active they are likely to be. Similarly, there is a negative correlation between the amount of stress a person experiences and their overall happiness. As stress levels increase, happiness levels tend to decrease.

Zero Correlation

A zero correlation occurs when there is no relationship between two variables. This means that the variables are unrelated and do not affect each other. For example, there is zero correlation between a person’s shoe size and their IQ score. The size of a person’s feet has no relationship to their level of intelligence. Similarly, there is zero correlation between a person’s height and their favorite color. The two variables are unrelated to each other.

Correlational Research Methods

Correlational research can be conducted using different methods, including:

Surveys are a common method used in correlational research. Researchers collect data by asking participants to complete questionnaires or surveys that measure different variables of interest. Surveys are useful for exploring the relationships between variables such as personality traits, attitudes, and behaviors.

Observational Studies

Observational studies involve observing and recording the behavior of participants in natural settings. Researchers can use observational studies to examine the relationships between variables such as social interactions, group dynamics, and communication patterns.

Archival Data

Archival data involves using existing data sources such as historical records, census data, or medical records to explore the relationships between variables. Archival data is useful for investigating the relationships between variables that cannot be manipulated or controlled.

Experimental Design

While correlational research does not involve manipulating variables, researchers can use experimental design to establish cause-and-effect relationships between variables. Experimental design involves manipulating one variable while holding other variables constant to determine the effect on the dependent variable.

Meta-Analysis

Meta-analysis involves combining and analyzing the results of multiple studies to explore the relationships between variables across different contexts and populations. Meta-analysis is useful for identifying patterns and inconsistencies in the literature and can provide insights into the strength and direction of relationships between variables.

Data Analysis Methods

Correlational research data analysis methods depend on the type of data collected and the research questions being investigated. Here are some common data analysis methods used in correlational research:

Correlation Coefficient

A correlation coefficient is a statistical measure that quantifies the strength and direction of the relationship between two variables. The correlation coefficient ranges from -1 to +1, with -1 indicating a perfect negative correlation, +1 indicating a perfect positive correlation, and 0 indicating no correlation. Researchers use correlation coefficients to determine the degree to which two variables are related.

Scatterplots

A scatterplot is a graphical representation of the relationship between two variables. Each data point on the plot represents a single observation. The x-axis represents one variable, and the y-axis represents the other variable. The pattern of data points on the plot can provide insights into the strength and direction of the relationship between the two variables.

Regression Analysis

Regression analysis is a statistical method used to model the relationship between two or more variables. Researchers use regression analysis to predict the value of one variable based on the value of another variable. Regression analysis can help identify the strength and direction of the relationship between variables, as well as the degree to which one variable can be used to predict the other.

Factor Analysis

Factor analysis is a statistical method used to identify patterns among variables. Researchers use factor analysis to group variables into factors that are related to each other. Factor analysis can help identify underlying factors that influence the relationship between two variables.

Path Analysis

Path analysis is a statistical method used to model the relationship between multiple variables. Researchers use path analysis to test causal models and identify direct and indirect effects between variables.

Applications of Correlational Research

Correlational research has many practical applications in various fields, including:

  • Psychology : Correlational research is commonly used in psychology to explore the relationships between variables such as personality traits, behaviors, and mental health outcomes. For example, researchers may use correlational research to examine the relationship between anxiety and depression, or the relationship between self-esteem and academic achievement.
  • Education : Correlational research is useful in educational research to explore the relationships between variables such as teaching methods, student motivation, and academic performance. For example, researchers may use correlational research to examine the relationship between student engagement and academic success, or the relationship between teacher feedback and student learning outcomes.
  • Business : Correlational research can be used in business to explore the relationships between variables such as consumer behavior, marketing strategies, and sales outcomes. For example, marketers may use correlational research to examine the relationship between advertising spending and sales revenue, or the relationship between customer satisfaction and brand loyalty.
  • Medicine : Correlational research is useful in medical research to explore the relationships between variables such as risk factors, disease outcomes, and treatment effectiveness. For example, researchers may use correlational research to examine the relationship between smoking and lung cancer, or the relationship between exercise and heart health.
  • Social Science : Correlational research is commonly used in social science research to explore the relationships between variables such as socioeconomic status, cultural factors, and social behavior. For example, researchers may use correlational research to examine the relationship between income and voting behavior, or the relationship between cultural values and attitudes towards immigration.

Examples of Correlational Research

  • Psychology : Researchers might be interested in exploring the relationship between two variables, such as parental attachment and anxiety levels in young adults. The study could involve measuring levels of attachment and anxiety using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying potential risk factors for anxiety in young adults, and in developing interventions that could help improve attachment and reduce anxiety.
  • Education : In a correlational study in education, researchers might investigate the relationship between two variables, such as teacher engagement and student motivation in a classroom setting. The study could involve measuring levels of teacher engagement and student motivation using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying strategies that teachers could use to improve student motivation and engagement in the classroom.
  • Business : Researchers might explore the relationship between two variables, such as employee satisfaction and productivity levels in a company. The study could involve measuring levels of employee satisfaction and productivity using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying factors that could help increase productivity and improve job satisfaction among employees.
  • Medicine : Researchers might examine the relationship between two variables, such as smoking and the risk of developing lung cancer. The study could involve collecting data on smoking habits and lung cancer diagnoses, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in identifying risk factors for lung cancer and in developing interventions that could help reduce smoking rates.
  • Sociology : Researchers might investigate the relationship between two variables, such as income levels and political attitudes. The study could involve measuring income levels and political attitudes using established scales or questionnaires, and then analyzing the data to determine if there is a correlation between the two variables. This information could be useful in understanding how socioeconomic factors can influence political beliefs and attitudes.

How to Conduct Correlational Research

Here are the general steps to conduct correlational research:

  • Identify the Research Question : Start by identifying the research question that you want to explore. It should involve two or more variables that you want to investigate for a correlation.
  • Choose the research method: Decide on the research method that will be most appropriate for your research question. The most common methods for correlational research are surveys, archival research, and naturalistic observation.
  • Choose the Sample: Select the participants or data sources that you will use in your study. Your sample should be representative of the population you want to generalize the results to.
  • Measure the variables: Choose the measures that will be used to assess the variables of interest. Ensure that the measures are reliable and valid.
  • Collect the Data: Collect the data from your sample using the chosen research method. Be sure to maintain ethical standards and obtain informed consent from your participants.
  • Analyze the data: Use statistical software to analyze the data and compute the correlation coefficient. This will help you determine the strength and direction of the correlation between the variables.
  • Interpret the results: Interpret the results and draw conclusions based on the findings. Consider any limitations or alternative explanations for the results.
  • Report the findings: Report the findings of your study in a research report or manuscript. Be sure to include the research question, methods, results, and conclusions.

Purpose of Correlational Research

The purpose of correlational research is to examine the relationship between two or more variables. Correlational research allows researchers to identify whether there is a relationship between variables, and if so, the strength and direction of that relationship. This information can be useful for predicting and explaining behavior, and for identifying potential risk factors or areas for intervention.

Correlational research can be used in a variety of fields, including psychology, education, medicine, business, and sociology. For example, in psychology, correlational research can be used to explore the relationship between personality traits and behavior, or between early life experiences and later mental health outcomes. In education, correlational research can be used to examine the relationship between teaching practices and student achievement. In medicine, correlational research can be used to investigate the relationship between lifestyle factors and disease outcomes.

Overall, the purpose of correlational research is to provide insight into the relationship between variables, which can be used to inform further research, interventions, or policy decisions.

When to use Correlational Research

Here are some situations when correlational research can be particularly useful:

  • When experimental research is not possible or ethical: In some situations, it may not be possible or ethical to manipulate variables in an experimental design. In these cases, correlational research can be used to explore the relationship between variables without manipulating them.
  • When exploring new areas of research: Correlational research can be useful when exploring new areas of research or when researchers are unsure of the direction of the relationship between variables. Correlational research can help identify potential areas for further investigation.
  • When testing theories: Correlational research can be useful for testing theories about the relationship between variables. Researchers can use correlational research to examine the relationship between variables predicted by a theory, and to determine whether the theory is supported by the data.
  • When making predictions: Correlational research can be used to make predictions about future behavior or outcomes. For example, if there is a strong positive correlation between education level and income, one could predict that individuals with higher levels of education will have higher incomes.
  • When identifying risk factors: Correlational research can be useful for identifying potential risk factors for negative outcomes. For example, a study might find a positive correlation between drug use and depression, indicating that drug use could be a risk factor for depression.

Characteristics of Correlational Research

Here are some common characteristics of correlational research:

  • Examines the relationship between two or more variables: Correlational research is designed to examine the relationship between two or more variables. It seeks to determine if there is a relationship between the variables, and if so, the strength and direction of that relationship.
  • Non-experimental design: Correlational research is typically non-experimental in design, meaning that the researcher does not manipulate any variables. Instead, the researcher observes and measures the variables as they naturally occur.
  • Cannot establish causation : Correlational research cannot establish causation, meaning that it cannot determine whether one variable causes changes in another variable. Instead, it only provides information about the relationship between the variables.
  • Uses statistical analysis: Correlational research relies on statistical analysis to determine the strength and direction of the relationship between variables. This may include calculating correlation coefficients, regression analysis, or other statistical tests.
  • Observes real-world phenomena : Correlational research is often used to observe real-world phenomena, such as the relationship between education and income or the relationship between stress and physical health.
  • Can be conducted in a variety of fields : Correlational research can be conducted in a variety of fields, including psychology, sociology, education, and medicine.
  • Can be conducted using different methods: Correlational research can be conducted using a variety of methods, including surveys, observational studies, and archival studies.

Advantages of Correlational Research

There are several advantages of using correlational research in a study:

  • Allows for the exploration of relationships: Correlational research allows researchers to explore the relationships between variables in a natural setting without manipulating any variables. This can help identify possible relationships between variables that may not have been previously considered.
  • Useful for predicting behavior: Correlational research can be useful for predicting future behavior. If a strong correlation is found between two variables, researchers can use this information to predict how changes in one variable may affect the other.
  • Can be conducted in real-world settings: Correlational research can be conducted in real-world settings, which allows for the collection of data that is representative of real-world phenomena.
  • Can be less expensive and time-consuming than experimental research: Correlational research is often less expensive and time-consuming than experimental research, as it does not involve manipulating variables or creating controlled conditions.
  • Useful in identifying risk factors: Correlational research can be used to identify potential risk factors for negative outcomes. By identifying variables that are correlated with negative outcomes, researchers can develop interventions or policies to reduce the risk of negative outcomes.
  • Useful in exploring new areas of research: Correlational research can be useful in exploring new areas of research, particularly when researchers are unsure of the direction of the relationship between variables. By conducting correlational research, researchers can identify potential areas for further investigation.

Limitation of Correlational Research

Correlational research also has several limitations that should be taken into account:

  • Cannot establish causation: Correlational research cannot establish causation, meaning that it cannot determine whether one variable causes changes in another variable. This is because it is not possible to control all possible confounding variables that could affect the relationship between the variables being studied.
  • Directionality problem: The directionality problem refers to the difficulty of determining which variable is influencing the other. For example, a correlation may exist between happiness and social support, but it is not clear whether social support causes happiness, or whether happy people are more likely to have social support.
  • Third variable problem: The third variable problem refers to the possibility that a third variable, not included in the study, is responsible for the observed relationship between the two variables being studied.
  • Limited generalizability: Correlational research is often limited in terms of its generalizability to other populations or settings. This is because the sample studied may not be representative of the larger population, or because the variables studied may behave differently in different contexts.
  • Relies on self-reported data: Correlational research often relies on self-reported data, which can be subject to social desirability bias or other forms of response bias.
  • Limited in explaining complex behaviors: Correlational research is limited in explaining complex behaviors that are influenced by multiple factors, such as personality traits, situational factors, and social context.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Transformative Design

Transformative Design – Methods, Types, Guide

Phenomenology

Phenomenology – Methods, Examples and Guide

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

Observational Research

Observational Research – Methods and Guide

Questionnaire

Questionnaire – Definition, Types, and Examples

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Correlational Research

Learning objectives.

  • Explain correlational research, including what a correlation coefficient tells us about the relationship between variables

One of the primary methods used to study abnormal behavior is the correlational method.  Correlation means that there is a relationship between two or more variables (such between the variables of negative thinking and depressive symptoms), but this relationship does not necessarily imply cause and effect. When two variables are correlated, it simply means that as one variable changes, so does the other. We can measure correlation by calculating a statistic known as a correlation coefficient. A correlation coefficient is a number from negative one to positive one that indicates the strength and direction of the relationship between variables. The association between two variables can be summarized statistically using the correlation coefficient (abbreviated as  r ).

The number portion of the correlation coefficient indicates the strength of the relationship. The closer the number is to one (be it negative or positive), the more strongly related the variables are, and the more predictable changes in one variable will be as the other variable changes. The closer the number is to zero, the weaker the relationship, and the less predictable the relationships between the variables becomes. For instance, a correlation coefficient of 0.9 indicates a far stronger relationship than a correlation coefficient of 0.3. If the variables are not related to one another at all, the correlation coefficient is zero. The example above about negative thinking and depressive symptoms is an example of two variables that we might expect to have a relationship to each other.  When higher values in one variable (negative thinking) are associated with higher values in the other variable (depressive symptoms), there is a  positive correlation  between the variables.

The sign—positive or negative—of the correlation coefficient indicates the direction of the relationship.  Positive correlations carry positive signs; negative correlations carry negative signs.  A positive correlation means that the variables move in the same direction. Put another way, it means that as one variable increases so does the other, and conversely, when one variable decreases so does the other. A negative correlation means that the variables move in opposite directions. If two variables are negatively correlated, a decrease in one variable is associated with an increase in the other and vice versa.

Other examples of positive correlations are the relationship between depression and disturbance in normal sleep patterns. One might expect then that scores on a measure of depression would be positively correlated with scores on a measure of sleep disturbances.

One might expect a negative correlation to exist between  between depression and self-esteem.  The more depressed people are, the lower their scores are on the Rosenberg self-esteem scale (RSES), a self-esteem measure widely used in social-science research.  Keep in mind that a negative correlation is not the same as no correlation. For example, we would probably find no correlation between  depression  and someone’s   height. 

In correlational research,  scientists passively observe and measure phenomena.    Here, we do not intervene and change behavior, as we do in experiments. In correlational research, we identify patterns of relationships, but we usually cannot infer what causes what. Importantly, with correlational research, you can examine only two variables at a time, no more and no less.

As mentioned earlier, correlations have predictive value. So, what if you wanted to test whether spending on others is related to happiness, but you don’t have $20 to give to each participant? You could use a correlational design—which is exactly what Professor Dunn did, too. She asked people how much of their income they spent on others or donated to charity, and later she asked them how happy they were. Do you think these two variables were related? Yes, they were! The more money people reported spending on others, the happier they were.

More Details about the Correlation

To find out how well two variables correspond, we can plot the relationship between the two scores on what is known as a scatterplot (Figure 1). In the scatterplot, each dot represents a data point. (In this case it’s individuals, but it could be some other unit.) Importantly, each dot provides us with two pieces of information—in this case, information about how good the person rated the past month ( x -axis) and how happy the person felt in the past month ( y -axis). Which variable is plotted on which axis does not matter.

Scatterplot of the association between happiness and ratings of the past month, a positive correlation (r = .81)

For the example above, the direction of the association is positive. This means that people who perceived the past month as being good reported feeling more happy, whereas people who perceived the month as being bad reported feeling less happy.

In a scatterplot, the dots form a pattern that extends from the bottom left to the upper right (just as they do in Figure 1). The  r  value for a positive correlation is indicated by a positive number (although, the positive sign is usually omitted). Here, the  r  value is 0.81.

Figure 2 shows a  negative correlation,   the association between the average height of males in a country ( y -axis) and the pathogen prevalence, or commonness of disease, of that country ( x -axis). In this scatterplot, each dot represents a country. Notice how the dots extend from the top left to the bottom right. What does this mean in real-world terms? It means that people are shorter in parts of the world where there is more disease. The  r  value for a negative correlation is indicated by a negative number—that is, it has a minus (−) sign in front of it. Here, it is −0.83.

Scatterplot showing the association between average male height and pathogen prevalence, a negative correlation (r = –.83).

The strength of a correlation has to do with how well the two variables align. Recall that in Professor Dunn’s correlational study, spending on others positively correlated with happiness: the more money people reported spending on others, the happier they reported to be. At this point, you may be thinking to yourself, “I know a very generous person who gave away lots of money to other people but is miserable!” Or maybe you know of a very stingy person who is happy as can be. Yes, there might be exceptions. If an association has many exceptions, it is considered a weak correlation. If an association has few or no exceptions, it is considered a strong correlation. A strong correlation is one in which the two variables always, or almost always, go together. In the example of happiness and how good the month has been, the association is strong. The stronger a correlation is, the tighter the dots in the scatterplot will be arranged along a sloped line. [1]

Problems with correlation

If generosity and happiness are positively correlated, should we conclude that being generous causes happiness? Similarly, if height and pathogen prevalence are negatively correlated, should we conclude that disease causes shortness? From a correlation alone, we can’t be certain. For example, in the first case it may be that happiness causes generosity, or that generosity causes happiness. Or, a third variable might cause both happiness  and  generosity, creating the illusion of a direct link between the two. For example, wealth could be the third variable that causes both greater happiness and greater generosity. This is why correlation does not mean causation—an often repeated phrase among psychologists. [2]

Correlation Does Not Indicate Causation

Correlational research is useful because it allows us to discover the strength and direction of relationships that exist between two variables. However, correlation is limited because establishing the existence of a relationship tells us little about cause and effect . While variables are sometimes correlated because one does cause the other, it could also be that some other factor, a confounding variable , is actually causing the systematic movement in our variables of interest. In the  depression and negative thinking   example mentioned earlier, stress  is a confounding variable that could account for the relationship between the two variables.   

Even when we cannot point to clear confounding variables, we should not assume that a correlation between two variables implies that one variable causes changes in another. This can be frustrating when a cause-and-effect relationship seems clear and intuitive. Think back to our example about the relationship between depression and disturbance in normal sleep patterns.  It seems reasonable to assume that s leep disturbance might cause a higher score on a measure of depression, just as a high degree of depression might cause more disturbed sleep patterns , but if we were limited to  correlational research , we would be overstepping our bounds by making this assumption.  Both depression and sleep disturbance could be due to an underlying physiological disorder o r any to other third variable that you have not measured .

Unfortunately, people mistakenly make claims of causation as a function of correlations all the time.   While correlational research is invaluable in identifying relationships among variables, a major limitation is the inability to establish causality.  The correlational method does not involve manipulation of the variables of interest. In the previous example, the experimenter does not manipulate people’s depressive symptoms or sleep patterns.  Psychologists want to make statements about cause and effect, but the only way to do that is to conduct an experiment to answer a research question. The next section describes how  investigators use experimental methods in which the experimenter manipulates one or more variables of interest and observes their effects on other variables or outcomes under controlled conditions.

In this video, we discuss one of the best methods psychologists have for predicting behaviors: correlation. But does that mean that a behavior is absolutely going to happen? Let’s find out!

You can view the transcript for “#5 Correlation vs. Causation – Psy 101” here (opens in new window) .

Think It Over

Consider why correlational research is often used in the study of abnormal behavior. If correlational designs do not demonstrate causation, why do researchers make causal claims regarding their results? Are there instances when correlational results could demonstrate causation?

cause-and-effect relationship:  changes in one variable cause the changes in the other variable; can be determined only through an experimental research design

confirmation bias:  tendency to ignore evidence that disproves ideas or beliefs

confounding variable:  unanticipated outside factor that affects both variables of interest,\; often gives the false impression that changes in one variable causes changes in the other variable, when, in actuality, the outside factor causes changes in both variables

correlation: the relationship between two or more variables; when two variables are correlated, one variable changes as the other does

correlation coefficient:  number from -1 to +1, indicating the strength and direction of the relationship between variables, and usually represented by r

negative correlation:  two variables change in different directions, with one becoming larger as the other becomes smaller; a negative correlation is not the same thing as no correlation

positive correlation:  two variables change in the same direction, both becoming either larger or smaller

CC Licensed Content, Shared Previously

  • Correlational Research . Authored by : Sonja Ann Miller for Lumen Learning.  Provided by : Lumen Learning.  License :  CC BY: Attribution
  • Analyzing Findings.  Authored by : OpenStax College.  Located at :  http://cnx.org/contents/[email protected]:mfArybye@7/Analyzing-Findings .  License :  CC BY: Attribution .  License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Research Designs.  Authored by : Christie Napa Scollon .  Provided by : Singapore Management University.  Located at :  https://nobaproject.com/modules/research-designs .  Project : The Noba Project.  License :  CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

All Rights Reserved Content

  • Correlation vs. Causality: Freakonomics Movie.  Located at :  https://www.youtube.com/watch?v=lbODqslc4Tg .  License :  Other .  License Terms : Standard YouTube License
  • Scollon, C. N. (2020). Research designs. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/acxb2thy ↵

Correlational Research Copyright © by Meredith Palm is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Correlational Study Overview & Examples

By Jim Frost 2 Comments

What is a Correlational Study?

A correlational study is an experimental design that evaluates only the correlation between variables. The researchers record measurements but do not control or manipulate the variables. Correlational research is a form of observational study .

A correlation indicates that as the value of one variable increases, the other tends to change in a specific direction:

  • Positive correlation : Two variables increase or decrease together (as height increases, weight tends to increase).
  • Negative correlation : As one variable increases, the other tends to decrease (as school absences increase, grades tend to fall).
  • No correlation : No relationship exists between the two variables. As one increases, the other does not change in a specific direction (as absences increase, height doesn’t tend to increase or decrease).

Correlational study results showing a positive trend.

For example, researchers conducting correlational research explored the relationship between social media usage and levels of anxiety in young adults. Participants reported their demographic information and daily time on various social media platforms and completed a standardized anxiety assessment tool.

The correlational study looked for relationships between social media usage and anxiety. Is increased social media usage associated with higher anxiety? Is it worse for particular demographics?

Learn more about Interpreting Correlation .

Using Correlational Research

Correlational research design is crucial in various disciplines, notably psychology and medicine. This type of design is generally cheaper, easier, and quicker to conduct than an experiment because the researchers don’t control any variables or conditions. Consequently, these studies often serve as an initial assessment, especially when random assignment and controlling variables for a true experiment are not feasible or unethical.

However, an unfortunate aspect of a correlational study is its limitation in establishing causation. While these studies can reveal connections between variables, they cannot prove that altering one variable will cause changes in another. Hence, correlational research can determine whether relationships exist but cannot confirm causality.

Remember, correlation doesn’t necessarily imply causation !

Correlational Study vs Experiment

The difference between the two designs is simple.

In a correlational study, the researchers don’t systematically control any variables. They’re simply observing events and do not want to influence outcomes.

In an experiment, researchers manipulate variables and explicitly hope to affect the outcomes. For example, they might control the treatment condition by giving a medication or placebo to each subject. They also randomly assign subjects to the control and treatment groups, which helps establish causality.

Learn more about Randomized Controlled Trials (RCTs) , which statisticians consider to be true experiments.

Types of Correlation Studies and Examples

Researchers divide these studies into three broad types.

Secondary Data Sources

One approach to correlational research is to utilize pre-existing data, which may include official records, public polls, or data from earlier studies. This method can be cost-effective and time-efficient because other researchers have already gathered the data. These existing data sources can provide large sample sizes and longitudinal data , thereby showing relationship trends.

However, it also comes with potential drawbacks. The data may be incomplete or irrelevant to the new research question. Additionally, as a researcher, you won’t have control over the original data collection methods, potentially impacting the data’s reliability and validity .

Using existing data makes this approach a retrospective study .

Surveys in Correlation Research

Surveys are a great way to collect data for correlational studies while using a consistent instrument across all respondents. You can use various formats, such as in-person, online, and by phone. And you can ask the questions necessary to obtain the particular variables you need for your project. In short, it’s easy to customize surveys to match your study’s requirements.

However, you’ll need to carefully word all the questions to be clear and not introduce bias in the results. This process can take multiple iterations and pilot studies to produce the finished survey.

For example, you can use a survey to find correlations between various demographic variables and political opinions.

Naturalistic Observation

Naturalistic observation is a method of collecting field data for a correlational study. Researchers observe and measure variables in a natural environment. The process can include counting events, categorizing behavior, and describing outcomes without interfering with the activities.

For example, researchers might observe and record children’s behavior after watching television. Does a relationship exist between the type of television program and behaviors?

Naturalistic observations occur in a prospective study .

Analyzing Data from a Correlational Study

Statistical analysis of correlational research frequently involves correlation and regression analysis .

A correlation coefficient describes the strength and direction of the relationship between two variables with a single number.

Regression analysis can evaluate how multiple variables relate to a single outcome. For example, in the social media correlational study example, how do the demographic variables and daily social media usage collectively correlate with anxiety?

Curtis EA, Comiskey C, Dempsey O.  Importance and use of correlational research .  Nurse Researcher . 2016;23(6):20-25. doi:10.7748/nr.2016.e1382

Share this:

case study vs correlational study

Reader Interactions

' src=

January 14, 2024 at 4:34 pm

Hi Jim. Have you written a blog note dedicated to clinical trials? If not, besides the note on hypothesis testing, are there other blogs ypo have written that touch on clinical trials?

' src=

January 14, 2024 at 5:49 pm

Hi Stan, I haven’t written a blog post specifically about clinical trials, but I have the following related posts:

Randomized Controlled Trials Clinical Trial about a COVID vaccine Clinical Trials about flu vaccines

Comments and Questions Cancel reply

Explore Psychology

Correlational Research in Psychology: Definition and How It Works

Categories Research Methods

Correlational research is a type of scientific investigation in which a researcher looks at the relationships between variables but does not vary, manipulate, or control them. It can be a useful research method for evaluating the direction and strength of the relationship between two or more different variables.

When examining how variables are related to one another, researchers may find that the relationship is positive or negative. Or they may also find that there is no relationship at all.

Table of Contents

How Does Correlational Research Work?

In correlational research, the researcher measures the values of the variables of interest and calculates a correlation coefficient, which quantifies the strength and direction of the relationship between the variables. 

The correlation coefficient ranges from -1.0 to +1.0, where -1.0 represents a perfect negative correlation, 0 represents no correlation, and +1.0 represents a perfect positive correlation. 

A negative correlation indicates that as the value of one variable increases, the value of the other variable decreases, while a positive correlation indicates that as the value of one variable increases, the value of the other variable also increases. A zero correlation indicates that there is no relationship between the variables.

The variables both increase togetherThe more you walk on a treadmill, the more calories you burn.
The variables decrease togetherThe less you study, the lower your grades will be.
No relationship exists between the variablesHow much you walk on a treadmill is not associated with grades on exams.

Correlational Research vs. Experimental Research

Correlational research differs from experimental research in that it does not involve manipulating variables. Instead, it focuses on analyzing the relationship between two or more variables.

In other words, correlational research seeks to determine whether there is a relationship between two variables and, if so, the nature of that relationship. 

Experimental research, on the other hand, involves manipulating one or more variables to determine the effect on another variable. Because of this manipulation and control of variables, experimental research allows for causal conclusions to be drawn, while correlational research does not. 

Both types of research are important in understanding the world around us, but they serve different purposes and are used in different situations.

Utilized to assess the strength and direction of the relationship between variablesUtilized to look for cause-and-effect relationships between variables
Involves measuring but not manipulating variablesInvolves manipulating an independent variable and measuring the effect on the dependent variable
Results may be influenced by other variables that the researcher cannot controlResearchers are better able to control extraneous variables that might impact results

Types of Correlational Research

There are three main types of correlational studies:

Cohort Correlational Study 

This type of study involves following a cohort of participants over a period of time. This type of research can be useful for understanding how certain events might influence outcomes.

For example, researchers might study how exposure to a traumatic natural disaster influences the mental health of a group of people over time.

By examining the data collected from these individuals, researchers can determine whether there is a correlation between the two variables under investigation. This information can be used to develop strategies for preventing or treating certain conditions or illnesses.

Cross-Sectional Correlational Study

A cross-sectional design is a research method that examines a group of individuals at a single time. This type of study collects information from a diverse group of people, usually from different backgrounds and age groups, to gain insight into a particular phenomenon or issue.

The data collected from this type of study is used to analyze relationships between variables and identify patterns and trends within the group.

Cross-sectional studies can help identify potential risk factors for certain conditions or illnesses, and can also be used to evaluate the prevalence of certain behaviors, attitudes, or beliefs within a population.

Case-Control Correlational Study

A case-control correlational study is a type of research design that investigates the relationship between exposure and health outcomes. In this study, researchers identify a group of individuals with the health outcome of interest (cases) and another group of individuals without the health outcome (controls).

The researchers then compare the exposure history of the cases and controls to determine whether the exposure and health outcome correlate.

This type of study design is often used in epidemiology and can provide valuable information about potential risk factors for a particular disease or condition.

When to Use Correlational Research

There are a number of situations where researchers might opt to use a correlational study instead of some other research design.

Correlational research can be used to investigate a wide range of psychological phenomena, including the relationship between personality traits and academic performance, the association between sleep duration and mental health, and the correlation between parental involvement and child outcomes. 

To Generate Hypotheses

Correlational research can also be used to generate hypotheses for further research by identifying variables that are associated with each other.

To Investigate Variables Without Manipulating Them

Researchers should use correlational research when they want to investigate the relationship between two variables without manipulating them. This type of research is useful when the researcher cannot or should not manipulate one of the variables or when it is impossible to conduct an experiment due to ethical or practical concerns. 

To Identify Patterns

Correlational research allows researchers to identify patterns and relationships between variables, which can inform future research and help to develop theories. However, it is important to note that correlational research does not prove that one variable causes changes in the other.

While correlational research has its limitations, it is still a valuable tool for researchers in many fields, including psychology, sociology, and education.

How to Collect Data in Correlational Research

Researchers can collect data for correlational research in a few different ways. To conduct correlational research, data can be collected using the following:

  • Surveys : One method is through surveys, where participants are asked to self-report their behaviors or attitudes. This approach allows researchers to gather large amounts of data quickly and affordably.
  • Naturalistic observation : Another method is through observation, where researchers observe and record behaviors in a natural or controlled setting. This method allows researchers to learn more about the behavior in question and better generalize the results to real-world settings.
  • Archival, retrospective data : Additionally, researchers can collect data from archival sources, such as medical, school records, official records, or past polls. 
The key is to collect data from a large and representative sample to measure the relationship between two variables accurately.

Pros and Cons of Correlational Research

There are some advantages of using correlational research, but there are also some downsides to consider.

  • One of the strengths of correlational research is its ability to identify patterns and relationships between variables that may be difficult or unethical to manipulate in an experimental study. 
  • Correlational research can also be used to examine variables that are not under the control of the researcher , such as age, gender, or socioeconomic status. 
  • Correlational research can be used to make predictions about future behavior or outcomes, which can be valuable in a variety of fields.
  • Correlational research can be conducted quickly and inexpensively , making it a practical option for researchers with limited resources. 
  • Correlational research is limited by its inability to establish causality between variables. Correlation does not imply causation, and it is possible that a third variable may be influencing both variables of interest, creating a spurious correlation. Therefore, it is important for researchers to use multiple methods of data collection and to be cautious when interpreting correlational findings.
  • Correlational research relies heavily on self-reported data , which can be biased or inaccurate.
  • Correlational research is limited in its ability to generalize findings to larger populations, as it only measures the relationship between two variables in a specific sample.

Frequently Asked Questions About Correlational Research

What are the main problems with correlational research.

Some of the main problems that can occur in correlational research include selection bias, confounding variables. and misclassification.

  • Selecting participants based on their exposure to an event means that the sample might be biased since the selection was not randomized.
  • Correlational studies may also be impacted by extraneous factors that researchers cannot control.
  • Finally, there may be problems with how accurately data is recorded and classified, which can be particularly problematic in retrospective studies.

What are the variables in a correlational study?

In a correlational study, variables refer to any measurable factors being examined for their potential relationship or association with each other. These variables can be continuous (meaning they can take on a range of values) or categorical (meaning they fall into distinct categories or groups).

For example, in a study examining the correlation between exercise and mental health, the independent variable would be exercise frequency (measured in times per week), while the dependent variable would be mental health (measured using a standardized questionnaire).

What is the goal of correlational research?

The goal of correlational research is to examine the relationship between two or more variables. It involves analyzing data to determine if there is a statistically significant connection between the variables being studied.

Correlational research is useful for identifying patterns and making predictions but cannot establish causation. Instead, it helps researchers to better understand the nature of the relationship between variables and to generate hypotheses for further investigation.

How do you identify correlational research?

To identify correlational research, look for studies that measure two or more variables and analyze their relationship using statistical techniques. The results of correlational studies are typically presented in the form of correlation coefficients or scatterplots, which visually represent the degree of association between the variables being studied.

Correlational research can be useful for identifying potential causal relationships between variables but cannot establish causation on its own.

Curtis EA, Comiskey C, Dempsey O. Importance and use of correlational research . Nurse Researcher . 2016;23(6):20-25. doi10.7748/nr.2016.e1382

Lau F. Chapter 12 Methods for Correlational Studies . University of Victoria; 2017.

Mitchell TR. An evaluation of the validity of correlational research conducted in organizations . The Academy of Management Review . 1985;10(2):192. doi:10.5465/amr.1985.4277939

Seeram E. An overview of correlational research . Radiol Technol . 2019;91(2):176-179.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Correlational Research | Guide, Design & Examples

Correlational Research | Guide, Design & Examples

Published on 5 May 2022 by Pritha Bhandari . Revised on 5 December 2022.

A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them.

A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

Positive correlation Both variables change in the same direction As height increases, weight also increases
Negative correlation The variables change in opposite directions As coffee consumption increases, tiredness decreases
Zero correlation There is no relationship between the variables Coffee consumption is not correlated with height

Table of contents

Correlational vs experimental research, when to use correlational research, how to collect correlational data, how to analyse correlational data, correlation and causation, frequently asked questions about correlational research.

Correlational and experimental research both use quantitative methods to investigate relationships between variables. But there are important differences in how data is collected and the types of conclusions you can draw.

Correlational research Experimental research
Purpose Used to test strength of association between variables Used to test cause-and-effect relationships between variables
Variables Variables are only observed with no manipulation or intervention by researchers An is manipulated and a dependent variable is observed
Control Limited is used, so other variables may play a role in the relationship are controlled so that they can’t impact your variables of interest
Validity High : you can confidently generalise your conclusions to other populations or settings High : you can confidently draw conclusions about causation

Prevent plagiarism, run a free check.

Correlational research is ideal for gathering data quickly from natural settings. That helps you generalise your findings to real-life situations in an externally valid way.

There are a few situations where correlational research is an appropriate choice.

To investigate non-causal relationships

You want to find out if there is an association between two variables, but you don’t expect to find a causal relationship between them.

Correlational research can provide insights into complex real-world relationships, helping researchers develop theories and make predictions.

To explore causal relationships between variables

You think there is a causal relationship between two variables, but it is impractical, unethical, or too costly to conduct experimental research that manipulates one of the variables.

Correlational research can provide initial indications or additional support for theories about causal relationships.

To test new measurement tools

You have developed a new instrument for measuring your variable, and you need to test its reliability or validity .

Correlational research can be used to assess whether a tool consistently or accurately captures the concept it aims to measure.

There are many different methods you can use in correlational research. In the social and behavioural sciences, the most common data collection methods for this type of research include surveys, observations, and secondary data.

It’s important to carefully choose and plan your methods to ensure the reliability and validity of your results. You should carefully select a representative sample so that your data reflects the population you’re interested in without bias .

In survey research , you can use questionnaires to measure your variables of interest. You can conduct surveys online, by post, by phone, or in person.

Surveys are a quick, flexible way to collect standardised data from many participants, but it’s important to ensure that your questions are worded in an unbiased way and capture relevant insights.

Naturalistic observation

Naturalistic observation is a type of field research where you gather data about a behaviour or phenomenon in its natural environment.

This method often involves recording, counting, describing, and categorising actions and events. Naturalistic observation can include both qualitative and quantitative elements, but to assess correlation, you collect data that can be analysed quantitatively (e.g., frequencies, durations, scales, and amounts).

Naturalistic observation lets you easily generalise your results to real-world contexts, and you can study experiences that aren’t replicable in lab settings. But data analysis can be time-consuming and unpredictable, and researcher bias may skew the interpretations.

Secondary data

Instead of collecting original data, you can also use data that has already been collected for a different purpose, such as official records, polls, or previous studies.

Using secondary data is inexpensive and fast, because data collection is complete. However, the data may be unreliable, incomplete, or not entirely relevant, and you have no control over the reliability or validity of the data collection procedures.

After collecting data, you can statistically analyse the relationship between variables using correlation or regression analyses, or both. You can also visualise the relationships between variables with a scatterplot.

Different types of correlation coefficients and regression analyses are appropriate for your data based on their levels of measurement and distributions .

Correlation analysis

Using a correlation analysis, you can summarise the relationship between variables into a correlation coefficient : a single number that describes the strength and direction of the relationship between variables. With this number, you’ll quantify the degree of the relationship between variables.

The Pearson product-moment correlation coefficient, also known as Pearson’s r , is commonly used for assessing a linear relationship between two quantitative variables.

Correlation coefficients are usually found for two variables at a time, but you can use a multiple correlation coefficient for three or more variables.

Regression analysis

With a regression analysis , you can predict how much a change in one variable will be associated with a change in the other variable. The result is a regression equation that describes the line on a graph of your variables.

You can use this equation to predict the value of one variable based on the given value(s) of the other variable(s). It’s best to perform a regression analysis after testing for a correlation between your variables.

It’s important to remember that correlation does not imply causation . Just because you find a correlation between two things doesn’t mean you can conclude one of them causes the other, for a few reasons.

Directionality problem

If two variables are correlated, it could be because one of them is a cause and the other is an effect. But the correlational research design doesn’t allow you to infer which is which. To err on the side of caution, researchers don’t conclude causality from correlational studies.

Third variable problem

A confounding variable is a third variable that influences other variables to make them seem causally related even though they are not. Instead, there are separate causal links between the confounder and each variable.

In correlational research, there’s limited or no researcher control over extraneous variables . Even if you statistically control for some potential confounders, there may still be other hidden variables that disguise the relationship between your study variables.

Although a correlational study can’t demonstrate causation on its own, it can help you develop a causal hypothesis that’s tested in controlled experiments.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, December 05). Correlational Research | Guide, Design & Examples. Scribbr. Retrieved 16 September 2024, from https://www.scribbr.co.uk/research-methods/correlational-research-design/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, qualitative vs quantitative research | examples & methods.

Causal-Comparative vs. Correlational Research

What's the difference.

Causal-comparative research and correlational research are both types of quantitative research methods used in the field of social sciences. Causal-comparative research aims to determine the cause-and-effect relationship between variables by comparing groups that have been exposed to different conditions. On the other hand, correlational research focuses on examining the relationship between variables without manipulating them. While causal-comparative research allows researchers to make inferences about causality, correlational research only shows the strength and direction of the relationship between variables. Both methods have their strengths and limitations, and researchers must carefully consider which approach is most appropriate for their research question.

AttributeCausal-ComparativeCorrelational Research
GoalIdentify cause-effect relationshipsExamine relationships between variables
DesignCompares groups that already existMeasures variables as they naturally occur
ControlLess control over variablesLittle to no control over variables
Time FrameRetrospectiveCan be retrospective or prospective
InterpretationCan suggest causation but not prove itCannot imply causation

Further Detail

Introduction.

Research is a crucial aspect of the scientific method, allowing researchers to explore relationships between variables and draw conclusions based on evidence. Two common types of research designs used in social science research are causal-comparative and correlational research. While both approaches aim to understand relationships between variables, they differ in their methodologies and the types of conclusions that can be drawn.

Definition and Purpose

Causal-comparative research, also known as ex post facto research, involves studying the relationship between an independent variable and a dependent variable after the fact. This type of research aims to determine whether a cause-and-effect relationship exists between the variables, even though the researcher cannot manipulate the independent variable. On the other hand, correlational research focuses on examining the relationship between two or more variables without manipulating them. The purpose of correlational research is to identify patterns and associations between variables.

Methodology

In causal-comparative research, the researcher starts with the effect and works backward to identify potential causes. This involves comparing groups that differ on the independent variable to determine if there is a relationship with the dependent variable. The researcher may use statistical techniques to control for extraneous variables that could influence the results. In contrast, correlational research involves measuring the strength and direction of the relationship between variables using statistical analysis. The researcher does not manipulate the variables but observes how they naturally relate to each other.

Strengths and Limitations

One of the strengths of causal-comparative research is that it allows researchers to study variables that cannot be manipulated for ethical or practical reasons. For example, researchers can investigate the effects of gender or socioeconomic status on academic achievement without assigning participants to different groups. However, a limitation of this approach is that it does not establish a causal relationship between variables, only an association. Correlational research, on the other hand, is valuable for identifying relationships between variables that may not be apparent through experimental research. It can also generate hypotheses for further investigation. However, correlational research cannot determine causation, as there may be other variables at play.

Applications

Causal-comparative research is often used in educational settings to explore the impact of interventions or policies on student outcomes. Researchers may compare groups of students who have experienced different teaching methods to determine which approach is more effective. Correlational research is commonly used in psychology to study the relationship between variables such as personality traits and behavior. By examining correlations, researchers can gain insights into how different factors influence human behavior.

While causal-comparative and correlational research both have their strengths and limitations, they play important roles in advancing scientific knowledge. Causal-comparative research allows researchers to explore relationships between variables that cannot be manipulated, while correlational research identifies patterns and associations between variables. By understanding the differences between these two approaches, researchers can choose the most appropriate method for their research questions and contribute to the body of scientific evidence.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.2 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of nonexperimental research.

What Is Correlational Research?

Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms independent variable and dependent variable do not apply to this kind of research.

The other reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, Allen Kanner and his colleagues thought that the number of “daily hassles” (e.g., rude salespeople, heavy traffic) that people experience affects the number of physical and psychological symptoms they have (Kanner, Coyne, Schaefer, & Lazarus, 1981). But because they could not manipulate the number of daily hassles their participants experienced, they had to settle for measuring the number of daily hassles—along with the number of symptoms—using self-report questionnaires. Although the strong positive relationship they found between these two variables is consistent with their idea that hassles cause symptoms, it is also consistent with the idea that symptoms cause hassles or that some third variable (e.g., neuroticism) causes both.

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 7.2 “Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists” shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 7.2 Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. However, because some approaches to data collection are strongly associated with correlational research, it makes sense to discuss them here. The two we will focus on are naturalistic observation and archival data. A third, survey research, is discussed in its own chapter.

Naturalistic Observation

Naturalistic observation is an approach to data collection that involves observing people’s behavior in the environment in which it typically occurs. Thus naturalistic observation is a type of field research (as opposed to a type of laboratory research). It could involve observing shoppers in a grocery store, children on a school playground, or psychiatric inpatients in their wards. Researchers engaged in naturalistic observation usually make their observations as unobtrusively as possible so that participants are often not aware that they are being studied. Ethically, this is considered to be acceptable if the participants remain anonymous and the behavior occurs in a public setting where people would not normally have an expectation of privacy. Grocery shoppers putting items into their shopping carts, for example, are engaged in public behavior that is easily observable by store employees and other shoppers. For this reason, most researchers would consider it ethically acceptable to observe them for a study. On the other hand, one of the arguments against the ethicality of the naturalistic observation of “bathroom behavior” discussed earlier in the book is that people have a reasonable expectation of privacy even in a public restroom and that this expectation was violated.

Researchers Robert Levine and Ara Norenzayan used naturalistic observation to study differences in the “pace of life” across countries (Levine & Norenzayan, 1999). One of their measures involved observing pedestrians in a large city to see how long it took them to walk 60 feet. They found that people in some countries walked reliably faster than people in other countries. For example, people in the United States and Japan covered 60 feet in about 12 seconds on average, while people in Brazil and Romania took close to 17 seconds.

Because naturalistic observation takes place in the complex and even chaotic “real world,” there are two closely related issues that researchers must deal with before collecting data. The first is sampling. When, where, and under what conditions will the observations be made, and who exactly will be observed? Levine and Norenzayan described their sampling process as follows:

Male and female walking speed over a distance of 60 feet was measured in at least two locations in main downtown areas in each city. Measurements were taken during main business hours on clear summer days. All locations were flat, unobstructed, had broad sidewalks, and were sufficiently uncrowded to allow pedestrians to move at potentially maximum speeds. To control for the effects of socializing, only pedestrians walking alone were used. Children, individuals with obvious physical handicaps, and window-shoppers were not timed. Thirty-five men and 35 women were timed in most cities. (p. 186)

Precise specification of the sampling process in this way makes data collection manageable for the observers, and it also provides some control over important extraneous variables. For example, by making their observations on clear summer days in all countries, Levine and Norenzayan controlled for effects of the weather on people’s walking speeds.

The second issue is measurement. What specific behaviors will be observed? In Levine and Norenzayan’s study, measurement was relatively straightforward. They simply measured out a 60-foot distance along a city sidewalk and then used a stopwatch to time participants as they walked over that distance. Often, however, the behaviors of interest are not so obvious or objective. For example, researchers Robert Kraut and Robert Johnston wanted to study bowlers’ reactions to their shots, both when they were facing the pins and then when they turned toward their companions (Kraut & Johnston, 1979). But what “reactions” should they observe? Based on previous research and their own pilot testing, Kraut and Johnston created a list of reactions that included “closed smile,” “open smile,” “laugh,” “neutral face,” “look down,” “look away,” and “face cover” (covering one’s face with one’s hands). The observers committed this list to memory and then practiced by coding the reactions of bowlers who had been videotaped. During the actual study, the observers spoke into an audio recorder, describing the reactions they observed. Among the most interesting results of this study was that bowlers rarely smiled while they still faced the pins. They were much more likely to smile after they turned toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

A woman bowling

Naturalistic observation has revealed that bowlers tend to smile when they turn away from the pins and toward their companions, suggesting that smiling is not purely an expression of happiness but also a form of social communication.

sieneke toering – bowling big lebowski style – CC BY-NC-ND 2.0.

When the observations require a judgment on the part of the observers—as in Kraut and Johnston’s study—this process is often described as coding . Coding generally requires clearly defining a set of target behaviors. The observers then categorize participants individually in terms of which behavior they have engaged in and the number of times they engaged in each behavior. The observers might even record the duration of each behavior. The target behaviors must be defined in such a way that different observers code them in the same way. This is the issue of interrater reliability. Researchers are expected to demonstrate the interrater reliability of their coding procedure by having multiple raters code the same behaviors independently and then showing that the different observers are in close agreement. Kraut and Johnston, for example, video recorded a subset of their participants’ reactions and had two observers independently code them. The two observers showed that they agreed on the reactions that were exhibited 97% of the time, indicating good interrater reliability.

Archival Data

Another approach to correlational research is the use of archival data , which are data that have already been collected for some other purpose. An example is a study by Brett Pelham and his colleagues on “implicit egotism”—the tendency for people to prefer people, places, and things that are similar to themselves (Pelham, Carvallo, & Jones, 2005). In one study, they examined Social Security records to show that women with the names Virginia, Georgia, Louise, and Florence were especially likely to have moved to the states of Virginia, Georgia, Louisiana, and Florida, respectively.

As with naturalistic observation, measurement can be more or less straightforward when working with archival data. For example, counting the number of people named Virginia who live in various states based on Social Security records is relatively straightforward. But consider a study by Christopher Peterson and his colleagues on the relationship between optimism and health using data that had been collected many years before for a study on adult development (Peterson, Seligman, & Vaillant, 1988). In the 1940s, healthy male college students had completed an open-ended questionnaire about difficult wartime experiences. In the late 1980s, Peterson and his colleagues reviewed the men’s questionnaire responses to obtain a measure of explanatory style—their habitual ways of explaining bad events that happen to them. More pessimistic people tend to blame themselves and expect long-term negative consequences that affect many aspects of their lives, while more optimistic people tend to blame outside forces and expect limited negative consequences. To obtain a measure of explanatory style for each participant, the researchers used a procedure in which all negative events mentioned in the questionnaire responses, and any causal explanations for them, were identified and written on index cards. These were given to a separate group of raters who rated each explanation in terms of three separate dimensions of optimism-pessimism. These ratings were then averaged to produce an explanatory style score for each participant. The researchers then assessed the statistical relationship between the men’s explanatory style as college students and archival measures of their health at approximately 60 years of age. The primary result was that the more optimistic the men were as college students, the healthier they were as older men. Pearson’s r was +.25.

This is an example of content analysis —a family of systematic approaches to measurement using complex archival data. Just as naturalistic observation requires specifying the behaviors of interest and then noting them as they occur, content analysis requires specifying keywords, phrases, or ideas and then finding all occurrences of them in the data. These occurrences can then be counted, timed (e.g., the amount of time devoted to entertainment topics on the nightly news show), or analyzed in a variety of other ways.

Key Takeaways

  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlational research is not defined by where or how the data are collected. However, some approaches to data collection are strongly associated with correlational research. These include naturalistic observation (in which researchers observe people’s behavior in the context in which it normally occurs) and the use of archival data that were already collected for some other purpose.

Discussion: For each of the following, decide whether it is most likely that the study described is experimental or correlational and explain why.

  • An educational researcher compares the academic performance of students from the “rich” side of town with that of students from the “poor” side of town.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.

Kanner, A. D., Coyne, J. C., Schaefer, C., & Lazarus, R. S. (1981). Comparison of two modes of stress measurement: Daily hassles and uplifts versus major life events. Journal of Behavioral Medicine, 4 , 1–39.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Non-Experimental Research

29 Correlational Research

Learning objectives.

  • Define correlational research and give several examples.
  • Explain why a researcher might choose to conduct correlational research rather than experimental research or another type of non-experimental research.
  • Interpret the strength and direction of different correlation coefficients.
  • Explain why correlation does not imply causation.

What Is Correlational Research?

Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical relationships between variables would choose to conduct a correlational study rather than an experiment. The first is that they do not believe that the statistical relationship is a causal one or are not interested in causal relationships. Recall two goals of science are to describe and to predict and the correlational research strategy allows researchers to achieve both of these goals. Specifically, this strategy can be used to describe the strength and direction of the relationship between two variables and if there is a relationship between the variables then the researchers can use scores on one variable to predict scores on the other (using a statistical technique called regression, which is discussed further in the section on Complex Correlation in this chapter).

Another reason that researchers would choose to use a correlational study rather than an experiment is that the statistical relationship of interest is thought to be causal, but the researcher  cannot manipulate the independent variable because it is impossible, impractical, or unethical. For example, while a researcher might be interested in the relationship between the frequency people use cannabis and their memory abilities they cannot ethically manipulate the frequency that people use cannabis. As such, they must rely on the correlational research strategy; they must simply measure the frequency that people use cannabis and measure their memory abilities using a standardized test of memory and then determine whether the frequency people use cannabis is statistically related to memory test performance. 

Correlation is also used to establish the reliability and validity of measurements. For example, a researcher might evaluate the validity of a brief extraversion test by administering it to a large group of participants along with a longer extraversion test that has already been shown to be valid. This researcher might then check to see whether participants’ scores on the brief test are strongly correlated with their scores on the longer one. Neither test score is thought to cause the other, so there is no independent variable to manipulate. In fact, the terms  independent variable  and dependent variabl e  do not apply to this kind of research.

Another strength of correlational research is that it is often higher in external validity than experimental research. Recall there is typically a trade-off between internal validity and external validity. As greater controls are added to experiments, internal validity is increased but often at the expense of external validity as artificial conditions are introduced that do not exist in reality. In contrast, correlational studies typically have low internal validity because nothing is manipulated or controlled but they often have high external validity. Since nothing is manipulated or controlled by the experimenter the results are more likely to reflect relationships that exist in the real world.

Finally, extending upon this trade-off between internal and external validity, correlational research can help to provide converging evidence for a theory. If a theory is supported by a true experiment that is high in internal validity as well as by a correlational study that is high in external validity then the researchers can have more confidence in the validity of their theory. As a concrete example, correlational studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] .

Does Correlational Research Always Involve Quantitative Variables?

A common misconception among beginning researchers is that correlational research must involve two quantitative variables, such as scores on two extraversion tests or the number of daily hassles and number of symptoms people have experienced. However, the defining feature of correlational research is that the two variables are measured—neither one is manipulated—and this is true regardless of whether the variables are quantitative or categorical. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a correlational study because the researcher did not manipulate the students’ nationalities. The same is true of the study by Cacioppo and Petty comparing college faculty and factory workers in terms of their need for cognition. It is a correlational study because the researchers did not manipulate the participants’ occupations.

Figure 6.2 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a correlational study because it is unclear whether the independent variable was manipulated. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then it is an experiment. If the researcher simply asked participants whether they made daily to-do lists, then it is a correlational study. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a correlational study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead (the directionality problem). Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed (the third-variable problem). The crucial point is that what defines a study as experimental or correlational is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. What defines a study is how the study is conducted.

case study vs correlational study

Data Collection in Correlational Research

Again, the defining feature of correlational research is that neither variable is manipulated. It does not matter how or where the variables are measured. A researcher could have participants come to a laboratory to complete a computerized backward digit span task and a computerized risky decision-making task and then assess the relationship between participants’ scores on the two tasks. Or a researcher could go to a shopping mall to ask people about their attitudes toward the environment and their shopping habits and then assess the relationship between these two variables. Both of these studies would be correlational because no independent variable is manipulated. 

Correlations Between Quantitative Variables

Correlations between quantitative variables are often presented using scatterplots . Figure 6.3 shows some hypothetical data on the relationship between the amount of stress people are under and the number of physical symptoms they have. Each point in the scatterplot represents one person’s score on both variables. For example, the circled point in Figure 6.3 represents a person whose stress score was 10 and who had three physical symptoms. Taking all the points into account, one can see that people under more stress tend to have more physical symptoms. This is a good example of a positive relationship , in which higher scores on one variable tend to be associated with higher scores on the other. In other words, they move in the same direction, either both up or both down. A negative relationship is one in which higher scores on one variable tend to be associated with lower scores on the other. In other words, they move in opposite directions. There is a negative relationship between stress and immune system functioning, for example, because higher stress is associated with lower immune system functioning.

Figure 6.3 Scatterplot Showing a Hypothetical Positive Relationship Between Stress and Number of Physical Symptoms

The strength of a correlation between quantitative variables is typically measured using a statistic called  Pearson’s Correlation Coefficient (or Pearson's  r ) . As Figure 6.4 shows, Pearson’s r ranges from −1.00 (the strongest possible negative relationship) to +1.00 (the strongest possible positive relationship). A value of 0 means there is no relationship between the two variables. When Pearson’s  r  is 0, the points on a scatterplot form a shapeless “cloud.” As its value moves toward −1.00 or +1.00, the points come closer and closer to falling on a single straight line. Correlation coefficients near ±.10 are considered small, values near ± .30 are considered medium, and values near ±.50 are considered large. Notice that the sign of Pearson’s  r  is unrelated to its strength. Pearson’s  r  values of +.30 and −.30, for example, are equally strong; it is just that one represents a moderate positive relationship and the other a moderate negative relationship. With the exception of reliability coefficients, most correlations that we find in Psychology are small or moderate in size. The website http://rpsychologist.com/d3/correlation/ , created by Kristoffer Magnusson, provides an excellent interactive visualization of correlations that permits you to adjust the strength and direction of a correlation while witnessing the corresponding changes to the scatterplot.

Figure 6.4 Range of Pearson’s r, From −1.00 (Strongest Possible Negative Relationship), Through 0 (No Relationship), to +1.00 (Strongest Possible Positive Relationship)

There are two common situations in which the value of Pearson’s  r  can be misleading. Pearson’s  r  is a good measure only for linear relationships, in which the points are best approximated by a straight line. It is not a good measure for nonlinear relationships, in which the points are better approximated by a curved line. Figure 6.5, for example, shows a hypothetical relationship between the amount of sleep people get per night and their level of depression. In this example, the line that best approximates the points is a curve—a kind of upside-down “U”—because people who get about eight hours of sleep tend to be the least depressed. Those who get too little sleep and those who get too much sleep tend to be more depressed. Even though Figure 6.5 shows a fairly strong relationship between depression and sleep, Pearson’s  r  would be close to zero because the points in the scatterplot are not well fit by a single straight line. This means that it is important to make a scatterplot and confirm that a relationship is approximately linear before using Pearson’s  r . Nonlinear relationships are fairly common in psychology, but measuring their strength is beyond the scope of this book.

Figure 6.5 Hypothetical Nonlinear Relationship Between Sleep and Depression

The other common situations in which the value of Pearson’s  r  can be misleading is when one or both of the variables have a limited range in the sample relative to the population. This problem is referred to as  restriction of range . Assume, for example, that there is a strong negative correlation between people’s age and their enjoyment of hip hop music as shown by the scatterplot in Figure 6.6. Pearson’s  r  here is −.77. However, if we were to collect data only from 18- to 24-year-olds—represented by the shaded area of Figure 6.6—then the relationship would seem to be quite weak. In fact, Pearson’s  r  for this restricted range of ages is 0. It is a good idea, therefore, to design studies to avoid restriction of range. For example, if age is one of your primary variables, then you can plan to collect data from people of a wide range of ages. Because restriction of range is not always anticipated or easily avoidable, however, it is good practice to examine your data for possible restriction of range and to interpret Pearson’s  r  in light of it. (There are also statistical methods to correct Pearson’s  r  for restriction of range, but they are beyond the scope of this book).

Figure 6.6 Hypothetical Data Showing How a Strong Overall Correlation Can Appear to Be Weak When One Variable Has a Restricted Range

Correlation Does Not Imply Causation

You have probably heard repeatedly that “Correlation does not imply causation.” An amusing example of this comes from a 2012 study that showed a positive correlation (Pearson’s r = 0.79) between the per capita chocolate consumption of a nation and the number of Nobel prizes awarded to citizens of that nation [2] . It seems clear, however, that this does not mean that eating chocolate causes people to win Nobel prizes, and it would not make sense to try to increase the number of Nobel prizes won by recommending that parents feed their children more chocolate.

There are two reasons that correlation does not imply causation. The first is called the  directionality problem . Two variables,  X  and  Y , can be statistically related because X  causes  Y  or because  Y  causes  X . Consider, for example, a study showing that whether or not people exercise is statistically related to how happy they are—such that people who exercise are happier on average than people who do not. This statistical relationship is consistent with the idea that exercising causes happiness, but it is also consistent with the idea that happiness causes exercise. Perhaps being happy gives people more energy or leads them to seek opportunities to socialize with others by going to the gym. The second reason that correlation does not imply causation is called the  third-variable problem . Two variables,  X  and  Y , can be statistically related not because  X  causes  Y , or because  Y  causes  X , but because some third variable,  Z , causes both  X  and  Y . For example, the fact that nations that have won more Nobel prizes tend to have higher chocolate consumption probably reflects geography in that European countries tend to have higher rates of per capita chocolate consumption and invest more in education and technology (once again, per capita) than many other countries in the world. Similarly, the statistical relationship between exercise and happiness could mean that some third variable, such as physical health, causes both of the others. Being physically healthy could cause people to exercise and cause them to be happier. Correlations that are a result of a third-variable are often referred to as  spurious correlations .

Some excellent and amusing examples of spurious correlations can be found at http://www.tylervigen.com  (Figure 6.7  provides one such example).

case study vs correlational study

“Lots of Candy Could Lead to Violence”

Although researchers in psychology know that correlation does not imply causation, many journalists do not. One website about correlation and causation, http://jonathan.mueller.faculty.noctrl.edu/100/correlation_or_causation.htm , links to dozens of media reports about real biomedical and psychological research. Many of the headlines suggest that a causal relationship has been demonstrated when a careful reading of the articles shows that it has not because of the directionality and third-variable problems.

One such article is about a study showing that children who ate candy every day were more likely than other children to be arrested for a violent offense later in life. But could candy really “lead to” violence, as the headline suggests? What alternative explanations can you think of for this statistical relationship? How could the headline be rewritten so that it is not misleading?

As you have learned by reading this book, there are various ways that researchers address the directionality and third-variable problems. The most effective is to conduct an experiment. For example, instead of simply measuring how much people exercise, a researcher could bring people into a laboratory and randomly assign half of them to run on a treadmill for 15 minutes and the rest to sit on a couch for 15 minutes. Although this seems like a minor change to the research design, it is extremely important. Now if the exercisers end up in more positive moods than those who did not exercise, it cannot be because their moods affected how much they exercised (because it was the researcher who used random assignment to determine how much they exercised). Likewise, it cannot be because some third variable (e.g., physical health) affected both how much they exercised and what mood they were in. Thus experiments eliminate the directionality and third-variable problems and allow researchers to draw firm conclusions about causal relationships.

Media Attributions

  • Nicholas Cage and Pool Drownings  © Tyler Viegen is licensed under a  CC BY (Attribution)  license
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564. ↵

A graph that presents correlations between two quantitative variables, one on the x-axis and one on the y-axis. Scores are plotted at the intersection of the values on each axis.

A relationship in which higher scores on one variable tend to be associated with higher scores on the other.

A relationship in which higher scores on one variable tend to be associated with lower scores on the other.

A statistic that measures the strength of a correlation between quantitative variables.

When one or both variables have a limited range in the sample relative to the population, making the value of the correlation coefficient misleading.

The problem where two variables, X  and  Y , are statistically related either because X  causes  Y, or because  Y  causes  X , and thus the causal direction of the effect cannot be known.

Two variables, X and Y, can be statistically related not because X causes Y, or because Y causes X, but because some third variable, Z, causes both X and Y.

Correlations that are a result not of the two variables being measured, but rather because of a third, unmeasured, variable that affects both of the measured variables.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Banner

Research Methods

  • Research Process
  • Research Design & Method

Qualitative vs. Quantiative

Correlational vs. experimental, empirical vs. non-empirical.

  • Survey Research
  • Survey & Interview Data Analysis
  • Resources for Research
  • Ethical Considerations in Research

Qualitative Research gathers data about lived experiences, emotions or behaviors, and the meanings individuals attach to them. It assists in enabling researchers to gain a better understanding of complex concepts, social interactions or cultural phenomena. This type of research is useful in the exploration of how or why things have occurred, interpreting events and describing actions.

Quantitative Research gathers numerical data which can be ranked, measured or categorized through statistical analysis. It assists with uncovering patterns or relationships, and for making generalizations. This type of research is useful for finding out how many, how much, how often, or to what extent.

: can be structured, semi-structured or unstructured. : the same questions asked to large numbers of participants (e.g., Likert scale response) (see book below).
: several participants discussing a topic or set of questions. : test hypothesis in controlled conditions (see video below).
: can be on-site, in-context, or role play (see video below). : counting the number of times a phenomenon occurs or coding observed data in order to translate it into numbers.
: analysis of correspondence or reports. : using numerical data from financial reports or counting word occurrences.
: memories told to a researcher.

Correlational Research cannot determine causal relationships. Instead they examine relationships between variables.

Experimental Research can establish causal relationship and variables can be manipulated.

Empirical Studies are based on evidence. The data is collected through experimentation or observation.

Non-empirical Studies do not require researchers to collect first-hand data.

  • << Previous: Research Design & Method
  • Next: Survey Research >>
  • Last Updated: Apr 5, 2023 4:19 PM
  • URL: https://semo.libguides.com/ResearchMethods

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.12(1); 2020 Jan

Logo of cureus

Observational Study Designs: Synopsis for Selecting an Appropriate Study Design

Assad a rezigalla.

1 Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, SAU

The selection of a study design is the most critical step in the research methodology. Crucial factors should be considered during the selection of the study design, which is the formulated research question, as well as the method of participant selection. Different study designs can be applied to the same research question(s). Research designs are classified as qualitative, quantitative, and mixed design. Observational design occupies the middle and lower parts of the hierarchy of evidence-based pyramid. The observational design is subdivided into descriptive, including cross-sectional, case report or case series, and correlational, and analytic which includes cross-section, case-control, and cohort studies. Each research design has its uses and points of strength and limitations. The aim of this article to provide a simplified approach for the selection of descriptive study design.

Introduction and background

A research design is defined as the “set up to decide on, among other issues, how to collect further data, analyze and interpret them, and finally, to provide an answer to the question” [ 1 ]. The primary objective of a research design is to guarantee that the collected evidence allows the answering of the initial question(s) as clearly as possible [ 2 ]. Various study designs have been described in the literature [ 1 - 3 ]. Each of them deals with the specific type of research or research questions and has points of strength and weakness. Broadly, research designs are classified into qualitative and quantitative research and mixed methods [ 3 ]. The quantitative study design is subdivided into descriptive versus analytical study designs or as observational versus interventional (Figure ​ (Figure1). 1 ). Descriptive designs occupy the middle and lower parts of the hierarchy of evidence-based medicine pyramid. Study designs are organized in a hierarchy beginning from the basic "case report" to the highly valued "randomised clinical trial" [ 4 - 5 ].

An external file that holds a picture, illustration, etc.
Object name is cureus-0012-00000006692-i01.jpg

Case report

The case report describes an individual case or cases in their natural settings. Also, it describes unrecognized syndromes or variants, abnormal findings or outcomes, or association between risk factors and disease. It is the lowest level and the first line of evidence and usually deals with the newly emerging issues and ideas (Table ​ (Table1) 1 ) [ 4 , 6 - 10 ].

Case Report Design
Strengths [ , - ]Limitations [ , ]
Identification of new, abnormal, or variant presentation of diseases.Lack of generalizability and implications.
Have significant educational value.Uncontrolled.
Help in generating a hypothesis.Selection bias.
Researching rare or uncommon disorders.No epidemiological indices (parameters).
In-depth narrative case studies.Over-interpretation.
Flexible structure.Confidentiality.
 Causes may have other explanations.

Case series

A case series is a report on data from a subject group (multiple patients) without control [ 6 , 11 - 12 ]. Commonly, this design is used for the illustration of novel, unusual, or atypical features identified in medical practice [ 6 ]. The investigator is governed by the availability and accuracy of the records, which can cause biases [ 13 - 14 ]. Bias in a case series can be decreased through consecutive patient enrollment and predefined inclusion and exclusion criteria, explicit specification of study duration, and enrollment of participants (Table 2 ) [ 11 - 12 ].

Case Series
Strengths [ , - ]Limitations [ , - ]
Educational.Selection bias.
It described the outcomes of novel treatments.Lack of control.
The gained information can be used to generate hypotheses.Difficult to compare different cases.
Provide strong evidence with multiple cases.The result may not be generalized.
Helpful in refining new techniques or treatment protocols.Immediate follow-up.
Identify the rare manifestations of a disease or drug.Have a lower position on the hierarchy of evidence.
Feasible study designs. 

Correlational study design

Correlational studies (ecologic studies) explore the statistical relationships between the outcome of interest in population and estimate the exposures. It deals with the community rather than in individual cases. The correlational study design can compare two or more relevant variables and reports the association between them without controlling the variables. The aim of correlational study design or research is to uncover any types of systematic relationships between the studied variables. Ecological studies are often used to measure the prevalence and incidence of disease, mainly when the disease is rare. The populations compared can be defined in several ways, such as geographical, time trends, migrants, longitudinal, occupation, and social class. It should be considered that in ecological studies, the results are presented at the population (group) level rather than individuals. Ecological studies do not provide information about the degree or extent of exposure or outcome of interest for particular individuals within the study group (Table  3 ) [ 7 ,  15 - 16 ]. For example, we do not know whether those individuals who died in the study group under observation had higher exposure than those remained alive.

Correlational study design
Strengths [ - ]Limitations [ - ]
Quick and easy.Correlations do not equal causation.
Describes the strength of relationships.Correlations can be misused.
It is used to assess behavior.Cannot be used to identify causal relationships
Predictor variables cannot be manipulated.It cannot provide certain information.
Uses of data records. 

Cross-sectional study design

The cross-sectional study examines the association between exposures and outcomes on a snap of time. The assessed associations are guided by sound hypotheses and seen as hypothesis-generating [ 17 ]. This design can be descriptive (when dealing with prevalence or survey) or analytic (when comparing groups) [ 17 - 18 ]. The selection of participants in a cross-sectional study design depends on the predefined inclusion and exclusion criteria [ 18 - 19 ]. This method of selection limits randomization (Table 4 ).

Cross-sectional Study Design
Strengths of [ , - ]Limitations [ , - ]
Fast and inexpensive.Difficult to derive causal relationships.
Useful for planning monitoring and evaluation of public health.Prone to certain types of biases.
Efficient in studying rare diseases.The response rate is critical.
There are seldom ethical difficulties.The temporality of the design.
It can assess multiple outcomes.No clear demarcation between exposure and effect.
Population-based surveys. 
Estimation of prevalence. 
Calculation of odds ratio. 
The baseline for a cohort study. 

Case-control study

A case-control study is an observational analytic retrospective study design [ 12 ]. It starts with the outcome of interest (referred to as cases) and looks back in time for exposures that likely caused the outcome of interest [ 13 , 20 ]. This design compares two groups of participants - those with the outcome of interest and the matched control [ 12 ]. The controls should match the group of interest in most of the aspects, except for the outcome of interest [ 18 ]. The controls should be selected from the same localization or setting of the cases [ 13 , 21 - 22 ]. Case-control studies can determine the relative importance of a predictor variable about the presence or absence of the disease (Table ​ (Table5 5 ).

Case-control Study Design
Strengths [ , - ]Limitations [ , - ]
Relatively fast in conduction in comparison with prospective cohort studies.Not useful for rare exposures.
Comparatively, needs few participants and fewer resources.Cannot estimate the incidence.
Useful for testing hypotheses. Affect by observation and recall bias.
Useful in studying multiple exposures in the same outcome. 
Can study the association of risk factors and outcomes in outbreak investigations. 
It can generate much information from relatively few participants with unusual cases.  
Feasible in diseases with a long latent period. 

Cohort study design

The cohort study design is classified as an observational analytic study design. This design compares two groups, with exposure of interest and control one [ 12 , 18 , 22 - 24 ].

Cohort design starts with exposure of interest comparing them to non-exposed participants at the time of study initiation [ 18 , 22 , 24 ]. The non-exposed serve as external control. A cohort design can be either prospective [ 18 ] or retrospective [ 12 , 20 , 24 - 25 ]. In prospective cohort studies, the investigator measures a variety of variables that might be a risk factor or relevant to the development of the outcome of interest. Over time, the participants are observed to detect whether they develop the outcome of interest or not. In this case, the participants who do not develop the outcome of interest can act as internal controls. Retrospective cohort studies use data records that were documented for other purposes. The study duration may vary according to the commencement of data recording. Completion of the study is limited to the analysis of the data [ 18 , 22 , 24 ]. In 2016, Setia reported that, in some instances, cohort design could not be well-defined as prospective or retrospective; this happened when retrospective and prospective data were collected from the same participants (Table ​ (Table6) 6 ) [ 24 ].

Cohort Study Design
Strengths [ , , ]Limitations [ , , ]
The temporality between exposure and outcome is well-defined.Inability to control all the confounding variables.
Study multiple outcomes in the same exposure.A prospective cohort design is time-consuming and costly.
Efficient in rare outcomes if the rare outcome is common in some exposures.Variables in the retrospective cohort study may not be very accurate since the collected data was not intended for research purposes.
Accurate measure of variables in prospective cohort design.May not be very useful in case of rare outcomes.
The retrospective cohort is relatively fast in conduction and inexpensive.In the prospective cohort design, the loss of follow-up is a critical problem. 
Lack of bias in the retrospective cohort because the collected data was not initially for research. Retrospective cohorts may be affected by recall bias.
It can measure potential causes and relative risk.Ethical problems.

The selection of the study design is the most critical step in research methodology [ 4 , 26 ]. An appropriate study design guarantees the achievement of the research objectives. The crucial factors that should be considered in the selection of the study design are the formulated research question, as well as the method of sampling [ 4 , 27 ]. The study design determines the way of sampling and data analysis [ 4 ]. The selection of a research study design depends on many factors. Two crucial points that should be noted during the process selection include different study designs that may be applicable for the same research question(s) and researches may have grey areas in which they have different views about the type of study design [ 4 ].

Conclusions

The selection of appropriate study designs for research is critical. Many research designs can apply to the same research. Appropriate selection guarantees that the author will achieve the research objectives and address the research questions.

Acknowledgments

The author would like to acknowledge Dr. M. Abass, Dr. I. Eljack, Dr. K. Salih, Dr. I. Jack, and my colleagues. Special thanks and appreciation to the college dean and administration of the College of Medicine, University of Bisha (Bisha, Saudi Arabia) for help and allowing the use of facilities.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

Seriosity

Case Study Method Advantages and Disadvantages: Essential Insights for Success

seriosity featured image

Ever wondered why the case study method is so popular in fields like business, psychology, and education? It’s because case studies offer a unique way to dive deep into real-world scenarios, allowing you to explore complex issues in a detailed manner. By examining specific instances, you gain insights that are often missed in broader surveys or theoretical research.

But like any other research method, the case study approach has its pros and cons. While it provides in-depth understanding and rich qualitative data, it can also be time-consuming and sometimes lacks generalizability. So, how do you decide if it’s the right method for your research? Let’s explore the advantages and disadvantages to help you make an informed choice.

Key Takeaways

  • In-Depth Insights: Case studies provide comprehensive and detailed data by exploring specific real-world scenarios, often revealing nuances and contexts missed by broader research methods.
  • Qualitative and Quantitative Data: This method involves gathering a mix of qualitative and quantitative data, enhancing the richness and depth of the research.
  • Challenges of Generalizability: While case studies offer in-depth insight, their findings are often specific to the case and may not be broadly applicable to other settings or situations.
  • Time-Consuming Process: Conducting case studies requires significant time and effort, which can be a limitation for busy entrepreneurs and researchers needing quick insights.
  • Strategic Application: Use case studies when exploring unique business models, understanding specific customer behaviors, or analyzing specific scenarios, but employ strategies like diversifying sources and effective time management to mitigate potential drawbacks.

Understanding the Case Study Method

Curious about how the case study method can enhance your entrepreneurial journey? Let’s break it down.

What Is a Case Study?

A case study is an in-depth investigation of a single entity, such as an individual, group, organization, or event. By focusing on real-life contexts, it provides comprehensive insights that can unveil unique patterns typically missed by broader research methods. This method involves a mix of qualitative and quantitative data collection techniques, including interviews, observations, and document analysis.

How Case Studies Are Used in Research

Researchers use case studies extensively across various fields due to their flexibility and depth of analysis. In business, they help you understand market trends, customer behavior, and effective strategies by examining real-life examples. Successful startups often serve as case studies, providing valuable lessons for budding entrepreneurs. In education, case studies contextualize theories, making learning more relatable. In psychology, they offer detailed explorations of specific issues or treatments, which can inform broader practices.

Controlled Chaos As Seen on Shark Tank Detangling Comb Hair

  • WHY IT'S SPECIAL - Discover the convenience of a 2-in-1 hair pick! Our bamboo eco-friendly and sustainable hair pick is gentle on curls, 20% larger than those cheap plastic picks (that often cause more damage), and it has no chemicals. Our hair comb has a size that matches

Drop Stop - The Original Patented Car Seat Gap Filler

  • Drop Stop provides 100% Gap Coverage in front of, surrounding and behind seat belt catch. Drop Stop attaches to the seat belt catch via built in slot; moves with the seat and no need to readjust or reinstall.
  • As Seen on Shark Tank, Drop Stop blocks that annoying

The Original Little ELF Gift Wrap Cutter (2-Pack) | As

  • Gift Wrapping Made Fun and Easy! - As Seen on Shark Tank, Little ELF Gift Wrap Cutter has revolutionized the gift wrap industry by making it easier for people to cut wrapping paper. Little ELF is a patented device that is the most efficient, safe, and easy tool

Wad-Free Bed Sheet Detangler Reduces Laundry Tangles - As Seen

  • Wad-Free for Bed Sheets reduces the tangling, twisting, and balling-up of bed sheets in both the washing machine and the dryer. Drastically reduces wet items getting trapped in the sheets. Loads come out cleaner, helps the washer drum stay balanced, sheets dry faster with fewer wrinkles. Saves time

Ice Shaker 26Oz Black Stainless Steel Protein Shaker, Leak-Proof, Insulated

  • KEEPS DRINKS ICE COLD FOR 30+ HOURS: The double wall insulated design prevents heat from getting in and cold from getting out, keeping your ice-cold beverage ice-cold for 30+ hours.
  • NOISE-FREE AGITATOR: The patented agitator twists on and off the lid, makes no noise when shaking, and is

TeethRefreshers Reusable Travel Toothbrush + Toothpaste - Peppermint I Natural

  • 2-in-1 TEETH CLEANING: Elevate your oral care routine with our multi-patented 2-in-1 TeethRefreshers, the only travel toothbrush and toothpaste duo designed for the a busy, social on-the-go lifestyle. Whether you're a wine enthusiast, a frequent business traveler or a busy mom, our patented solution ensures your smile remains

Advantages of the Case Study Method

The case study method stands out in business and entrepreneurial research, offering in-depth insights and practical lessons.

In-Depth Data Collection

You gather comprehensive data through case studies, using techniques like interviews, observations, and document reviews. By employing both qualitative and quantitative methods, you gain a thorough understanding of real-world applications and business strategies. This approach lets you explore each aspect of a business scenario, providing detailed evidence for your insights.

Uncovering Nuances and Context

Case studies reveal unique patterns and hidden details often missed by broader research methods. When you analyze a successful startup, you uncover specific strategies that contributed to its success. This method helps you understand the context behind decisions, market conditions, and customer behavior, offering actionable insights for your entrepreneurial endeavors. By focusing on the nuances, you can apply these learnings to your own business and side-hustles, refining your strategies for better outcomes.

Disadvantages of the Case Study Method

Despite the many advantages, the case study method also presents several challenges that can impact its effectiveness in business contexts.

DUDE Bombs - Toilet Stank Eliminator - 1 Pack, 40

  • BEFORE YOU DROP A BOMB, DROP A DUDE BOMB: When you use the all mighty DUDE Bombs, you can literally walk around like your poop don't stank. Just drop one in the toilet before you sit down, let it rip, and enjoy your deuce with confidence
  • 2-IN-1: DUDE

BUG BITE THING Suction Tool - Bug Bites and Bee/Wasp

  • Removes insect venom, saliva, and other irritants left under the skin using suction
  • By removing the irritant, the body stops producing the reaction that is causing you to itch & swell
  • Works on: mosquitoes, bees, wasps, biting flies, no-see-ums, chiggers, sea lice & more
  • Compact, lightweight, reusable and

Stardrops - The Pink Stuff - The Miracle All Purpose

  • WORKS LIKE A MIRACLE ! -The Pink Stuff paste made cleaning easier like never before, While saving you time, space & money Lasts way longer than any other liquid detergent
  • GREAT FOR ALL SURFACES -Remove stains,Grease or grime from just about anything, Stoves, Kitchen Floors,metal, ceramics, porcelain, marble,

ProsourceFit Acupressure Mat and Pillow Set for Back/Neck Pain Relief

  • PAIN REDUCTION – Naturally reduce muscle tension, back pain and headaches by simply laying on the mat daily for 10-30 minutes. Acupressure releases endorphins that block pain and helps relax the muscles massaging your back, neck and feet.
  • FULL SUPPORT – Both cushioned foam mats are large enough

Limitations in Generalizability

Case studies provide in-depth insights into specific scenarios; however, they often lack broad applicability. When focusing on a single business or entrepreneur, findings may not represent the experiences of others. For instance, a strategy that worked for a particular online startup might not yield the same results for a different venture due to varying market conditions and business models. Limited sample sizes in case studies further constrain their generalizability, making it difficult to formulate universal conclusions or industry-wide trends.

Time-Consuming Nature

Conducting case studies requires significant time and effort. Collecting data through interviews, observations, and document reviews can be particularly exhaustive. As an entrepreneur juggling multiple side-hustles, dedicating time to such detailed research might detract from hands-on activities that directly impact your business. Long research durations also delay the availability of insights, making them less timely or relevant in rapidly evolving market conditions. This time-intensive nature can be a deterrent, especially when quick decision-making and agility are crucial for business success.

Balancing the Pros and Cons

For entrepreneurs and business enthusiasts like you, the case study method offers a way to dive deep into specific business scenarios. It’s a powerful tool, but it has both benefits and challenges.

When to Choose Case Study Method

Use the case study method when you need detailed, practical insights. This method works well when exploring unique business models, understanding specific customer behaviors, or examining the success strategies of other startups. Large-scale statistics can’t capture the nuances you get from a focused case study.

  • Launching a new product and needing to understand early adopter behavior.
  • Analyzing a failed competitor to learn what went wrong.

Strategies to Mitigate Disadvantages

To mitigate the limitations of case studies, employ these strategies:

  • Diversify Sources : Include multiple case studies to build a broader understanding, reducing the risk of overgeneralization.
  • Time Management : Allocate specific time slots for case study research to prevent it from consuming your hands-on business activities.
  • Collaborate : Work with others to share the research load and bring in diverse perspectives.

These strategies help you get the most out of the case study method while addressing common drawbacks.

The case study method offers a unique way to gain in-depth insights and analyze complex scenarios in various fields. While it has its challenges like time consumption and limited generalizability you can still leverage its strengths by using diverse sources and effective time management. Collaborating with others can also help you make the most out of your case studies. By understanding when and how to use this method you’ll be better equipped to harness its full potential for your business or research endeavors.

Frequently Asked Questions

What are the primary benefits of the case study method in business.

The case study method offers detailed insights, helps analyze market trends, and understands customer behavior through both qualitative and quantitative data collection techniques.

What fields commonly use the case study method?

The case study method is popular in business, psychology, and education for its ability to provide comprehensive and detailed insights.

What are the main disadvantages of using the case study method in business?

The main disadvantages include limitations in generalizability and the time-consuming nature of conducting in-depth research.

How can businesses mitigate the limitations of the case study method?

Businesses can mitigate limitations by diversifying their data sources, managing research time effectively, and collaborating with others to enhance the quality and applicability of their case studies.

When should entrepreneurs and business enthusiasts choose the case study method?

Entrepreneurs and business enthusiasts should choose the case study method when they need detailed, qualitative insights that cannot be captured through other research methods.

Share this with your friends...

About the author.

Ryan Kingsley Seriosity Editor

Ryan Kingsley

You might like these articles as well....

The Bear and the Rat shark tank

The Bear and the Rat from Shark Tank

Vermont Butcher Block Company shark tank

Vermont Butcher Block Company from Shark Tank

Morninghead shark tank

Morninghead from Shark Tank

Sunday Night Slow Jams shark tank

Sunday Night Slow Jams from Shark Tank

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Correlation vs. Causation | Difference, Designs & Examples

Correlation vs. Causation | Difference, Designs & Examples

Published on July 12, 2021 by Pritha Bhandari . Revised on June 22, 2023.

Correlation means there is a statistical association between variables. Causation means that a change in one variable causes a change in another variable.

In research, you might have come across the phrase “correlation doesn’t imply causation.” Correlation and causation are two related ideas, but understanding their differences will help you critically evaluate sources and interpret scientific research.

Table of contents

What’s the difference, why doesn’t correlation mean causation, correlational research, third variable problem, regression to the mean, spurious correlations, directionality problem, causal research, other interesting articles, frequently asked questions about correlation and causation.

Correlation describes an association between types of variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables. These variables change together: they covary. But this covariation isn’t necessarily due to a direct or indirect causal link.

Causation means that changes in one variable brings about changes in the other; there is a cause-and-effect relationship between variables. The two variables are correlated with each other and there is also a causal link between them.

Prevent plagiarism. Run a free check.

There are two main reasons why correlation isn’t causation. These problems are important to identify for drawing sound scientific conclusions from research.

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not. For example, ice cream sales and violent crime rates are closely correlated, but they are not causally linked with each other. Instead, hot temperatures, a third variable, affects both variables separately. Failing to account for third variables can lead research biases to creep into your work.

The directionality problem occurs when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other. For example, vitamin D levels are correlated with depression, but it’s not clear whether low vitamin D causes depression, or whether depression causes reduced vitamin D intake.

You’ll need to use an appropriate research design to distinguish between correlational and causal relationships:

  • Correlational research designs can only demonstrate correlational links between variables.
  • Experimental designs can test causation.

In a correlational research design, you collect data on your variables without manipulating them.

Correlational research is usually high in external validity , so you can generalize your findings to real life settings. But these studies are low in internal validity , which makes it difficult to causally connect changes in one variable to changes in the other.

These research designs are commonly used when it’s unethical, too costly, or too difficult to perform controlled experiments. They are also used to study relationships that aren’t expected to be causal.

Without controlled experiments, it’s hard to say whether it was the variable you’re interested in that caused changes in another variable. Extraneous variables are any third variable or omitted variable other than your variables of interest that could affect your results.

Limited control in correlational research means that extraneous or confounding variables serve as alternative explanations for the results. Confounding variables can make it seem as though a correlational relationship is causal when it isn’t.

When two variables are correlated, all you can say is that changes in one variable occur alongside changes in the other.

Regression to the mean is observed when variables that are extremely higher or extremely lower than average on the first measurement move closer to the average on the second measurement. Particularly in research that intentionally focuses on the most extreme cases or events, RTM should always be considered as a possible cause of an observed change.

Players or teams featured on the cover of SI have earned their place by performing exceptionally well. But athletic success is a mix of skill and luck, and even the best players don’t always win.

Chances are that good luck will not continue indefinitely, and neither can exceptional success.

A spurious correlation is when two variables appear to be related through hidden third variables or simply by coincidence.

The Theory of the Stork draws a simple causal link between the variables to argue that storks physically deliver babies. This satirical study shows why you can’t conclude causation from correlational research alone.

When you analyze correlations in a large dataset with many variables, the chances of finding at least one statistically significant result are high. In this case, you’re more likely to make a type I error . This means erroneously concluding there is a true correlation between variables in the population based on skewed sample data.

To demonstrate causation, you need to show a directional relationship with no alternative explanations. This relationship can be unidirectional, with one variable impacting the other, or bidirectional, where both variables impact each other.

A correlational design won’t be able to distinguish between any of these possibilities, but an experimental design can test each possible direction, one at a time.

  • Physical activity may affect self esteem
  • Self esteem may affect physical activity
  • Physical activity and self esteem may both affect each other

In correlational research, the directionality of a relationship is unclear because there is limited researcher control. You might risk concluding reverse causality, the wrong direction of the relationship.

Causal links between variables can only be truly demonstrated with controlled experiments . Experiments test formal predictions, called hypotheses , to establish causality in one direction at a time.

Experiments are high in internal validity , so cause-and-effect relationships can be demonstrated with reasonable confidence.

You can establish directionality in one direction because you manipulate an independent variable before measuring the change in a dependent variable.

In a controlled experiment, you can also eliminate the influence of third variables by using random assignment and control groups.

Random assignment helps distribute participant characteristics evenly between groups so that they’re similar and comparable. A control group lets you compare the experimental manipulation to a similar treatment or no treatment (or a placebo, to control for the placebo effect ).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Correlation vs. Causation | Difference, Designs & Examples. Scribbr. Retrieved September 16, 2024, from https://www.scribbr.com/methodology/correlation-vs-causation/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, correlational research | when & how to use, guide to experimental design | overview, steps, & examples, confounding variables | definition, examples & controls, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

COMMENTS

  1. PDF Comparing the Five Approaches

    Case study research has experienced growing recognition during the past 30 years, evidenced by its more frequent application in published research and increased avail-ability of reference works (e.g., Thomas, 2015; Yin, 2014). Encouraging the use of case study research is an expressed goal of the editors of the recent . Encyclopedia of Case Study

  2. 3.2 Psychologists Use Descriptive, Correlational, and Experimental

    Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge. ... These research designs are known as case studies — descriptive records of one or more individual's experiences and behaviour. Sometimes case studies involve ordinary individuals, as ...

  3. Chapter 12 Methods for Correlational Studies

    Correlational studies aim to find out if there are differences in the characteristics of a population depending on whether or not its subjects have been exposed to an event of interest in the naturalistic setting. In eHealth, correlational studies are often used to determine whether the use of an eHealth system is associated with a particular set of user characteristics and/or quality of care ...

  4. Correlational Research

    A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them. A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative. Positive correlation.

  5. Correlation Studies in Psychology Research

    A correlational study is a type of research design that looks at the relationships between two or more variables. Correlational studies are non-experimental, which means that the experimenter does not manipulate or control any of the variables. A correlation refers to a relationship between two variables. Correlations can be strong or weak and ...

  6. Research Designs: Quasi-Experimental, Case Studies & Correlational

    Other important types of human growth and development research are case studies and correlational research. A case study is an in-depth investigation of a single event or person.

  7. Correlational Research

    It should involve two or more variables that you want to investigate for a correlation. Choose the research method: Decide on the research method that will be most appropriate for your research question. The most common methods for correlational research are surveys, archival research, and naturalistic observation.

  8. Correlational Research

    Correlational Research. One of the primary methods used to study abnormal behavior is the correlational method. Correlation means that there is a relationship between two or more variables (such between the variables of negative thinking and depressive symptoms), but this relationship does not necessarily imply cause and effect. When two variables are correlated, it simply means that as one ...

  9. Correlational Study Overview & Examples

    A correlational study is an experimental design that evaluates only the correlation between variables. The researchers record measurements but do not control or manipulate the variables. Correlational research is a form of observational study. A correlation indicates that as the value of one variable increases, the other tends to change in a ...

  10. What Is a Case Study?

    Case studies are good for describing, comparing, evaluating and understanding different aspects of a research problem. Table of contents. When to do a case study. Step 1: Select a case. Step 2: Build a theoretical framework. Step 3: Collect your data. Step 4: Describe and analyze the case.

  11. Correlational Research in Psychology: Definition and How It Works

    Correlational Research vs. Experimental Research. ... Case-Control Correlational Study. A case-control correlational study is a type of research design that investigates the relationship between exposure and health outcomes. In this study, researchers identify a group of individuals with the health outcome of interest (cases) and another group ...

  12. 2.2 Psychologists Use Descriptive, Correlational, and Experimental

    Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems. In sum, correlational research designs have both strengths and limitations.

  13. What's the difference between correlational and experimental research?

    Controlled experiments establish causality, whereas correlational studies only show associations between variables. In an experimental design, you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can't impact the results. In a correlational design, you measure variables ...

  14. Correlational Research

    Revised on 5 December 2022. A correlational research design investigates relationships between variables without the researcher controlling or manipulating any of them. A correlation reflects the strength and/or direction of the relationship between two (or more) variables. The direction of a correlation can be either positive or negative.

  15. Causal-Comparative vs. Correlational Research

    While causal-comparative research allows researchers to make inferences about causality, correlational research only shows the strength and direction of the relationship between variables. Both methods have their strengths and limitations, and researchers must carefully consider which approach is most appropriate for their research question.

  16. 7.2 Correlational Research

    What Is Correlational Research? Correlational research is a type of nonexperimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are essentially two reasons that researchers interested in ...

  17. Correlational Research

    Correlational research is a type of non-experimental research in which the researcher measures two variables (binary or continuous) and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical ...

  18. Research Guides: Research Methods: Types of Research

    Video: Non-Experimental Research Methods: Case Studies and Observation Using a range of classic and contemporary studies, this film illustrates and evaluates the strengths, weaknesses, and limitations of three different types of non-experimental methods used by psychologists to study social behavior: Case Studies, Naturalistic Observation and ...

  19. Thinking Clearly About Correlations and Causation: Graphical Causal

    Which method—randomized experiment, natural experiment, or observational study—is suited for drawing a causal inference regarding a specific research question must be decided on a case-by-case basis (see also Cartwright's, 2007, arguments that there is no gold standard).

  20. Observational Study Designs: Synopsis for Selecting an Appropriate

    The observational design is subdivided into descriptive, including cross-sectional, case report or case series, and correlational, and analytic which includes cross-section, case-control, and cohort studies. Each research design has its uses and points of strength and limitations. The aim of this article to provide a simplified approach for the ...

  21. Case Study Method Advantages and Disadvantages: Essential Insights for

    Explore the advantages and disadvantages of the case study method in business, psychology, and education. Learn how detailed insights and market analysis can benefit entrepreneurs, and discover strategies to overcome limitations like generalizability and time consumption. Make informed decisions on using case studies effectively with tips on managing time and diversifying sources.

  22. Correlation vs. Causation

    Revised on June 22, 2023. Correlation means there is a statistical association between variables. Causation means that a change in one variable causes a change in another variable. In research, you might have come across the phrase "correlation doesn't imply causation.". Correlation and causation are two related ideas, but understanding ...

  23. Case Study & Correlation by Haley Yandt on Prezi

    Correlation. Correlational Study: A research project designed to discover the degree to which two variables are related to each other. Useful for making predictions. Does not prove a cause and effect relationship. It proves that two variables are related but not why they are related. Example: T.V. watching vs. low GPA.